xref: /freebsd/sys/dev/sym/sym_hipd.c (revision aa0a1e58)
1 /*-
2  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3  *  PCI-SCSI controllers.
4  *
5  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
10  *
11  *
12  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13  *  Copyright (C) 1998-1999  Gerard Roudier
14  *
15  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
17  *
18  *  The original ncr driver has been written for 386bsd and FreeBSD by
19  *          Wolfgang Stanglmeier        <wolf@cologne.de>
20  *          Stefan Esser                <se@mi.Uni-Koeln.de>
21  *  Copyright (C) 1994  Wolfgang Stanglmeier
22  *
23  *  The initialisation code, and part of the code that addresses
24  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25  *  written by Justin T. Gibbs.
26  *
27  *  Other major contributions:
28  *
29  *  NVRAM detection and reading.
30  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31  *
32  *-----------------------------------------------------------------------------
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. The name of the author may not be used to endorse or promote products
43  *    derived from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
62 
63 /* #define SYM_DEBUG_GENERIC_SUPPORT */
64 
65 #include <sys/param.h>
66 
67 /*
68  *  Driver configuration options.
69  */
70 #include "opt_sym.h"
71 #include <dev/sym/sym_conf.h>
72 
73 
74 #include <sys/systm.h>
75 #include <sys/malloc.h>
76 #include <sys/endian.h>
77 #include <sys/kernel.h>
78 #include <sys/lock.h>
79 #include <sys/mutex.h>
80 #include <sys/module.h>
81 #include <sys/bus.h>
82 
83 #include <sys/proc.h>
84 
85 #include <dev/pci/pcireg.h>
86 #include <dev/pci/pcivar.h>
87 
88 #include <machine/bus.h>
89 #include <machine/resource.h>
90 
91 #ifdef __sparc64__
92 #include <dev/ofw/openfirm.h>
93 #include <machine/ofw_machdep.h>
94 #endif
95 
96 #include <sys/rman.h>
97 
98 #include <cam/cam.h>
99 #include <cam/cam_ccb.h>
100 #include <cam/cam_sim.h>
101 #include <cam/cam_xpt_sim.h>
102 #include <cam/cam_debug.h>
103 
104 #include <cam/scsi/scsi_all.h>
105 #include <cam/scsi/scsi_message.h>
106 
107 /* Short and quite clear integer types */
108 typedef int8_t    s8;
109 typedef int16_t   s16;
110 typedef	int32_t   s32;
111 typedef u_int8_t  u8;
112 typedef u_int16_t u16;
113 typedef	u_int32_t u32;
114 
115 /*
116  *  Driver definitions.
117  */
118 #include <dev/sym/sym_defs.h>
119 #include <dev/sym/sym_fw.h>
120 
121 /*
122  *  IA32 architecture does not reorder STORES and prevents
123  *  LOADS from passing STORES. It is called `program order'
124  *  by Intel and allows device drivers to deal with memory
125  *  ordering by only ensuring that the code is not reordered
126  *  by the compiler when ordering is required.
127  *  Other architectures implement a weaker ordering that
128  *  requires memory barriers (and also IO barriers when they
129  *  make sense) to be used.
130  */
131 
132 #if	defined	__i386__ || defined __amd64__
133 #define MEMORY_BARRIER()	do { ; } while(0)
134 #elif	defined	__powerpc__
135 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
136 #elif	defined	__ia64__
137 #define MEMORY_BARRIER()	__asm__ volatile("mf.a; mf" : : : "memory")
138 #elif	defined	__sparc64__
139 #define MEMORY_BARRIER()	__asm__ volatile("membar #Sync" : : : "memory")
140 #else
141 #error	"Not supported platform"
142 #endif
143 
144 /*
145  *  A la VMS/CAM-3 queue management.
146  */
147 
148 typedef struct sym_quehead {
149 	struct sym_quehead *flink;	/* Forward  pointer */
150 	struct sym_quehead *blink;	/* Backward pointer */
151 } SYM_QUEHEAD;
152 
153 #define sym_que_init(ptr) do { \
154 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
155 } while (0)
156 
157 static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
158 {
159 	return (head->flink == head) ? NULL : head->flink;
160 }
161 
162 static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
163 {
164 	return (head->blink == head) ? NULL : head->blink;
165 }
166 
167 static __inline void __sym_que_add(struct sym_quehead * new,
168 	struct sym_quehead * blink,
169 	struct sym_quehead * flink)
170 {
171 	flink->blink	= new;
172 	new->flink	= flink;
173 	new->blink	= blink;
174 	blink->flink	= new;
175 }
176 
177 static __inline void __sym_que_del(struct sym_quehead * blink,
178 	struct sym_quehead * flink)
179 {
180 	flink->blink = blink;
181 	blink->flink = flink;
182 }
183 
184 static __inline int sym_que_empty(struct sym_quehead *head)
185 {
186 	return head->flink == head;
187 }
188 
189 static __inline void sym_que_splice(struct sym_quehead *list,
190 	struct sym_quehead *head)
191 {
192 	struct sym_quehead *first = list->flink;
193 
194 	if (first != list) {
195 		struct sym_quehead *last = list->blink;
196 		struct sym_quehead *at   = head->flink;
197 
198 		first->blink = head;
199 		head->flink  = first;
200 
201 		last->flink = at;
202 		at->blink   = last;
203 	}
204 }
205 
206 #define sym_que_entry(ptr, type, member) \
207 	((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
208 
209 
210 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
211 
212 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
213 
214 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
215 
216 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
217 {
218 	struct sym_quehead *elem = head->flink;
219 
220 	if (elem != head)
221 		__sym_que_del(head, elem->flink);
222 	else
223 		elem = NULL;
224 	return elem;
225 }
226 
227 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
228 
229 static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
230 {
231 	struct sym_quehead *elem = head->blink;
232 
233 	if (elem != head)
234 		__sym_que_del(elem->blink, head);
235 	else
236 		elem = NULL;
237 	return elem;
238 }
239 
240 /*
241  *  This one may be useful.
242  */
243 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
244 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
245 /*
246  *  FreeBSD does not offer our kind of queue in the CAM CCB.
247  *  So, we have to cast.
248  */
249 #define sym_qptr(p)	((struct sym_quehead *) (p))
250 
251 /*
252  *  Simple bitmap operations.
253  */
254 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
255 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
256 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
257 
258 /*
259  *  Number of tasks per device we want to handle.
260  */
261 #if	SYM_CONF_MAX_TAG_ORDER > 8
262 #error	"more than 256 tags per logical unit not allowed."
263 #endif
264 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
265 
266 /*
267  *  Donnot use more tasks that we can handle.
268  */
269 #ifndef	SYM_CONF_MAX_TAG
270 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
271 #endif
272 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
273 #undef	SYM_CONF_MAX_TAG
274 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
275 #endif
276 
277 /*
278  *    This one means 'NO TAG for this job'
279  */
280 #define NO_TAG	(256)
281 
282 /*
283  *  Number of SCSI targets.
284  */
285 #if	SYM_CONF_MAX_TARGET > 16
286 #error	"more than 16 targets not allowed."
287 #endif
288 
289 /*
290  *  Number of logical units per target.
291  */
292 #if	SYM_CONF_MAX_LUN > 64
293 #error	"more than 64 logical units per target not allowed."
294 #endif
295 
296 /*
297  *    Asynchronous pre-scaler (ns). Shall be 40 for
298  *    the SCSI timings to be compliant.
299  */
300 #define	SYM_CONF_MIN_ASYNC (40)
301 
302 /*
303  *  Number of entries in the START and DONE queues.
304  *
305  *  We limit to 1 PAGE in order to succeed allocation of
306  *  these queues. Each entry is 8 bytes long (2 DWORDS).
307  */
308 #ifdef	SYM_CONF_MAX_START
309 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
310 #else
311 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
312 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
313 #endif
314 
315 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
316 #undef	SYM_CONF_MAX_QUEUE
317 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
318 #undef	SYM_CONF_MAX_START
319 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
320 #endif
321 
322 /*
323  *  For this one, we want a short name :-)
324  */
325 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
326 
327 /*
328  *  Active debugging tags and verbosity.
329  */
330 #define DEBUG_ALLOC	(0x0001)
331 #define DEBUG_PHASE	(0x0002)
332 #define DEBUG_POLL	(0x0004)
333 #define DEBUG_QUEUE	(0x0008)
334 #define DEBUG_RESULT	(0x0010)
335 #define DEBUG_SCATTER	(0x0020)
336 #define DEBUG_SCRIPT	(0x0040)
337 #define DEBUG_TINY	(0x0080)
338 #define DEBUG_TIMING	(0x0100)
339 #define DEBUG_NEGO	(0x0200)
340 #define DEBUG_TAGS	(0x0400)
341 #define DEBUG_POINTER	(0x0800)
342 
343 #if 0
344 static int sym_debug = 0;
345 	#define DEBUG_FLAGS sym_debug
346 #else
347 /*	#define DEBUG_FLAGS (0x0631) */
348 	#define DEBUG_FLAGS (0x0000)
349 
350 #endif
351 #define sym_verbose	(np->verbose)
352 
353 /*
354  *  Insert a delay in micro-seconds and milli-seconds.
355  */
356 static void UDELAY(int us) { DELAY(us); }
357 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
358 
359 /*
360  *  Simple power of two buddy-like allocator.
361  *
362  *  This simple code is not intended to be fast, but to
363  *  provide power of 2 aligned memory allocations.
364  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
365  *  this allocator allows simple and fast address calculations
366  *  from the SCRIPTS code. In addition, cache line alignment
367  *  is guaranteed for power of 2 cache line size.
368  *
369  *  This allocator has been developped for the Linux sym53c8xx
370  *  driver, since this O/S does not provide naturally aligned
371  *  allocations.
372  *  It has the advantage of allowing the driver to use private
373  *  pages of memory that will be useful if we ever need to deal
374  *  with IO MMUs for PCI.
375  */
376 
377 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
378 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
379 #if 0
380 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
381 #endif
382 #define MEMO_WARN	1
383 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
384 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
385 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
386 
387 #define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
388 #define free_pages(p)		free((p), M_DEVBUF)
389 
390 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
391 
392 typedef struct m_link {		/* Link between free memory chunks */
393 	struct m_link *next;
394 } m_link_s;
395 
396 typedef struct m_vtob {		/* Virtual to Bus address translation */
397 	struct m_vtob	*next;
398 	bus_dmamap_t	dmamap;	/* Map for this chunk */
399 	m_addr_t	vaddr;	/* Virtual address */
400 	m_addr_t	baddr;	/* Bus physical address */
401 } m_vtob_s;
402 /* Hash this stuff a bit to speed up translations */
403 #define VTOB_HASH_SHIFT		5
404 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
405 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
406 #define VTOB_HASH_CODE(m)	\
407 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
408 
409 typedef struct m_pool {		/* Memory pool of a given kind */
410 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
411 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
412 	m_addr_t (*getp)(struct m_pool *);
413 #ifdef	MEMO_FREE_UNUSED
414 	void (*freep)(struct m_pool *, m_addr_t);
415 #endif
416 #define M_GETP()		mp->getp(mp)
417 #define M_FREEP(p)		mp->freep(mp, p)
418 	int nump;
419 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
420 	struct m_pool *next;
421 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
422 } m_pool_s;
423 
424 static void *___sym_malloc(m_pool_s *mp, int size)
425 {
426 	int i = 0;
427 	int s = (1 << MEMO_SHIFT);
428 	int j;
429 	m_addr_t a;
430 	m_link_s *h = mp->h;
431 
432 	if (size > MEMO_CLUSTER_SIZE)
433 		return NULL;
434 
435 	while (size > s) {
436 		s <<= 1;
437 		++i;
438 	}
439 
440 	j = i;
441 	while (!h[j].next) {
442 		if (s == MEMO_CLUSTER_SIZE) {
443 			h[j].next = (m_link_s *) M_GETP();
444 			if (h[j].next)
445 				h[j].next->next = NULL;
446 			break;
447 		}
448 		++j;
449 		s <<= 1;
450 	}
451 	a = (m_addr_t) h[j].next;
452 	if (a) {
453 		h[j].next = h[j].next->next;
454 		while (j > i) {
455 			j -= 1;
456 			s >>= 1;
457 			h[j].next = (m_link_s *) (a+s);
458 			h[j].next->next = NULL;
459 		}
460 	}
461 #ifdef DEBUG
462 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
463 #endif
464 	return (void *) a;
465 }
466 
467 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
468 {
469 	int i = 0;
470 	int s = (1 << MEMO_SHIFT);
471 	m_link_s *q;
472 	m_addr_t a, b;
473 	m_link_s *h = mp->h;
474 
475 #ifdef DEBUG
476 	printf("___sym_mfree(%p, %d)\n", ptr, size);
477 #endif
478 
479 	if (size > MEMO_CLUSTER_SIZE)
480 		return;
481 
482 	while (size > s) {
483 		s <<= 1;
484 		++i;
485 	}
486 
487 	a = (m_addr_t) ptr;
488 
489 	while (1) {
490 #ifdef MEMO_FREE_UNUSED
491 		if (s == MEMO_CLUSTER_SIZE) {
492 			M_FREEP(a);
493 			break;
494 		}
495 #endif
496 		b = a ^ s;
497 		q = &h[i];
498 		while (q->next && q->next != (m_link_s *) b) {
499 			q = q->next;
500 		}
501 		if (!q->next) {
502 			((m_link_s *) a)->next = h[i].next;
503 			h[i].next = (m_link_s *) a;
504 			break;
505 		}
506 		q->next = q->next->next;
507 		a = a & b;
508 		s <<= 1;
509 		++i;
510 	}
511 }
512 
513 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
514 {
515 	void *p;
516 
517 	p = ___sym_malloc(mp, size);
518 
519 	if (DEBUG_FLAGS & DEBUG_ALLOC)
520 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
521 
522 	if (p)
523 		bzero(p, size);
524 	else if (uflags & MEMO_WARN)
525 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
526 
527 	return p;
528 }
529 
530 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
531 
532 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
533 {
534 	if (DEBUG_FLAGS & DEBUG_ALLOC)
535 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
536 
537 	___sym_mfree(mp, ptr, size);
538 
539 }
540 
541 /*
542  * Default memory pool we donnot need to involve in DMA.
543  */
544 /*
545  * With the `bus dma abstraction', we use a separate pool for
546  * memory we donnot need to involve in DMA.
547  */
548 static m_addr_t ___mp0_getp(m_pool_s *mp)
549 {
550 	m_addr_t m = (m_addr_t) get_pages();
551 	if (m)
552 		++mp->nump;
553 	return m;
554 }
555 
556 #ifdef	MEMO_FREE_UNUSED
557 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
558 {
559 	free_pages(m);
560 	--mp->nump;
561 }
562 #endif
563 
564 #ifdef	MEMO_FREE_UNUSED
565 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
566 #else
567 static m_pool_s mp0 = {0, 0, ___mp0_getp};
568 #endif
569 
570 
571 /*
572  * Actual memory allocation routine for non-DMAed memory.
573  */
574 static void *sym_calloc(int size, char *name)
575 {
576 	void *m;
577 	/* Lock */
578 	m = __sym_calloc(&mp0, size, name);
579 	/* Unlock */
580 	return m;
581 }
582 
583 /*
584  * Actual memory allocation routine for non-DMAed memory.
585  */
586 static void sym_mfree(void *ptr, int size, char *name)
587 {
588 	/* Lock */
589 	__sym_mfree(&mp0, ptr, size, name);
590 	/* Unlock */
591 }
592 
593 /*
594  * DMAable pools.
595  */
596 /*
597  * With `bus dma abstraction', we use a separate pool per parent
598  * BUS handle. A reverse table (hashed) is maintained for virtual
599  * to BUS address translation.
600  */
601 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
602 {
603 	bus_addr_t *baddr;
604 	baddr = (bus_addr_t *)arg;
605 	*baddr = segs->ds_addr;
606 }
607 
608 static m_addr_t ___dma_getp(m_pool_s *mp)
609 {
610 	m_vtob_s *vbp;
611 	void *vaddr = NULL;
612 	bus_addr_t baddr = 0;
613 
614 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
615 	if (!vbp)
616 		goto out_err;
617 
618 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
619 			BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap))
620 		goto out_err;
621 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
622 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
623 	if (baddr) {
624 		int hc = VTOB_HASH_CODE(vaddr);
625 		vbp->vaddr = (m_addr_t) vaddr;
626 		vbp->baddr = (m_addr_t) baddr;
627 		vbp->next = mp->vtob[hc];
628 		mp->vtob[hc] = vbp;
629 		++mp->nump;
630 		return (m_addr_t) vaddr;
631 	}
632 out_err:
633 	if (baddr)
634 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
635 	if (vaddr)
636 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
637 	if (vbp) {
638 		if (vbp->dmamap)
639 			bus_dmamap_destroy(mp->dmat, vbp->dmamap);
640 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
641 	}
642 	return 0;
643 }
644 
645 #ifdef	MEMO_FREE_UNUSED
646 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
647 {
648 	m_vtob_s **vbpp, *vbp;
649 	int hc = VTOB_HASH_CODE(m);
650 
651 	vbpp = &mp->vtob[hc];
652 	while (*vbpp && (*vbpp)->vaddr != m)
653 		vbpp = &(*vbpp)->next;
654 	if (*vbpp) {
655 		vbp = *vbpp;
656 		*vbpp = (*vbpp)->next;
657 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
658 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
659 		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
660 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
661 		--mp->nump;
662 	}
663 }
664 #endif
665 
666 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
667 {
668 	m_pool_s *mp;
669 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
670 	return mp;
671 }
672 
673 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
674 {
675 	m_pool_s *mp = NULL;
676 
677 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
678 	if (mp) {
679 		mp->dev_dmat = dev_dmat;
680 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
681 			       BUS_SPACE_MAXADDR_32BIT,
682 			       BUS_SPACE_MAXADDR,
683 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
684 			       MEMO_CLUSTER_SIZE, 0,
685 			       NULL, NULL, &mp->dmat)) {
686 			mp->getp = ___dma_getp;
687 #ifdef	MEMO_FREE_UNUSED
688 			mp->freep = ___dma_freep;
689 #endif
690 			mp->next = mp0.next;
691 			mp0.next = mp;
692 			return mp;
693 		}
694 	}
695 	if (mp)
696 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
697 	return NULL;
698 }
699 
700 #ifdef	MEMO_FREE_UNUSED
701 static void ___del_dma_pool(m_pool_s *p)
702 {
703 	struct m_pool **pp = &mp0.next;
704 
705 	while (*pp && *pp != p)
706 		pp = &(*pp)->next;
707 	if (*pp) {
708 		*pp = (*pp)->next;
709 		bus_dma_tag_destroy(p->dmat);
710 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
711 	}
712 }
713 #endif
714 
715 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
716 {
717 	struct m_pool *mp;
718 	void *m = NULL;
719 
720 	/* Lock */
721 	mp = ___get_dma_pool(dev_dmat);
722 	if (!mp)
723 		mp = ___cre_dma_pool(dev_dmat);
724 	if (mp)
725 		m = __sym_calloc(mp, size, name);
726 #ifdef	MEMO_FREE_UNUSED
727 	if (mp && !mp->nump)
728 		___del_dma_pool(mp);
729 #endif
730 	/* Unlock */
731 
732 	return m;
733 }
734 
735 static void
736 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
737 {
738 	struct m_pool *mp;
739 
740 	/* Lock */
741 	mp = ___get_dma_pool(dev_dmat);
742 	if (mp)
743 		__sym_mfree(mp, m, size, name);
744 #ifdef	MEMO_FREE_UNUSED
745 	if (mp && !mp->nump)
746 		___del_dma_pool(mp);
747 #endif
748 	/* Unlock */
749 }
750 
751 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
752 {
753 	m_pool_s *mp;
754 	int hc = VTOB_HASH_CODE(m);
755 	m_vtob_s *vp = NULL;
756 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
757 
758 	/* Lock */
759 	mp = ___get_dma_pool(dev_dmat);
760 	if (mp) {
761 		vp = mp->vtob[hc];
762 		while (vp && (m_addr_t) vp->vaddr != a)
763 			vp = vp->next;
764 	}
765 	/* Unlock */
766 	if (!vp)
767 		panic("sym: VTOBUS FAILED!\n");
768 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
769 }
770 
771 
772 /*
773  * Verbs for DMAable memory handling.
774  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
775  * being discarded.
776  */
777 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
778 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
779 #define _sym_mfree_dma(np, p, s, n)	\
780 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
781 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
782 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
783 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
784 #define vtobus(p)			_vtobus(np, p)
785 
786 
787 /*
788  *  Print a buffer in hexadecimal format.
789  */
790 static void sym_printb_hex (u_char *p, int n)
791 {
792 	while (n-- > 0)
793 		printf (" %x", *p++);
794 }
795 
796 /*
797  *  Same with a label at beginning and .\n at end.
798  */
799 static void sym_printl_hex (char *label, u_char *p, int n)
800 {
801 	printf ("%s", label);
802 	sym_printb_hex (p, n);
803 	printf (".\n");
804 }
805 
806 /*
807  *  Return a string for SCSI BUS mode.
808  */
809 static const char *sym_scsi_bus_mode(int mode)
810 {
811 	switch(mode) {
812 	case SMODE_HVD:	return "HVD";
813 	case SMODE_SE:	return "SE";
814 	case SMODE_LVD: return "LVD";
815 	}
816 	return "??";
817 }
818 
819 /*
820  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
821  */
822 #ifdef SYM_CONF_NVRAM_SUPPORT
823 static const u_char Tekram_sync[16] =
824 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
825 #endif
826 
827 /*
828  *  Union of supported NVRAM formats.
829  */
830 struct sym_nvram {
831 	int type;
832 #define	SYM_SYMBIOS_NVRAM	(1)
833 #define	SYM_TEKRAM_NVRAM	(2)
834 #ifdef	SYM_CONF_NVRAM_SUPPORT
835 	union {
836 		Symbios_nvram Symbios;
837 		Tekram_nvram Tekram;
838 	} data;
839 #endif
840 };
841 
842 /*
843  *  This one is hopefully useless, but actually useful. :-)
844  */
845 #ifndef assert
846 #define	assert(expression) { \
847 	if (!(expression)) { \
848 		(void)panic( \
849 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
850 			#expression, \
851 			__FILE__, __LINE__); \
852 	} \
853 }
854 #endif
855 
856 /*
857  *  Some provision for a possible big endian mode supported by
858  *  Symbios chips (never seen, by the way).
859  *  For now, this stuff does not deserve any comments. :)
860  */
861 
862 #define sym_offb(o)	(o)
863 #define sym_offw(o)	(o)
864 
865 /*
866  *  Some provision for support for BIG ENDIAN CPU.
867  */
868 
869 #define cpu_to_scr(dw)	htole32(dw)
870 #define scr_to_cpu(dw)	le32toh(dw)
871 
872 /*
873  *  Access to the chip IO registers and on-chip RAM.
874  *  We use the `bus space' interface under FreeBSD-4 and
875  *  later kernel versions.
876  */
877 
878 
879 #if defined(SYM_CONF_IOMAPPED)
880 
881 #define INB_OFF(o)	bus_read_1(np->io_res, (o))
882 #define INW_OFF(o)	bus_read_2(np->io_res, (o))
883 #define INL_OFF(o)	bus_read_4(np->io_res, (o))
884 
885 #define OUTB_OFF(o, v)	bus_write_1(np->io_res, (o), (v))
886 #define OUTW_OFF(o, v)	bus_write_2(np->io_res, (o), (v))
887 #define OUTL_OFF(o, v)	bus_write_4(np->io_res, (o), (v))
888 
889 #else	/* Memory mapped IO */
890 
891 #define INB_OFF(o)	bus_read_1(np->mmio_res, (o))
892 #define INW_OFF(o)	bus_read_2(np->mmio_res, (o))
893 #define INL_OFF(o)	bus_read_4(np->mmio_res, (o))
894 
895 #define OUTB_OFF(o, v)	bus_write_1(np->mmio_res, (o), (v))
896 #define OUTW_OFF(o, v)	bus_write_2(np->mmio_res, (o), (v))
897 #define OUTL_OFF(o, v)	bus_write_4(np->mmio_res, (o), (v))
898 
899 #endif	/* SYM_CONF_IOMAPPED */
900 
901 #define OUTRAM_OFF(o, a, l)	\
902 	bus_write_region_1(np->ram_res, (o), (a), (l))
903 
904 
905 /*
906  *  Common definitions for both bus space and legacy IO methods.
907  */
908 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
909 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
910 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
911 
912 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
913 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
914 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
915 
916 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
917 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
918 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
919 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
920 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
921 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
922 
923 /*
924  *  We normally want the chip to have a consistent view
925  *  of driver internal data structures when we restart it.
926  *  Thus these macros.
927  */
928 #define OUTL_DSP(v)				\
929 	do {					\
930 		MEMORY_BARRIER();		\
931 		OUTL (nc_dsp, (v));		\
932 	} while (0)
933 
934 #define OUTONB_STD()				\
935 	do {					\
936 		MEMORY_BARRIER();		\
937 		OUTONB (nc_dcntl, (STD|NOCOM));	\
938 	} while (0)
939 
940 /*
941  *  Command control block states.
942  */
943 #define HS_IDLE		(0)
944 #define HS_BUSY		(1)
945 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
946 #define HS_DISCONNECT	(3)	/* Disconnected by target */
947 #define HS_WAIT		(4)	/* waiting for resource	  */
948 
949 #define HS_DONEMASK	(0x80)
950 #define HS_COMPLETE	(4|HS_DONEMASK)
951 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
952 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
953 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
954 
955 /*
956  *  Software Interrupt Codes
957  */
958 #define	SIR_BAD_SCSI_STATUS	(1)
959 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
960 #define	SIR_MSG_RECEIVED	(3)
961 #define	SIR_MSG_WEIRD		(4)
962 #define	SIR_NEGO_FAILED		(5)
963 #define	SIR_NEGO_PROTO		(6)
964 #define	SIR_SCRIPT_STOPPED	(7)
965 #define	SIR_REJECT_TO_SEND	(8)
966 #define	SIR_SWIDE_OVERRUN	(9)
967 #define	SIR_SODL_UNDERRUN	(10)
968 #define	SIR_RESEL_NO_MSG_IN	(11)
969 #define	SIR_RESEL_NO_IDENTIFY	(12)
970 #define	SIR_RESEL_BAD_LUN	(13)
971 #define	SIR_TARGET_SELECTED	(14)
972 #define	SIR_RESEL_BAD_I_T_L	(15)
973 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
974 #define	SIR_ABORT_SENT		(17)
975 #define	SIR_RESEL_ABORTED	(18)
976 #define	SIR_MSG_OUT_DONE	(19)
977 #define	SIR_COMPLETE_ERROR	(20)
978 #define	SIR_DATA_OVERRUN	(21)
979 #define	SIR_BAD_PHASE		(22)
980 #define	SIR_MAX			(22)
981 
982 /*
983  *  Extended error bit codes.
984  *  xerr_status field of struct sym_ccb.
985  */
986 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
987 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
988 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
989 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
990 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
991 
992 /*
993  *  Negotiation status.
994  *  nego_status field of struct sym_ccb.
995  */
996 #define NS_SYNC		(1)
997 #define NS_WIDE		(2)
998 #define NS_PPR		(3)
999 
1000 /*
1001  *  A CCB hashed table is used to retrieve CCB address
1002  *  from DSA value.
1003  */
1004 #define CCB_HASH_SHIFT		8
1005 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
1006 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
1007 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
1008 
1009 /*
1010  *  Device flags.
1011  */
1012 #define SYM_DISC_ENABLED	(1)
1013 #define SYM_TAGS_ENABLED	(1<<1)
1014 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
1015 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
1016 
1017 /*
1018  *  Host adapter miscellaneous flags.
1019  */
1020 #define SYM_AVOID_BUS_RESET	(1)
1021 #define SYM_SCAN_TARGETS_HILO	(1<<1)
1022 
1023 /*
1024  *  Device quirks.
1025  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
1026  *  saving the DATA POINTER then reselects and terminates the IO.
1027  *  On reselection, the automatic RESTORE DATA POINTER makes the
1028  *  CURRENT DATA POINTER not point at the end of the IO.
1029  *  This behaviour just breaks our calculation of the residual.
1030  *  For now, we just force an AUTO SAVE on disconnection and will
1031  *  fix that in a further driver version.
1032  */
1033 #define SYM_QUIRK_AUTOSAVE 1
1034 
1035 /*
1036  *  Misc.
1037  */
1038 #define	SYM_LOCK()		mtx_lock(&np->mtx)
1039 #define	SYM_LOCK_ASSERT(_what)	mtx_assert(&np->mtx, (_what))
1040 #define	SYM_LOCK_DESTROY()	mtx_destroy(&np->mtx)
1041 #define	SYM_LOCK_INIT()		mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF)
1042 #define	SYM_LOCK_INITIALIZED()	mtx_initialized(&np->mtx)
1043 #define	SYM_UNLOCK()		mtx_unlock(&np->mtx)
1044 
1045 #define SYM_SNOOP_TIMEOUT (10000000)
1046 #define SYM_PCI_IO	PCIR_BAR(0)
1047 #define SYM_PCI_MMIO	PCIR_BAR(1)
1048 #define SYM_PCI_RAM	PCIR_BAR(2)
1049 #define SYM_PCI_RAM64	PCIR_BAR(3)
1050 
1051 /*
1052  *  Back-pointer from the CAM CCB to our data structures.
1053  */
1054 #define sym_hcb_ptr	spriv_ptr0
1055 /* #define sym_ccb_ptr	spriv_ptr1 */
1056 
1057 /*
1058  *  We mostly have to deal with pointers.
1059  *  Thus these typedef's.
1060  */
1061 typedef struct sym_tcb *tcb_p;
1062 typedef struct sym_lcb *lcb_p;
1063 typedef struct sym_ccb *ccb_p;
1064 typedef struct sym_hcb *hcb_p;
1065 
1066 /*
1067  *  Gather negotiable parameters value
1068  */
1069 struct sym_trans {
1070 	u8 scsi_version;
1071 	u8 spi_version;
1072 	u8 period;
1073 	u8 offset;
1074 	u8 width;
1075 	u8 options;	/* PPR options */
1076 };
1077 
1078 struct sym_tinfo {
1079 	struct sym_trans current;
1080 	struct sym_trans goal;
1081 	struct sym_trans user;
1082 };
1083 
1084 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1085 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1086 
1087 /*
1088  *  Global TCB HEADER.
1089  *
1090  *  Due to lack of indirect addressing on earlier NCR chips,
1091  *  this substructure is copied from the TCB to a global
1092  *  address after selection.
1093  *  For SYMBIOS chips that support LOAD/STORE this copy is
1094  *  not needed and thus not performed.
1095  */
1096 struct sym_tcbh {
1097 	/*
1098 	 *  Scripts bus addresses of LUN table accessed from scripts.
1099 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1100 	 *  and we we want to speed-up the general case and not waste
1101 	 *  resources.
1102 	 */
1103 	u32	luntbl_sa;	/* bus address of this table	*/
1104 	u32	lun0_sa;	/* bus address of LCB #0	*/
1105 	/*
1106 	 *  Actual SYNC/WIDE IO registers value for this target.
1107 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1108 	 *  so have alignment constraints.
1109 	 */
1110 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1111 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1112 /*2*/	u_char	filler1;
1113 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1114 };
1115 
1116 /*
1117  *  Target Control Block
1118  */
1119 struct sym_tcb {
1120 	/*
1121 	 *  TCB header.
1122 	 *  Assumed at offset 0.
1123 	 */
1124 /*0*/	struct sym_tcbh head;
1125 
1126 	/*
1127 	 *  LUN table used by the SCRIPTS processor.
1128 	 *  An array of bus addresses is used on reselection.
1129 	 */
1130 	u32	*luntbl;	/* LCBs bus address table	*/
1131 
1132 	/*
1133 	 *  LUN table used by the C code.
1134 	 */
1135 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1136 #if SYM_CONF_MAX_LUN > 1
1137 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1138 #endif
1139 
1140 	/*
1141 	 *  Bitmap that tells about LUNs that succeeded at least
1142 	 *  1 IO and therefore assumed to be a real device.
1143 	 *  Avoid useless allocation of the LCB structure.
1144 	 */
1145 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1146 
1147 	/*
1148 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1149 	 *  allocated (not discovered or LCB allocation failed).
1150 	 */
1151 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1152 
1153 	/*
1154 	 *  Transfer capabilities (SIP)
1155 	 */
1156 	struct sym_tinfo tinfo;
1157 
1158 	/*
1159 	 * Keep track of the CCB used for the negotiation in order
1160 	 * to ensure that only 1 negotiation is queued at a time.
1161 	 */
1162 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1163 
1164 	/*
1165 	 *  Set when we want to reset the device.
1166 	 */
1167 	u_char	to_reset;
1168 
1169 	/*
1170 	 *  Other user settable limits and options.
1171 	 *  These limits are read from the NVRAM if present.
1172 	 */
1173 	u_char	usrflags;
1174 	u_short	usrtags;
1175 };
1176 
1177 /*
1178  *  Global LCB HEADER.
1179  *
1180  *  Due to lack of indirect addressing on earlier NCR chips,
1181  *  this substructure is copied from the LCB to a global
1182  *  address after selection.
1183  *  For SYMBIOS chips that support LOAD/STORE this copy is
1184  *  not needed and thus not performed.
1185  */
1186 struct sym_lcbh {
1187 	/*
1188 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1189 	 *  For not probed logical units, this address points to
1190 	 *  SCRIPTS that deal with bad LU handling (must be at
1191 	 *  offset zero of the LCB for that reason).
1192 	 */
1193 /*0*/	u32	resel_sa;
1194 
1195 	/*
1196 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1197 	 *  to the unique ITL nexus allowed to be disconnected.
1198 	 */
1199 	u32	itl_task_sa;
1200 
1201 	/*
1202 	 *  Task table bus address (read from SCRIPTS).
1203 	 */
1204 	u32	itlq_tbl_sa;
1205 };
1206 
1207 /*
1208  *  Logical Unit Control Block
1209  */
1210 struct sym_lcb {
1211 	/*
1212 	 *  TCB header.
1213 	 *  Assumed at offset 0.
1214 	 */
1215 /*0*/	struct sym_lcbh head;
1216 
1217 	/*
1218 	 *  Task table read from SCRIPTS that contains pointers to
1219 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1220 	 *  inside the header.
1221 	 */
1222 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1223 
1224 	/*
1225 	 *  Busy CCBs management.
1226 	 */
1227 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1228 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1229 
1230 	/*
1231 	 *  Circular tag allocation buffer.
1232 	 */
1233 	u_short	ia_tag;		/* Tag allocation index		*/
1234 	u_short	if_tag;		/* Tag release index		*/
1235 	u_char	*cb_tags;	/* Circular tags buffer		*/
1236 
1237 	/*
1238 	 *  Set when we want to clear all tasks.
1239 	 */
1240 	u_char to_clear;
1241 
1242 	/*
1243 	 *  Capabilities.
1244 	 */
1245 	u_char	user_flags;
1246 	u_char	current_flags;
1247 };
1248 
1249 /*
1250  *  Action from SCRIPTS on a task.
1251  *  Is part of the CCB, but is also used separately to plug
1252  *  error handling action to perform from SCRIPTS.
1253  */
1254 struct sym_actscr {
1255 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1256 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1257 };
1258 
1259 /*
1260  *  Phase mismatch context.
1261  *
1262  *  It is part of the CCB and is used as parameters for the
1263  *  DATA pointer. We need two contexts to handle correctly the
1264  *  SAVED DATA POINTER.
1265  */
1266 struct sym_pmc {
1267 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1268 	u32	ret;		/* SCRIPT return address	*/
1269 };
1270 
1271 /*
1272  *  LUN control block lookup.
1273  *  We use a direct pointer for LUN #0, and a table of
1274  *  pointers which is only allocated for devices that support
1275  *  LUN(s) > 0.
1276  */
1277 #if SYM_CONF_MAX_LUN <= 1
1278 #define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
1279 #else
1280 #define sym_lp(np, tp, lun) \
1281 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1282 #endif
1283 
1284 /*
1285  *  Status are used by the host and the script processor.
1286  *
1287  *  The last four bytes (status[4]) are copied to the
1288  *  scratchb register (declared as scr0..scr3) just after the
1289  *  select/reselect, and copied back just after disconnecting.
1290  *  Inside the script the XX_REG are used.
1291  */
1292 
1293 /*
1294  *  Last four bytes (script)
1295  */
1296 #define  QU_REG	scr0
1297 #define  HS_REG	scr1
1298 #define  HS_PRT	nc_scr1
1299 #define  SS_REG	scr2
1300 #define  SS_PRT	nc_scr2
1301 #define  HF_REG	scr3
1302 #define  HF_PRT	nc_scr3
1303 
1304 /*
1305  *  Last four bytes (host)
1306  */
1307 #define  actualquirks  phys.head.status[0]
1308 #define  host_status   phys.head.status[1]
1309 #define  ssss_status   phys.head.status[2]
1310 #define  host_flags    phys.head.status[3]
1311 
1312 /*
1313  *  Host flags
1314  */
1315 #define HF_IN_PM0	1u
1316 #define HF_IN_PM1	(1u<<1)
1317 #define HF_ACT_PM	(1u<<2)
1318 #define HF_DP_SAVED	(1u<<3)
1319 #define HF_SENSE	(1u<<4)
1320 #define HF_EXT_ERR	(1u<<5)
1321 #define HF_DATA_IN	(1u<<6)
1322 #ifdef SYM_CONF_IARB_SUPPORT
1323 #define HF_HINT_IARB	(1u<<7)
1324 #endif
1325 
1326 /*
1327  *  Global CCB HEADER.
1328  *
1329  *  Due to lack of indirect addressing on earlier NCR chips,
1330  *  this substructure is copied from the ccb to a global
1331  *  address after selection (or reselection) and copied back
1332  *  before disconnect.
1333  *  For SYMBIOS chips that support LOAD/STORE this copy is
1334  *  not needed and thus not performed.
1335  */
1336 
1337 struct sym_ccbh {
1338 	/*
1339 	 *  Start and restart SCRIPTS addresses (must be at 0).
1340 	 */
1341 /*0*/	struct sym_actscr go;
1342 
1343 	/*
1344 	 *  SCRIPTS jump address that deal with data pointers.
1345 	 *  'savep' points to the position in the script responsible
1346 	 *  for the actual transfer of data.
1347 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1348 	 */
1349 	u32	savep;		/* Jump address to saved data pointer	*/
1350 	u32	lastp;		/* SCRIPTS address at end of data	*/
1351 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1352 
1353 	/*
1354 	 *  Status fields.
1355 	 */
1356 	u8	status[4];
1357 };
1358 
1359 /*
1360  *  Data Structure Block
1361  *
1362  *  During execution of a ccb by the script processor, the
1363  *  DSA (data structure address) register points to this
1364  *  substructure of the ccb.
1365  */
1366 struct sym_dsb {
1367 	/*
1368 	 *  CCB header.
1369 	 *  Also assumed at offset 0 of the sym_ccb structure.
1370 	 */
1371 /*0*/	struct sym_ccbh head;
1372 
1373 	/*
1374 	 *  Phase mismatch contexts.
1375 	 *  We need two to handle correctly the SAVED DATA POINTER.
1376 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1377 	 *  for address calculation from SCRIPTS.
1378 	 */
1379 	struct sym_pmc pm0;
1380 	struct sym_pmc pm1;
1381 
1382 	/*
1383 	 *  Table data for Script
1384 	 */
1385 	struct sym_tblsel  select;
1386 	struct sym_tblmove smsg;
1387 	struct sym_tblmove smsg_ext;
1388 	struct sym_tblmove cmd;
1389 	struct sym_tblmove sense;
1390 	struct sym_tblmove wresid;
1391 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1392 };
1393 
1394 /*
1395  *  Our Command Control Block
1396  */
1397 struct sym_ccb {
1398 	/*
1399 	 *  This is the data structure which is pointed by the DSA
1400 	 *  register when it is executed by the script processor.
1401 	 *  It must be the first entry.
1402 	 */
1403 	struct sym_dsb phys;
1404 
1405 	/*
1406 	 *  Pointer to CAM ccb and related stuff.
1407 	 */
1408 	struct callout ch;	/* callout handle		*/
1409 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1410 	u8	cdb_buf[16];	/* Copy of CDB			*/
1411 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1412 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1413 	int	data_len;	/* Total data length		*/
1414 	int	segments;	/* Number of SG segments	*/
1415 
1416 	/*
1417 	 *  Miscellaneous status'.
1418 	 */
1419 	u_char	nego_status;	/* Negotiation status		*/
1420 	u_char	xerr_status;	/* Extended error flags		*/
1421 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1422 
1423 	/*
1424 	 *  Message areas.
1425 	 *  We prepare a message to be sent after selection.
1426 	 *  We may use a second one if the command is rescheduled
1427 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1428 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1429 	 *  While negotiating sync or wide transfer,
1430 	 *  a SDTR or WDTR message is appended.
1431 	 */
1432 	u_char	scsi_smsg [12];
1433 	u_char	scsi_smsg2[12];
1434 
1435 	/*
1436 	 *  Auto request sense related fields.
1437 	 */
1438 	u_char	sensecmd[6];	/* Request Sense command	*/
1439 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1440 	u_char	sv_xerr_status;	/* Saved extended status	*/
1441 	int	sv_resid;	/* Saved residual		*/
1442 
1443 	/*
1444 	 *  Map for the DMA of user data.
1445 	 */
1446 	void		*arg;	/* Argument for some callback	*/
1447 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1448 	u_char		dmamapped;
1449 #define SYM_DMA_NONE	0
1450 #define SYM_DMA_READ	1
1451 #define SYM_DMA_WRITE	2
1452 	/*
1453 	 *  Other fields.
1454 	 */
1455 	u32	ccb_ba;		/* BUS address of this CCB	*/
1456 	u_short	tag;		/* Tag for this transfer	*/
1457 				/*  NO_TAG means no tag		*/
1458 	u_char	target;
1459 	u_char	lun;
1460 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1461 	SYM_QUEHEAD
1462 		link_ccbq;	/* Link to free/busy CCB queue	*/
1463 	u32	startp;		/* Initial data pointer		*/
1464 	int	ext_sg;		/* Extreme data pointer, used	*/
1465 	int	ext_ofs;	/*  to calculate the residual.	*/
1466 	u_char	to_abort;	/* Want this IO to be aborted	*/
1467 };
1468 
1469 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1470 
1471 /*
1472  *  Host Control Block
1473  */
1474 struct sym_hcb {
1475 	struct mtx	mtx;
1476 
1477 	/*
1478 	 *  Global headers.
1479 	 *  Due to poorness of addressing capabilities, earlier
1480 	 *  chips (810, 815, 825) copy part of the data structures
1481 	 *  (CCB, TCB and LCB) in fixed areas.
1482 	 */
1483 #ifdef	SYM_CONF_GENERIC_SUPPORT
1484 	struct sym_ccbh	ccb_head;
1485 	struct sym_tcbh	tcb_head;
1486 	struct sym_lcbh	lcb_head;
1487 #endif
1488 	/*
1489 	 *  Idle task and invalid task actions and
1490 	 *  their bus addresses.
1491 	 */
1492 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1493 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1494 
1495 	/*
1496 	 *  Dummy lun table to protect us against target
1497 	 *  returning bad lun number on reselection.
1498 	 */
1499 	u32	*badluntbl;	/* Table physical address	*/
1500 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1501 
1502 	/*
1503 	 *  Bus address of this host control block.
1504 	 */
1505 	u32	hcb_ba;
1506 
1507 	/*
1508 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1509 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1510 	 *  field.
1511 	 */
1512 	u32	scr_ram_seg;
1513 
1514 	/*
1515 	 *  Chip and controller indentification.
1516 	 */
1517 	device_t device;
1518 
1519 	/*
1520 	 *  Initial value of some IO register bits.
1521 	 *  These values are assumed to have been set by BIOS, and may
1522 	 *  be used to probe adapter implementation differences.
1523 	 */
1524 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1525 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1526 		sv_stest1;
1527 
1528 	/*
1529 	 *  Actual initial value of IO register bits used by the
1530 	 *  driver. They are loaded at initialisation according to
1531 	 *  features that are to be enabled/disabled.
1532 	 */
1533 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1534 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1535 
1536 	/*
1537 	 *  Target data.
1538 	 */
1539 #ifdef __amd64__
1540 	struct sym_tcb	*target;
1541 #else
1542 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1543 #endif
1544 
1545 	/*
1546 	 *  Target control block bus address array used by the SCRIPT
1547 	 *  on reselection.
1548 	 */
1549 	u32		*targtbl;
1550 	u32		targtbl_ba;
1551 
1552 	/*
1553 	 *  CAM SIM information for this instance.
1554 	 */
1555 	struct		cam_sim  *sim;
1556 	struct		cam_path *path;
1557 
1558 	/*
1559 	 *  Allocated hardware resources.
1560 	 */
1561 	struct resource	*irq_res;
1562 	struct resource	*io_res;
1563 	struct resource	*mmio_res;
1564 	struct resource	*ram_res;
1565 	int		ram_id;
1566 	void *intr;
1567 
1568 	/*
1569 	 *  Bus stuff.
1570 	 *
1571 	 *  My understanding of PCI is that all agents must share the
1572 	 *  same addressing range and model.
1573 	 *  But some hardware architecture guys provide complex and
1574 	 *  brain-deaded stuff that makes shit.
1575 	 *  This driver only support PCI compliant implementations and
1576 	 *  deals with part of the BUS stuff complexity only to fit O/S
1577 	 *  requirements.
1578 	 */
1579 
1580 	/*
1581 	 *  DMA stuff.
1582 	 */
1583 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1584 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1585 	/*
1586 	 *  BUS addresses of the chip
1587 	 */
1588 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1589 	int		mmio_ws;	/* MMIO Window size		*/
1590 
1591 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1592 	int		ram_ws;		/* RAM window size		*/
1593 
1594 	/*
1595 	 *  SCRIPTS virtual and physical bus addresses.
1596 	 *  'script'  is loaded in the on-chip RAM if present.
1597 	 *  'scripth' stays in main memory for all chips except the
1598 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1599 	 */
1600 	u_char		*scripta0;	/* Copies of script and scripth	*/
1601 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1602 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1603 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1604 	vm_offset_t	scriptb0_ba;
1605 	u_short		scripta_sz;	/* Actual size of script A	*/
1606 	u_short		scriptb_sz;	/* Actual size of script B	*/
1607 
1608 	/*
1609 	 *  Bus addresses, setup and patch methods for
1610 	 *  the selected firmware.
1611 	 */
1612 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1613 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1614 	void		(*fw_setup)(hcb_p np, const struct sym_fw *fw);
1615 	void		(*fw_patch)(hcb_p np);
1616 	const char	*fw_name;
1617 
1618 	/*
1619 	 *  General controller parameters and configuration.
1620 	 */
1621 	u_short	device_id;	/* PCI device id		*/
1622 	u_char	revision_id;	/* PCI device revision id	*/
1623 	u_int	features;	/* Chip features map		*/
1624 	u_char	myaddr;		/* SCSI id of the adapter	*/
1625 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1626 	u_char	maxwide;	/* Maximum transfer width	*/
1627 	u_char	minsync;	/* Min sync period factor (ST)	*/
1628 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1629 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1630 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1631 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1632 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1633 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1634 	u_char	clock_divn;	/* Number of clock divisors	*/
1635 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1636 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1637 	/*
1638 	 *  Start queue management.
1639 	 *  It is filled up by the host processor and accessed by the
1640 	 *  SCRIPTS processor in order to start SCSI commands.
1641 	 */
1642 	volatile		/* Prevent code optimizations	*/
1643 	u32	*squeue;	/* Start queue virtual address	*/
1644 	u32	squeue_ba;	/* Start queue BUS address	*/
1645 	u_short	squeueput;	/* Next free slot of the queue	*/
1646 	u_short	actccbs;	/* Number of allocated CCBs	*/
1647 
1648 	/*
1649 	 *  Command completion queue.
1650 	 *  It is the same size as the start queue to avoid overflow.
1651 	 */
1652 	u_short	dqueueget;	/* Next position to scan	*/
1653 	volatile		/* Prevent code optimizations	*/
1654 	u32	*dqueue;	/* Completion (done) queue	*/
1655 	u32	dqueue_ba;	/* Done queue BUS address	*/
1656 
1657 	/*
1658 	 *  Miscellaneous buffers accessed by the scripts-processor.
1659 	 *  They shall be DWORD aligned, because they may be read or
1660 	 *  written with a script command.
1661 	 */
1662 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1663 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1664 	u32		lastmsg;	/* Last SCSI message sent	*/
1665 	u_char		scratch;	/* Scratch for SCSI receive	*/
1666 
1667 	/*
1668 	 *  Miscellaneous configuration and status parameters.
1669 	 */
1670 	u_char		usrflags;	/* Miscellaneous user flags	*/
1671 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1672 	u_char		verbose;	/* Verbosity for this controller*/
1673 	u32		cache;		/* Used for cache test at init.	*/
1674 
1675 	/*
1676 	 *  CCB lists and queue.
1677 	 */
1678 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1679 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1680 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1681 
1682 	/*
1683 	 *  During error handling and/or recovery,
1684 	 *  active CCBs that are to be completed with
1685 	 *  error or requeued are moved from the busy_ccbq
1686 	 *  to the comp_ccbq prior to completion.
1687 	 */
1688 	SYM_QUEHEAD	comp_ccbq;
1689 
1690 	/*
1691 	 *  CAM CCB pending queue.
1692 	 */
1693 	SYM_QUEHEAD	cam_ccbq;
1694 
1695 	/*
1696 	 *  IMMEDIATE ARBITRATION (IARB) control.
1697 	 *
1698 	 *  We keep track in 'last_cp' of the last CCB that has been
1699 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1700 	 *  this CCB completes. If last_cp is not zero at the moment
1701 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1702 	 *  used by the SCRIPTS as a hint for setting IARB.
1703 	 *  We donnot set more than 'iarb_max' consecutive hints for
1704 	 *  IARB in order to leave devices a chance to reselect.
1705 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1706 	 */
1707 #ifdef SYM_CONF_IARB_SUPPORT
1708 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1709 	u_short		iarb_count;	/* Actual # of these hints	*/
1710 	ccb_p		last_cp;
1711 #endif
1712 
1713 	/*
1714 	 *  Command abort handling.
1715 	 *  We need to synchronize tightly with the SCRIPTS
1716 	 *  processor in order to handle things correctly.
1717 	 */
1718 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1719 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1720 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1721 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1722 };
1723 
1724 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1725 
1726 /*
1727  *  Return the name of the controller.
1728  */
1729 static __inline const char *sym_name(hcb_p np)
1730 {
1731 	return device_get_nameunit(np->device);
1732 }
1733 
1734 /*--------------------------------------------------------------------------*/
1735 /*------------------------------ FIRMWARES ---------------------------------*/
1736 /*--------------------------------------------------------------------------*/
1737 
1738 /*
1739  *  This stuff will be moved to a separate source file when
1740  *  the driver will be broken into several source modules.
1741  */
1742 
1743 /*
1744  *  Macros used for all firmwares.
1745  */
1746 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1747 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1748 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1749 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1750 
1751 
1752 #ifdef	SYM_CONF_GENERIC_SUPPORT
1753 /*
1754  *  Allocate firmware #1 script area.
1755  */
1756 #define	SYM_FWA_SCR		sym_fw1a_scr
1757 #define	SYM_FWB_SCR		sym_fw1b_scr
1758 #include <dev/sym/sym_fw1.h>
1759 static const struct sym_fwa_ofs sym_fw1a_ofs = {
1760 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1761 };
1762 static const struct sym_fwb_ofs sym_fw1b_ofs = {
1763 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1764 };
1765 #undef	SYM_FWA_SCR
1766 #undef	SYM_FWB_SCR
1767 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1768 
1769 /*
1770  *  Allocate firmware #2 script area.
1771  */
1772 #define	SYM_FWA_SCR		sym_fw2a_scr
1773 #define	SYM_FWB_SCR		sym_fw2b_scr
1774 #include <dev/sym/sym_fw2.h>
1775 static const struct sym_fwa_ofs sym_fw2a_ofs = {
1776 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1777 };
1778 static const struct sym_fwb_ofs sym_fw2b_ofs = {
1779 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1780 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1781 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1782 };
1783 #undef	SYM_FWA_SCR
1784 #undef	SYM_FWB_SCR
1785 
1786 #undef	SYM_GEN_A
1787 #undef	SYM_GEN_B
1788 #undef	PADDR_A
1789 #undef	PADDR_B
1790 
1791 #ifdef	SYM_CONF_GENERIC_SUPPORT
1792 /*
1793  *  Patch routine for firmware #1.
1794  */
1795 static void
1796 sym_fw1_patch(hcb_p np)
1797 {
1798 	struct sym_fw1a_scr *scripta0;
1799 	struct sym_fw1b_scr *scriptb0;
1800 
1801 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1802 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1803 
1804 	/*
1805 	 *  Remove LED support if not needed.
1806 	 */
1807 	if (!(np->features & FE_LED0)) {
1808 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1809 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1810 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1811 	}
1812 
1813 #ifdef SYM_CONF_IARB_SUPPORT
1814 	/*
1815 	 *    If user does not want to use IMMEDIATE ARBITRATION
1816 	 *    when we are reselected while attempting to arbitrate,
1817 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1818 	 */
1819 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1820 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1821 #endif
1822 	/*
1823 	 *  Patch some data in SCRIPTS.
1824 	 *  - start and done queue initial bus address.
1825 	 *  - target bus address table bus address.
1826 	 */
1827 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1828 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1829 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1830 }
1831 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1832 
1833 /*
1834  *  Patch routine for firmware #2.
1835  */
1836 static void
1837 sym_fw2_patch(hcb_p np)
1838 {
1839 	struct sym_fw2a_scr *scripta0;
1840 	struct sym_fw2b_scr *scriptb0;
1841 
1842 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1843 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1844 
1845 	/*
1846 	 *  Remove LED support if not needed.
1847 	 */
1848 	if (!(np->features & FE_LED0)) {
1849 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1850 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1851 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1852 	}
1853 
1854 #ifdef SYM_CONF_IARB_SUPPORT
1855 	/*
1856 	 *    If user does not want to use IMMEDIATE ARBITRATION
1857 	 *    when we are reselected while attempting to arbitrate,
1858 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1859 	 */
1860 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1861 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1862 #endif
1863 	/*
1864 	 *  Patch some variable in SCRIPTS.
1865 	 *  - start and done queue initial bus address.
1866 	 *  - target bus address table bus address.
1867 	 */
1868 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1869 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1870 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1871 
1872 	/*
1873 	 *  Remove the load of SCNTL4 on reselection if not a C10.
1874 	 */
1875 	if (!(np->features & FE_C10)) {
1876 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1877 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1878 	}
1879 
1880 	/*
1881 	 *  Remove a couple of work-arounds specific to C1010 if
1882 	 *  they are not desirable. See `sym_fw2.h' for more details.
1883 	 */
1884 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1885 	      np->revision_id < 0x1 &&
1886 	      np->pciclk_khz < 60000)) {
1887 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1888 		scripta0->datao_phase[1] = cpu_to_scr(0);
1889 	}
1890 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1891 	      /* np->revision_id < 0xff */ 1)) {
1892 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1893 		scripta0->sel_done[1] = cpu_to_scr(0);
1894 	}
1895 
1896 	/*
1897 	 *  Patch some other variables in SCRIPTS.
1898 	 *  These ones are loaded by the SCRIPTS processor.
1899 	 */
1900 	scriptb0->pm0_data_addr[0] =
1901 		cpu_to_scr(np->scripta_ba +
1902 			   offsetof(struct sym_fw2a_scr, pm0_data));
1903 	scriptb0->pm1_data_addr[0] =
1904 		cpu_to_scr(np->scripta_ba +
1905 			   offsetof(struct sym_fw2a_scr, pm1_data));
1906 }
1907 
1908 /*
1909  *  Fill the data area in scripts.
1910  *  To be done for all firmwares.
1911  */
1912 static void
1913 sym_fw_fill_data (u32 *in, u32 *out)
1914 {
1915 	int	i;
1916 
1917 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1918 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1919 		*in++  = offsetof (struct sym_dsb, data[i]);
1920 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1921 		*out++ = offsetof (struct sym_dsb, data[i]);
1922 	}
1923 }
1924 
1925 /*
1926  *  Setup useful script bus addresses.
1927  *  To be done for all firmwares.
1928  */
1929 static void
1930 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw)
1931 {
1932 	u32 *pa;
1933 	const u_short *po;
1934 	int i;
1935 
1936 	/*
1937 	 *  Build the bus address table for script A
1938 	 *  from the script A offset table.
1939 	 */
1940 	po = (const u_short *) fw->a_ofs;
1941 	pa = (u32 *) &np->fwa_bas;
1942 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1943 		pa[i] = np->scripta_ba + po[i];
1944 
1945 	/*
1946 	 *  Same for script B.
1947 	 */
1948 	po = (const u_short *) fw->b_ofs;
1949 	pa = (u32 *) &np->fwb_bas;
1950 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1951 		pa[i] = np->scriptb_ba + po[i];
1952 }
1953 
1954 #ifdef	SYM_CONF_GENERIC_SUPPORT
1955 /*
1956  *  Setup routine for firmware #1.
1957  */
1958 static void
1959 sym_fw1_setup(hcb_p np, const struct sym_fw *fw)
1960 {
1961 	struct sym_fw1a_scr *scripta0;
1962 	struct sym_fw1b_scr *scriptb0;
1963 
1964 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1965 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1966 
1967 	/*
1968 	 *  Fill variable parts in scripts.
1969 	 */
1970 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1971 
1972 	/*
1973 	 *  Setup bus addresses used from the C code..
1974 	 */
1975 	sym_fw_setup_bus_addresses(np, fw);
1976 }
1977 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1978 
1979 /*
1980  *  Setup routine for firmware #2.
1981  */
1982 static void
1983 sym_fw2_setup(hcb_p np, const struct sym_fw *fw)
1984 {
1985 	struct sym_fw2a_scr *scripta0;
1986 	struct sym_fw2b_scr *scriptb0;
1987 
1988 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1989 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1990 
1991 	/*
1992 	 *  Fill variable parts in scripts.
1993 	 */
1994 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1995 
1996 	/*
1997 	 *  Setup bus addresses used from the C code..
1998 	 */
1999 	sym_fw_setup_bus_addresses(np, fw);
2000 }
2001 
2002 /*
2003  *  Allocate firmware descriptors.
2004  */
2005 #ifdef	SYM_CONF_GENERIC_SUPPORT
2006 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
2007 #endif	/* SYM_CONF_GENERIC_SUPPORT */
2008 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
2009 
2010 /*
2011  *  Find the most appropriate firmware for a chip.
2012  */
2013 static const struct sym_fw *
2014 sym_find_firmware(const struct sym_pci_chip *chip)
2015 {
2016 	if (chip->features & FE_LDSTR)
2017 		return &sym_fw2;
2018 #ifdef	SYM_CONF_GENERIC_SUPPORT
2019 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
2020 		return &sym_fw1;
2021 #endif
2022 	else
2023 		return NULL;
2024 }
2025 
2026 /*
2027  *  Bind a script to physical addresses.
2028  */
2029 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2030 {
2031 	u32 opcode, new, old, tmp1, tmp2;
2032 	u32 *end, *cur;
2033 	int relocs;
2034 
2035 	cur = start;
2036 	end = start + len/4;
2037 
2038 	while (cur < end) {
2039 
2040 		opcode = *cur;
2041 
2042 		/*
2043 		 *  If we forget to change the length
2044 		 *  in scripts, a field will be
2045 		 *  padded with 0. This is an illegal
2046 		 *  command.
2047 		 */
2048 		if (opcode == 0) {
2049 			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2050 				sym_name(np), (int) (cur-start));
2051 			MDELAY (10000);
2052 			++cur;
2053 			continue;
2054 		};
2055 
2056 		/*
2057 		 *  We use the bogus value 0xf00ff00f ;-)
2058 		 *  to reserve data area in SCRIPTS.
2059 		 */
2060 		if (opcode == SCR_DATA_ZERO) {
2061 			*cur++ = 0;
2062 			continue;
2063 		}
2064 
2065 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2066 			printf ("%d:  <%x>\n", (int) (cur-start),
2067 				(unsigned)opcode);
2068 
2069 		/*
2070 		 *  We don't have to decode ALL commands
2071 		 */
2072 		switch (opcode >> 28) {
2073 		case 0xf:
2074 			/*
2075 			 *  LOAD / STORE DSA relative, don't relocate.
2076 			 */
2077 			relocs = 0;
2078 			break;
2079 		case 0xe:
2080 			/*
2081 			 *  LOAD / STORE absolute.
2082 			 */
2083 			relocs = 1;
2084 			break;
2085 		case 0xc:
2086 			/*
2087 			 *  COPY has TWO arguments.
2088 			 */
2089 			relocs = 2;
2090 			tmp1 = cur[1];
2091 			tmp2 = cur[2];
2092 			if ((tmp1 ^ tmp2) & 3) {
2093 				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2094 					sym_name(np), (int) (cur-start));
2095 				MDELAY (10000);
2096 			}
2097 			/*
2098 			 *  If PREFETCH feature not enabled, remove
2099 			 *  the NO FLUSH bit if present.
2100 			 */
2101 			if ((opcode & SCR_NO_FLUSH) &&
2102 			    !(np->features & FE_PFEN)) {
2103 				opcode = (opcode & ~SCR_NO_FLUSH);
2104 			}
2105 			break;
2106 		case 0x0:
2107 			/*
2108 			 *  MOVE/CHMOV (absolute address)
2109 			 */
2110 			if (!(np->features & FE_WIDE))
2111 				opcode = (opcode | OPC_MOVE);
2112 			relocs = 1;
2113 			break;
2114 		case 0x1:
2115 			/*
2116 			 *  MOVE/CHMOV (table indirect)
2117 			 */
2118 			if (!(np->features & FE_WIDE))
2119 				opcode = (opcode | OPC_MOVE);
2120 			relocs = 0;
2121 			break;
2122 		case 0x8:
2123 			/*
2124 			 *  JUMP / CALL
2125 			 *  dont't relocate if relative :-)
2126 			 */
2127 			if (opcode & 0x00800000)
2128 				relocs = 0;
2129 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2130 				relocs = 2;
2131 			else
2132 				relocs = 1;
2133 			break;
2134 		case 0x4:
2135 		case 0x5:
2136 		case 0x6:
2137 		case 0x7:
2138 			relocs = 1;
2139 			break;
2140 		default:
2141 			relocs = 0;
2142 			break;
2143 		};
2144 
2145 		/*
2146 		 *  Scriptify:) the opcode.
2147 		 */
2148 		*cur++ = cpu_to_scr(opcode);
2149 
2150 		/*
2151 		 *  If no relocation, assume 1 argument
2152 		 *  and just scriptize:) it.
2153 		 */
2154 		if (!relocs) {
2155 			*cur = cpu_to_scr(*cur);
2156 			++cur;
2157 			continue;
2158 		}
2159 
2160 		/*
2161 		 *  Otherwise performs all needed relocations.
2162 		 */
2163 		while (relocs--) {
2164 			old = *cur;
2165 
2166 			switch (old & RELOC_MASK) {
2167 			case RELOC_REGISTER:
2168 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2169 				break;
2170 			case RELOC_LABEL_A:
2171 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2172 				break;
2173 			case RELOC_LABEL_B:
2174 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2175 				break;
2176 			case RELOC_SOFTC:
2177 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2178 				break;
2179 			case 0:
2180 				/*
2181 				 *  Don't relocate a 0 address.
2182 				 *  They are mostly used for patched or
2183 				 *  script self-modified areas.
2184 				 */
2185 				if (old == 0) {
2186 					new = old;
2187 					break;
2188 				}
2189 				/* fall through */
2190 			default:
2191 				new = 0;
2192 				panic("sym_fw_bind_script: "
2193 				      "weird relocation %x\n", old);
2194 				break;
2195 			}
2196 
2197 			*cur++ = cpu_to_scr(new);
2198 		}
2199 	};
2200 }
2201 
2202 /*---------------------------------------------------------------------------*/
2203 /*--------------------------- END OF FIRMWARES  -----------------------------*/
2204 /*---------------------------------------------------------------------------*/
2205 
2206 /*
2207  *  Function prototypes.
2208  */
2209 static void sym_save_initial_setting (hcb_p np);
2210 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2211 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2212 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2213 static void sym_chip_reset (hcb_p np);
2214 static void sym_soft_reset (hcb_p np);
2215 static void sym_start_reset (hcb_p np);
2216 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2217 static int  sym_wakeup_done (hcb_p np);
2218 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2219 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2220 static void sym_init (hcb_p np, int reason);
2221 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2222 		        u_char *fakp);
2223 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2224 			 u_char div, u_char fak);
2225 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2226 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2227 			 u_char per, u_char wide, u_char div, u_char fak);
2228 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2229 			 u_char per, u_char wide, u_char div, u_char fak);
2230 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2231 static void sym_intr (void *arg);
2232 static void sym_poll (struct cam_sim *sim);
2233 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2234 static void sym_int_sto (hcb_p np);
2235 static void sym_int_udc (hcb_p np);
2236 static void sym_int_sbmc (hcb_p np);
2237 static void sym_int_par (hcb_p np, u_short sist);
2238 static void sym_int_ma (hcb_p np);
2239 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2240 				    int task);
2241 static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
2242 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2243 static void sym_sir_task_recovery (hcb_p np, int num);
2244 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2245 static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
2246 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2247 static int  sym_show_msg (u_char * msg);
2248 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2249 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2250 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2251 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2252 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2253 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2254 static void sym_int_sir (hcb_p np);
2255 static void sym_free_ccb (hcb_p np, ccb_p cp);
2256 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2257 static ccb_p sym_alloc_ccb (hcb_p np);
2258 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2259 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2260 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2261 static int  sym_snooptest (hcb_p np);
2262 static void sym_selectclock(hcb_p np, u_char scntl3);
2263 static void sym_getclock (hcb_p np, int mult);
2264 static int  sym_getpciclock (hcb_p np);
2265 static void sym_complete_ok (hcb_p np, ccb_p cp);
2266 static void sym_complete_error (hcb_p np, ccb_p cp);
2267 static void sym_callout (void *arg);
2268 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2269 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2270 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2271 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2272 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2273 				      ccb_p cp);
2274 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2275 					bus_dma_segment_t *psegs, int nsegs);
2276 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2277 				    bus_dma_segment_t *psegs, int nsegs);
2278 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2279 static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
2280 			      struct ccb_trans_settings *cts);
2281 static void sym_update_dflags(hcb_p np, u_char *flags,
2282 			      struct ccb_trans_settings *cts);
2283 
2284 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2285 static int  sym_pci_probe (device_t dev);
2286 static int  sym_pci_attach (device_t dev);
2287 
2288 static void sym_pci_free (hcb_p np);
2289 static int  sym_cam_attach (hcb_p np);
2290 static void sym_cam_free (hcb_p np);
2291 
2292 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2293 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2294 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2295 
2296 /*
2297  *  Print something which allows to retrieve the controler type,
2298  *  unit, target, lun concerned by a kernel message.
2299  */
2300 static void PRINT_TARGET (hcb_p np, int target)
2301 {
2302 	printf ("%s:%d:", sym_name(np), target);
2303 }
2304 
2305 static void PRINT_LUN(hcb_p np, int target, int lun)
2306 {
2307 	printf ("%s:%d:%d:", sym_name(np), target, lun);
2308 }
2309 
2310 static void PRINT_ADDR (ccb_p cp)
2311 {
2312 	if (cp && cp->cam_ccb)
2313 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2314 }
2315 
2316 /*
2317  *  Take into account this ccb in the freeze count.
2318  */
2319 static void sym_freeze_cam_ccb(union ccb *ccb)
2320 {
2321 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2322 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2323 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2324 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2325 		}
2326 	}
2327 }
2328 
2329 /*
2330  *  Set the status field of a CAM CCB.
2331  */
2332 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2333 {
2334 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2335 	ccb->ccb_h.status |= status;
2336 }
2337 
2338 /*
2339  *  Get the status field of a CAM CCB.
2340  */
2341 static __inline int sym_get_cam_status(union ccb *ccb)
2342 {
2343 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2344 }
2345 
2346 /*
2347  *  Enqueue a CAM CCB.
2348  */
2349 static void sym_enqueue_cam_ccb(ccb_p cp)
2350 {
2351 	hcb_p np;
2352 	union ccb *ccb;
2353 
2354 	ccb = cp->cam_ccb;
2355 	np = (hcb_p) cp->arg;
2356 
2357 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2358 	ccb->ccb_h.status = CAM_REQ_INPROG;
2359 
2360 	callout_reset(&cp->ch, ccb->ccb_h.timeout * hz / 1000, sym_callout,
2361 			(caddr_t) ccb);
2362 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2363 	ccb->ccb_h.sym_hcb_ptr = np;
2364 
2365 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2366 }
2367 
2368 /*
2369  *  Complete a pending CAM CCB.
2370  */
2371 static void _sym_xpt_done(hcb_p np, union ccb *ccb)
2372 {
2373 	SYM_LOCK_ASSERT(MA_OWNED);
2374 
2375 	KASSERT((ccb->ccb_h.status & CAM_SIM_QUEUED) == 0,
2376 			("%s: status=CAM_SIM_QUEUED", __func__));
2377 
2378 	if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
2379 		sym_freeze_cam_ccb(ccb);
2380 	xpt_done(ccb);
2381 }
2382 
2383 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
2384 {
2385 	SYM_LOCK_ASSERT(MA_OWNED);
2386 
2387 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2388 		callout_stop(&cp->ch);
2389 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2390 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2391 		ccb->ccb_h.sym_hcb_ptr = NULL;
2392 	}
2393 	_sym_xpt_done(np, ccb);
2394 }
2395 
2396 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2397 {
2398 	SYM_LOCK_ASSERT(MA_OWNED);
2399 
2400 	sym_set_cam_status(ccb, cam_status);
2401 	_sym_xpt_done(np, ccb);
2402 }
2403 
2404 /*
2405  *  SYMBIOS chip clock divisor table.
2406  *
2407  *  Divisors are multiplied by 10,000,000 in order to make
2408  *  calculations more simple.
2409  */
2410 #define _5M 5000000
2411 static const u32 div_10M[] =
2412 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2413 
2414 /*
2415  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2416  *  128 transfers. All chips support at least 16 transfers
2417  *  bursts. The 825A, 875 and 895 chips support bursts of up
2418  *  to 128 transfers and the 895A and 896 support bursts of up
2419  *  to 64 transfers. All other chips support up to 16
2420  *  transfers bursts.
2421  *
2422  *  For PCI 32 bit data transfers each transfer is a DWORD.
2423  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2424  *
2425  *  We use log base 2 (burst length) as internal code, with
2426  *  value 0 meaning "burst disabled".
2427  */
2428 
2429 /*
2430  *  Burst length from burst code.
2431  */
2432 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2433 
2434 /*
2435  *  Burst code from io register bits.
2436  */
2437 #define burst_code(dmode, ctest4, ctest5) \
2438 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2439 
2440 /*
2441  *  Set initial io register bits from burst code.
2442  */
2443 static __inline void sym_init_burst(hcb_p np, u_char bc)
2444 {
2445 	np->rv_ctest4	&= ~0x80;
2446 	np->rv_dmode	&= ~(0x3 << 6);
2447 	np->rv_ctest5	&= ~0x4;
2448 
2449 	if (!bc) {
2450 		np->rv_ctest4	|= 0x80;
2451 	}
2452 	else {
2453 		--bc;
2454 		np->rv_dmode	|= ((bc & 0x3) << 6);
2455 		np->rv_ctest5	|= (bc & 0x4);
2456 	}
2457 }
2458 
2459 
2460 /*
2461  * Print out the list of targets that have some flag disabled by user.
2462  */
2463 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2464 {
2465 	int cnt;
2466 	int i;
2467 
2468 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2469 		if (i == np->myaddr)
2470 			continue;
2471 		if (np->target[i].usrflags & mask) {
2472 			if (!cnt++)
2473 				printf("%s: %s disabled for targets",
2474 					sym_name(np), msg);
2475 			printf(" %d", i);
2476 		}
2477 	}
2478 	if (cnt)
2479 		printf(".\n");
2480 }
2481 
2482 /*
2483  *  Save initial settings of some IO registers.
2484  *  Assumed to have been set by BIOS.
2485  *  We cannot reset the chip prior to reading the
2486  *  IO registers, since informations will be lost.
2487  *  Since the SCRIPTS processor may be running, this
2488  *  is not safe on paper, but it seems to work quite
2489  *  well. :)
2490  */
2491 static void sym_save_initial_setting (hcb_p np)
2492 {
2493 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2494 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2495 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2496 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2497 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2498 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2499 	np->sv_gpcntl	= INB(nc_gpcntl);
2500 	np->sv_stest1	= INB(nc_stest1);
2501 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2502 	np->sv_stest4	= INB(nc_stest4);
2503 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2504 		np->sv_scntl4	= INB(nc_scntl4);
2505 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2506 	}
2507 	else
2508 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2509 }
2510 
2511 /*
2512  *  Prepare io register values used by sym_init() according
2513  *  to selected and supported features.
2514  */
2515 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2516 {
2517 	u_char	burst_max;
2518 	u32	period;
2519 	int i;
2520 
2521 	/*
2522 	 *  Wide ?
2523 	 */
2524 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2525 
2526 	/*
2527 	 *  Get the frequency of the chip's clock.
2528 	 */
2529 	if	(np->features & FE_QUAD)
2530 		np->multiplier	= 4;
2531 	else if	(np->features & FE_DBLR)
2532 		np->multiplier	= 2;
2533 	else
2534 		np->multiplier	= 1;
2535 
2536 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2537 	np->clock_khz	*= np->multiplier;
2538 
2539 	if (np->clock_khz != 40000)
2540 		sym_getclock(np, np->multiplier);
2541 
2542 	/*
2543 	 * Divisor to be used for async (timer pre-scaler).
2544 	 */
2545 	i = np->clock_divn - 1;
2546 	while (--i >= 0) {
2547 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2548 			++i;
2549 			break;
2550 		}
2551 	}
2552 	np->rv_scntl3 = i+1;
2553 
2554 	/*
2555 	 * The C1010 uses hardwired divisors for async.
2556 	 * So, we just throw away, the async. divisor.:-)
2557 	 */
2558 	if (np->features & FE_C10)
2559 		np->rv_scntl3 = 0;
2560 
2561 	/*
2562 	 * Minimum synchronous period factor supported by the chip.
2563 	 * Btw, 'period' is in tenths of nanoseconds.
2564 	 */
2565 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
2566 	if	(period <= 250)		np->minsync = 10;
2567 	else if	(period <= 303)		np->minsync = 11;
2568 	else if	(period <= 500)		np->minsync = 12;
2569 	else				np->minsync = (period + 40 - 1) / 40;
2570 
2571 	/*
2572 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2573 	 */
2574 	if	(np->minsync < 25 &&
2575 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2576 		np->minsync = 25;
2577 	else if	(np->minsync < 12 &&
2578 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2579 		np->minsync = 12;
2580 
2581 	/*
2582 	 * Maximum synchronous period factor supported by the chip.
2583 	 */
2584 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2585 	np->maxsync = period > 2540 ? 254 : period / 10;
2586 
2587 	/*
2588 	 * If chip is a C1010, guess the sync limits in DT mode.
2589 	 */
2590 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2591 		if (np->clock_khz == 160000) {
2592 			np->minsync_dt = 9;
2593 			np->maxsync_dt = 50;
2594 			np->maxoffs_dt = 62;
2595 		}
2596 	}
2597 
2598 	/*
2599 	 *  64 bit addressing  (895A/896/1010) ?
2600 	 */
2601 	if (np->features & FE_DAC)
2602 #ifdef __LP64__
2603 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2604 #else
2605 		np->rv_ccntl1	|= (DDAC);
2606 #endif
2607 
2608 	/*
2609 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2610   	 */
2611 	if (np->features & FE_NOPM)
2612 		np->rv_ccntl0	|= (ENPMJ);
2613 
2614  	/*
2615 	 *  C1010 Errata.
2616 	 *  In dual channel mode, contention occurs if internal cycles
2617 	 *  are used. Disable internal cycles.
2618 	 */
2619 	if (np->device_id == PCI_ID_LSI53C1010 &&
2620 	    np->revision_id < 0x2)
2621 		np->rv_ccntl0	|=  DILS;
2622 
2623 	/*
2624 	 *  Select burst length (dwords)
2625 	 */
2626 	burst_max	= SYM_SETUP_BURST_ORDER;
2627 	if (burst_max == 255)
2628 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2629 				       np->sv_ctest5);
2630 	if (burst_max > 7)
2631 		burst_max = 7;
2632 	if (burst_max > np->maxburst)
2633 		burst_max = np->maxburst;
2634 
2635 	/*
2636 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2637 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2638 	 *  based transactions on LOAD/STORE instructions. So we have
2639 	 *  to prevent these chips from using such PCI transactions in
2640 	 *  this driver. The generic ncr driver that does not use
2641 	 *  LOAD/STORE instructions does not need this work-around.
2642 	 */
2643 	if ((np->device_id == PCI_ID_SYM53C810 &&
2644 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2645 	    (np->device_id == PCI_ID_SYM53C860 &&
2646 	     np->revision_id <= 0x1))
2647 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2648 
2649 	/*
2650 	 *  Select all supported special features.
2651 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2652 	 *  does not help, but burst op fetch (BOF) does.
2653 	 *  Disabling PFEN makes sure BOF will be used.
2654 	 */
2655 	if (np->features & FE_ERL)
2656 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2657 	if (np->features & FE_BOF)
2658 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2659 	if (np->features & FE_ERMP)
2660 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2661 #if 1
2662 	if ((np->features & FE_PFEN) && !np->ram_ba)
2663 #else
2664 	if (np->features & FE_PFEN)
2665 #endif
2666 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2667 	if (np->features & FE_CLSE)
2668 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2669 	if (np->features & FE_WRIE)
2670 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2671 	if (np->features & FE_DFS)
2672 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2673 
2674 	/*
2675 	 *  Select some other
2676 	 */
2677 	if (SYM_SETUP_PCI_PARITY)
2678 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2679 	if (SYM_SETUP_SCSI_PARITY)
2680 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2681 
2682 	/*
2683 	 *  Get parity checking, host ID and verbose mode from NVRAM
2684 	 */
2685 	np->myaddr = 255;
2686 	sym_nvram_setup_host (np, nvram);
2687 #ifdef __sparc64__
2688 	np->myaddr = OF_getscsinitid(np->device);
2689 #endif
2690 
2691 	/*
2692 	 *  Get SCSI addr of host adapter (set by bios?).
2693 	 */
2694 	if (np->myaddr == 255) {
2695 		np->myaddr = INB(nc_scid) & 0x07;
2696 		if (!np->myaddr)
2697 			np->myaddr = SYM_SETUP_HOST_ID;
2698 	}
2699 
2700 	/*
2701 	 *  Prepare initial io register bits for burst length
2702 	 */
2703 	sym_init_burst(np, burst_max);
2704 
2705 	/*
2706 	 *  Set SCSI BUS mode.
2707 	 *  - LVD capable chips (895/895A/896/1010) report the
2708 	 *    current BUS mode through the STEST4 IO register.
2709 	 *  - For previous generation chips (825/825A/875),
2710 	 *    user has to tell us how to check against HVD,
2711 	 *    since a 100% safe algorithm is not possible.
2712 	 */
2713 	np->scsi_mode = SMODE_SE;
2714 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2715 		np->scsi_mode = (np->sv_stest4 & SMODE);
2716 	else if	(np->features & FE_DIFF) {
2717 		if (SYM_SETUP_SCSI_DIFF == 1) {
2718 			if (np->sv_scntl3) {
2719 				if (np->sv_stest2 & 0x20)
2720 					np->scsi_mode = SMODE_HVD;
2721 			}
2722 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2723 				if (!(INB(nc_gpreg) & 0x08))
2724 					np->scsi_mode = SMODE_HVD;
2725 			}
2726 		}
2727 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2728 			np->scsi_mode = SMODE_HVD;
2729 	}
2730 	if (np->scsi_mode == SMODE_HVD)
2731 		np->rv_stest2 |= 0x20;
2732 
2733 	/*
2734 	 *  Set LED support from SCRIPTS.
2735 	 *  Ignore this feature for boards known to use a
2736 	 *  specific GPIO wiring and for the 895A, 896
2737 	 *  and 1010 that drive the LED directly.
2738 	 */
2739 	if ((SYM_SETUP_SCSI_LED ||
2740 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2741 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2742 	       np->device_id == PCI_ID_SYM53C895))) &&
2743 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2744 		np->features |= FE_LED0;
2745 
2746 	/*
2747 	 *  Set irq mode.
2748 	 */
2749 	switch(SYM_SETUP_IRQ_MODE & 3) {
2750 	case 2:
2751 		np->rv_dcntl	|= IRQM;
2752 		break;
2753 	case 1:
2754 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2755 		break;
2756 	default:
2757 		break;
2758 	}
2759 
2760 	/*
2761 	 *  Configure targets according to driver setup.
2762 	 *  If NVRAM present get targets setup from NVRAM.
2763 	 */
2764 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2765 		tcb_p tp = &np->target[i];
2766 
2767 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2768 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2769 		tp->tinfo.user.period = np->minsync;
2770 		if (np->features & FE_ULTRA3)
2771 			tp->tinfo.user.period = np->minsync_dt;
2772 		tp->tinfo.user.offset = np->maxoffs;
2773 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2774 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2775 		tp->usrtags = SYM_SETUP_MAX_TAG;
2776 
2777 		sym_nvram_setup_target (np, i, nvram);
2778 
2779 		/*
2780 		 *  For now, guess PPR/DT support from the period
2781 		 *  and BUS width.
2782 		 */
2783 		if (np->features & FE_ULTRA3) {
2784 			if (tp->tinfo.user.period <= 9	&&
2785 			    tp->tinfo.user.width == BUS_16_BIT) {
2786 				tp->tinfo.user.options |= PPR_OPT_DT;
2787 				tp->tinfo.user.offset   = np->maxoffs_dt;
2788 				tp->tinfo.user.spi_version = 3;
2789 			}
2790 		}
2791 
2792 		if (!tp->usrtags)
2793 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2794 	}
2795 
2796 	/*
2797 	 *  Let user know about the settings.
2798 	 */
2799 	i = nvram->type;
2800 	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2801 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2802 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2803 		np->myaddr,
2804 		(np->features & FE_ULTRA3) ? 80 :
2805 		(np->features & FE_ULTRA2) ? 40 :
2806 		(np->features & FE_ULTRA)  ? 20 : 10,
2807 		sym_scsi_bus_mode(np->scsi_mode),
2808 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2809 	/*
2810 	 *  Tell him more on demand.
2811 	 */
2812 	if (sym_verbose) {
2813 		printf("%s: %s IRQ line driver%s\n",
2814 			sym_name(np),
2815 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2816 			np->ram_ba ? ", using on-chip SRAM" : "");
2817 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2818 		if (np->features & FE_NOPM)
2819 			printf("%s: handling phase mismatch from SCRIPTS.\n",
2820 			       sym_name(np));
2821 	}
2822 	/*
2823 	 *  And still more.
2824 	 */
2825 	if (sym_verbose > 1) {
2826 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2827 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2828 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2829 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2830 
2831 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2832 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2833 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2834 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2835 	}
2836 	/*
2837 	 *  Let user be aware of targets that have some disable flags set.
2838 	 */
2839 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2840 	if (sym_verbose)
2841 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2842 				       "SCAN FOR LUNS");
2843 
2844 	return 0;
2845 }
2846 
2847 /*
2848  *  Prepare the next negotiation message if needed.
2849  *
2850  *  Fill in the part of message buffer that contains the
2851  *  negotiation and the nego_status field of the CCB.
2852  *  Returns the size of the message in bytes.
2853  */
2854 
2855 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2856 {
2857 	tcb_p tp = &np->target[cp->target];
2858 	int msglen = 0;
2859 
2860 	/*
2861 	 *  Early C1010 chips need a work-around for DT
2862 	 *  data transfer to work.
2863 	 */
2864 	if (!(np->features & FE_U3EN))
2865 		tp->tinfo.goal.options = 0;
2866 	/*
2867 	 *  negotiate using PPR ?
2868 	 */
2869 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2870 		nego = NS_PPR;
2871 	/*
2872 	 *  negotiate wide transfers ?
2873 	 */
2874 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2875 		nego = NS_WIDE;
2876 	/*
2877 	 *  negotiate synchronous transfers?
2878 	 */
2879 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2880 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2881 		nego = NS_SYNC;
2882 
2883 	switch (nego) {
2884 	case NS_SYNC:
2885 		msgptr[msglen++] = M_EXTENDED;
2886 		msgptr[msglen++] = 3;
2887 		msgptr[msglen++] = M_X_SYNC_REQ;
2888 		msgptr[msglen++] = tp->tinfo.goal.period;
2889 		msgptr[msglen++] = tp->tinfo.goal.offset;
2890 		break;
2891 	case NS_WIDE:
2892 		msgptr[msglen++] = M_EXTENDED;
2893 		msgptr[msglen++] = 2;
2894 		msgptr[msglen++] = M_X_WIDE_REQ;
2895 		msgptr[msglen++] = tp->tinfo.goal.width;
2896 		break;
2897 	case NS_PPR:
2898 		msgptr[msglen++] = M_EXTENDED;
2899 		msgptr[msglen++] = 6;
2900 		msgptr[msglen++] = M_X_PPR_REQ;
2901 		msgptr[msglen++] = tp->tinfo.goal.period;
2902 		msgptr[msglen++] = 0;
2903 		msgptr[msglen++] = tp->tinfo.goal.offset;
2904 		msgptr[msglen++] = tp->tinfo.goal.width;
2905 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2906 		break;
2907 	};
2908 
2909 	cp->nego_status = nego;
2910 
2911 	if (nego) {
2912 		tp->nego_cp = cp; /* Keep track a nego will be performed */
2913 		if (DEBUG_FLAGS & DEBUG_NEGO) {
2914 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2915 					  nego == NS_WIDE ? "wide msgout" :
2916 					  "ppr msgout", msgptr);
2917 		};
2918 	};
2919 
2920 	return msglen;
2921 }
2922 
2923 /*
2924  *  Insert a job into the start queue.
2925  */
2926 static void sym_put_start_queue(hcb_p np, ccb_p cp)
2927 {
2928 	u_short	qidx;
2929 
2930 #ifdef SYM_CONF_IARB_SUPPORT
2931 	/*
2932 	 *  If the previously queued CCB is not yet done,
2933 	 *  set the IARB hint. The SCRIPTS will go with IARB
2934 	 *  for this job when starting the previous one.
2935 	 *  We leave devices a chance to win arbitration by
2936 	 *  not using more than 'iarb_max' consecutive
2937 	 *  immediate arbitrations.
2938 	 */
2939 	if (np->last_cp && np->iarb_count < np->iarb_max) {
2940 		np->last_cp->host_flags |= HF_HINT_IARB;
2941 		++np->iarb_count;
2942 	}
2943 	else
2944 		np->iarb_count = 0;
2945 	np->last_cp = cp;
2946 #endif
2947 
2948 	/*
2949 	 *  Insert first the idle task and then our job.
2950 	 *  The MB should ensure proper ordering.
2951 	 */
2952 	qidx = np->squeueput + 2;
2953 	if (qidx >= MAX_QUEUE*2) qidx = 0;
2954 
2955 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2956 	MEMORY_BARRIER();
2957 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2958 
2959 	np->squeueput = qidx;
2960 
2961 	if (DEBUG_FLAGS & DEBUG_QUEUE)
2962 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2963 
2964 	/*
2965 	 *  Script processor may be waiting for reselect.
2966 	 *  Wake it up.
2967 	 */
2968 	MEMORY_BARRIER();
2969 	OUTB (nc_istat, SIGP|np->istat_sem);
2970 }
2971 
2972 
2973 /*
2974  *  Soft reset the chip.
2975  *
2976  *  Raising SRST when the chip is running may cause
2977  *  problems on dual function chips (see below).
2978  *  On the other hand, LVD devices need some delay
2979  *  to settle and report actual BUS mode in STEST4.
2980  */
2981 static void sym_chip_reset (hcb_p np)
2982 {
2983 	OUTB (nc_istat, SRST);
2984 	UDELAY (10);
2985 	OUTB (nc_istat, 0);
2986 	UDELAY(2000);	/* For BUS MODE to settle */
2987 }
2988 
2989 /*
2990  *  Soft reset the chip.
2991  *
2992  *  Some 896 and 876 chip revisions may hang-up if we set
2993  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2994  *  are running.
2995  *  So, we need to abort the current operation prior to
2996  *  soft resetting the chip.
2997  */
2998 static void sym_soft_reset (hcb_p np)
2999 {
3000 	u_char istat;
3001 	int i;
3002 
3003 	OUTB (nc_istat, CABRT);
3004 	for (i = 1000000 ; i ; --i) {
3005 		istat = INB (nc_istat);
3006 		if (istat & SIP) {
3007 			INW (nc_sist);
3008 			continue;
3009 		}
3010 		if (istat & DIP) {
3011 			OUTB (nc_istat, 0);
3012 			INB (nc_dstat);
3013 			break;
3014 		}
3015 	}
3016 	if (!i)
3017 		printf("%s: unable to abort current chip operation.\n",
3018 			sym_name(np));
3019 	sym_chip_reset (np);
3020 }
3021 
3022 /*
3023  *  Start reset process.
3024  *
3025  *  The interrupt handler will reinitialize the chip.
3026  */
3027 static void sym_start_reset(hcb_p np)
3028 {
3029 	(void) sym_reset_scsi_bus(np, 1);
3030 }
3031 
3032 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
3033 {
3034 	u32 term;
3035 	int retv = 0;
3036 
3037 	sym_soft_reset(np);	/* Soft reset the chip */
3038 	if (enab_int)
3039 		OUTW (nc_sien, RST);
3040 	/*
3041 	 *  Enable Tolerant, reset IRQD if present and
3042 	 *  properly set IRQ mode, prior to resetting the bus.
3043 	 */
3044 	OUTB (nc_stest3, TE);
3045 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3046 	OUTB (nc_scntl1, CRST);
3047 	UDELAY (200);
3048 
3049 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3050 		goto out;
3051 	/*
3052 	 *  Check for no terminators or SCSI bus shorts to ground.
3053 	 *  Read SCSI data bus, data parity bits and control signals.
3054 	 *  We are expecting RESET to be TRUE and other signals to be
3055 	 *  FALSE.
3056 	 */
3057 	term =	INB(nc_sstat0);
3058 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3059 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3060 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3061 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3062 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3063 
3064 	if (!(np->features & FE_WIDE))
3065 		term &= 0x3ffff;
3066 
3067 	if (term != (2<<7)) {
3068 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
3069 			sym_name(np));
3070 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3071 			"0x%lx, expecting 0x%lx\n",
3072 			sym_name(np),
3073 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3074 			(u_long)term, (u_long)(2<<7));
3075 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3076 			retv = 1;
3077 	}
3078 out:
3079 	OUTB (nc_scntl1, 0);
3080 	/* MDELAY(100); */
3081 	return retv;
3082 }
3083 
3084 /*
3085  *  The chip may have completed jobs. Look at the DONE QUEUE.
3086  *
3087  *  On architectures that may reorder LOAD/STORE operations,
3088  *  a memory barrier may be needed after the reading of the
3089  *  so-called `flag' and prior to dealing with the data.
3090  */
3091 static int sym_wakeup_done (hcb_p np)
3092 {
3093 	ccb_p cp;
3094 	int i, n;
3095 	u32 dsa;
3096 
3097 	SYM_LOCK_ASSERT(MA_OWNED);
3098 
3099 	n = 0;
3100 	i = np->dqueueget;
3101 	while (1) {
3102 		dsa = scr_to_cpu(np->dqueue[i]);
3103 		if (!dsa)
3104 			break;
3105 		np->dqueue[i] = 0;
3106 		if ((i = i+2) >= MAX_QUEUE*2)
3107 			i = 0;
3108 
3109 		cp = sym_ccb_from_dsa(np, dsa);
3110 		if (cp) {
3111 			MEMORY_BARRIER();
3112 			sym_complete_ok (np, cp);
3113 			++n;
3114 		}
3115 		else
3116 			printf ("%s: bad DSA (%x) in done queue.\n",
3117 				sym_name(np), (u_int) dsa);
3118 	}
3119 	np->dqueueget = i;
3120 
3121 	return n;
3122 }
3123 
3124 /*
3125  *  Complete all active CCBs with error.
3126  *  Used on CHIP/SCSI RESET.
3127  */
3128 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3129 {
3130 	/*
3131 	 *  Move all active CCBs to the COMP queue
3132 	 *  and flush this queue.
3133 	 */
3134 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3135 	sym_que_init(&np->busy_ccbq);
3136 	sym_flush_comp_queue(np, cam_status);
3137 }
3138 
3139 /*
3140  *  Start chip.
3141  *
3142  *  'reason' means:
3143  *     0: initialisation.
3144  *     1: SCSI BUS RESET delivered or received.
3145  *     2: SCSI BUS MODE changed.
3146  */
3147 static void sym_init (hcb_p np, int reason)
3148 {
3149  	int	i;
3150 	u32	phys;
3151 
3152 	SYM_LOCK_ASSERT(MA_OWNED);
3153 
3154  	/*
3155 	 *  Reset chip if asked, otherwise just clear fifos.
3156  	 */
3157 	if (reason == 1)
3158 		sym_soft_reset(np);
3159 	else {
3160 		OUTB (nc_stest3, TE|CSF);
3161 		OUTONB (nc_ctest3, CLF);
3162 	}
3163 
3164 	/*
3165 	 *  Clear Start Queue
3166 	 */
3167 	phys = np->squeue_ba;
3168 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3169 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3170 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3171 	}
3172 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3173 
3174 	/*
3175 	 *  Start at first entry.
3176 	 */
3177 	np->squeueput = 0;
3178 
3179 	/*
3180 	 *  Clear Done Queue
3181 	 */
3182 	phys = np->dqueue_ba;
3183 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3184 		np->dqueue[i]   = 0;
3185 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3186 	}
3187 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3188 
3189 	/*
3190 	 *  Start at first entry.
3191 	 */
3192 	np->dqueueget = 0;
3193 
3194 	/*
3195 	 *  Install patches in scripts.
3196 	 *  This also let point to first position the start
3197 	 *  and done queue pointers used from SCRIPTS.
3198 	 */
3199 	np->fw_patch(np);
3200 
3201 	/*
3202 	 *  Wakeup all pending jobs.
3203 	 */
3204 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3205 
3206 	/*
3207 	 *  Init chip.
3208 	 */
3209 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3210 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3211 
3212 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3213 					/*  full arb., ena parity, par->ATN  */
3214 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3215 
3216 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3217 
3218 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3219 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3220 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3221 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3222 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3223 
3224 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3225 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3226 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3227 
3228 	/* Extended Sreq/Sack filtering not supported on the C10 */
3229 	if (np->features & FE_C10)
3230 		OUTB (nc_stest2, np->rv_stest2);
3231 	else
3232 		OUTB (nc_stest2, EXT|np->rv_stest2);
3233 
3234 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3235 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3236 
3237 	/*
3238 	 *  For now, disable AIP generation on C1010-66.
3239 	 */
3240 	if (np->device_id == PCI_ID_LSI53C1010_2)
3241 		OUTB (nc_aipcntl1, DISAIP);
3242 
3243 	/*
3244 	 *  C10101 Errata.
3245 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3246 	 *  STEST1 register to disable SGE. We probably should do
3247 	 *  that from SCRIPTS for each selection/reselection, but
3248 	 *  I just don't want. :)
3249 	 */
3250 	if (np->device_id == PCI_ID_LSI53C1010 &&
3251 	    /* np->revision_id < 0xff */ 1)
3252 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3253 
3254 	/*
3255 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3256 	 *  Disable overlapped arbitration for some dual function devices,
3257 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3258 	 */
3259 	if (np->device_id == PCI_ID_SYM53C875)
3260 		OUTB (nc_ctest0, (1<<5));
3261 	else if (np->device_id == PCI_ID_SYM53C896)
3262 		np->rv_ccntl0 |= DPR;
3263 
3264 	/*
3265 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3266 	 *  and/or hardware phase mismatch, since only such chips
3267 	 *  seem to support those IO registers.
3268 	 */
3269 	if (np->features & (FE_DAC|FE_NOPM)) {
3270 		OUTB (nc_ccntl0, np->rv_ccntl0);
3271 		OUTB (nc_ccntl1, np->rv_ccntl1);
3272 	}
3273 
3274 	/*
3275 	 *  If phase mismatch handled by scripts (895A/896/1010),
3276 	 *  set PM jump addresses.
3277 	 */
3278 	if (np->features & FE_NOPM) {
3279 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3280 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3281 	}
3282 
3283 	/*
3284 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3285 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3286 	 */
3287 	if (np->features & FE_LED0)
3288 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3289 	else if (np->features & FE_LEDC)
3290 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3291 
3292 	/*
3293 	 *      enable ints
3294 	 */
3295 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3296 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3297 
3298 	/*
3299 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3300 	 *  Try to eat the spurious SBMC interrupt that may occur when
3301 	 *  we reset the chip but not the SCSI BUS (at initialization).
3302 	 */
3303 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3304 		OUTONW (nc_sien, SBMC);
3305 		if (reason == 0) {
3306 			MDELAY(100);
3307 			INW (nc_sist);
3308 		}
3309 		np->scsi_mode = INB (nc_stest4) & SMODE;
3310 	}
3311 
3312 	/*
3313 	 *  Fill in target structure.
3314 	 *  Reinitialize usrsync.
3315 	 *  Reinitialize usrwide.
3316 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3317 	 */
3318 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3319 		tcb_p tp = &np->target[i];
3320 
3321 		tp->to_reset  = 0;
3322 		tp->head.sval = 0;
3323 		tp->head.wval = np->rv_scntl3;
3324 		tp->head.uval = 0;
3325 
3326 		tp->tinfo.current.period = 0;
3327 		tp->tinfo.current.offset = 0;
3328 		tp->tinfo.current.width  = BUS_8_BIT;
3329 		tp->tinfo.current.options = 0;
3330 	}
3331 
3332 	/*
3333 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3334 	 *  and start script processor.
3335 	 */
3336 	if (np->ram_ba) {
3337 		if (sym_verbose > 1)
3338 			printf ("%s: Downloading SCSI SCRIPTS.\n",
3339 				sym_name(np));
3340 		if (np->ram_ws == 8192) {
3341 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3342 			OUTL (nc_mmws, np->scr_ram_seg);
3343 			OUTL (nc_mmrs, np->scr_ram_seg);
3344 			OUTL (nc_sfs,  np->scr_ram_seg);
3345 			phys = SCRIPTB_BA (np, start64);
3346 		}
3347 		else
3348 			phys = SCRIPTA_BA (np, init);
3349 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3350 	}
3351 	else
3352 		phys = SCRIPTA_BA (np, init);
3353 
3354 	np->istat_sem = 0;
3355 
3356 	OUTL (nc_dsa, np->hcb_ba);
3357 	OUTL_DSP (phys);
3358 
3359 	/*
3360 	 *  Notify the XPT about the RESET condition.
3361 	 */
3362 	if (reason != 0)
3363 		xpt_async(AC_BUS_RESET, np->path, NULL);
3364 }
3365 
3366 /*
3367  *  Get clock factor and sync divisor for a given
3368  *  synchronous factor period.
3369  */
3370 static int
3371 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3372 {
3373 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3374 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3375 	u32	fak;			/* Sync factor in sxfer		*/
3376 	u32	per;			/* Period in tenths of ns	*/
3377 	u32	kpc;			/* (per * clk)			*/
3378 	int	ret;
3379 
3380 	/*
3381 	 *  Compute the synchronous period in tenths of nano-seconds
3382 	 */
3383 	if (dt && sfac <= 9)	per = 125;
3384 	else if	(sfac <= 10)	per = 250;
3385 	else if	(sfac == 11)	per = 303;
3386 	else if	(sfac == 12)	per = 500;
3387 	else			per = 40 * sfac;
3388 	ret = per;
3389 
3390 	kpc = per * clk;
3391 	if (dt)
3392 		kpc <<= 1;
3393 
3394 	/*
3395 	 *  For earliest C10 revision 0, we cannot use extra
3396 	 *  clocks for the setting of the SCSI clocking.
3397 	 *  Note that this limits the lowest sync data transfer
3398 	 *  to 5 Mega-transfers per second and may result in
3399 	 *  using higher clock divisors.
3400 	 */
3401 #if 1
3402 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3403 		/*
3404 		 *  Look for the lowest clock divisor that allows an
3405 		 *  output speed not faster than the period.
3406 		 */
3407 		while (div > 0) {
3408 			--div;
3409 			if (kpc > (div_10M[div] << 2)) {
3410 				++div;
3411 				break;
3412 			}
3413 		}
3414 		fak = 0;			/* No extra clocks */
3415 		if (div == np->clock_divn) {	/* Are we too fast ? */
3416 			ret = -1;
3417 		}
3418 		*divp = div;
3419 		*fakp = fak;
3420 		return ret;
3421 	}
3422 #endif
3423 
3424 	/*
3425 	 *  Look for the greatest clock divisor that allows an
3426 	 *  input speed faster than the period.
3427 	 */
3428 	while (div-- > 0)
3429 		if (kpc >= (div_10M[div] << 2)) break;
3430 
3431 	/*
3432 	 *  Calculate the lowest clock factor that allows an output
3433 	 *  speed not faster than the period, and the max output speed.
3434 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3435 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3436 	 */
3437 	if (dt) {
3438 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3439 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3440 	}
3441 	else {
3442 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3443 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3444 	}
3445 
3446 	/*
3447 	 *  Check against our hardware limits, or bugs :).
3448 	 */
3449 	if (fak < 0)	{fak = 0; ret = -1;}
3450 	if (fak > 2)	{fak = 2; ret = -1;}
3451 
3452 	/*
3453 	 *  Compute and return sync parameters.
3454 	 */
3455 	*divp = div;
3456 	*fakp = fak;
3457 
3458 	return ret;
3459 }
3460 
3461 /*
3462  *  Tell the SCSI layer about the new transfer parameters.
3463  */
3464 static void
3465 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3466 {
3467 	struct ccb_trans_settings cts;
3468 	struct cam_path *path;
3469 	int sts;
3470 	tcb_p tp = &np->target[target];
3471 
3472 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3473 	                      CAM_LUN_WILDCARD);
3474 	if (sts != CAM_REQ_CMP)
3475 		return;
3476 
3477 	bzero(&cts, sizeof(cts));
3478 
3479 #define	cts__scsi (cts.proto_specific.scsi)
3480 #define	cts__spi  (cts.xport_specific.spi)
3481 
3482 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3483 	cts.protocol  = PROTO_SCSI;
3484 	cts.transport = XPORT_SPI;
3485 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3486 	cts.transport_version = tp->tinfo.current.spi_version;
3487 
3488 	cts__spi.valid = spi_valid;
3489 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3490 		cts__spi.sync_period = tp->tinfo.current.period;
3491 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3492 		cts__spi.sync_offset = tp->tinfo.current.offset;
3493 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3494 		cts__spi.bus_width   = tp->tinfo.current.width;
3495 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3496 		cts__spi.ppr_options = tp->tinfo.current.options;
3497 #undef cts__spi
3498 #undef cts__scsi
3499 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3500 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3501 	xpt_free_path(path);
3502 }
3503 
3504 #define SYM_SPI_VALID_WDTR		\
3505 	CTS_SPI_VALID_BUS_WIDTH |	\
3506 	CTS_SPI_VALID_SYNC_RATE |	\
3507 	CTS_SPI_VALID_SYNC_OFFSET
3508 #define SYM_SPI_VALID_SDTR		\
3509 	CTS_SPI_VALID_SYNC_RATE |	\
3510 	CTS_SPI_VALID_SYNC_OFFSET
3511 #define SYM_SPI_VALID_PPR		\
3512 	CTS_SPI_VALID_PPR_OPTIONS |	\
3513 	CTS_SPI_VALID_BUS_WIDTH |	\
3514 	CTS_SPI_VALID_SYNC_RATE |	\
3515 	CTS_SPI_VALID_SYNC_OFFSET
3516 
3517 /*
3518  *  We received a WDTR.
3519  *  Let everything be aware of the changes.
3520  */
3521 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3522 {
3523 	tcb_p tp = &np->target[cp->target];
3524 
3525 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3526 
3527 	/*
3528 	 *  Tell the SCSI layer about the new transfer parameters.
3529 	 */
3530 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3531 	tp->tinfo.current.offset = 0;
3532 	tp->tinfo.current.period = 0;
3533 	tp->tinfo.current.options = 0;
3534 
3535 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3536 }
3537 
3538 /*
3539  *  We received a SDTR.
3540  *  Let everything be aware of the changes.
3541  */
3542 static void
3543 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3544 {
3545 	tcb_p tp = &np->target[cp->target];
3546 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3547 
3548 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3549 
3550 	/*
3551 	 *  Tell the SCSI layer about the new transfer parameters.
3552 	 */
3553 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3554 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3555 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3556 
3557 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3558 }
3559 
3560 /*
3561  *  We received a PPR.
3562  *  Let everything be aware of the changes.
3563  */
3564 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3565 			 u_char per, u_char wide, u_char div, u_char fak)
3566 {
3567 	tcb_p tp = &np->target[cp->target];
3568 
3569 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3570 
3571 	/*
3572 	 *  Tell the SCSI layer about the new transfer parameters.
3573 	 */
3574 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3575 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3576 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3577 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3578 
3579 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3580 }
3581 
3582 /*
3583  *  Switch trans mode for current job and it's target.
3584  */
3585 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3586 			 u_char per, u_char wide, u_char div, u_char fak)
3587 {
3588 	SYM_QUEHEAD *qp;
3589 	union	ccb *ccb;
3590 	tcb_p tp;
3591 	u_char target = INB (nc_sdid) & 0x0f;
3592 	u_char sval, wval, uval;
3593 
3594 	assert (cp);
3595 	if (!cp) return;
3596 	ccb = cp->cam_ccb;
3597 	assert (ccb);
3598 	if (!ccb) return;
3599 	assert (target == (cp->target & 0xf));
3600 	tp = &np->target[target];
3601 
3602 	sval = tp->head.sval;
3603 	wval = tp->head.wval;
3604 	uval = tp->head.uval;
3605 
3606 #if 0
3607 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3608 		sval, wval, uval, np->rv_scntl3);
3609 #endif
3610 	/*
3611 	 *  Set the offset.
3612 	 */
3613 	if (!(np->features & FE_C10))
3614 		sval = (sval & ~0x1f) | ofs;
3615 	else
3616 		sval = (sval & ~0x3f) | ofs;
3617 
3618 	/*
3619 	 *  Set the sync divisor and extra clock factor.
3620 	 */
3621 	if (ofs != 0) {
3622 		wval = (wval & ~0x70) | ((div+1) << 4);
3623 		if (!(np->features & FE_C10))
3624 			sval = (sval & ~0xe0) | (fak << 5);
3625 		else {
3626 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3627 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3628 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3629 		}
3630 	}
3631 
3632 	/*
3633 	 *  Set the bus width.
3634 	 */
3635 	wval = wval & ~EWS;
3636 	if (wide != 0)
3637 		wval |= EWS;
3638 
3639 	/*
3640 	 *  Set misc. ultra enable bits.
3641 	 */
3642 	if (np->features & FE_C10) {
3643 		uval = uval & ~(U3EN|AIPCKEN);
3644 		if (dt)	{
3645 			assert(np->features & FE_U3EN);
3646 			uval |= U3EN;
3647 		}
3648 	}
3649 	else {
3650 		wval = wval & ~ULTRA;
3651 		if (per <= 12)	wval |= ULTRA;
3652 	}
3653 
3654 	/*
3655 	 *   Stop there if sync parameters are unchanged.
3656 	 */
3657 	if (tp->head.sval == sval &&
3658 	    tp->head.wval == wval &&
3659 	    tp->head.uval == uval)
3660 		return;
3661 	tp->head.sval = sval;
3662 	tp->head.wval = wval;
3663 	tp->head.uval = uval;
3664 
3665 	/*
3666 	 *  Disable extended Sreq/Sack filtering if per < 50.
3667 	 *  Not supported on the C1010.
3668 	 */
3669 	if (per < 50 && !(np->features & FE_C10))
3670 		OUTOFFB (nc_stest2, EXT);
3671 
3672 	/*
3673 	 *  set actual value and sync_status
3674 	 */
3675 	OUTB (nc_sxfer,  tp->head.sval);
3676 	OUTB (nc_scntl3, tp->head.wval);
3677 
3678 	if (np->features & FE_C10) {
3679 		OUTB (nc_scntl4, tp->head.uval);
3680 	}
3681 
3682 	/*
3683 	 *  patch ALL busy ccbs of this target.
3684 	 */
3685 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3686 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3687 		if (cp->target != target)
3688 			continue;
3689 		cp->phys.select.sel_scntl3 = tp->head.wval;
3690 		cp->phys.select.sel_sxfer  = tp->head.sval;
3691 		if (np->features & FE_C10) {
3692 			cp->phys.select.sel_scntl4 = tp->head.uval;
3693 		}
3694 	}
3695 }
3696 
3697 /*
3698  *  log message for real hard errors
3699  *
3700  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3701  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3702  *
3703  *  exception register:
3704  *  	ds:	dstat
3705  *  	si:	sist
3706  *
3707  *  SCSI bus lines:
3708  *  	so:	control lines as driven by chip.
3709  *  	si:	control lines as seen by chip.
3710  *  	sd:	scsi data lines as seen by chip.
3711  *
3712  *  wide/fastmode:
3713  *  	sxfer:	(see the manual)
3714  *  	scntl3:	(see the manual)
3715  *
3716  *  current script command:
3717  *  	dsp:	script address (relative to start of script).
3718  *  	dbc:	first word of script command.
3719  *
3720  *  First 24 register of the chip:
3721  *  	r0..rf
3722  */
3723 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3724 {
3725 	u32	dsp;
3726 	int	script_ofs;
3727 	int	script_size;
3728 	char	*script_name;
3729 	u_char	*script_base;
3730 	int	i;
3731 
3732 	dsp	= INL (nc_dsp);
3733 
3734 	if	(dsp > np->scripta_ba &&
3735 		 dsp <= np->scripta_ba + np->scripta_sz) {
3736 		script_ofs	= dsp - np->scripta_ba;
3737 		script_size	= np->scripta_sz;
3738 		script_base	= (u_char *) np->scripta0;
3739 		script_name	= "scripta";
3740 	}
3741 	else if (np->scriptb_ba < dsp &&
3742 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3743 		script_ofs	= dsp - np->scriptb_ba;
3744 		script_size	= np->scriptb_sz;
3745 		script_base	= (u_char *) np->scriptb0;
3746 		script_name	= "scriptb";
3747 	} else {
3748 		script_ofs	= dsp;
3749 		script_size	= 0;
3750 		script_base	= 0;
3751 		script_name	= "mem";
3752 	}
3753 
3754 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3755 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3756 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3757 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3758 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3759 		(unsigned)INL (nc_dbc));
3760 
3761 	if (((script_ofs & 3) == 0) &&
3762 	    (unsigned)script_ofs < script_size) {
3763 		printf ("%s: script cmd = %08x\n", sym_name(np),
3764 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3765 	}
3766 
3767         printf ("%s: regdump:", sym_name(np));
3768         for (i=0; i<24;i++)
3769             printf (" %02x", (unsigned)INB_OFF(i));
3770         printf (".\n");
3771 
3772 	/*
3773 	 *  PCI BUS error, read the PCI ststus register.
3774 	 */
3775 	if (dstat & (MDPE|BF)) {
3776 		u_short pci_sts;
3777 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3778 		if (pci_sts & 0xf900) {
3779 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3780 			printf("%s: PCI STATUS = 0x%04x\n",
3781 				sym_name(np), pci_sts & 0xf900);
3782 		}
3783 	}
3784 }
3785 
3786 /*
3787  *  chip interrupt handler
3788  *
3789  *  In normal situations, interrupt conditions occur one at
3790  *  a time. But when something bad happens on the SCSI BUS,
3791  *  the chip may raise several interrupt flags before
3792  *  stopping and interrupting the CPU. The additionnal
3793  *  interrupt flags are stacked in some extra registers
3794  *  after the SIP and/or DIP flag has been raised in the
3795  *  ISTAT. After the CPU has read the interrupt condition
3796  *  flag from SIST or DSTAT, the chip unstacks the other
3797  *  interrupt flags and sets the corresponding bits in
3798  *  SIST or DSTAT. Since the chip starts stacking once the
3799  *  SIP or DIP flag is set, there is a small window of time
3800  *  where the stacking does not occur.
3801  *
3802  *  Typically, multiple interrupt conditions may happen in
3803  *  the following situations:
3804  *
3805  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3806  *    When a parity error is detected in input phase
3807  *    and the device switches to msg-in phase inside a
3808  *    block MOV.
3809  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3810  *    When a stupid device does not want to handle the
3811  *    recovery of an SCSI parity error.
3812  *  - Some combinations of STO, PAR, UDC, ...
3813  *    When using non compliant SCSI stuff, when user is
3814  *    doing non compliant hot tampering on the BUS, when
3815  *    something really bad happens to a device, etc ...
3816  *
3817  *  The heuristic suggested by SYMBIOS to handle
3818  *  multiple interrupts is to try unstacking all
3819  *  interrupts conditions and to handle them on some
3820  *  priority based on error severity.
3821  *  This will work when the unstacking has been
3822  *  successful, but we cannot be 100 % sure of that,
3823  *  since the CPU may have been faster to unstack than
3824  *  the chip is able to stack. Hmmm ... But it seems that
3825  *  such a situation is very unlikely to happen.
3826  *
3827  *  If this happen, for example STO caught by the CPU
3828  *  then UDC happenning before the CPU have restarted
3829  *  the SCRIPTS, the driver may wrongly complete the
3830  *  same command on UDC, since the SCRIPTS didn't restart
3831  *  and the DSA still points to the same command.
3832  *  We avoid this situation by setting the DSA to an
3833  *  invalid value when the CCB is completed and before
3834  *  restarting the SCRIPTS.
3835  *
3836  *  Another issue is that we need some section of our
3837  *  recovery procedures to be somehow uninterruptible but
3838  *  the SCRIPTS processor does not provides such a
3839  *  feature. For this reason, we handle recovery preferently
3840  *  from the C code and check against some SCRIPTS critical
3841  *  sections from the C code.
3842  *
3843  *  Hopefully, the interrupt handling of the driver is now
3844  *  able to resist to weird BUS error conditions, but donnot
3845  *  ask me for any guarantee that it will never fail. :-)
3846  *  Use at your own decision and risk.
3847  */
3848 
3849 static void sym_intr1 (hcb_p np)
3850 {
3851 	u_char	istat, istatc;
3852 	u_char	dstat;
3853 	u_short	sist;
3854 
3855 	SYM_LOCK_ASSERT(MA_OWNED);
3856 
3857 	/*
3858 	 *  interrupt on the fly ?
3859 	 *
3860 	 *  A `dummy read' is needed to ensure that the
3861 	 *  clear of the INTF flag reaches the device
3862 	 *  before the scanning of the DONE queue.
3863 	 */
3864 	istat = INB (nc_istat);
3865 	if (istat & INTF) {
3866 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3867 		istat = INB (nc_istat);		/* DUMMY READ */
3868 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3869 		(void)sym_wakeup_done (np);
3870 	};
3871 
3872 	if (!(istat & (SIP|DIP)))
3873 		return;
3874 
3875 #if 0	/* We should never get this one */
3876 	if (istat & CABRT)
3877 		OUTB (nc_istat, CABRT);
3878 #endif
3879 
3880 	/*
3881 	 *  PAR and MA interrupts may occur at the same time,
3882 	 *  and we need to know of both in order to handle
3883 	 *  this situation properly. We try to unstack SCSI
3884 	 *  interrupts for that reason. BTW, I dislike a LOT
3885 	 *  such a loop inside the interrupt routine.
3886 	 *  Even if DMA interrupt stacking is very unlikely to
3887 	 *  happen, we also try unstacking these ones, since
3888 	 *  this has no performance impact.
3889 	 */
3890 	sist	= 0;
3891 	dstat	= 0;
3892 	istatc	= istat;
3893 	do {
3894 		if (istatc & SIP)
3895 			sist  |= INW (nc_sist);
3896 		if (istatc & DIP)
3897 			dstat |= INB (nc_dstat);
3898 		istatc = INB (nc_istat);
3899 		istat |= istatc;
3900 	} while (istatc & (SIP|DIP));
3901 
3902 	if (DEBUG_FLAGS & DEBUG_TINY)
3903 		printf ("<%d|%x:%x|%x:%x>",
3904 			(int)INB(nc_scr0),
3905 			dstat,sist,
3906 			(unsigned)INL(nc_dsp),
3907 			(unsigned)INL(nc_dbc));
3908 	/*
3909 	 *  On paper, a memory barrier may be needed here.
3910 	 *  And since we are paranoid ... :)
3911 	 */
3912 	MEMORY_BARRIER();
3913 
3914 	/*
3915 	 *  First, interrupts we want to service cleanly.
3916 	 *
3917 	 *  Phase mismatch (MA) is the most frequent interrupt
3918 	 *  for chip earlier than the 896 and so we have to service
3919 	 *  it as quickly as possible.
3920 	 *  A SCSI parity error (PAR) may be combined with a phase
3921 	 *  mismatch condition (MA).
3922 	 *  Programmed interrupts (SIR) are used to call the C code
3923 	 *  from SCRIPTS.
3924 	 *  The single step interrupt (SSI) is not used in this
3925 	 *  driver.
3926 	 */
3927 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3928 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3929 		if	(sist & PAR)	sym_int_par (np, sist);
3930 		else if (sist & MA)	sym_int_ma (np);
3931 		else if (dstat & SIR)	sym_int_sir (np);
3932 		else if (dstat & SSI)	OUTONB_STD ();
3933 		else			goto unknown_int;
3934 		return;
3935 	};
3936 
3937 	/*
3938 	 *  Now, interrupts that donnot happen in normal
3939 	 *  situations and that we may need to recover from.
3940 	 *
3941 	 *  On SCSI RESET (RST), we reset everything.
3942 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3943 	 *  active CCBs with RESET status, prepare all devices
3944 	 *  for negotiating again and restart the SCRIPTS.
3945 	 *  On STO and UDC, we complete the CCB with the corres-
3946 	 *  ponding status and restart the SCRIPTS.
3947 	 */
3948 	if (sist & RST) {
3949 		xpt_print_path(np->path);
3950 		printf("SCSI BUS reset detected.\n");
3951 		sym_init (np, 1);
3952 		return;
3953 	};
3954 
3955 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3956 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3957 
3958 	if (!(sist  & (GEN|HTH|SGE)) &&
3959 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3960 		if	(sist & SBMC)	sym_int_sbmc (np);
3961 		else if (sist & STO)	sym_int_sto (np);
3962 		else if (sist & UDC)	sym_int_udc (np);
3963 		else			goto unknown_int;
3964 		return;
3965 	};
3966 
3967 	/*
3968 	 *  Now, interrupts we are not able to recover cleanly.
3969 	 *
3970 	 *  Log message for hard errors.
3971 	 *  Reset everything.
3972 	 */
3973 
3974 	sym_log_hard_error(np, sist, dstat);
3975 
3976 	if ((sist & (GEN|HTH|SGE)) ||
3977 		(dstat & (MDPE|BF|ABRT|IID))) {
3978 		sym_start_reset(np);
3979 		return;
3980 	};
3981 
3982 unknown_int:
3983 	/*
3984 	 *  We just miss the cause of the interrupt. :(
3985 	 *  Print a message. The timeout will do the real work.
3986 	 */
3987 	printf(	"%s: unknown interrupt(s) ignored, "
3988 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3989 		sym_name(np), istat, dstat, sist);
3990 }
3991 
3992 static void sym_intr(void *arg)
3993 {
3994 	hcb_p np = arg;
3995 
3996 	SYM_LOCK();
3997 
3998 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
3999 	sym_intr1((hcb_p) arg);
4000 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
4001 
4002 	SYM_UNLOCK();
4003 }
4004 
4005 static void sym_poll(struct cam_sim *sim)
4006 {
4007 	sym_intr1(cam_sim_softc(sim));
4008 }
4009 
4010 
4011 /*
4012  *  generic recovery from scsi interrupt
4013  *
4014  *  The doc says that when the chip gets an SCSI interrupt,
4015  *  it tries to stop in an orderly fashion, by completing
4016  *  an instruction fetch that had started or by flushing
4017  *  the DMA fifo for a write to memory that was executing.
4018  *  Such a fashion is not enough to know if the instruction
4019  *  that was just before the current DSP value has been
4020  *  executed or not.
4021  *
4022  *  There are some small SCRIPTS sections that deal with
4023  *  the start queue and the done queue that may break any
4024  *  assomption from the C code if we are interrupted
4025  *  inside, so we reset if this happens. Btw, since these
4026  *  SCRIPTS sections are executed while the SCRIPTS hasn't
4027  *  started SCSI operations, it is very unlikely to happen.
4028  *
4029  *  All the driver data structures are supposed to be
4030  *  allocated from the same 4 GB memory window, so there
4031  *  is a 1 to 1 relationship between DSA and driver data
4032  *  structures. Since we are careful :) to invalidate the
4033  *  DSA when we complete a command or when the SCRIPTS
4034  *  pushes a DSA into a queue, we can trust it when it
4035  *  points to a CCB.
4036  */
4037 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
4038 {
4039 	u32	dsp	= INL (nc_dsp);
4040 	u32	dsa	= INL (nc_dsa);
4041 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
4042 
4043 	/*
4044 	 *  If we haven't been interrupted inside the SCRIPTS
4045 	 *  critical pathes, we can safely restart the SCRIPTS
4046 	 *  and trust the DSA value if it matches a CCB.
4047 	 */
4048 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4049 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4050 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4051 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4052 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4053 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4054 	    (!(dsp > SCRIPTA_BA (np, done) &&
4055 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4056 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4057 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4058 		/*
4059 		 *  If we have a CCB, let the SCRIPTS call us back for
4060 		 *  the handling of the error with SCRATCHA filled with
4061 		 *  STARTPOS. This way, we will be able to freeze the
4062 		 *  device queue and requeue awaiting IOs.
4063 		 */
4064 		if (cp) {
4065 			cp->host_status = hsts;
4066 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4067 		}
4068 		/*
4069 		 *  Otherwise just restart the SCRIPTS.
4070 		 */
4071 		else {
4072 			OUTL (nc_dsa, 0xffffff);
4073 			OUTL_DSP (SCRIPTA_BA (np, start));
4074 		}
4075 	}
4076 	else
4077 		goto reset_all;
4078 
4079 	return;
4080 
4081 reset_all:
4082 	sym_start_reset(np);
4083 }
4084 
4085 /*
4086  *  chip exception handler for selection timeout
4087  */
4088 static void sym_int_sto (hcb_p np)
4089 {
4090 	u32 dsp	= INL (nc_dsp);
4091 
4092 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4093 
4094 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4095 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4096 	else
4097 		sym_start_reset(np);
4098 }
4099 
4100 /*
4101  *  chip exception handler for unexpected disconnect
4102  */
4103 static void sym_int_udc (hcb_p np)
4104 {
4105 	printf ("%s: unexpected disconnect\n", sym_name(np));
4106 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4107 }
4108 
4109 /*
4110  *  chip exception handler for SCSI bus mode change
4111  *
4112  *  spi2-r12 11.2.3 says a transceiver mode change must
4113  *  generate a reset event and a device that detects a reset
4114  *  event shall initiate a hard reset. It says also that a
4115  *  device that detects a mode change shall set data transfer
4116  *  mode to eight bit asynchronous, etc...
4117  *  So, just reinitializing all except chip should be enough.
4118  */
4119 static void sym_int_sbmc (hcb_p np)
4120 {
4121 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4122 
4123 	/*
4124 	 *  Notify user.
4125 	 */
4126 	xpt_print_path(np->path);
4127 	printf("SCSI BUS mode change from %s to %s.\n",
4128 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4129 
4130 	/*
4131 	 *  Should suspend command processing for a few seconds and
4132 	 *  reinitialize all except the chip.
4133 	 */
4134 	sym_init (np, 2);
4135 }
4136 
4137 /*
4138  *  chip exception handler for SCSI parity error.
4139  *
4140  *  When the chip detects a SCSI parity error and is
4141  *  currently executing a (CH)MOV instruction, it does
4142  *  not interrupt immediately, but tries to finish the
4143  *  transfer of the current scatter entry before
4144  *  interrupting. The following situations may occur:
4145  *
4146  *  - The complete scatter entry has been transferred
4147  *    without the device having changed phase.
4148  *    The chip will then interrupt with the DSP pointing
4149  *    to the instruction that follows the MOV.
4150  *
4151  *  - A phase mismatch occurs before the MOV finished
4152  *    and phase errors are to be handled by the C code.
4153  *    The chip will then interrupt with both PAR and MA
4154  *    conditions set.
4155  *
4156  *  - A phase mismatch occurs before the MOV finished and
4157  *    phase errors are to be handled by SCRIPTS.
4158  *    The chip will load the DSP with the phase mismatch
4159  *    JUMP address and interrupt the host processor.
4160  */
4161 static void sym_int_par (hcb_p np, u_short sist)
4162 {
4163 	u_char	hsts	= INB (HS_PRT);
4164 	u32	dsp	= INL (nc_dsp);
4165 	u32	dbc	= INL (nc_dbc);
4166 	u32	dsa	= INL (nc_dsa);
4167 	u_char	sbcl	= INB (nc_sbcl);
4168 	u_char	cmd	= dbc >> 24;
4169 	int phase	= cmd & 7;
4170 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4171 
4172 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4173 		sym_name(np), hsts, dbc, sbcl);
4174 
4175 	/*
4176 	 *  Check that the chip is connected to the SCSI BUS.
4177 	 */
4178 	if (!(INB (nc_scntl1) & ISCON)) {
4179 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4180 		return;
4181 	}
4182 
4183 	/*
4184 	 *  If the nexus is not clearly identified, reset the bus.
4185 	 *  We will try to do better later.
4186 	 */
4187 	if (!cp)
4188 		goto reset_all;
4189 
4190 	/*
4191 	 *  Check instruction was a MOV, direction was INPUT and
4192 	 *  ATN is asserted.
4193 	 */
4194 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4195 		goto reset_all;
4196 
4197 	/*
4198 	 *  Keep track of the parity error.
4199 	 */
4200 	OUTONB (HF_PRT, HF_EXT_ERR);
4201 	cp->xerr_status |= XE_PARITY_ERR;
4202 
4203 	/*
4204 	 *  Prepare the message to send to the device.
4205 	 */
4206 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4207 
4208 	/*
4209 	 *  If the old phase was DATA IN phase, we have to deal with
4210 	 *  the 3 situations described above.
4211 	 *  For other input phases (MSG IN and STATUS), the device
4212 	 *  must resend the whole thing that failed parity checking
4213 	 *  or signal error. So, jumping to dispatcher should be OK.
4214 	 */
4215 	if (phase == 1 || phase == 5) {
4216 		/* Phase mismatch handled by SCRIPTS */
4217 		if (dsp == SCRIPTB_BA (np, pm_handle))
4218 			OUTL_DSP (dsp);
4219 		/* Phase mismatch handled by the C code */
4220 		else if (sist & MA)
4221 			sym_int_ma (np);
4222 		/* No phase mismatch occurred */
4223 		else {
4224 			OUTL (nc_temp, dsp);
4225 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4226 		}
4227 	}
4228 	else
4229 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4230 	return;
4231 
4232 reset_all:
4233 	sym_start_reset(np);
4234 }
4235 
4236 /*
4237  *  chip exception handler for phase errors.
4238  *
4239  *  We have to construct a new transfer descriptor,
4240  *  to transfer the rest of the current block.
4241  */
4242 static void sym_int_ma (hcb_p np)
4243 {
4244 	u32	dbc;
4245 	u32	rest;
4246 	u32	dsp;
4247 	u32	dsa;
4248 	u32	nxtdsp;
4249 	u32	*vdsp;
4250 	u32	oadr, olen;
4251 	u32	*tblp;
4252         u32	newcmd;
4253 	u_int	delta;
4254 	u_char	cmd;
4255 	u_char	hflags, hflags0;
4256 	struct	sym_pmc *pm;
4257 	ccb_p	cp;
4258 
4259 	dsp	= INL (nc_dsp);
4260 	dbc	= INL (nc_dbc);
4261 	dsa	= INL (nc_dsa);
4262 
4263 	cmd	= dbc >> 24;
4264 	rest	= dbc & 0xffffff;
4265 	delta	= 0;
4266 
4267 	/*
4268 	 *  locate matching cp if any.
4269 	 */
4270 	cp = sym_ccb_from_dsa(np, dsa);
4271 
4272 	/*
4273 	 *  Donnot take into account dma fifo and various buffers in
4274 	 *  INPUT phase since the chip flushes everything before
4275 	 *  raising the MA interrupt for interrupted INPUT phases.
4276 	 *  For DATA IN phase, we will check for the SWIDE later.
4277 	 */
4278 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4279 		u_char ss0, ss2;
4280 
4281 		if (np->features & FE_DFBC)
4282 			delta = INW (nc_dfbc);
4283 		else {
4284 			u32 dfifo;
4285 
4286 			/*
4287 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4288 			 */
4289 			dfifo = INL(nc_dfifo);
4290 
4291 			/*
4292 			 *  Calculate remaining bytes in DMA fifo.
4293 			 *  (CTEST5 = dfifo >> 16)
4294 			 */
4295 			if (dfifo & (DFS << 16))
4296 				delta = ((((dfifo >> 8) & 0x300) |
4297 				          (dfifo & 0xff)) - rest) & 0x3ff;
4298 			else
4299 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4300 		}
4301 
4302 		/*
4303 		 *  The data in the dma fifo has not been transfered to
4304 		 *  the target -> add the amount to the rest
4305 		 *  and clear the data.
4306 		 *  Check the sstat2 register in case of wide transfer.
4307 		 */
4308 		rest += delta;
4309 		ss0  = INB (nc_sstat0);
4310 		if (ss0 & OLF) rest++;
4311 		if (!(np->features & FE_C10))
4312 			if (ss0 & ORF) rest++;
4313 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4314 			ss2 = INB (nc_sstat2);
4315 			if (ss2 & OLF1) rest++;
4316 			if (!(np->features & FE_C10))
4317 				if (ss2 & ORF1) rest++;
4318 		};
4319 
4320 		/*
4321 		 *  Clear fifos.
4322 		 */
4323 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4324 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4325 	}
4326 
4327 	/*
4328 	 *  log the information
4329 	 */
4330 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4331 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4332 			(unsigned) rest, (unsigned) delta);
4333 
4334 	/*
4335 	 *  try to find the interrupted script command,
4336 	 *  and the address at which to continue.
4337 	 */
4338 	vdsp	= 0;
4339 	nxtdsp	= 0;
4340 	if	(dsp >  np->scripta_ba &&
4341 		 dsp <= np->scripta_ba + np->scripta_sz) {
4342 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4343 		nxtdsp = dsp;
4344 	}
4345 	else if	(dsp >  np->scriptb_ba &&
4346 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4347 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4348 		nxtdsp = dsp;
4349 	}
4350 
4351 	/*
4352 	 *  log the information
4353 	 */
4354 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4355 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4356 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4357 	};
4358 
4359 	if (!vdsp) {
4360 		printf ("%s: interrupted SCRIPT address not found.\n",
4361 			sym_name (np));
4362 		goto reset_all;
4363 	}
4364 
4365 	if (!cp) {
4366 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4367 			sym_name (np));
4368 		goto reset_all;
4369 	}
4370 
4371 	/*
4372 	 *  get old startaddress and old length.
4373 	 */
4374 	oadr = scr_to_cpu(vdsp[1]);
4375 
4376 	if (cmd & 0x10) {	/* Table indirect */
4377 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4378 		olen = scr_to_cpu(tblp[0]);
4379 		oadr = scr_to_cpu(tblp[1]);
4380 	} else {
4381 		tblp = (u32 *) 0;
4382 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4383 	};
4384 
4385 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4386 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4387 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4388 			tblp,
4389 			(unsigned) olen,
4390 			(unsigned) oadr);
4391 	};
4392 
4393 	/*
4394 	 *  check cmd against assumed interrupted script command.
4395 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4396 	 *  the phase.
4397 	 */
4398 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4399 		PRINT_ADDR(cp);
4400 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4401 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4402 
4403 		goto reset_all;
4404 	};
4405 
4406 	/*
4407 	 *  if old phase not dataphase, leave here.
4408 	 */
4409 	if (cmd & 2) {
4410 		PRINT_ADDR(cp);
4411 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4412 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4413 			(unsigned)oadr, (unsigned)rest);
4414 		goto unexpected_phase;
4415 	};
4416 
4417 	/*
4418 	 *  Choose the correct PM save area.
4419 	 *
4420 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4421 	 *  this stuff. The equivalent code is implemented in
4422 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4423 	 *  handle PM from the SCRIPTS processor.
4424 	 */
4425 	hflags0 = INB (HF_PRT);
4426 	hflags = hflags0;
4427 
4428 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4429 		if (hflags & HF_IN_PM0)
4430 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4431 		else if	(hflags & HF_IN_PM1)
4432 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4433 
4434 		if (hflags & HF_DP_SAVED)
4435 			hflags ^= HF_ACT_PM;
4436 	}
4437 
4438 	if (!(hflags & HF_ACT_PM)) {
4439 		pm = &cp->phys.pm0;
4440 		newcmd = SCRIPTA_BA (np, pm0_data);
4441 	}
4442 	else {
4443 		pm = &cp->phys.pm1;
4444 		newcmd = SCRIPTA_BA (np, pm1_data);
4445 	}
4446 
4447 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4448 	if (hflags != hflags0)
4449 		OUTB (HF_PRT, hflags);
4450 
4451 	/*
4452 	 *  fillin the phase mismatch context
4453 	 */
4454 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4455 	pm->sg.size = cpu_to_scr(rest);
4456 	pm->ret     = cpu_to_scr(nxtdsp);
4457 
4458 	/*
4459 	 *  If we have a SWIDE,
4460 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4461 	 *  - compute the SCRIPTS address to restart from,
4462 	 *  - move current data pointer context by one byte.
4463 	 */
4464 	nxtdsp = SCRIPTA_BA (np, dispatch);
4465 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4466 	    (INB (nc_scntl2) & WSR)) {
4467 		u32 tmp;
4468 
4469 		/*
4470 		 *  Set up the table indirect for the MOVE
4471 		 *  of the residual byte and adjust the data
4472 		 *  pointer context.
4473 		 */
4474 		tmp = scr_to_cpu(pm->sg.addr);
4475 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4476 		pm->sg.addr = cpu_to_scr(tmp + 1);
4477 		tmp = scr_to_cpu(pm->sg.size);
4478 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4479 		pm->sg.size = cpu_to_scr(tmp - 1);
4480 
4481 		/*
4482 		 *  If only the residual byte is to be moved,
4483 		 *  no PM context is needed.
4484 		 */
4485 		if ((tmp&0xffffff) == 1)
4486 			newcmd = pm->ret;
4487 
4488 		/*
4489 		 *  Prepare the address of SCRIPTS that will
4490 		 *  move the residual byte to memory.
4491 		 */
4492 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4493 	}
4494 
4495 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4496 		PRINT_ADDR(cp);
4497 		printf ("PM %x %x %x / %x %x %x.\n",
4498 			hflags0, hflags, newcmd,
4499 			(unsigned)scr_to_cpu(pm->sg.addr),
4500 			(unsigned)scr_to_cpu(pm->sg.size),
4501 			(unsigned)scr_to_cpu(pm->ret));
4502 	}
4503 
4504 	/*
4505 	 *  Restart the SCRIPTS processor.
4506 	 */
4507 	OUTL (nc_temp, newcmd);
4508 	OUTL_DSP (nxtdsp);
4509 	return;
4510 
4511 	/*
4512 	 *  Unexpected phase changes that occurs when the current phase
4513 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4514 	 *  Such event may only happen when the SCRIPTS is using a
4515 	 *  multibyte SCSI MOVE.
4516 	 *
4517 	 *  Phase change		Some possible cause
4518 	 *
4519 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4520 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4521 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4522 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4523 	 *  			negotiation messages.
4524 	 *
4525 	 *  The code below does not care of the new phase and so
4526 	 *  trusts the target. Why to annoy it ?
4527 	 *  If the interrupted phase is COMMAND phase, we restart at
4528 	 *  dispatcher.
4529 	 *  If a target does not get all the messages after selection,
4530 	 *  the code assumes blindly that the target discards extended
4531 	 *  messages and clears the negotiation status.
4532 	 *  If the target does not want all our response to negotiation,
4533 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4534 	 *  bloat for such a should_not_happen situation).
4535 	 *  In all other situation, we reset the BUS.
4536 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4537 	 */
4538 unexpected_phase:
4539 	dsp -= 8;
4540 	nxtdsp = 0;
4541 
4542 	switch (cmd & 7) {
4543 	case 2:	/* COMMAND phase */
4544 		nxtdsp = SCRIPTA_BA (np, dispatch);
4545 		break;
4546 #if 0
4547 	case 3:	/* STATUS  phase */
4548 		nxtdsp = SCRIPTA_BA (np, dispatch);
4549 		break;
4550 #endif
4551 	case 6:	/* MSG OUT phase */
4552 		/*
4553 		 *  If the device may want to use untagged when we want
4554 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4555 		 *  since we will not be able to handle reselect.
4556 		 *  Otherwise, we just don't care.
4557 		 */
4558 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4559 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4560 				cp->host_status = HS_BUSY;
4561 				np->msgout[0] = M_IDENTIFY | cp->lun;
4562 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4563 			}
4564 			else
4565 				nxtdsp = SCRIPTB_BA (np, ident_break);
4566 		}
4567 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4568 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4569 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4570 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4571 		}
4572 		break;
4573 #if 0
4574 	case 7:	/* MSG IN  phase */
4575 		nxtdsp = SCRIPTA_BA (np, clrack);
4576 		break;
4577 #endif
4578 	}
4579 
4580 	if (nxtdsp) {
4581 		OUTL_DSP (nxtdsp);
4582 		return;
4583 	}
4584 
4585 reset_all:
4586 	sym_start_reset(np);
4587 }
4588 
4589 /*
4590  *  Dequeue from the START queue all CCBs that match
4591  *  a given target/lun/task condition (-1 means all),
4592  *  and move them from the BUSY queue to the COMP queue
4593  *  with CAM_REQUEUE_REQ status condition.
4594  *  This function is used during error handling/recovery.
4595  *  It is called with SCRIPTS not running.
4596  */
4597 static int
4598 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4599 {
4600 	int j;
4601 	ccb_p cp;
4602 
4603 	/*
4604 	 *  Make sure the starting index is within range.
4605 	 */
4606 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4607 
4608 	/*
4609 	 *  Walk until end of START queue and dequeue every job
4610 	 *  that matches the target/lun/task condition.
4611 	 */
4612 	j = i;
4613 	while (i != np->squeueput) {
4614 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4615 		assert(cp);
4616 #ifdef SYM_CONF_IARB_SUPPORT
4617 		/* Forget hints for IARB, they may be no longer relevant */
4618 		cp->host_flags &= ~HF_HINT_IARB;
4619 #endif
4620 		if ((target == -1 || cp->target == target) &&
4621 		    (lun    == -1 || cp->lun    == lun)    &&
4622 		    (task   == -1 || cp->tag    == task)) {
4623 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4624 			sym_remque(&cp->link_ccbq);
4625 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4626 		}
4627 		else {
4628 			if (i != j)
4629 				np->squeue[j] = np->squeue[i];
4630 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4631 		}
4632 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4633 	}
4634 	if (i != j)		/* Copy back the idle task if needed */
4635 		np->squeue[j] = np->squeue[i];
4636 	np->squeueput = j;	/* Update our current start queue pointer */
4637 
4638 	return (i - j) / 2;
4639 }
4640 
4641 /*
4642  *  Complete all CCBs queued to the COMP queue.
4643  *
4644  *  These CCBs are assumed:
4645  *  - Not to be referenced either by devices or
4646  *    SCRIPTS-related queues and datas.
4647  *  - To have to be completed with an error condition
4648  *    or requeued.
4649  *
4650  *  The device queue freeze count is incremented
4651  *  for each CCB that does not prevent this.
4652  *  This function is called when all CCBs involved
4653  *  in error handling/recovery have been reaped.
4654  */
4655 static void
4656 sym_flush_comp_queue(hcb_p np, int cam_status)
4657 {
4658 	SYM_QUEHEAD *qp;
4659 	ccb_p cp;
4660 
4661 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
4662 		union ccb *ccb;
4663 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4664 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4665 		/* Leave quiet CCBs waiting for resources */
4666 		if (cp->host_status == HS_WAIT)
4667 			continue;
4668 		ccb = cp->cam_ccb;
4669 		if (cam_status)
4670 			sym_set_cam_status(ccb, cam_status);
4671 		sym_freeze_cam_ccb(ccb);
4672 		sym_xpt_done(np, ccb, cp);
4673 		sym_free_ccb(np, cp);
4674 	}
4675 }
4676 
4677 /*
4678  *  chip handler for bad SCSI status condition
4679  *
4680  *  In case of bad SCSI status, we unqueue all the tasks
4681  *  currently queued to the controller but not yet started
4682  *  and then restart the SCRIPTS processor immediately.
4683  *
4684  *  QUEUE FULL and BUSY conditions are handled the same way.
4685  *  Basically all the not yet started tasks are requeued in
4686  *  device queue and the queue is frozen until a completion.
4687  *
4688  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4689  *  the CCB of the failed command to prepare a REQUEST SENSE
4690  *  SCSI command and queue it to the controller queue.
4691  *
4692  *  SCRATCHA is assumed to have been loaded with STARTPOS
4693  *  before the SCRIPTS called the C code.
4694  */
4695 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
4696 {
4697 	tcb_p tp	= &np->target[cp->target];
4698 	u32		startp;
4699 	u_char		s_status = cp->ssss_status;
4700 	u_char		h_flags  = cp->host_flags;
4701 	int		msglen;
4702 	int		nego;
4703 	int		i;
4704 
4705 	SYM_LOCK_ASSERT(MA_OWNED);
4706 
4707 	/*
4708 	 *  Compute the index of the next job to start from SCRIPTS.
4709 	 */
4710 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4711 
4712 	/*
4713 	 *  The last CCB queued used for IARB hint may be
4714 	 *  no longer relevant. Forget it.
4715 	 */
4716 #ifdef SYM_CONF_IARB_SUPPORT
4717 	if (np->last_cp)
4718 		np->last_cp = NULL;
4719 #endif
4720 
4721 	/*
4722 	 *  Now deal with the SCSI status.
4723 	 */
4724 	switch(s_status) {
4725 	case S_BUSY:
4726 	case S_QUEUE_FULL:
4727 		if (sym_verbose >= 2) {
4728 			PRINT_ADDR(cp);
4729 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4730 		}
4731 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4732 		sym_complete_error (np, cp);
4733 		break;
4734 	case S_TERMINATED:
4735 	case S_CHECK_COND:
4736 		/*
4737 		 *  If we get an SCSI error when requesting sense, give up.
4738 		 */
4739 		if (h_flags & HF_SENSE) {
4740 			sym_complete_error (np, cp);
4741 			break;
4742 		}
4743 
4744 		/*
4745 		 *  Dequeue all queued CCBs for that device not yet started,
4746 		 *  and restart the SCRIPTS processor immediately.
4747 		 */
4748 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4749 		OUTL_DSP (SCRIPTA_BA (np, start));
4750 
4751  		/*
4752 		 *  Save some info of the actual IO.
4753 		 *  Compute the data residual.
4754 		 */
4755 		cp->sv_scsi_status = cp->ssss_status;
4756 		cp->sv_xerr_status = cp->xerr_status;
4757 		cp->sv_resid = sym_compute_residual(np, cp);
4758 
4759 		/*
4760 		 *  Prepare all needed data structures for
4761 		 *  requesting sense data.
4762 		 */
4763 
4764 		/*
4765 		 *  identify message
4766 		 */
4767 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4768 		msglen = 1;
4769 
4770 		/*
4771 		 *  If we are currently using anything different from
4772 		 *  async. 8 bit data transfers with that target,
4773 		 *  start a negotiation, since the device may want
4774 		 *  to report us a UNIT ATTENTION condition due to
4775 		 *  a cause we currently ignore, and we donnot want
4776 		 *  to be stuck with WIDE and/or SYNC data transfer.
4777 		 *
4778 		 *  cp->nego_status is filled by sym_prepare_nego().
4779 		 */
4780 		cp->nego_status = 0;
4781 		nego = 0;
4782 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4783 			nego = NS_PPR;
4784 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4785 			nego = NS_WIDE;
4786 		else if (tp->tinfo.current.offset != 0)
4787 			nego = NS_SYNC;
4788 		if (nego)
4789 			msglen +=
4790 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4791 		/*
4792 		 *  Message table indirect structure.
4793 		 */
4794 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4795 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4796 
4797 		/*
4798 		 *  sense command
4799 		 */
4800 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4801 		cp->phys.cmd.size	= cpu_to_scr(6);
4802 
4803 		/*
4804 		 *  patch requested size into sense command
4805 		 */
4806 		cp->sensecmd[0]		= 0x03;
4807 		cp->sensecmd[1]		= cp->lun << 5;
4808 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4809 			cp->sensecmd[1]	= 0;
4810 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4811 		cp->data_len		= SYM_SNS_BBUF_LEN;
4812 
4813 		/*
4814 		 *  sense data
4815 		 */
4816 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4817 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4818 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4819 
4820 		/*
4821 		 *  requeue the command.
4822 		 */
4823 		startp = SCRIPTB_BA (np, sdata_in);
4824 
4825 		cp->phys.head.savep	= cpu_to_scr(startp);
4826 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4827 		cp->phys.head.lastp	= cpu_to_scr(startp);
4828 		cp->startp	= cpu_to_scr(startp);
4829 
4830 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4831 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4832 		cp->ssss_status = S_ILLEGAL;
4833 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4834 		cp->xerr_status = 0;
4835 		cp->extra_bytes = 0;
4836 
4837 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4838 
4839 		/*
4840 		 *  Requeue the command.
4841 		 */
4842 		sym_put_start_queue(np, cp);
4843 
4844 		/*
4845 		 *  Give back to upper layer everything we have dequeued.
4846 		 */
4847 		sym_flush_comp_queue(np, 0);
4848 		break;
4849 	}
4850 }
4851 
4852 /*
4853  *  After a device has accepted some management message
4854  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4855  *  a device signals a UNIT ATTENTION condition, some
4856  *  tasks are thrown away by the device. We are required
4857  *  to reflect that on our tasks list since the device
4858  *  will never complete these tasks.
4859  *
4860  *  This function move from the BUSY queue to the COMP
4861  *  queue all disconnected CCBs for a given target that
4862  *  match the following criteria:
4863  *  - lun=-1  means any logical UNIT otherwise a given one.
4864  *  - task=-1 means any task, otherwise a given one.
4865  */
4866 static int
4867 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4868 {
4869 	SYM_QUEHEAD qtmp, *qp;
4870 	int i = 0;
4871 	ccb_p cp;
4872 
4873 	/*
4874 	 *  Move the entire BUSY queue to our temporary queue.
4875 	 */
4876 	sym_que_init(&qtmp);
4877 	sym_que_splice(&np->busy_ccbq, &qtmp);
4878 	sym_que_init(&np->busy_ccbq);
4879 
4880 	/*
4881 	 *  Put all CCBs that matches our criteria into
4882 	 *  the COMP queue and put back other ones into
4883 	 *  the BUSY queue.
4884 	 */
4885 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
4886 		union ccb *ccb;
4887 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4888 		ccb = cp->cam_ccb;
4889 		if (cp->host_status != HS_DISCONNECT ||
4890 		    cp->target != target	     ||
4891 		    (lun  != -1 && cp->lun != lun)   ||
4892 		    (task != -1 &&
4893 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4894 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4895 			continue;
4896 		}
4897 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4898 
4899 		/* Preserve the software timeout condition */
4900 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4901 			sym_set_cam_status(ccb, cam_status);
4902 		++i;
4903 #if 0
4904 printf("XXXX TASK @%p CLEARED\n", cp);
4905 #endif
4906 	}
4907 	return i;
4908 }
4909 
4910 /*
4911  *  chip handler for TASKS recovery
4912  *
4913  *  We cannot safely abort a command, while the SCRIPTS
4914  *  processor is running, since we just would be in race
4915  *  with it.
4916  *
4917  *  As long as we have tasks to abort, we keep the SEM
4918  *  bit set in the ISTAT. When this bit is set, the
4919  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4920  *  each time it enters the scheduler.
4921  *
4922  *  If we have to reset a target, clear tasks of a unit,
4923  *  or to perform the abort of a disconnected job, we
4924  *  restart the SCRIPTS for selecting the target. Once
4925  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4926  *  If it loses arbitration, the SCRIPTS will interrupt again
4927  *  the next time it will enter its scheduler, and so on ...
4928  *
4929  *  On SIR_TARGET_SELECTED, we scan for the more
4930  *  appropriate thing to do:
4931  *
4932  *  - If nothing, we just sent a M_ABORT message to the
4933  *    target to get rid of the useless SCSI bus ownership.
4934  *    According to the specs, no tasks shall be affected.
4935  *  - If the target is to be reset, we send it a M_RESET
4936  *    message.
4937  *  - If a logical UNIT is to be cleared , we send the
4938  *    IDENTIFY(lun) + M_ABORT.
4939  *  - If an untagged task is to be aborted, we send the
4940  *    IDENTIFY(lun) + M_ABORT.
4941  *  - If a tagged task is to be aborted, we send the
4942  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4943  *
4944  *  Once our 'kiss of death' :) message has been accepted
4945  *  by the target, the SCRIPTS interrupts again
4946  *  (SIR_ABORT_SENT). On this interrupt, we complete
4947  *  all the CCBs that should have been aborted by the
4948  *  target according to our message.
4949  */
4950 static void sym_sir_task_recovery(hcb_p np, int num)
4951 {
4952 	SYM_QUEHEAD *qp;
4953 	ccb_p cp;
4954 	tcb_p tp;
4955 	int target=-1, lun=-1, task;
4956 	int i, k;
4957 
4958 	switch(num) {
4959 	/*
4960 	 *  The SCRIPTS processor stopped before starting
4961 	 *  the next command in order to allow us to perform
4962 	 *  some task recovery.
4963 	 */
4964 	case SIR_SCRIPT_STOPPED:
4965 		/*
4966 		 *  Do we have any target to reset or unit to clear ?
4967 		 */
4968 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4969 			tp = &np->target[i];
4970 			if (tp->to_reset ||
4971 			    (tp->lun0p && tp->lun0p->to_clear)) {
4972 				target = i;
4973 				break;
4974 			}
4975 			if (!tp->lunmp)
4976 				continue;
4977 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4978 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4979 					target	= i;
4980 					break;
4981 				}
4982 			}
4983 			if (target != -1)
4984 				break;
4985 		}
4986 
4987 		/*
4988 		 *  If not, walk the busy queue for any
4989 		 *  disconnected CCB to be aborted.
4990 		 */
4991 		if (target == -1) {
4992 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4993 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4994 				if (cp->host_status != HS_DISCONNECT)
4995 					continue;
4996 				if (cp->to_abort) {
4997 					target = cp->target;
4998 					break;
4999 				}
5000 			}
5001 		}
5002 
5003 		/*
5004 		 *  If some target is to be selected,
5005 		 *  prepare and start the selection.
5006 		 */
5007 		if (target != -1) {
5008 			tp = &np->target[target];
5009 			np->abrt_sel.sel_id	= target;
5010 			np->abrt_sel.sel_scntl3 = tp->head.wval;
5011 			np->abrt_sel.sel_sxfer  = tp->head.sval;
5012 			OUTL(nc_dsa, np->hcb_ba);
5013 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
5014 			return;
5015 		}
5016 
5017 		/*
5018 		 *  Now look for a CCB to abort that haven't started yet.
5019 		 *  Btw, the SCRIPTS processor is still stopped, so
5020 		 *  we are not in race.
5021 		 */
5022 		i = 0;
5023 		cp = NULL;
5024 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5025 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5026 			if (cp->host_status != HS_BUSY &&
5027 			    cp->host_status != HS_NEGOTIATE)
5028 				continue;
5029 			if (!cp->to_abort)
5030 				continue;
5031 #ifdef SYM_CONF_IARB_SUPPORT
5032 			/*
5033 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
5034 			 *    want to cancel the last queued CCB, since the
5035 			 *    SCRIPTS may have anticipated the selection.
5036 			 */
5037 			if (cp == np->last_cp) {
5038 				cp->to_abort = 0;
5039 				continue;
5040 			}
5041 #endif
5042 			i = 1;	/* Means we have found some */
5043 			break;
5044 		}
5045 		if (!i) {
5046 			/*
5047 			 *  We are done, so we donnot need
5048 			 *  to synchronize with the SCRIPTS anylonger.
5049 			 *  Remove the SEM flag from the ISTAT.
5050 			 */
5051 			np->istat_sem = 0;
5052 			OUTB (nc_istat, SIGP);
5053 			break;
5054 		}
5055 		/*
5056 		 *  Compute index of next position in the start
5057 		 *  queue the SCRIPTS intends to start and dequeue
5058 		 *  all CCBs for that device that haven't been started.
5059 		 */
5060 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5061 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5062 
5063 		/*
5064 		 *  Make sure at least our IO to abort has been dequeued.
5065 		 */
5066 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5067 
5068 		/*
5069 		 *  Keep track in cam status of the reason of the abort.
5070 		 */
5071 		if (cp->to_abort == 2)
5072 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5073 		else
5074 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5075 
5076 		/*
5077 		 *  Complete with error everything that we have dequeued.
5078 	 	 */
5079 		sym_flush_comp_queue(np, 0);
5080 		break;
5081 	/*
5082 	 *  The SCRIPTS processor has selected a target
5083 	 *  we may have some manual recovery to perform for.
5084 	 */
5085 	case SIR_TARGET_SELECTED:
5086 		target = (INB (nc_sdid) & 0xf);
5087 		tp = &np->target[target];
5088 
5089 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5090 
5091 		/*
5092 		 *  If the target is to be reset, prepare a
5093 		 *  M_RESET message and clear the to_reset flag
5094 		 *  since we donnot expect this operation to fail.
5095 		 */
5096 		if (tp->to_reset) {
5097 			np->abrt_msg[0] = M_RESET;
5098 			np->abrt_tbl.size = 1;
5099 			tp->to_reset = 0;
5100 			break;
5101 		}
5102 
5103 		/*
5104 		 *  Otherwise, look for some logical unit to be cleared.
5105 		 */
5106 		if (tp->lun0p && tp->lun0p->to_clear)
5107 			lun = 0;
5108 		else if (tp->lunmp) {
5109 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5110 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5111 					lun = k;
5112 					break;
5113 				}
5114 			}
5115 		}
5116 
5117 		/*
5118 		 *  If a logical unit is to be cleared, prepare
5119 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5120 		 */
5121 		if (lun != -1) {
5122 			lcb_p lp = sym_lp(np, tp, lun);
5123 			lp->to_clear = 0; /* We donnot expect to fail here */
5124 			np->abrt_msg[0] = M_IDENTIFY | lun;
5125 			np->abrt_msg[1] = M_ABORT;
5126 			np->abrt_tbl.size = 2;
5127 			break;
5128 		}
5129 
5130 		/*
5131 		 *  Otherwise, look for some disconnected job to
5132 		 *  abort for this target.
5133 		 */
5134 		i = 0;
5135 		cp = NULL;
5136 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5137 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5138 			if (cp->host_status != HS_DISCONNECT)
5139 				continue;
5140 			if (cp->target != target)
5141 				continue;
5142 			if (!cp->to_abort)
5143 				continue;
5144 			i = 1;	/* Means we have some */
5145 			break;
5146 		}
5147 
5148 		/*
5149 		 *  If we have none, probably since the device has
5150 		 *  completed the command before we won abitration,
5151 		 *  send a M_ABORT message without IDENTIFY.
5152 		 *  According to the specs, the device must just
5153 		 *  disconnect the BUS and not abort any task.
5154 		 */
5155 		if (!i) {
5156 			np->abrt_msg[0] = M_ABORT;
5157 			np->abrt_tbl.size = 1;
5158 			break;
5159 		}
5160 
5161 		/*
5162 		 *  We have some task to abort.
5163 		 *  Set the IDENTIFY(lun)
5164 		 */
5165 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5166 
5167 		/*
5168 		 *  If we want to abort an untagged command, we
5169 		 *  will send an IDENTIFY + M_ABORT.
5170 		 *  Otherwise (tagged command), we will send
5171 		 *  an IDENTIFY + task attributes + ABORT TAG.
5172 		 */
5173 		if (cp->tag == NO_TAG) {
5174 			np->abrt_msg[1] = M_ABORT;
5175 			np->abrt_tbl.size = 2;
5176 		}
5177 		else {
5178 			np->abrt_msg[1] = cp->scsi_smsg[1];
5179 			np->abrt_msg[2] = cp->scsi_smsg[2];
5180 			np->abrt_msg[3] = M_ABORT_TAG;
5181 			np->abrt_tbl.size = 4;
5182 		}
5183 		/*
5184 		 *  Keep track of software timeout condition, since the
5185 		 *  peripheral driver may not count retries on abort
5186 		 *  conditions not due to timeout.
5187 		 */
5188 		if (cp->to_abort == 2)
5189 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5190 		cp->to_abort = 0; /* We donnot expect to fail here */
5191 		break;
5192 
5193 	/*
5194 	 *  The target has accepted our message and switched
5195 	 *  to BUS FREE phase as we expected.
5196 	 */
5197 	case SIR_ABORT_SENT:
5198 		target = (INB (nc_sdid) & 0xf);
5199 		tp = &np->target[target];
5200 
5201 		/*
5202 		**  If we didn't abort anything, leave here.
5203 		*/
5204 		if (np->abrt_msg[0] == M_ABORT)
5205 			break;
5206 
5207 		/*
5208 		 *  If we sent a M_RESET, then a hardware reset has
5209 		 *  been performed by the target.
5210 		 *  - Reset everything to async 8 bit
5211 		 *  - Tell ourself to negotiate next time :-)
5212 		 *  - Prepare to clear all disconnected CCBs for
5213 		 *    this target from our task list (lun=task=-1)
5214 		 */
5215 		lun = -1;
5216 		task = -1;
5217 		if (np->abrt_msg[0] == M_RESET) {
5218 			tp->head.sval = 0;
5219 			tp->head.wval = np->rv_scntl3;
5220 			tp->head.uval = 0;
5221 			tp->tinfo.current.period = 0;
5222 			tp->tinfo.current.offset = 0;
5223 			tp->tinfo.current.width  = BUS_8_BIT;
5224 			tp->tinfo.current.options = 0;
5225 		}
5226 
5227 		/*
5228 		 *  Otherwise, check for the LUN and TASK(s)
5229 		 *  concerned by the cancelation.
5230 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5231 		 *  or an ABORT message :-)
5232 		 */
5233 		else {
5234 			lun = np->abrt_msg[0] & 0x3f;
5235 			if (np->abrt_msg[1] == M_ABORT_TAG)
5236 				task = np->abrt_msg[2];
5237 		}
5238 
5239 		/*
5240 		 *  Complete all the CCBs the device should have
5241 		 *  aborted due to our 'kiss of death' message.
5242 		 */
5243 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5244 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5245 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5246 		sym_flush_comp_queue(np, 0);
5247 
5248 		/*
5249 		 *  If we sent a BDR, make uper layer aware of that.
5250 		 */
5251 		if (np->abrt_msg[0] == M_RESET)
5252 			xpt_async(AC_SENT_BDR, np->path, NULL);
5253 		break;
5254 	}
5255 
5256 	/*
5257 	 *  Print to the log the message we intend to send.
5258 	 */
5259 	if (num == SIR_TARGET_SELECTED) {
5260 		PRINT_TARGET(np, target);
5261 		sym_printl_hex("control msgout:", np->abrt_msg,
5262 			      np->abrt_tbl.size);
5263 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5264 	}
5265 
5266 	/*
5267 	 *  Let the SCRIPTS processor continue.
5268 	 */
5269 	OUTONB_STD ();
5270 }
5271 
5272 /*
5273  *  Gerard's alchemy:) that deals with with the data
5274  *  pointer for both MDP and the residual calculation.
5275  *
5276  *  I didn't want to bloat the code by more than 200
5277  *  lignes for the handling of both MDP and the residual.
5278  *  This has been achieved by using a data pointer
5279  *  representation consisting in an index in the data
5280  *  array (dp_sg) and a negative offset (dp_ofs) that
5281  *  have the following meaning:
5282  *
5283  *  - dp_sg = SYM_CONF_MAX_SG
5284  *    we are at the end of the data script.
5285  *  - dp_sg < SYM_CONF_MAX_SG
5286  *    dp_sg points to the next entry of the scatter array
5287  *    we want to transfer.
5288  *  - dp_ofs < 0
5289  *    dp_ofs represents the residual of bytes of the
5290  *    previous entry scatter entry we will send first.
5291  *  - dp_ofs = 0
5292  *    no residual to send first.
5293  *
5294  *  The function sym_evaluate_dp() accepts an arbitray
5295  *  offset (basically from the MDP message) and returns
5296  *  the corresponding values of dp_sg and dp_ofs.
5297  */
5298 
5299 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5300 {
5301 	u32	dp_scr;
5302 	int	dp_ofs, dp_sg, dp_sgmin;
5303 	int	tmp;
5304 	struct sym_pmc *pm;
5305 
5306 	/*
5307 	 *  Compute the resulted data pointer in term of a script
5308 	 *  address within some DATA script and a signed byte offset.
5309 	 */
5310 	dp_scr = scr;
5311 	dp_ofs = *ofs;
5312 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5313 		pm = &cp->phys.pm0;
5314 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5315 		pm = &cp->phys.pm1;
5316 	else
5317 		pm = NULL;
5318 
5319 	if (pm) {
5320 		dp_scr  = scr_to_cpu(pm->ret);
5321 		dp_ofs -= scr_to_cpu(pm->sg.size);
5322 	}
5323 
5324 	/*
5325 	 *  If we are auto-sensing, then we are done.
5326 	 */
5327 	if (cp->host_flags & HF_SENSE) {
5328 		*ofs = dp_ofs;
5329 		return 0;
5330 	}
5331 
5332 	/*
5333 	 *  Deduce the index of the sg entry.
5334 	 *  Keep track of the index of the first valid entry.
5335 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5336 	 *  end of the data.
5337 	 */
5338 	tmp = scr_to_cpu(cp->phys.head.goalp);
5339 	dp_sg = SYM_CONF_MAX_SG;
5340 	if (dp_scr != tmp)
5341 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5342 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5343 
5344 	/*
5345 	 *  Move to the sg entry the data pointer belongs to.
5346 	 *
5347 	 *  If we are inside the data area, we expect result to be:
5348 	 *
5349 	 *  Either,
5350 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5351 	 *      the data pointer belongs to (or the end of the data)
5352 	 *  Or,
5353 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5354 	 *      the data pointer belongs to + 1.
5355 	 */
5356 	if (dp_ofs < 0) {
5357 		int n;
5358 		while (dp_sg > dp_sgmin) {
5359 			--dp_sg;
5360 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5361 			n = dp_ofs + (tmp & 0xffffff);
5362 			if (n > 0) {
5363 				++dp_sg;
5364 				break;
5365 			}
5366 			dp_ofs = n;
5367 		}
5368 	}
5369 	else if (dp_ofs > 0) {
5370 		while (dp_sg < SYM_CONF_MAX_SG) {
5371 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5372 			dp_ofs -= (tmp & 0xffffff);
5373 			++dp_sg;
5374 			if (dp_ofs <= 0)
5375 				break;
5376 		}
5377 	}
5378 
5379 	/*
5380 	 *  Make sure the data pointer is inside the data area.
5381 	 *  If not, return some error.
5382 	 */
5383 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5384 		goto out_err;
5385 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5386 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5387 		goto out_err;
5388 
5389 	/*
5390 	 *  Save the extreme pointer if needed.
5391 	 */
5392 	if (dp_sg > cp->ext_sg ||
5393             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5394 		cp->ext_sg  = dp_sg;
5395 		cp->ext_ofs = dp_ofs;
5396 	}
5397 
5398 	/*
5399 	 *  Return data.
5400 	 */
5401 	*ofs = dp_ofs;
5402 	return dp_sg;
5403 
5404 out_err:
5405 	return -1;
5406 }
5407 
5408 /*
5409  *  chip handler for MODIFY DATA POINTER MESSAGE
5410  *
5411  *  We also call this function on IGNORE WIDE RESIDUE
5412  *  messages that do not match a SWIDE full condition.
5413  *  Btw, we assume in that situation that such a message
5414  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5415  */
5416 
5417 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
5418 {
5419 	int dp_ofs	= ofs;
5420 	u32	dp_scr	= INL (nc_temp);
5421 	u32	dp_ret;
5422 	u32	tmp;
5423 	u_char	hflags;
5424 	int	dp_sg;
5425 	struct	sym_pmc *pm;
5426 
5427 	/*
5428 	 *  Not supported for auto-sense.
5429 	 */
5430 	if (cp->host_flags & HF_SENSE)
5431 		goto out_reject;
5432 
5433 	/*
5434 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5435 	 *  to the resulted data pointer.
5436 	 */
5437 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5438 	if (dp_sg < 0)
5439 		goto out_reject;
5440 
5441 	/*
5442 	 *  And our alchemy:) allows to easily calculate the data
5443 	 *  script address we want to return for the next data phase.
5444 	 */
5445 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5446 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5447 
5448 	/*
5449 	 *  If offset / scatter entry is zero we donnot need
5450 	 *  a context for the new current data pointer.
5451 	 */
5452 	if (dp_ofs == 0) {
5453 		dp_scr = dp_ret;
5454 		goto out_ok;
5455 	}
5456 
5457 	/*
5458 	 *  Get a context for the new current data pointer.
5459 	 */
5460 	hflags = INB (HF_PRT);
5461 
5462 	if (hflags & HF_DP_SAVED)
5463 		hflags ^= HF_ACT_PM;
5464 
5465 	if (!(hflags & HF_ACT_PM)) {
5466 		pm  = &cp->phys.pm0;
5467 		dp_scr = SCRIPTA_BA (np, pm0_data);
5468 	}
5469 	else {
5470 		pm = &cp->phys.pm1;
5471 		dp_scr = SCRIPTA_BA (np, pm1_data);
5472 	}
5473 
5474 	hflags &= ~(HF_DP_SAVED);
5475 
5476 	OUTB (HF_PRT, hflags);
5477 
5478 	/*
5479 	 *  Set up the new current data pointer.
5480 	 *  ofs < 0 there, and for the next data phase, we
5481 	 *  want to transfer part of the data of the sg entry
5482 	 *  corresponding to index dp_sg-1 prior to returning
5483 	 *  to the main data script.
5484 	 */
5485 	pm->ret = cpu_to_scr(dp_ret);
5486 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5487 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5488 	pm->sg.addr = cpu_to_scr(tmp);
5489 	pm->sg.size = cpu_to_scr(-dp_ofs);
5490 
5491 out_ok:
5492 	OUTL (nc_temp, dp_scr);
5493 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5494 	return;
5495 
5496 out_reject:
5497 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5498 }
5499 
5500 
5501 /*
5502  *  chip calculation of the data residual.
5503  *
5504  *  As I used to say, the requirement of data residual
5505  *  in SCSI is broken, useless and cannot be achieved
5506  *  without huge complexity.
5507  *  But most OSes and even the official CAM require it.
5508  *  When stupidity happens to be so widely spread inside
5509  *  a community, it gets hard to convince.
5510  *
5511  *  Anyway, I don't care, since I am not going to use
5512  *  any software that considers this data residual as
5513  *  a relevant information. :)
5514  */
5515 
5516 static int sym_compute_residual(hcb_p np, ccb_p cp)
5517 {
5518 	int dp_sg, dp_sgmin, resid = 0;
5519 	int dp_ofs = 0;
5520 
5521 	/*
5522 	 *  Check for some data lost or just thrown away.
5523 	 *  We are not required to be quite accurate in this
5524 	 *  situation. Btw, if we are odd for output and the
5525 	 *  device claims some more data, it may well happen
5526 	 *  than our residual be zero. :-)
5527 	 */
5528 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5529 		if (cp->xerr_status & XE_EXTRA_DATA)
5530 			resid -= cp->extra_bytes;
5531 		if (cp->xerr_status & XE_SODL_UNRUN)
5532 			++resid;
5533 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5534 			--resid;
5535 	}
5536 
5537 	/*
5538 	 *  If all data has been transferred,
5539 	 *  there is no residual.
5540 	 */
5541 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5542 		return resid;
5543 
5544 	/*
5545 	 *  If no data transfer occurs, or if the data
5546 	 *  pointer is weird, return full residual.
5547 	 */
5548 	if (cp->startp == cp->phys.head.lastp ||
5549 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5550 			    &dp_ofs) < 0) {
5551 		return cp->data_len;
5552 	}
5553 
5554 	/*
5555 	 *  If we were auto-sensing, then we are done.
5556 	 */
5557 	if (cp->host_flags & HF_SENSE) {
5558 		return -dp_ofs;
5559 	}
5560 
5561 	/*
5562 	 *  We are now full comfortable in the computation
5563 	 *  of the data residual (2's complement).
5564 	 */
5565 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5566 	resid = -cp->ext_ofs;
5567 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5568 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5569 		resid += (tmp & 0xffffff);
5570 	}
5571 
5572 	/*
5573 	 *  Hopefully, the result is not too wrong.
5574 	 */
5575 	return resid;
5576 }
5577 
5578 /*
5579  *  Print out the content of a SCSI message.
5580  */
5581 
5582 static int sym_show_msg (u_char * msg)
5583 {
5584 	u_char i;
5585 	printf ("%x",*msg);
5586 	if (*msg==M_EXTENDED) {
5587 		for (i=1;i<8;i++) {
5588 			if (i-1>msg[1]) break;
5589 			printf ("-%x",msg[i]);
5590 		};
5591 		return (i+1);
5592 	} else if ((*msg & 0xf0) == 0x20) {
5593 		printf ("-%x",msg[1]);
5594 		return (2);
5595 	};
5596 	return (1);
5597 }
5598 
5599 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5600 {
5601 	PRINT_ADDR(cp);
5602 	if (label)
5603 		printf ("%s: ", label);
5604 
5605 	(void) sym_show_msg (msg);
5606 	printf (".\n");
5607 }
5608 
5609 /*
5610  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5611  *
5612  *  When we try to negotiate, we append the negotiation message
5613  *  to the identify and (maybe) simple tag message.
5614  *  The host status field is set to HS_NEGOTIATE to mark this
5615  *  situation.
5616  *
5617  *  If the target doesn't answer this message immediately
5618  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5619  *  will be raised eventually.
5620  *  The handler removes the HS_NEGOTIATE status, and sets the
5621  *  negotiated value to the default (async / nowide).
5622  *
5623  *  If we receive a matching answer immediately, we check it
5624  *  for validity, and set the values.
5625  *
5626  *  If we receive a Reject message immediately, we assume the
5627  *  negotiation has failed, and fall back to standard values.
5628  *
5629  *  If we receive a negotiation message while not in HS_NEGOTIATE
5630  *  state, it's a target initiated negotiation. We prepare a
5631  *  (hopefully) valid answer, set our parameters, and send back
5632  *  this answer to the target.
5633  *
5634  *  If the target doesn't fetch the answer (no message out phase),
5635  *  we assume the negotiation has failed, and fall back to default
5636  *  settings (SIR_NEGO_PROTO interrupt).
5637  *
5638  *  When we set the values, we adjust them in all ccbs belonging
5639  *  to this target, in the controller's register, and in the "phys"
5640  *  field of the controller's struct sym_hcb.
5641  */
5642 
5643 /*
5644  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5645  */
5646 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5647 {
5648 	u_char	chg, ofs, per, fak, div;
5649 	int	req = 1;
5650 
5651 	/*
5652 	 *  Synchronous request message received.
5653 	 */
5654 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5655 		sym_print_msg(cp, "sync msgin", np->msgin);
5656 	};
5657 
5658 	/*
5659 	 * request or answer ?
5660 	 */
5661 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5662 		OUTB (HS_PRT, HS_BUSY);
5663 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5664 			goto reject_it;
5665 		req = 0;
5666 	}
5667 
5668 	/*
5669 	 *  get requested values.
5670 	 */
5671 	chg = 0;
5672 	per = np->msgin[3];
5673 	ofs = np->msgin[4];
5674 
5675 	/*
5676 	 *  check values against our limits.
5677 	 */
5678 	if (ofs) {
5679 		if (ofs > np->maxoffs)
5680 			{chg = 1; ofs = np->maxoffs;}
5681 		if (req) {
5682 			if (ofs > tp->tinfo.user.offset)
5683 				{chg = 1; ofs = tp->tinfo.user.offset;}
5684 		}
5685 	}
5686 
5687 	if (ofs) {
5688 		if (per < np->minsync)
5689 			{chg = 1; per = np->minsync;}
5690 		if (req) {
5691 			if (per < tp->tinfo.user.period)
5692 				{chg = 1; per = tp->tinfo.user.period;}
5693 		}
5694 	}
5695 
5696 	div = fak = 0;
5697 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5698 		goto reject_it;
5699 
5700 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5701 		PRINT_ADDR(cp);
5702 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5703 			ofs, per, div, fak, chg);
5704 	}
5705 
5706 	/*
5707 	 *  This was an answer message
5708 	 */
5709 	if (req == 0) {
5710 		if (chg) 	/* Answer wasn't acceptable. */
5711 			goto reject_it;
5712 		sym_setsync (np, cp, ofs, per, div, fak);
5713 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5714 		return;
5715 	}
5716 
5717 	/*
5718 	 *  It was a request. Set value and
5719 	 *  prepare an answer message
5720 	 */
5721 	sym_setsync (np, cp, ofs, per, div, fak);
5722 
5723 	np->msgout[0] = M_EXTENDED;
5724 	np->msgout[1] = 3;
5725 	np->msgout[2] = M_X_SYNC_REQ;
5726 	np->msgout[3] = per;
5727 	np->msgout[4] = ofs;
5728 
5729 	cp->nego_status = NS_SYNC;
5730 
5731 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5732 		sym_print_msg(cp, "sync msgout", np->msgout);
5733 	}
5734 
5735 	np->msgin [0] = M_NOOP;
5736 
5737 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5738 	return;
5739 reject_it:
5740 	sym_setsync (np, cp, 0, 0, 0, 0);
5741 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5742 }
5743 
5744 /*
5745  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5746  */
5747 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5748 {
5749 	u_char	chg, ofs, per, fak, dt, div, wide;
5750 	int	req = 1;
5751 
5752 	/*
5753 	 * Synchronous request message received.
5754 	 */
5755 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5756 		sym_print_msg(cp, "ppr msgin", np->msgin);
5757 	};
5758 
5759 	/*
5760 	 *  get requested values.
5761 	 */
5762 	chg  = 0;
5763 	per  = np->msgin[3];
5764 	ofs  = np->msgin[5];
5765 	wide = np->msgin[6];
5766 	dt   = np->msgin[7] & PPR_OPT_DT;
5767 
5768 	/*
5769 	 * request or answer ?
5770 	 */
5771 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5772 		OUTB (HS_PRT, HS_BUSY);
5773 		if (cp->nego_status && cp->nego_status != NS_PPR)
5774 			goto reject_it;
5775 		req = 0;
5776 	}
5777 
5778 	/*
5779 	 *  check values against our limits.
5780 	 */
5781 	if (wide > np->maxwide)
5782 		{chg = 1; wide = np->maxwide;}
5783 	if (!wide || !(np->features & FE_ULTRA3))
5784 		dt &= ~PPR_OPT_DT;
5785 	if (req) {
5786 		if (wide > tp->tinfo.user.width)
5787 			{chg = 1; wide = tp->tinfo.user.width;}
5788 	}
5789 
5790 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5791 		dt &= ~PPR_OPT_DT;
5792 
5793 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5794 
5795 	if (ofs) {
5796 		if (dt) {
5797 			if (ofs > np->maxoffs_dt)
5798 				{chg = 1; ofs = np->maxoffs_dt;}
5799 		}
5800 		else if (ofs > np->maxoffs)
5801 			{chg = 1; ofs = np->maxoffs;}
5802 		if (req) {
5803 			if (ofs > tp->tinfo.user.offset)
5804 				{chg = 1; ofs = tp->tinfo.user.offset;}
5805 		}
5806 	}
5807 
5808 	if (ofs) {
5809 		if (dt) {
5810 			if (per < np->minsync_dt)
5811 				{chg = 1; per = np->minsync_dt;}
5812 		}
5813 		else if (per < np->minsync)
5814 			{chg = 1; per = np->minsync;}
5815 		if (req) {
5816 			if (per < tp->tinfo.user.period)
5817 				{chg = 1; per = tp->tinfo.user.period;}
5818 		}
5819 	}
5820 
5821 	div = fak = 0;
5822 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5823 		goto reject_it;
5824 
5825 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5826 		PRINT_ADDR(cp);
5827 		printf ("ppr: "
5828 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5829 			dt, ofs, per, wide, div, fak, chg);
5830 	}
5831 
5832 	/*
5833 	 *  It was an answer.
5834 	 */
5835 	if (req == 0) {
5836 		if (chg) 	/* Answer wasn't acceptable */
5837 			goto reject_it;
5838 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5839 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5840 		return;
5841 	}
5842 
5843 	/*
5844 	 *  It was a request. Set value and
5845 	 *  prepare an answer message
5846 	 */
5847 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5848 
5849 	np->msgout[0] = M_EXTENDED;
5850 	np->msgout[1] = 6;
5851 	np->msgout[2] = M_X_PPR_REQ;
5852 	np->msgout[3] = per;
5853 	np->msgout[4] = 0;
5854 	np->msgout[5] = ofs;
5855 	np->msgout[6] = wide;
5856 	np->msgout[7] = dt;
5857 
5858 	cp->nego_status = NS_PPR;
5859 
5860 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5861 		sym_print_msg(cp, "ppr msgout", np->msgout);
5862 	}
5863 
5864 	np->msgin [0] = M_NOOP;
5865 
5866 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5867 	return;
5868 reject_it:
5869 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5870 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5871 	/*
5872 	 *  If it was a device response that should result in
5873 	 *  ST, we may want to try a legacy negotiation later.
5874 	 */
5875 	if (!req && !dt) {
5876 		tp->tinfo.goal.options = 0;
5877 		tp->tinfo.goal.width   = wide;
5878 		tp->tinfo.goal.period  = per;
5879 		tp->tinfo.goal.offset  = ofs;
5880 	}
5881 }
5882 
5883 /*
5884  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5885  */
5886 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5887 {
5888 	u_char	chg, wide;
5889 	int	req = 1;
5890 
5891 	/*
5892 	 *  Wide request message received.
5893 	 */
5894 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5895 		sym_print_msg(cp, "wide msgin", np->msgin);
5896 	};
5897 
5898 	/*
5899 	 * Is it a request from the device?
5900 	 */
5901 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5902 		OUTB (HS_PRT, HS_BUSY);
5903 		if (cp->nego_status && cp->nego_status != NS_WIDE)
5904 			goto reject_it;
5905 		req = 0;
5906 	}
5907 
5908 	/*
5909 	 *  get requested values.
5910 	 */
5911 	chg  = 0;
5912 	wide = np->msgin[3];
5913 
5914 	/*
5915 	 *  check values against driver limits.
5916 	 */
5917 	if (wide > np->maxwide)
5918 		{chg = 1; wide = np->maxwide;}
5919 	if (req) {
5920 		if (wide > tp->tinfo.user.width)
5921 			{chg = 1; wide = tp->tinfo.user.width;}
5922 	}
5923 
5924 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5925 		PRINT_ADDR(cp);
5926 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5927 	}
5928 
5929 	/*
5930 	 * This was an answer message
5931 	 */
5932 	if (req == 0) {
5933 		if (chg)	/*  Answer wasn't acceptable. */
5934 			goto reject_it;
5935 		sym_setwide (np, cp, wide);
5936 
5937 		/*
5938 		 * Negotiate for SYNC immediately after WIDE response.
5939 		 * This allows to negotiate for both WIDE and SYNC on
5940 		 * a single SCSI command (Suggested by Justin Gibbs).
5941 		 */
5942 		if (tp->tinfo.goal.offset) {
5943 			np->msgout[0] = M_EXTENDED;
5944 			np->msgout[1] = 3;
5945 			np->msgout[2] = M_X_SYNC_REQ;
5946 			np->msgout[3] = tp->tinfo.goal.period;
5947 			np->msgout[4] = tp->tinfo.goal.offset;
5948 
5949 			if (DEBUG_FLAGS & DEBUG_NEGO) {
5950 				sym_print_msg(cp, "sync msgout", np->msgout);
5951 			}
5952 
5953 			cp->nego_status = NS_SYNC;
5954 			OUTB (HS_PRT, HS_NEGOTIATE);
5955 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5956 			return;
5957 		}
5958 
5959 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5960 		return;
5961 	};
5962 
5963 	/*
5964 	 *  It was a request, set value and
5965 	 *  prepare an answer message
5966 	 */
5967 	sym_setwide (np, cp, wide);
5968 
5969 	np->msgout[0] = M_EXTENDED;
5970 	np->msgout[1] = 2;
5971 	np->msgout[2] = M_X_WIDE_REQ;
5972 	np->msgout[3] = wide;
5973 
5974 	np->msgin [0] = M_NOOP;
5975 
5976 	cp->nego_status = NS_WIDE;
5977 
5978 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5979 		sym_print_msg(cp, "wide msgout", np->msgout);
5980 	}
5981 
5982 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5983 	return;
5984 reject_it:
5985 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5986 }
5987 
5988 /*
5989  *  Reset SYNC or WIDE to default settings.
5990  *
5991  *  Called when a negotiation does not succeed either
5992  *  on rejection or on protocol error.
5993  *
5994  *  If it was a PPR that made problems, we may want to
5995  *  try a legacy negotiation later.
5996  */
5997 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5998 {
5999 	/*
6000 	 *  any error in negotiation:
6001 	 *  fall back to default mode.
6002 	 */
6003 	switch (cp->nego_status) {
6004 	case NS_PPR:
6005 #if 0
6006 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
6007 #else
6008 		tp->tinfo.goal.options = 0;
6009 		if (tp->tinfo.goal.period < np->minsync)
6010 			tp->tinfo.goal.period = np->minsync;
6011 		if (tp->tinfo.goal.offset > np->maxoffs)
6012 			tp->tinfo.goal.offset = np->maxoffs;
6013 #endif
6014 		break;
6015 	case NS_SYNC:
6016 		sym_setsync (np, cp, 0, 0, 0, 0);
6017 		break;
6018 	case NS_WIDE:
6019 		sym_setwide (np, cp, 0);
6020 		break;
6021 	};
6022 	np->msgin [0] = M_NOOP;
6023 	np->msgout[0] = M_NOOP;
6024 	cp->nego_status = 0;
6025 }
6026 
6027 /*
6028  *  chip handler for MESSAGE REJECT received in response to
6029  *  a WIDE or SYNCHRONOUS negotiation.
6030  */
6031 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
6032 {
6033 	sym_nego_default(np, tp, cp);
6034 	OUTB (HS_PRT, HS_BUSY);
6035 }
6036 
6037 /*
6038  *  chip exception handler for programmed interrupts.
6039  */
6040 static void sym_int_sir (hcb_p np)
6041 {
6042 	u_char	num	= INB (nc_dsps);
6043 	u32	dsa	= INL (nc_dsa);
6044 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
6045 	u_char	target	= INB (nc_sdid) & 0x0f;
6046 	tcb_p	tp	= &np->target[target];
6047 	int	tmp;
6048 
6049 	SYM_LOCK_ASSERT(MA_OWNED);
6050 
6051 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
6052 
6053 	switch (num) {
6054 	/*
6055 	 *  Command has been completed with error condition
6056 	 *  or has been auto-sensed.
6057 	 */
6058 	case SIR_COMPLETE_ERROR:
6059 		sym_complete_error(np, cp);
6060 		return;
6061 	/*
6062 	 *  The C code is currently trying to recover from something.
6063 	 *  Typically, user want to abort some command.
6064 	 */
6065 	case SIR_SCRIPT_STOPPED:
6066 	case SIR_TARGET_SELECTED:
6067 	case SIR_ABORT_SENT:
6068 		sym_sir_task_recovery(np, num);
6069 		return;
6070 	/*
6071 	 *  The device didn't go to MSG OUT phase after having
6072 	 *  been selected with ATN. We donnot want to handle
6073 	 *  that.
6074 	 */
6075 	case SIR_SEL_ATN_NO_MSG_OUT:
6076 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6077 			sym_name (np), target);
6078 		goto out_stuck;
6079 	/*
6080 	 *  The device didn't switch to MSG IN phase after
6081 	 *  having reseleted the initiator.
6082 	 */
6083 	case SIR_RESEL_NO_MSG_IN:
6084 		printf ("%s:%d: No MSG IN phase after reselection.\n",
6085 			sym_name (np), target);
6086 		goto out_stuck;
6087 	/*
6088 	 *  After reselection, the device sent a message that wasn't
6089 	 *  an IDENTIFY.
6090 	 */
6091 	case SIR_RESEL_NO_IDENTIFY:
6092 		printf ("%s:%d: No IDENTIFY after reselection.\n",
6093 			sym_name (np), target);
6094 		goto out_stuck;
6095 	/*
6096 	 *  The device reselected a LUN we donnot know about.
6097 	 */
6098 	case SIR_RESEL_BAD_LUN:
6099 		np->msgout[0] = M_RESET;
6100 		goto out;
6101 	/*
6102 	 *  The device reselected for an untagged nexus and we
6103 	 *  haven't any.
6104 	 */
6105 	case SIR_RESEL_BAD_I_T_L:
6106 		np->msgout[0] = M_ABORT;
6107 		goto out;
6108 	/*
6109 	 *  The device reselected for a tagged nexus that we donnot
6110 	 *  have.
6111 	 */
6112 	case SIR_RESEL_BAD_I_T_L_Q:
6113 		np->msgout[0] = M_ABORT_TAG;
6114 		goto out;
6115 	/*
6116 	 *  The SCRIPTS let us know that the device has grabbed
6117 	 *  our message and will abort the job.
6118 	 */
6119 	case SIR_RESEL_ABORTED:
6120 		np->lastmsg = np->msgout[0];
6121 		np->msgout[0] = M_NOOP;
6122 		printf ("%s:%d: message %x sent on bad reselection.\n",
6123 			sym_name (np), target, np->lastmsg);
6124 		goto out;
6125 	/*
6126 	 *  The SCRIPTS let us know that a message has been
6127 	 *  successfully sent to the device.
6128 	 */
6129 	case SIR_MSG_OUT_DONE:
6130 		np->lastmsg = np->msgout[0];
6131 		np->msgout[0] = M_NOOP;
6132 		/* Should we really care of that */
6133 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6134 			if (cp) {
6135 				cp->xerr_status &= ~XE_PARITY_ERR;
6136 				if (!cp->xerr_status)
6137 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6138 			}
6139 		}
6140 		goto out;
6141 	/*
6142 	 *  The device didn't send a GOOD SCSI status.
6143 	 *  We may have some work to do prior to allow
6144 	 *  the SCRIPTS processor to continue.
6145 	 */
6146 	case SIR_BAD_SCSI_STATUS:
6147 		if (!cp)
6148 			goto out;
6149 		sym_sir_bad_scsi_status(np, num, cp);
6150 		return;
6151 	/*
6152 	 *  We are asked by the SCRIPTS to prepare a
6153 	 *  REJECT message.
6154 	 */
6155 	case SIR_REJECT_TO_SEND:
6156 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6157 		np->msgout[0] = M_REJECT;
6158 		goto out;
6159 	/*
6160 	 *  We have been ODD at the end of a DATA IN
6161 	 *  transfer and the device didn't send a
6162 	 *  IGNORE WIDE RESIDUE message.
6163 	 *  It is a data overrun condition.
6164 	 */
6165 	case SIR_SWIDE_OVERRUN:
6166 		if (cp) {
6167 			OUTONB (HF_PRT, HF_EXT_ERR);
6168 			cp->xerr_status |= XE_SWIDE_OVRUN;
6169 		}
6170 		goto out;
6171 	/*
6172 	 *  We have been ODD at the end of a DATA OUT
6173 	 *  transfer.
6174 	 *  It is a data underrun condition.
6175 	 */
6176 	case SIR_SODL_UNDERRUN:
6177 		if (cp) {
6178 			OUTONB (HF_PRT, HF_EXT_ERR);
6179 			cp->xerr_status |= XE_SODL_UNRUN;
6180 		}
6181 		goto out;
6182 	/*
6183 	 *  The device wants us to tranfer more data than
6184 	 *  expected or in the wrong direction.
6185 	 *  The number of extra bytes is in scratcha.
6186 	 *  It is a data overrun condition.
6187 	 */
6188 	case SIR_DATA_OVERRUN:
6189 		if (cp) {
6190 			OUTONB (HF_PRT, HF_EXT_ERR);
6191 			cp->xerr_status |= XE_EXTRA_DATA;
6192 			cp->extra_bytes += INL (nc_scratcha);
6193 		}
6194 		goto out;
6195 	/*
6196 	 *  The device switched to an illegal phase (4/5).
6197 	 */
6198 	case SIR_BAD_PHASE:
6199 		if (cp) {
6200 			OUTONB (HF_PRT, HF_EXT_ERR);
6201 			cp->xerr_status |= XE_BAD_PHASE;
6202 		}
6203 		goto out;
6204 	/*
6205 	 *  We received a message.
6206 	 */
6207 	case SIR_MSG_RECEIVED:
6208 		if (!cp)
6209 			goto out_stuck;
6210 		switch (np->msgin [0]) {
6211 		/*
6212 		 *  We received an extended message.
6213 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6214 		 *  and reject all other extended messages.
6215 		 */
6216 		case M_EXTENDED:
6217 			switch (np->msgin [2]) {
6218 			case M_X_MODIFY_DP:
6219 				if (DEBUG_FLAGS & DEBUG_POINTER)
6220 					sym_print_msg(cp,"modify DP",np->msgin);
6221 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6222 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6223 				sym_modify_dp(np, tp, cp, tmp);
6224 				return;
6225 			case M_X_SYNC_REQ:
6226 				sym_sync_nego(np, tp, cp);
6227 				return;
6228 			case M_X_PPR_REQ:
6229 				sym_ppr_nego(np, tp, cp);
6230 				return;
6231 			case M_X_WIDE_REQ:
6232 				sym_wide_nego(np, tp, cp);
6233 				return;
6234 			default:
6235 				goto out_reject;
6236 			}
6237 			break;
6238 		/*
6239 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6240 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6241 		 *  RESIDUE messages that haven't been anticipated by
6242 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6243 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6244 		 */
6245 		case M_IGN_RESIDUE:
6246 			if (DEBUG_FLAGS & DEBUG_POINTER)
6247 				sym_print_msg(cp,"ign wide residue", np->msgin);
6248 			sym_modify_dp(np, tp, cp, -1);
6249 			return;
6250 		case M_REJECT:
6251 			if (INB (HS_PRT) == HS_NEGOTIATE)
6252 				sym_nego_rejected(np, tp, cp);
6253 			else {
6254 				PRINT_ADDR(cp);
6255 				printf ("M_REJECT received (%x:%x).\n",
6256 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6257 			}
6258 			goto out_clrack;
6259 			break;
6260 		default:
6261 			goto out_reject;
6262 		}
6263 		break;
6264 	/*
6265 	 *  We received an unknown message.
6266 	 *  Ignore all MSG IN phases and reject it.
6267 	 */
6268 	case SIR_MSG_WEIRD:
6269 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6270 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6271 		return;
6272 	/*
6273 	 *  Negotiation failed.
6274 	 *  Target does not send us the reply.
6275 	 *  Remove the HS_NEGOTIATE status.
6276 	 */
6277 	case SIR_NEGO_FAILED:
6278 		OUTB (HS_PRT, HS_BUSY);
6279 	/*
6280 	 *  Negotiation failed.
6281 	 *  Target does not want answer message.
6282 	 */
6283 	case SIR_NEGO_PROTO:
6284 		sym_nego_default(np, tp, cp);
6285 		goto out;
6286 	};
6287 
6288 out:
6289 	OUTONB_STD ();
6290 	return;
6291 out_reject:
6292 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6293 	return;
6294 out_clrack:
6295 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6296 	return;
6297 out_stuck:
6298 	return;
6299 }
6300 
6301 /*
6302  *  Acquire a control block
6303  */
6304 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6305 {
6306 	tcb_p tp = &np->target[tn];
6307 	lcb_p lp = sym_lp(np, tp, ln);
6308 	u_short tag = NO_TAG;
6309 	SYM_QUEHEAD *qp;
6310 	ccb_p cp = (ccb_p) NULL;
6311 
6312 	/*
6313 	 *  Look for a free CCB
6314 	 */
6315 	if (sym_que_empty(&np->free_ccbq))
6316 		goto out;
6317 	qp = sym_remque_head(&np->free_ccbq);
6318 	if (!qp)
6319 		goto out;
6320 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6321 
6322 	/*
6323 	 *  If the LCB is not yet available and the LUN
6324 	 *  has been probed ok, try to allocate the LCB.
6325 	 */
6326 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6327 		lp = sym_alloc_lcb(np, tn, ln);
6328 		if (!lp)
6329 			goto out_free;
6330 	}
6331 
6332 	/*
6333 	 *  If the LCB is not available here, then the
6334 	 *  logical unit is not yet discovered. For those
6335 	 *  ones only accept 1 SCSI IO per logical unit,
6336 	 *  since we cannot allow disconnections.
6337 	 */
6338 	if (!lp) {
6339 		if (!sym_is_bit(tp->busy0_map, ln))
6340 			sym_set_bit(tp->busy0_map, ln);
6341 		else
6342 			goto out_free;
6343 	} else {
6344 		/*
6345 		 *  If we have been asked for a tagged command.
6346 		 */
6347 		if (tag_order) {
6348 			/*
6349 			 *  Debugging purpose.
6350 			 */
6351 			assert(lp->busy_itl == 0);
6352 			/*
6353 			 *  Allocate resources for tags if not yet.
6354 			 */
6355 			if (!lp->cb_tags) {
6356 				sym_alloc_lcb_tags(np, tn, ln);
6357 				if (!lp->cb_tags)
6358 					goto out_free;
6359 			}
6360 			/*
6361 			 *  Get a tag for this SCSI IO and set up
6362 			 *  the CCB bus address for reselection,
6363 			 *  and count it for this LUN.
6364 			 *  Toggle reselect path to tagged.
6365 			 */
6366 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6367 				tag = lp->cb_tags[lp->ia_tag];
6368 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6369 					lp->ia_tag = 0;
6370 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6371 				++lp->busy_itlq;
6372 				lp->head.resel_sa =
6373 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6374 			}
6375 			else
6376 				goto out_free;
6377 		}
6378 		/*
6379 		 *  This command will not be tagged.
6380 		 *  If we already have either a tagged or untagged
6381 		 *  one, refuse to overlap this untagged one.
6382 		 */
6383 		else {
6384 			/*
6385 			 *  Debugging purpose.
6386 			 */
6387 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6388 			/*
6389 			 *  Count this nexus for this LUN.
6390 			 *  Set up the CCB bus address for reselection.
6391 			 *  Toggle reselect path to untagged.
6392 			 */
6393 			if (++lp->busy_itl == 1) {
6394 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6395 				lp->head.resel_sa =
6396 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6397 			}
6398 			else
6399 				goto out_free;
6400 		}
6401 	}
6402 	/*
6403 	 *  Put the CCB into the busy queue.
6404 	 */
6405 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6406 
6407 	/*
6408 	 *  Remember all informations needed to free this CCB.
6409 	 */
6410 	cp->to_abort = 0;
6411 	cp->tag	   = tag;
6412 	cp->target = tn;
6413 	cp->lun    = ln;
6414 
6415 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6416 		PRINT_LUN(np, tn, ln);
6417 		printf ("ccb @%p using tag %d.\n", cp, tag);
6418 	}
6419 
6420 out:
6421 	return cp;
6422 out_free:
6423 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6424 	return NULL;
6425 }
6426 
6427 /*
6428  *  Release one control block
6429  */
6430 static void sym_free_ccb (hcb_p np, ccb_p cp)
6431 {
6432 	tcb_p tp = &np->target[cp->target];
6433 	lcb_p lp = sym_lp(np, tp, cp->lun);
6434 
6435 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6436 		PRINT_LUN(np, cp->target, cp->lun);
6437 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6438 	}
6439 
6440 	/*
6441 	 *  If LCB available,
6442 	 */
6443 	if (lp) {
6444 		/*
6445 		 *  If tagged, release the tag, set the relect path
6446 		 */
6447 		if (cp->tag != NO_TAG) {
6448 			/*
6449 			 *  Free the tag value.
6450 			 */
6451 			lp->cb_tags[lp->if_tag] = cp->tag;
6452 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6453 				lp->if_tag = 0;
6454 			/*
6455 			 *  Make the reselect path invalid,
6456 			 *  and uncount this CCB.
6457 			 */
6458 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6459 			--lp->busy_itlq;
6460 		} else {	/* Untagged */
6461 			/*
6462 			 *  Make the reselect path invalid,
6463 			 *  and uncount this CCB.
6464 			 */
6465 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6466 			--lp->busy_itl;
6467 		}
6468 		/*
6469 		 *  If no JOB active, make the LUN reselect path invalid.
6470 		 */
6471 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6472 			lp->head.resel_sa =
6473 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6474 	}
6475 	/*
6476 	 *  Otherwise, we only accept 1 IO per LUN.
6477 	 *  Clear the bit that keeps track of this IO.
6478 	 */
6479 	else
6480 		sym_clr_bit(tp->busy0_map, cp->lun);
6481 
6482 	/*
6483 	 *  We donnot queue more than 1 ccb per target
6484 	 *  with negotiation at any time. If this ccb was
6485 	 *  used for negotiation, clear this info in the tcb.
6486 	 */
6487 	if (cp == tp->nego_cp)
6488 		tp->nego_cp = NULL;
6489 
6490 #ifdef SYM_CONF_IARB_SUPPORT
6491 	/*
6492 	 *  If we just complete the last queued CCB,
6493 	 *  clear this info that is no longer relevant.
6494 	 */
6495 	if (cp == np->last_cp)
6496 		np->last_cp = NULL;
6497 #endif
6498 
6499 	/*
6500 	 *  Unmap user data from DMA map if needed.
6501 	 */
6502 	if (cp->dmamapped) {
6503 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6504 		cp->dmamapped = 0;
6505 	}
6506 
6507 	/*
6508 	 *  Make this CCB available.
6509 	 */
6510 	cp->cam_ccb = NULL;
6511 	cp->host_status = HS_IDLE;
6512 	sym_remque(&cp->link_ccbq);
6513 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6514 }
6515 
6516 /*
6517  *  Allocate a CCB from memory and initialize its fixed part.
6518  */
6519 static ccb_p sym_alloc_ccb(hcb_p np)
6520 {
6521 	ccb_p cp = NULL;
6522 	int hcode;
6523 
6524 	SYM_LOCK_ASSERT(MA_NOTOWNED);
6525 
6526 	/*
6527 	 *  Prevent from allocating more CCBs than we can
6528 	 *  queue to the controller.
6529 	 */
6530 	if (np->actccbs >= SYM_CONF_MAX_START)
6531 		return NULL;
6532 
6533 	/*
6534 	 *  Allocate memory for this CCB.
6535 	 */
6536 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6537 	if (!cp)
6538 		return NULL;
6539 
6540 	/*
6541 	 *  Allocate a bounce buffer for sense data.
6542 	 */
6543 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6544 	if (!cp->sns_bbuf)
6545 		goto out_free;
6546 
6547 	/*
6548 	 *  Allocate a map for the DMA of user data.
6549 	 */
6550 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6551 		goto out_free;
6552 	/*
6553 	 *  Count it.
6554 	 */
6555 	np->actccbs++;
6556 
6557 	/*
6558 	 * Initialize the callout.
6559 	 */
6560 	callout_init(&cp->ch, 1);
6561 
6562 	/*
6563 	 *  Compute the bus address of this ccb.
6564 	 */
6565 	cp->ccb_ba = vtobus(cp);
6566 
6567 	/*
6568 	 *  Insert this ccb into the hashed list.
6569 	 */
6570 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6571 	cp->link_ccbh = np->ccbh[hcode];
6572 	np->ccbh[hcode] = cp;
6573 
6574 	/*
6575 	 *  Initialize the start and restart actions.
6576 	 */
6577 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6578 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6579 
6580  	/*
6581 	 *  Initilialyze some other fields.
6582 	 */
6583 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6584 
6585 	/*
6586 	 *  Chain into free ccb queue.
6587 	 */
6588 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6589 
6590 	return cp;
6591 out_free:
6592 	if (cp->sns_bbuf)
6593 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
6594 	sym_mfree_dma(cp, sizeof(*cp), "CCB");
6595 	return NULL;
6596 }
6597 
6598 /*
6599  *  Look up a CCB from a DSA value.
6600  */
6601 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6602 {
6603 	int hcode;
6604 	ccb_p cp;
6605 
6606 	hcode = CCB_HASH_CODE(dsa);
6607 	cp = np->ccbh[hcode];
6608 	while (cp) {
6609 		if (cp->ccb_ba == dsa)
6610 			break;
6611 		cp = cp->link_ccbh;
6612 	}
6613 
6614 	return cp;
6615 }
6616 
6617 /*
6618  *  Target control block initialisation.
6619  *  Nothing important to do at the moment.
6620  */
6621 static void sym_init_tcb (hcb_p np, u_char tn)
6622 {
6623 	/*
6624 	 *  Check some alignments required by the chip.
6625 	 */
6626 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
6627 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
6628 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
6629 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
6630 }
6631 
6632 /*
6633  *  Lun control block allocation and initialization.
6634  */
6635 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6636 {
6637 	tcb_p tp = &np->target[tn];
6638 	lcb_p lp = sym_lp(np, tp, ln);
6639 
6640 	/*
6641 	 *  Already done, just return.
6642 	 */
6643 	if (lp)
6644 		return lp;
6645 	/*
6646 	 *  Check against some race.
6647 	 */
6648 	assert(!sym_is_bit(tp->busy0_map, ln));
6649 
6650 	/*
6651 	 *  Initialize the target control block if not yet.
6652 	 */
6653 	sym_init_tcb (np, tn);
6654 
6655 	/*
6656 	 *  Allocate the LCB bus address array.
6657 	 *  Compute the bus address of this table.
6658 	 */
6659 	if (ln && !tp->luntbl) {
6660 		int i;
6661 
6662 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6663 		if (!tp->luntbl)
6664 			goto fail;
6665 		for (i = 0 ; i < 64 ; i++)
6666 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6667 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6668 	}
6669 
6670 	/*
6671 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6672 	 */
6673 	if (ln && !tp->lunmp) {
6674 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6675 				   "LUNMP");
6676 		if (!tp->lunmp)
6677 			goto fail;
6678 	}
6679 
6680 	/*
6681 	 *  Allocate the lcb.
6682 	 *  Make it available to the chip.
6683 	 */
6684 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6685 	if (!lp)
6686 		goto fail;
6687 	if (ln) {
6688 		tp->lunmp[ln] = lp;
6689 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6690 	}
6691 	else {
6692 		tp->lun0p = lp;
6693 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6694 	}
6695 
6696 	/*
6697 	 *  Let the itl task point to error handling.
6698 	 */
6699 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6700 
6701 	/*
6702 	 *  Set the reselect pattern to our default. :)
6703 	 */
6704 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6705 
6706 	/*
6707 	 *  Set user capabilities.
6708 	 */
6709 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6710 
6711 fail:
6712 	return lp;
6713 }
6714 
6715 /*
6716  *  Allocate LCB resources for tagged command queuing.
6717  */
6718 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6719 {
6720 	tcb_p tp = &np->target[tn];
6721 	lcb_p lp = sym_lp(np, tp, ln);
6722 	int i;
6723 
6724 	/*
6725 	 *  If LCB not available, try to allocate it.
6726 	 */
6727 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6728 		return;
6729 
6730 	/*
6731 	 *  Allocate the task table and and the tag allocation
6732 	 *  circular buffer. We want both or none.
6733 	 */
6734 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6735 	if (!lp->itlq_tbl)
6736 		return;
6737 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6738 	if (!lp->cb_tags) {
6739 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6740 		lp->itlq_tbl = 0;
6741 		return;
6742 	}
6743 
6744 	/*
6745 	 *  Initialize the task table with invalid entries.
6746 	 */
6747 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6748 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6749 
6750 	/*
6751 	 *  Fill up the tag buffer with tag numbers.
6752 	 */
6753 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6754 		lp->cb_tags[i] = i;
6755 
6756 	/*
6757 	 *  Make the task table available to SCRIPTS,
6758 	 *  And accept tagged commands now.
6759 	 */
6760 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6761 }
6762 
6763 /*
6764  *  Test the pci bus snoop logic :-(
6765  *
6766  *  Has to be called with interrupts disabled.
6767  */
6768 #ifndef SYM_CONF_IOMAPPED
6769 static int sym_regtest (hcb_p np)
6770 {
6771 	register volatile u32 data;
6772 	/*
6773 	 *  chip registers may NOT be cached.
6774 	 *  write 0xffffffff to a read only register area,
6775 	 *  and try to read it back.
6776 	 */
6777 	data = 0xffffffff;
6778 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6779 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6780 #if 1
6781 	if (data == 0xffffffff) {
6782 #else
6783 	if ((data & 0xe2f0fffd) != 0x02000080) {
6784 #endif
6785 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6786 			(unsigned) data);
6787 		return (0x10);
6788 	};
6789 	return (0);
6790 }
6791 #endif
6792 
6793 static int sym_snooptest (hcb_p np)
6794 {
6795 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6796 	int	i, err=0;
6797 #ifndef SYM_CONF_IOMAPPED
6798 	err |= sym_regtest (np);
6799 	if (err) return (err);
6800 #endif
6801 restart_test:
6802 	/*
6803 	 *  Enable Master Parity Checking as we intend
6804 	 *  to enable it for normal operations.
6805 	 */
6806 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6807 	/*
6808 	 *  init
6809 	 */
6810 	pc  = SCRIPTB0_BA (np, snooptest);
6811 	host_wr = 1;
6812 	sym_wr  = 2;
6813 	/*
6814 	 *  Set memory and register.
6815 	 */
6816 	np->cache = cpu_to_scr(host_wr);
6817 	OUTL (nc_temp, sym_wr);
6818 	/*
6819 	 *  Start script (exchange values)
6820 	 */
6821 	OUTL (nc_dsa, np->hcb_ba);
6822 	OUTL_DSP (pc);
6823 	/*
6824 	 *  Wait 'til done (with timeout)
6825 	 */
6826 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6827 		if (INB(nc_istat) & (INTF|SIP|DIP))
6828 			break;
6829 	if (i>=SYM_SNOOP_TIMEOUT) {
6830 		printf ("CACHE TEST FAILED: timeout.\n");
6831 		return (0x20);
6832 	};
6833 	/*
6834 	 *  Check for fatal DMA errors.
6835 	 */
6836 	dstat = INB (nc_dstat);
6837 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6838 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6839 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
6840 			"DISABLING MASTER DATA PARITY CHECKING.\n",
6841 			sym_name(np));
6842 		np->rv_ctest4 &= ~MPEE;
6843 		goto restart_test;
6844 	}
6845 #endif
6846 	if (dstat & (MDPE|BF|IID)) {
6847 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6848 		return (0x80);
6849 	}
6850 	/*
6851 	 *  Save termination position.
6852 	 */
6853 	pc = INL (nc_dsp);
6854 	/*
6855 	 *  Read memory and register.
6856 	 */
6857 	host_rd = scr_to_cpu(np->cache);
6858 	sym_rd  = INL (nc_scratcha);
6859 	sym_bk  = INL (nc_temp);
6860 
6861 	/*
6862 	 *  Check termination position.
6863 	 */
6864 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6865 		printf ("CACHE TEST FAILED: script execution failed.\n");
6866 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
6867 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6868 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
6869 		return (0x40);
6870 	};
6871 	/*
6872 	 *  Show results.
6873 	 */
6874 	if (host_wr != sym_rd) {
6875 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6876 			(int) host_wr, (int) sym_rd);
6877 		err |= 1;
6878 	};
6879 	if (host_rd != sym_wr) {
6880 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6881 			(int) sym_wr, (int) host_rd);
6882 		err |= 2;
6883 	};
6884 	if (sym_bk != sym_wr) {
6885 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6886 			(int) sym_wr, (int) sym_bk);
6887 		err |= 4;
6888 	};
6889 
6890 	return (err);
6891 }
6892 
6893 /*
6894  *  Determine the chip's clock frequency.
6895  *
6896  *  This is essential for the negotiation of the synchronous
6897  *  transfer rate.
6898  *
6899  *  Note: we have to return the correct value.
6900  *  THERE IS NO SAFE DEFAULT VALUE.
6901  *
6902  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6903  *  53C860 and 53C875 rev. 1 support fast20 transfers but
6904  *  do not have a clock doubler and so are provided with a
6905  *  80 MHz clock. All other fast20 boards incorporate a doubler
6906  *  and so should be delivered with a 40 MHz clock.
6907  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6908  *  clock and provide a clock quadrupler (160 Mhz).
6909  */
6910 
6911 /*
6912  *  Select SCSI clock frequency
6913  */
6914 static void sym_selectclock(hcb_p np, u_char scntl3)
6915 {
6916 	/*
6917 	 *  If multiplier not present or not selected, leave here.
6918 	 */
6919 	if (np->multiplier <= 1) {
6920 		OUTB(nc_scntl3,	scntl3);
6921 		return;
6922 	}
6923 
6924 	if (sym_verbose >= 2)
6925 		printf ("%s: enabling clock multiplier\n", sym_name(np));
6926 
6927 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6928 	/*
6929 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6930 	 *  Otherwise wait 20 micro-seconds.
6931 	 */
6932 	if (np->features & FE_LCKFRQ) {
6933 		int i = 20;
6934 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6935 			UDELAY (20);
6936 		if (!i)
6937 			printf("%s: the chip cannot lock the frequency\n",
6938 				sym_name(np));
6939 	} else
6940 		UDELAY (20);
6941 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6942 	OUTB(nc_scntl3,	scntl3);
6943 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6944 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6945 }
6946 
6947 /*
6948  *  calculate SCSI clock frequency (in KHz)
6949  */
6950 static unsigned getfreq (hcb_p np, int gen)
6951 {
6952 	unsigned int ms = 0;
6953 	unsigned int f;
6954 
6955 	/*
6956 	 * Measure GEN timer delay in order
6957 	 * to calculate SCSI clock frequency
6958 	 *
6959 	 * This code will never execute too
6960 	 * many loop iterations (if DELAY is
6961 	 * reasonably correct). It could get
6962 	 * too low a delay (too high a freq.)
6963 	 * if the CPU is slow executing the
6964 	 * loop for some reason (an NMI, for
6965 	 * example). For this reason we will
6966 	 * if multiple measurements are to be
6967 	 * performed trust the higher delay
6968 	 * (lower frequency returned).
6969 	 */
6970 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6971 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6972 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6973 	(void) INW (nc_sist);	/* another one, just to be sure :) */
6974 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6975 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6976 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6977 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6978 		UDELAY (1000);	/* count ms */
6979 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6980  	/*
6981  	 * set prescaler to divide by whatever 0 means
6982  	 * 0 ought to choose divide by 2, but appears
6983  	 * to set divide by 3.5 mode in my 53c810 ...
6984  	 */
6985  	OUTB (nc_scntl3, 0);
6986 
6987   	/*
6988  	 * adjust for prescaler, and convert into KHz
6989   	 */
6990 	f = ms ? ((1 << gen) * 4340) / ms : 0;
6991 
6992 	if (sym_verbose >= 2)
6993 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
6994 			sym_name(np), gen, ms, f);
6995 
6996 	return f;
6997 }
6998 
6999 static unsigned sym_getfreq (hcb_p np)
7000 {
7001 	u_int f1, f2;
7002 	int gen = 11;
7003 
7004 	(void) getfreq (np, gen);	/* throw away first result */
7005 	f1 = getfreq (np, gen);
7006 	f2 = getfreq (np, gen);
7007 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
7008 	return f1;
7009 }
7010 
7011 /*
7012  *  Get/probe chip SCSI clock frequency
7013  */
7014 static void sym_getclock (hcb_p np, int mult)
7015 {
7016 	unsigned char scntl3 = np->sv_scntl3;
7017 	unsigned char stest1 = np->sv_stest1;
7018 	unsigned f1;
7019 
7020 	/*
7021 	 *  For the C10 core, assume 40 MHz.
7022 	 */
7023 	if (np->features & FE_C10) {
7024 		np->multiplier = mult;
7025 		np->clock_khz = 40000 * mult;
7026 		return;
7027 	}
7028 
7029 	np->multiplier = 1;
7030 	f1 = 40000;
7031 	/*
7032 	 *  True with 875/895/896/895A with clock multiplier selected
7033 	 */
7034 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7035 		if (sym_verbose >= 2)
7036 			printf ("%s: clock multiplier found\n", sym_name(np));
7037 		np->multiplier = mult;
7038 	}
7039 
7040 	/*
7041 	 *  If multiplier not found or scntl3 not 7,5,3,
7042 	 *  reset chip and get frequency from general purpose timer.
7043 	 *  Otherwise trust scntl3 BIOS setting.
7044 	 */
7045 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7046 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
7047 		f1 = sym_getfreq (np);
7048 
7049 		if (sym_verbose)
7050 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
7051 
7052 		if	(f1 <	45000)		f1 =  40000;
7053 		else if (f1 <	55000)		f1 =  50000;
7054 		else				f1 =  80000;
7055 
7056 		if (f1 < 80000 && mult > 1) {
7057 			if (sym_verbose >= 2)
7058 				printf ("%s: clock multiplier assumed\n",
7059 					sym_name(np));
7060 			np->multiplier	= mult;
7061 		}
7062 	} else {
7063 		if	((scntl3 & 7) == 3)	f1 =  40000;
7064 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7065 		else 				f1 = 160000;
7066 
7067 		f1 /= np->multiplier;
7068 	}
7069 
7070 	/*
7071 	 *  Compute controller synchronous parameters.
7072 	 */
7073 	f1		*= np->multiplier;
7074 	np->clock_khz	= f1;
7075 }
7076 
7077 /*
7078  *  Get/probe PCI clock frequency
7079  */
7080 static int sym_getpciclock (hcb_p np)
7081 {
7082 	int f = 0;
7083 
7084 	/*
7085 	 *  For the C1010-33, this doesn't work.
7086 	 *  For the C1010-66, this will be tested when I'll have
7087 	 *  such a beast to play with.
7088 	 */
7089 	if (!(np->features & FE_C10)) {
7090 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7091 		f = (int) sym_getfreq (np);
7092 		OUTB (nc_stest1, 0);
7093 	}
7094 	np->pciclk_khz = f;
7095 
7096 	return f;
7097 }
7098 
7099 /*============= DRIVER ACTION/COMPLETION ====================*/
7100 
7101 /*
7102  *  Print something that tells about extended errors.
7103  */
7104 static void sym_print_xerr(ccb_p cp, int x_status)
7105 {
7106 	if (x_status & XE_PARITY_ERR) {
7107 		PRINT_ADDR(cp);
7108 		printf ("unrecovered SCSI parity error.\n");
7109 	}
7110 	if (x_status & XE_EXTRA_DATA) {
7111 		PRINT_ADDR(cp);
7112 		printf ("extraneous data discarded.\n");
7113 	}
7114 	if (x_status & XE_BAD_PHASE) {
7115 		PRINT_ADDR(cp);
7116 		printf ("illegal scsi phase (4/5).\n");
7117 	}
7118 	if (x_status & XE_SODL_UNRUN) {
7119 		PRINT_ADDR(cp);
7120 		printf ("ODD transfer in DATA OUT phase.\n");
7121 	}
7122 	if (x_status & XE_SWIDE_OVRUN) {
7123 		PRINT_ADDR(cp);
7124 		printf ("ODD transfer in DATA IN phase.\n");
7125 	}
7126 }
7127 
7128 /*
7129  *  Choose the more appropriate CAM status if
7130  *  the IO encountered an extended error.
7131  */
7132 static int sym_xerr_cam_status(int cam_status, int x_status)
7133 {
7134 	if (x_status) {
7135 		if	(x_status & XE_PARITY_ERR)
7136 			cam_status = CAM_UNCOR_PARITY;
7137 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7138 			cam_status = CAM_DATA_RUN_ERR;
7139 		else if	(x_status & XE_BAD_PHASE)
7140 			cam_status = CAM_REQ_CMP_ERR;
7141 		else
7142 			cam_status = CAM_REQ_CMP_ERR;
7143 	}
7144 	return cam_status;
7145 }
7146 
7147 /*
7148  *  Complete execution of a SCSI command with extented
7149  *  error, SCSI status error, or having been auto-sensed.
7150  *
7151  *  The SCRIPTS processor is not running there, so we
7152  *  can safely access IO registers and remove JOBs from
7153  *  the START queue.
7154  *  SCRATCHA is assumed to have been loaded with STARTPOS
7155  *  before the SCRIPTS called the C code.
7156  */
7157 static void sym_complete_error (hcb_p np, ccb_p cp)
7158 {
7159 	struct ccb_scsiio *csio;
7160 	u_int cam_status;
7161 	int i;
7162 
7163 	SYM_LOCK_ASSERT(MA_OWNED);
7164 
7165 	/*
7166 	 *  Paranoid check. :)
7167 	 */
7168 	if (!cp || !cp->cam_ccb)
7169 		return;
7170 
7171 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7172 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7173 			cp->host_status, cp->ssss_status, cp->host_flags,
7174 			cp->target, cp->lun);
7175 		MDELAY(100);
7176 	}
7177 
7178 	/*
7179 	 *  Get CAM command pointer.
7180 	 */
7181 	csio = &cp->cam_ccb->csio;
7182 
7183 	/*
7184 	 *  Check for extended errors.
7185 	 */
7186 	if (cp->xerr_status) {
7187 		if (sym_verbose)
7188 			sym_print_xerr(cp, cp->xerr_status);
7189 		if (cp->host_status == HS_COMPLETE)
7190 			cp->host_status = HS_COMP_ERR;
7191 	}
7192 
7193 	/*
7194 	 *  Calculate the residual.
7195 	 */
7196 	csio->sense_resid = 0;
7197 	csio->resid = sym_compute_residual(np, cp);
7198 
7199 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7200 		csio->resid  = 0;	/* throw them away. :)		   */
7201 		cp->sv_resid = 0;
7202 	}
7203 
7204 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7205 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7206 		csio->sense_resid = csio->resid;	/* Swap residuals */
7207 		csio->resid       = cp->sv_resid;
7208 		cp->sv_resid	  = 0;
7209 		if (sym_verbose && cp->sv_xerr_status)
7210 			sym_print_xerr(cp, cp->sv_xerr_status);
7211 		if (cp->host_status == HS_COMPLETE &&
7212 		    cp->ssss_status == S_GOOD &&
7213 		    cp->xerr_status == 0) {
7214 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7215 							 cp->sv_xerr_status);
7216 			cam_status |= CAM_AUTOSNS_VALID;
7217 			/*
7218 			 *  Bounce back the sense data to user and
7219 			 *  fix the residual.
7220 			 */
7221 			bzero(&csio->sense_data, csio->sense_len);
7222 			bcopy(cp->sns_bbuf, &csio->sense_data,
7223 			      MIN(csio->sense_len, SYM_SNS_BBUF_LEN));
7224 			csio->sense_resid += csio->sense_len;
7225 			csio->sense_resid -= SYM_SNS_BBUF_LEN;
7226 #if 0
7227 			/*
7228 			 *  If the device reports a UNIT ATTENTION condition
7229 			 *  due to a RESET condition, we should consider all
7230 			 *  disconnect CCBs for this unit as aborted.
7231 			 */
7232 			if (1) {
7233 				u_char *p;
7234 				p  = (u_char *) csio->sense_data;
7235 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7236 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7237 							cp->target,cp->lun, -1);
7238 			}
7239 #endif
7240 		}
7241 		else
7242 			cam_status = CAM_AUTOSENSE_FAIL;
7243 	}
7244 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7245 		csio->scsi_status = cp->ssss_status;
7246 		cam_status = CAM_SCSI_STATUS_ERROR;
7247 	}
7248 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7249 		cam_status = CAM_SEL_TIMEOUT;
7250 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7251 		cam_status = CAM_UNEXP_BUSFREE;
7252 	else {						/* Extended error */
7253 		if (sym_verbose) {
7254 			PRINT_ADDR(cp);
7255 			printf ("COMMAND FAILED (%x %x %x).\n",
7256 				cp->host_status, cp->ssss_status,
7257 				cp->xerr_status);
7258 		}
7259 		csio->scsi_status = cp->ssss_status;
7260 		/*
7261 		 *  Set the most appropriate value for CAM status.
7262 		 */
7263 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7264 						 cp->xerr_status);
7265 	}
7266 
7267 	/*
7268 	 *  Dequeue all queued CCBs for that device
7269 	 *  not yet started by SCRIPTS.
7270 	 */
7271 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7272 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7273 
7274 	/*
7275 	 *  Restart the SCRIPTS processor.
7276 	 */
7277 	OUTL_DSP (SCRIPTA_BA (np, start));
7278 
7279 	/*
7280 	 *  Synchronize DMA map if needed.
7281 	 */
7282 	if (cp->dmamapped) {
7283 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7284 			(cp->dmamapped == SYM_DMA_READ ?
7285 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7286 	}
7287 	/*
7288 	 *  Add this one to the COMP queue.
7289 	 *  Complete all those commands with either error
7290 	 *  or requeue condition.
7291 	 */
7292 	sym_set_cam_status((union ccb *) csio, cam_status);
7293 	sym_remque(&cp->link_ccbq);
7294 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7295 	sym_flush_comp_queue(np, 0);
7296 }
7297 
7298 /*
7299  *  Complete execution of a successful SCSI command.
7300  *
7301  *  Only successful commands go to the DONE queue,
7302  *  since we need to have the SCRIPTS processor
7303  *  stopped on any error condition.
7304  *  The SCRIPTS processor is running while we are
7305  *  completing successful commands.
7306  */
7307 static void sym_complete_ok (hcb_p np, ccb_p cp)
7308 {
7309 	struct ccb_scsiio *csio;
7310 	tcb_p tp;
7311 	lcb_p lp;
7312 
7313 	SYM_LOCK_ASSERT(MA_OWNED);
7314 
7315 	/*
7316 	 *  Paranoid check. :)
7317 	 */
7318 	if (!cp || !cp->cam_ccb)
7319 		return;
7320 	assert (cp->host_status == HS_COMPLETE);
7321 
7322 	/*
7323 	 *  Get command, target and lun pointers.
7324 	 */
7325 	csio = &cp->cam_ccb->csio;
7326 	tp = &np->target[cp->target];
7327 	lp = sym_lp(np, tp, cp->lun);
7328 
7329 	/*
7330 	 *  Assume device discovered on first success.
7331 	 */
7332 	if (!lp)
7333 		sym_set_bit(tp->lun_map, cp->lun);
7334 
7335 	/*
7336 	 *  If all data have been transferred, given than no
7337 	 *  extended error did occur, there is no residual.
7338 	 */
7339 	csio->resid = 0;
7340 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7341 		csio->resid = sym_compute_residual(np, cp);
7342 
7343 	/*
7344 	 *  Wrong transfer residuals may be worse than just always
7345 	 *  returning zero. User can disable this feature from
7346 	 *  sym_conf.h. Residual support is enabled by default.
7347 	 */
7348 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7349 		csio->resid  = 0;
7350 
7351 	/*
7352 	 *  Synchronize DMA map if needed.
7353 	 */
7354 	if (cp->dmamapped) {
7355 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7356 			(cp->dmamapped == SYM_DMA_READ ?
7357 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7358 	}
7359 	/*
7360 	 *  Set status and complete the command.
7361 	 */
7362 	csio->scsi_status = cp->ssss_status;
7363 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7364 	sym_xpt_done(np, (union ccb *) csio, cp);
7365 	sym_free_ccb(np, cp);
7366 }
7367 
7368 /*
7369  *  Our callout handler
7370  */
7371 static void sym_callout(void *arg)
7372 {
7373 	union ccb *ccb = (union ccb *) arg;
7374 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7375 
7376 	/*
7377 	 *  Check that the CAM CCB is still queued.
7378 	 */
7379 	if (!np)
7380 		return;
7381 
7382 	SYM_LOCK();
7383 
7384 	switch(ccb->ccb_h.func_code) {
7385 	case XPT_SCSI_IO:
7386 		(void) sym_abort_scsiio(np, ccb, 1);
7387 		break;
7388 	default:
7389 		break;
7390 	}
7391 
7392 	SYM_UNLOCK();
7393 }
7394 
7395 /*
7396  *  Abort an SCSI IO.
7397  */
7398 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7399 {
7400 	ccb_p cp;
7401 	SYM_QUEHEAD *qp;
7402 
7403 	SYM_LOCK_ASSERT(MA_OWNED);
7404 
7405 	/*
7406 	 *  Look up our CCB control block.
7407 	 */
7408 	cp = NULL;
7409 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7410 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7411 		if (cp2->cam_ccb == ccb) {
7412 			cp = cp2;
7413 			break;
7414 		}
7415 	}
7416 	if (!cp || cp->host_status == HS_WAIT)
7417 		return -1;
7418 
7419 	/*
7420 	 *  If a previous abort didn't succeed in time,
7421 	 *  perform a BUS reset.
7422 	 */
7423 	if (cp->to_abort) {
7424 		sym_reset_scsi_bus(np, 1);
7425 		return 0;
7426 	}
7427 
7428 	/*
7429 	 *  Mark the CCB for abort and allow time for.
7430 	 */
7431 	cp->to_abort = timed_out ? 2 : 1;
7432 	callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
7433 
7434 	/*
7435 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7436 	 */
7437 	np->istat_sem = SEM;
7438 	OUTB (nc_istat, SIGP|SEM);
7439 	return 0;
7440 }
7441 
7442 /*
7443  *  Reset a SCSI device (all LUNs of a target).
7444  */
7445 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7446 {
7447 	tcb_p tp;
7448 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7449 
7450 	SYM_LOCK_ASSERT(MA_OWNED);
7451 
7452 	if (ccb_h->target_id   == np->myaddr ||
7453 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7454 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7455 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7456 		return;
7457 	}
7458 
7459 	tp = &np->target[ccb_h->target_id];
7460 
7461 	tp->to_reset = 1;
7462 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7463 
7464 	np->istat_sem = SEM;
7465 	OUTB (nc_istat, SIGP|SEM);
7466 }
7467 
7468 /*
7469  *  SIM action entry point.
7470  */
7471 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7472 {
7473 	hcb_p	np;
7474 	tcb_p	tp;
7475 	lcb_p	lp;
7476 	ccb_p	cp;
7477 	int 	tmp;
7478 	u_char	idmsg, *msgptr;
7479 	u_int   msglen;
7480 	struct	ccb_scsiio *csio;
7481 	struct	ccb_hdr  *ccb_h;
7482 
7483 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7484 
7485 	/*
7486 	 *  Retrieve our controller data structure.
7487 	 */
7488 	np = (hcb_p) cam_sim_softc(sim);
7489 
7490 	SYM_LOCK_ASSERT(MA_OWNED);
7491 
7492 	/*
7493 	 *  The common case is SCSI IO.
7494 	 *  We deal with other ones elsewhere.
7495 	 */
7496 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7497 		sym_action2(sim, ccb);
7498 		return;
7499 	}
7500 	csio  = &ccb->csio;
7501 	ccb_h = &csio->ccb_h;
7502 
7503 	/*
7504 	 *  Work around races.
7505 	 */
7506 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7507 		xpt_done(ccb);
7508 		return;
7509 	}
7510 
7511 	/*
7512 	 *  Minimal checkings, so that we will not
7513 	 *  go outside our tables.
7514 	 */
7515 	if (ccb_h->target_id   == np->myaddr ||
7516 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7517 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7518 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7519 		return;
7520         }
7521 
7522 	/*
7523 	 *  Retreive the target and lun descriptors.
7524 	 */
7525 	tp = &np->target[ccb_h->target_id];
7526 	lp = sym_lp(np, tp, ccb_h->target_lun);
7527 
7528 	/*
7529 	 *  Complete the 1st INQUIRY command with error
7530 	 *  condition if the device is flagged NOSCAN
7531 	 *  at BOOT in the NVRAM. This may speed up
7532 	 *  the boot and maintain coherency with BIOS
7533 	 *  device numbering. Clearing the flag allows
7534 	 *  user to rescan skipped devices later.
7535 	 *  We also return error for devices not flagged
7536 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7537 	 *  devices behave badly when asked for some non
7538 	 *  zero LUN. Btw, this is an absolute hack.:-)
7539 	 */
7540 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7541 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7542 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7543 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7544 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7545 		     ccb_h->target_lun != 0)) {
7546 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7547 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7548 			return;
7549 		}
7550 	}
7551 
7552 	/*
7553 	 *  Get a control block for this IO.
7554 	 */
7555 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7556 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7557 	if (!cp) {
7558 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7559 		return;
7560 	}
7561 
7562 	/*
7563 	 *  Keep track of the IO in our CCB.
7564 	 */
7565 	cp->cam_ccb = ccb;
7566 
7567 	/*
7568 	 *  Build the IDENTIFY message.
7569 	 */
7570 	idmsg = M_IDENTIFY | cp->lun;
7571 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7572 		idmsg |= 0x40;
7573 
7574 	msgptr = cp->scsi_smsg;
7575 	msglen = 0;
7576 	msgptr[msglen++] = idmsg;
7577 
7578 	/*
7579 	 *  Build the tag message if present.
7580 	 */
7581 	if (cp->tag != NO_TAG) {
7582 		u_char order = csio->tag_action;
7583 
7584 		switch(order) {
7585 		case M_ORDERED_TAG:
7586 			break;
7587 		case M_HEAD_TAG:
7588 			break;
7589 		default:
7590 			order = M_SIMPLE_TAG;
7591 		}
7592 		msgptr[msglen++] = order;
7593 
7594 		/*
7595 		 *  For less than 128 tags, actual tags are numbered
7596 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7597 		 *  with devices that have problems with #TAG 0 or too
7598 		 *  great #TAG numbers. For more tags (up to 256),
7599 		 *  we use directly our tag number.
7600 		 */
7601 #if SYM_CONF_MAX_TASK > (512/4)
7602 		msgptr[msglen++] = cp->tag;
7603 #else
7604 		msgptr[msglen++] = (cp->tag << 1) + 1;
7605 #endif
7606 	}
7607 
7608 	/*
7609 	 *  Build a negotiation message if needed.
7610 	 *  (nego_status is filled by sym_prepare_nego())
7611 	 */
7612 	cp->nego_status = 0;
7613 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7614 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7615 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7616 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7617 		if (!tp->nego_cp && lp)
7618 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7619 	}
7620 
7621 	/*
7622 	 *  Fill in our ccb
7623 	 */
7624 
7625 	/*
7626 	 *  Startqueue
7627 	 */
7628 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7629 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7630 
7631 	/*
7632 	 *  select
7633 	 */
7634 	cp->phys.select.sel_id		= cp->target;
7635 	cp->phys.select.sel_scntl3	= tp->head.wval;
7636 	cp->phys.select.sel_sxfer	= tp->head.sval;
7637 	cp->phys.select.sel_scntl4	= tp->head.uval;
7638 
7639 	/*
7640 	 *  message
7641 	 */
7642 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7643 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7644 
7645 	/*
7646 	 *  command
7647 	 */
7648 	if (sym_setup_cdb(np, csio, cp) < 0) {
7649 		sym_xpt_done(np, ccb, cp);
7650 		sym_free_ccb(np, cp);
7651 		return;
7652 	}
7653 
7654 	/*
7655 	 *  status
7656 	 */
7657 #if	0	/* Provision */
7658 	cp->actualquirks	= tp->quirks;
7659 #endif
7660 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7661 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7662 	cp->ssss_status		= S_ILLEGAL;
7663 	cp->xerr_status		= 0;
7664 	cp->host_flags		= 0;
7665 	cp->extra_bytes		= 0;
7666 
7667 	/*
7668 	 *  extreme data pointer.
7669 	 *  shall be positive, so -1 is lower than lowest.:)
7670 	 */
7671 	cp->ext_sg  = -1;
7672 	cp->ext_ofs = 0;
7673 
7674 	/*
7675 	 *  Build the data descriptor block
7676 	 *  and start the IO.
7677 	 */
7678 	sym_setup_data_and_start(np, csio, cp);
7679 }
7680 
7681 /*
7682  *  Setup buffers and pointers that address the CDB.
7683  *  I bet, physical CDBs will never be used on the planet,
7684  *  since they can be bounced without significant overhead.
7685  */
7686 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7687 {
7688 	struct ccb_hdr *ccb_h;
7689 	u32	cmd_ba;
7690 	int	cmd_len;
7691 
7692 	SYM_LOCK_ASSERT(MA_OWNED);
7693 
7694 	ccb_h = &csio->ccb_h;
7695 
7696 	/*
7697 	 *  CDB is 16 bytes max.
7698 	 */
7699 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7700 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7701 		return -1;
7702 	}
7703 	cmd_len = csio->cdb_len;
7704 
7705 	if (ccb_h->flags & CAM_CDB_POINTER) {
7706 		/* CDB is a pointer */
7707 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7708 			/* CDB pointer is virtual */
7709 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7710 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7711 		} else {
7712 			/* CDB pointer is physical */
7713 #if 0
7714 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7715 #else
7716 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7717 			return -1;
7718 #endif
7719 		}
7720 	} else {
7721 		/* CDB is in the CAM ccb (buffer) */
7722 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7723 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7724 	}
7725 
7726 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7727 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7728 
7729 	return 0;
7730 }
7731 
7732 /*
7733  *  Set up data pointers used by SCRIPTS.
7734  */
7735 static void __inline
7736 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7737 {
7738 	u32 lastp, goalp;
7739 
7740 	SYM_LOCK_ASSERT(MA_OWNED);
7741 
7742 	/*
7743 	 *  No segments means no data.
7744 	 */
7745 	if (!cp->segments)
7746 		dir = CAM_DIR_NONE;
7747 
7748 	/*
7749 	 *  Set the data pointer.
7750 	 */
7751 	switch(dir) {
7752 	case CAM_DIR_OUT:
7753 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7754 		lastp = goalp - 8 - (cp->segments * (2*4));
7755 		break;
7756 	case CAM_DIR_IN:
7757 		cp->host_flags |= HF_DATA_IN;
7758 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7759 		lastp = goalp - 8 - (cp->segments * (2*4));
7760 		break;
7761 	case CAM_DIR_NONE:
7762 	default:
7763 		lastp = goalp = SCRIPTB_BA (np, no_data);
7764 		break;
7765 	}
7766 
7767 	cp->phys.head.lastp = cpu_to_scr(lastp);
7768 	cp->phys.head.goalp = cpu_to_scr(goalp);
7769 	cp->phys.head.savep = cpu_to_scr(lastp);
7770 	cp->startp	    = cp->phys.head.savep;
7771 }
7772 
7773 
7774 /*
7775  *  Call back routine for the DMA map service.
7776  *  If bounce buffers are used (why ?), we may sleep and then
7777  *  be called there in another context.
7778  */
7779 static void
7780 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7781 {
7782 	ccb_p	cp;
7783 	hcb_p	np;
7784 	union	ccb *ccb;
7785 
7786 	cp  = (ccb_p) arg;
7787 	ccb = cp->cam_ccb;
7788 	np  = (hcb_p) cp->arg;
7789 
7790 	SYM_LOCK_ASSERT(MA_OWNED);
7791 
7792 	/*
7793 	 *  Deal with weird races.
7794 	 */
7795 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7796 		goto out_abort;
7797 
7798 	/*
7799 	 *  Deal with weird errors.
7800 	 */
7801 	if (error) {
7802 		cp->dmamapped = 0;
7803 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7804 		goto out_abort;
7805 	}
7806 
7807 	/*
7808 	 *  Build the data descriptor for the chip.
7809 	 */
7810 	if (nsegs) {
7811 		int retv;
7812 		/* 896 rev 1 requires to be careful about boundaries */
7813 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7814 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7815 		else
7816 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7817 		if (retv < 0) {
7818 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7819 			goto out_abort;
7820 		}
7821 	}
7822 
7823 	/*
7824 	 *  Synchronize the DMA map only if we have
7825 	 *  actually mapped the data.
7826 	 */
7827 	if (cp->dmamapped) {
7828 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7829 			(cp->dmamapped == SYM_DMA_READ ?
7830 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7831 	}
7832 
7833 	/*
7834 	 *  Set host status to busy state.
7835 	 *  May have been set back to HS_WAIT to avoid a race.
7836 	 */
7837 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7838 
7839 	/*
7840 	 *  Set data pointers.
7841 	 */
7842 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7843 
7844 	/*
7845 	 *  Enqueue this IO in our pending queue.
7846 	 */
7847 	sym_enqueue_cam_ccb(cp);
7848 
7849 	/*
7850 	 *  When `#ifed 1', the code below makes the driver
7851 	 *  panic on the first attempt to write to a SCSI device.
7852 	 *  It is the first test we want to do after a driver
7853 	 *  change that does not seem obviously safe. :)
7854 	 */
7855 #if 0
7856 	switch (cp->cdb_buf[0]) {
7857 	case 0x0A: case 0x2A: case 0xAA:
7858 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7859 		MDELAY(10000);
7860 		break;
7861 	default:
7862 		break;
7863 	}
7864 #endif
7865 	/*
7866 	 *  Activate this job.
7867 	 */
7868 	sym_put_start_queue(np, cp);
7869 	return;
7870 out_abort:
7871 	sym_xpt_done(np, ccb, cp);
7872 	sym_free_ccb(np, cp);
7873 }
7874 
7875 /*
7876  *  How complex it gets to deal with the data in CAM.
7877  *  The Bus Dma stuff makes things still more complex.
7878  */
7879 static void
7880 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7881 {
7882 	struct ccb_hdr *ccb_h;
7883 	int dir, retv;
7884 
7885 	SYM_LOCK_ASSERT(MA_OWNED);
7886 
7887 	ccb_h = &csio->ccb_h;
7888 
7889 	/*
7890 	 *  Now deal with the data.
7891 	 */
7892 	cp->data_len = csio->dxfer_len;
7893 	cp->arg      = np;
7894 
7895 	/*
7896 	 *  No direction means no data.
7897 	 */
7898 	dir = (ccb_h->flags & CAM_DIR_MASK);
7899 	if (dir == CAM_DIR_NONE) {
7900 		sym_execute_ccb(cp, NULL, 0, 0);
7901 		return;
7902 	}
7903 
7904 	if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
7905 		/* Single buffer */
7906 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
7907 			/* Buffer is virtual */
7908 			cp->dmamapped = (dir == CAM_DIR_IN) ?
7909 						SYM_DMA_READ : SYM_DMA_WRITE;
7910 			retv = bus_dmamap_load(np->data_dmat, cp->dmamap,
7911 					       csio->data_ptr, csio->dxfer_len,
7912 					       sym_execute_ccb, cp, 0);
7913 			if (retv == EINPROGRESS) {
7914 				cp->host_status	= HS_WAIT;
7915 				xpt_freeze_simq(np->sim, 1);
7916 				csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7917 			}
7918 		} else {
7919 			/* Buffer is physical */
7920 			struct bus_dma_segment seg;
7921 
7922 			seg.ds_addr = (bus_addr_t) csio->data_ptr;
7923 			sym_execute_ccb(cp, &seg, 1, 0);
7924 		}
7925 	} else {
7926 		/* Scatter/gather list */
7927 		struct bus_dma_segment *segs;
7928 
7929 		if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
7930 			/* The SG list pointer is physical */
7931 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7932 			goto out_abort;
7933 		}
7934 
7935 		if (!(ccb_h->flags & CAM_DATA_PHYS)) {
7936 			/* SG buffer pointers are virtual */
7937 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7938 			goto out_abort;
7939 		}
7940 
7941 		/* SG buffer pointers are physical */
7942 		segs  = (struct bus_dma_segment *)csio->data_ptr;
7943 		sym_execute_ccb(cp, segs, csio->sglist_cnt, 0);
7944 	}
7945 	return;
7946 out_abort:
7947 	sym_xpt_done(np, (union ccb *) csio, cp);
7948 	sym_free_ccb(np, cp);
7949 }
7950 
7951 /*
7952  *  Move the scatter list to our data block.
7953  */
7954 static int
7955 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7956 			     bus_dma_segment_t *psegs, int nsegs)
7957 {
7958 	struct sym_tblmove *data;
7959 	bus_dma_segment_t *psegs2;
7960 
7961 	SYM_LOCK_ASSERT(MA_OWNED);
7962 
7963 	if (nsegs > SYM_CONF_MAX_SG)
7964 		return -1;
7965 
7966 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7967 	psegs2 = &psegs[nsegs-1];
7968 	cp->segments = nsegs;
7969 
7970 	while (1) {
7971 		data->addr = cpu_to_scr(psegs2->ds_addr);
7972 		data->size = cpu_to_scr(psegs2->ds_len);
7973 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7974 			printf ("%s scatter: paddr=%lx len=%ld\n",
7975 				sym_name(np), (long) psegs2->ds_addr,
7976 				(long) psegs2->ds_len);
7977 		}
7978 		if (psegs2 != psegs) {
7979 			--data;
7980 			--psegs2;
7981 			continue;
7982 		}
7983 		break;
7984 	}
7985 	return 0;
7986 }
7987 
7988 
7989 /*
7990  *  Scatter a SG list with physical addresses into bus addressable chunks.
7991  *  We need to ensure 16MB boundaries not to be crossed during DMA of
7992  *  each segment, due to some chips being flawed.
7993  */
7994 #define BOUND_MASK ((1UL<<24)-1)
7995 static int
7996 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7997 {
7998 	u_long	ps, pe, pn;
7999 	u_long	k;
8000 	int s, t;
8001 
8002 	SYM_LOCK_ASSERT(MA_OWNED);
8003 
8004 	s  = SYM_CONF_MAX_SG - 1;
8005 	t  = nsegs - 1;
8006 	ps = psegs[t].ds_addr;
8007 	pe = ps + psegs[t].ds_len;
8008 
8009 	while (s >= 0) {
8010 		pn = (pe - 1) & ~BOUND_MASK;
8011 		if (pn <= ps)
8012 			pn = ps;
8013 		k = pe - pn;
8014 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
8015 			printf ("%s scatter: paddr=%lx len=%ld\n",
8016 				sym_name(np), pn, k);
8017 		}
8018 		cp->phys.data[s].addr = cpu_to_scr(pn);
8019 		cp->phys.data[s].size = cpu_to_scr(k);
8020 		--s;
8021 		if (pn == ps) {
8022 			if (--t < 0)
8023 				break;
8024 			ps = psegs[t].ds_addr;
8025 			pe = ps + psegs[t].ds_len;
8026 		}
8027 		else
8028 			pe = pn;
8029 	}
8030 
8031 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
8032 
8033 	return t >= 0 ? -1 : 0;
8034 }
8035 #undef BOUND_MASK
8036 
8037 /*
8038  *  SIM action for non performance critical stuff.
8039  */
8040 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
8041 {
8042 	hcb_p	np;
8043 	tcb_p	tp;
8044 	lcb_p	lp;
8045 	struct	ccb_hdr  *ccb_h;
8046 
8047 	/*
8048 	 *  Retrieve our controller data structure.
8049 	 */
8050 	np = (hcb_p) cam_sim_softc(sim);
8051 
8052 	SYM_LOCK_ASSERT(MA_OWNED);
8053 
8054 	ccb_h = &ccb->ccb_h;
8055 
8056 	switch (ccb_h->func_code) {
8057 	case XPT_SET_TRAN_SETTINGS:
8058 	{
8059 		struct ccb_trans_settings *cts;
8060 
8061 		cts  = &ccb->cts;
8062 		tp = &np->target[ccb_h->target_id];
8063 
8064 		/*
8065 		 *  Update SPI transport settings in TARGET control block.
8066 		 *  Update SCSI device settings in LUN control block.
8067 		 */
8068 		lp = sym_lp(np, tp, ccb_h->target_lun);
8069 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8070 			sym_update_trans(np, tp, &tp->tinfo.goal, cts);
8071 			if (lp)
8072 				sym_update_dflags(np, &lp->current_flags, cts);
8073 		}
8074 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
8075 			sym_update_trans(np, tp, &tp->tinfo.user, cts);
8076 			if (lp)
8077 				sym_update_dflags(np, &lp->user_flags, cts);
8078 		}
8079 
8080 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8081 		break;
8082 	}
8083 	case XPT_GET_TRAN_SETTINGS:
8084 	{
8085 		struct ccb_trans_settings *cts;
8086 		struct sym_trans *tip;
8087 		u_char dflags;
8088 
8089 		cts = &ccb->cts;
8090 		tp = &np->target[ccb_h->target_id];
8091 		lp = sym_lp(np, tp, ccb_h->target_lun);
8092 
8093 #define	cts__scsi (&cts->proto_specific.scsi)
8094 #define	cts__spi  (&cts->xport_specific.spi)
8095 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
8096 			tip = &tp->tinfo.current;
8097 			dflags = lp ? lp->current_flags : 0;
8098 		}
8099 		else {
8100 			tip = &tp->tinfo.user;
8101 			dflags = lp ? lp->user_flags : tp->usrflags;
8102 		}
8103 
8104 		cts->protocol  = PROTO_SCSI;
8105 		cts->transport = XPORT_SPI;
8106 		cts->protocol_version  = tip->scsi_version;
8107 		cts->transport_version = tip->spi_version;
8108 
8109 		cts__spi->sync_period = tip->period;
8110 		cts__spi->sync_offset = tip->offset;
8111 		cts__spi->bus_width   = tip->width;
8112 		cts__spi->ppr_options = tip->options;
8113 
8114 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8115 		                | CTS_SPI_VALID_SYNC_OFFSET
8116 		                | CTS_SPI_VALID_BUS_WIDTH
8117 		                | CTS_SPI_VALID_PPR_OPTIONS;
8118 
8119 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8120 		if (dflags & SYM_DISC_ENABLED)
8121 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8122 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8123 
8124 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8125 		if (dflags & SYM_TAGS_ENABLED)
8126 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8127 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8128 #undef	cts__spi
8129 #undef	cts__scsi
8130 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8131 		break;
8132 	}
8133 	case XPT_CALC_GEOMETRY:
8134 	{
8135 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8136 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8137 		break;
8138 	}
8139 	case XPT_PATH_INQ:
8140 	{
8141 		struct ccb_pathinq *cpi = &ccb->cpi;
8142 		cpi->version_num = 1;
8143 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8144 		if ((np->features & FE_WIDE) != 0)
8145 			cpi->hba_inquiry |= PI_WIDE_16;
8146 		cpi->target_sprt = 0;
8147 		cpi->hba_misc = 0;
8148 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8149 			cpi->hba_misc |= PIM_SCANHILO;
8150 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8151 			cpi->hba_misc |= PIM_NOBUSRESET;
8152 		cpi->hba_eng_cnt = 0;
8153 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8154 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8155 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8156 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8157 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8158 		cpi->bus_id = cam_sim_bus(sim);
8159 		cpi->initiator_id = np->myaddr;
8160 		cpi->base_transfer_speed = 3300;
8161 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8162 		strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8163 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8164 		cpi->unit_number = cam_sim_unit(sim);
8165 
8166 		cpi->protocol = PROTO_SCSI;
8167 		cpi->protocol_version = SCSI_REV_2;
8168 		cpi->transport = XPORT_SPI;
8169 		cpi->transport_version = 2;
8170 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8171 		if (np->features & FE_ULTRA3) {
8172 			cpi->transport_version = 3;
8173 			cpi->xport_specific.spi.ppr_options =
8174 			    SID_SPI_CLOCK_DT_ST;
8175 		}
8176 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8177 		break;
8178 	}
8179 	case XPT_ABORT:
8180 	{
8181 		union ccb *abort_ccb = ccb->cab.abort_ccb;
8182 		switch(abort_ccb->ccb_h.func_code) {
8183 		case XPT_SCSI_IO:
8184 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8185 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8186 				break;
8187 			}
8188 		default:
8189 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8190 			break;
8191 		}
8192 		break;
8193 	}
8194 	case XPT_RESET_DEV:
8195 	{
8196 		sym_reset_dev(np, ccb);
8197 		break;
8198 	}
8199 	case XPT_RESET_BUS:
8200 	{
8201 		sym_reset_scsi_bus(np, 0);
8202 		if (sym_verbose) {
8203 			xpt_print_path(np->path);
8204 			printf("SCSI BUS reset delivered.\n");
8205 		}
8206 		sym_init (np, 1);
8207 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8208 		break;
8209 	}
8210 	case XPT_ACCEPT_TARGET_IO:
8211 	case XPT_CONT_TARGET_IO:
8212 	case XPT_EN_LUN:
8213 	case XPT_NOTIFY_ACK:
8214 	case XPT_IMMED_NOTIFY:
8215 	case XPT_TERM_IO:
8216 	default:
8217 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8218 		break;
8219 	}
8220 }
8221 
8222 /*
8223  *  Asynchronous notification handler.
8224  */
8225 static void
8226 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *arg)
8227 {
8228 	hcb_p np;
8229 	struct cam_sim *sim;
8230 	u_int tn;
8231 	tcb_p tp;
8232 
8233 	sim = (struct cam_sim *) cb_arg;
8234 	np  = (hcb_p) cam_sim_softc(sim);
8235 
8236 	SYM_LOCK_ASSERT(MA_OWNED);
8237 
8238 	switch (code) {
8239 	case AC_LOST_DEVICE:
8240 		tn = xpt_path_target_id(path);
8241 		if (tn >= SYM_CONF_MAX_TARGET)
8242 			break;
8243 
8244 		tp = &np->target[tn];
8245 
8246 		tp->to_reset  = 0;
8247 		tp->head.sval = 0;
8248 		tp->head.wval = np->rv_scntl3;
8249 		tp->head.uval = 0;
8250 
8251 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8252 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8253 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8254 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8255 
8256 		break;
8257 	default:
8258 		break;
8259 	}
8260 }
8261 
8262 /*
8263  *  Update transfer settings of a target.
8264  */
8265 static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
8266 			    struct ccb_trans_settings *cts)
8267 {
8268 	SYM_LOCK_ASSERT(MA_OWNED);
8269 
8270 	/*
8271 	 *  Update the infos.
8272 	 */
8273 #define cts__spi (&cts->xport_specific.spi)
8274 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8275 		tip->width = cts__spi->bus_width;
8276 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8277 		tip->offset = cts__spi->sync_offset;
8278 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8279 		tip->period = cts__spi->sync_period;
8280 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8281 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8282 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8283 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8284 		tip->scsi_version = cts->protocol_version;
8285 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8286 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8287 		tip->spi_version = cts->transport_version;
8288 #undef cts__spi
8289 	/*
8290 	 *  Scale against driver configuration limits.
8291 	 */
8292 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8293 	if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8294 	if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8295 
8296 	/*
8297 	 *  Scale against actual controller BUS width.
8298 	 */
8299 	if (tip->width > np->maxwide)
8300 		tip->width  = np->maxwide;
8301 
8302 	/*
8303 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8304 	 */
8305 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8306 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8307 		tip->options &= ~PPR_OPT_DT;
8308 	}
8309 
8310 	/*
8311 	 *  Scale period factor and offset against controller limits.
8312 	 */
8313 	if (tip->options & PPR_OPT_DT) {
8314 		if (tip->period < np->minsync_dt)
8315 			tip->period = np->minsync_dt;
8316 		if (tip->period > np->maxsync_dt)
8317 			tip->period = np->maxsync_dt;
8318 		if (tip->offset > np->maxoffs_dt)
8319 			tip->offset = np->maxoffs_dt;
8320 	}
8321 	else {
8322 		if (tip->period < np->minsync)
8323 			tip->period = np->minsync;
8324 		if (tip->period > np->maxsync)
8325 			tip->period = np->maxsync;
8326 		if (tip->offset > np->maxoffs)
8327 			tip->offset = np->maxoffs;
8328 	}
8329 }
8330 
8331 /*
8332  *  Update flags for a device (logical unit).
8333  */
8334 static void
8335 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8336 {
8337 	SYM_LOCK_ASSERT(MA_OWNED);
8338 
8339 #define	cts__scsi (&cts->proto_specific.scsi)
8340 #define	cts__spi  (&cts->xport_specific.spi)
8341 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8342 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8343 			*flags |= SYM_DISC_ENABLED;
8344 		else
8345 			*flags &= ~SYM_DISC_ENABLED;
8346 	}
8347 
8348 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8349 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8350 			*flags |= SYM_TAGS_ENABLED;
8351 		else
8352 			*flags &= ~SYM_TAGS_ENABLED;
8353 	}
8354 #undef	cts__spi
8355 #undef	cts__scsi
8356 }
8357 
8358 
8359 /*============= DRIVER INITIALISATION ==================*/
8360 
8361 
8362 static device_method_t sym_pci_methods[] = {
8363 	DEVMETHOD(device_probe,	 sym_pci_probe),
8364 	DEVMETHOD(device_attach, sym_pci_attach),
8365 	{ 0, 0 }
8366 };
8367 
8368 static driver_t sym_pci_driver = {
8369 	"sym",
8370 	sym_pci_methods,
8371 	1	/* no softc */
8372 };
8373 
8374 static devclass_t sym_devclass;
8375 
8376 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0);
8377 MODULE_DEPEND(sym, cam, 1, 1, 1);
8378 MODULE_DEPEND(sym, pci, 1, 1, 1);
8379 
8380 
8381 static const struct sym_pci_chip sym_pci_dev_table[] = {
8382  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8383  FE_ERL}
8384  ,
8385 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8386  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8387  FE_BOF}
8388  ,
8389 #else
8390  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8391  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8392  ,
8393 #endif
8394  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8395  FE_BOF|FE_ERL}
8396  ,
8397  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8398  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8399  ,
8400  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8401  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8402  ,
8403  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8404  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8405  ,
8406  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8407  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8408  FE_RAM|FE_DIFF}
8409  ,
8410  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8411  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8412  FE_RAM|FE_DIFF}
8413  ,
8414  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8415  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8416  FE_RAM|FE_DIFF}
8417  ,
8418  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8419  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8420  FE_RAM|FE_DIFF}
8421  ,
8422 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8423  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8424  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8425  FE_RAM|FE_LCKFRQ}
8426  ,
8427 #else
8428  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8429  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8430  FE_RAM|FE_LCKFRQ}
8431  ,
8432 #endif
8433  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8434  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8435  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8436  ,
8437  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8438  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8439  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8440  ,
8441  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8442  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8443  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8444  FE_C10}
8445  ,
8446  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8447  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8448  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8449  FE_C10|FE_U3EN}
8450  ,
8451  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8452  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8453  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8454  FE_C10|FE_U3EN}
8455  ,
8456  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8457  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8458  FE_RAM|FE_IO256|FE_LEDC}
8459 };
8460 
8461 #define sym_pci_num_devs \
8462 	(sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
8463 
8464 /*
8465  *  Look up the chip table.
8466  *
8467  *  Return a pointer to the chip entry if found,
8468  *  zero otherwise.
8469  */
8470 static const struct sym_pci_chip *
8471 sym_find_pci_chip(device_t dev)
8472 {
8473 	const struct	sym_pci_chip *chip;
8474 	int	i;
8475 	u_short	device_id;
8476 	u_char	revision;
8477 
8478 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8479 		return NULL;
8480 
8481 	device_id = pci_get_device(dev);
8482 	revision  = pci_get_revid(dev);
8483 
8484 	for (i = 0; i < sym_pci_num_devs; i++) {
8485 		chip = &sym_pci_dev_table[i];
8486 		if (device_id != chip->device_id)
8487 			continue;
8488 		if (revision > chip->revision_id)
8489 			continue;
8490 		return chip;
8491 	}
8492 
8493 	return NULL;
8494 }
8495 
8496 /*
8497  *  Tell upper layer if the chip is supported.
8498  */
8499 static int
8500 sym_pci_probe(device_t dev)
8501 {
8502 	const struct	sym_pci_chip *chip;
8503 
8504 	chip = sym_find_pci_chip(dev);
8505 	if (chip && sym_find_firmware(chip)) {
8506 		device_set_desc(dev, chip->name);
8507 		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)?
8508 		  BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT;
8509 	}
8510 	return ENXIO;
8511 }
8512 
8513 /*
8514  *  Attach a sym53c8xx device.
8515  */
8516 static int
8517 sym_pci_attach(device_t dev)
8518 {
8519 	const struct	sym_pci_chip *chip;
8520 	u_short	command;
8521 	u_char	cachelnsz;
8522 	struct	sym_hcb *np = NULL;
8523 	struct	sym_nvram nvram;
8524 	const struct	sym_fw *fw = NULL;
8525 	int 	i;
8526 	bus_dma_tag_t	bus_dmat;
8527 
8528 	bus_dmat = bus_get_dma_tag(dev);
8529 
8530 	/*
8531 	 *  Only probed devices should be attached.
8532 	 *  We just enjoy being paranoid. :)
8533 	 */
8534 	chip = sym_find_pci_chip(dev);
8535 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8536 		return (ENXIO);
8537 
8538 	/*
8539 	 *  Allocate immediately the host control block,
8540 	 *  since we are only expecting to succeed. :)
8541 	 *  We keep track in the HCB of all the resources that
8542 	 *  are to be released on error.
8543 	 */
8544 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8545 	if (np)
8546 		np->bus_dmat = bus_dmat;
8547 	else
8548 		return (ENXIO);
8549 	device_set_softc(dev, np);
8550 
8551 	SYM_LOCK_INIT();
8552 
8553 	/*
8554 	 *  Copy some useful infos to the HCB.
8555 	 */
8556 	np->hcb_ba	 = vtobus(np);
8557 	np->verbose	 = bootverbose;
8558 	np->device	 = dev;
8559 	np->device_id	 = pci_get_device(dev);
8560 	np->revision_id  = pci_get_revid(dev);
8561 	np->features	 = chip->features;
8562 	np->clock_divn	 = chip->nr_divisor;
8563 	np->maxoffs	 = chip->offset_max;
8564 	np->maxburst	 = chip->burst_max;
8565 	np->scripta_sz	 = fw->a_size;
8566 	np->scriptb_sz	 = fw->b_size;
8567 	np->fw_setup	 = fw->setup;
8568 	np->fw_patch	 = fw->patch;
8569 	np->fw_name	 = fw->name;
8570 
8571 #ifdef __amd64__
8572 	np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8573 			"TARGET");
8574 	if (!np->target)
8575 		goto attach_failed;
8576 #endif
8577 
8578 	/*
8579 	 *  Initialize the CCB free and busy queues.
8580 	 */
8581 	sym_que_init(&np->free_ccbq);
8582 	sym_que_init(&np->busy_ccbq);
8583 	sym_que_init(&np->comp_ccbq);
8584 	sym_que_init(&np->cam_ccbq);
8585 
8586 	/*
8587 	 *  Allocate a tag for the DMA of user data.
8588 	 */
8589 	if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24),
8590 				BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
8591 				NULL, NULL,
8592 				BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG,
8593 				(1<<24), 0, busdma_lock_mutex, &np->mtx,
8594 				&np->data_dmat)) {
8595 		device_printf(dev, "failed to create DMA tag.\n");
8596 		goto attach_failed;
8597 	}
8598 	/*
8599 	 *  Read and apply some fix-ups to the PCI COMMAND
8600 	 *  register. We want the chip to be enabled for:
8601 	 *  - BUS mastering
8602 	 *  - PCI parity checking (reporting would also be fine)
8603 	 *  - Write And Invalidate.
8604 	 */
8605 	command = pci_read_config(dev, PCIR_COMMAND, 2);
8606 	command |= PCIM_CMD_BUSMASTEREN;
8607 	command |= PCIM_CMD_PERRESPEN;
8608 	command |= /* PCIM_CMD_MWIEN */ 0x0010;
8609 	pci_write_config(dev, PCIR_COMMAND, command, 2);
8610 
8611 	/*
8612 	 *  Let the device know about the cache line size,
8613 	 *  if it doesn't yet.
8614 	 */
8615 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8616 	if (!cachelnsz) {
8617 		cachelnsz = 8;
8618 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8619 	}
8620 
8621 	/*
8622 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8623 	 */
8624 	if ((command & PCIM_CMD_MEMEN) != 0) {
8625 		int regs_id = SYM_PCI_MMIO;
8626 		np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8627 						      &regs_id, RF_ACTIVE);
8628 	}
8629 	if (!np->mmio_res) {
8630 		device_printf(dev, "failed to allocate MMIO resources\n");
8631 		goto attach_failed;
8632 	}
8633 	np->mmio_ba = rman_get_start(np->mmio_res);
8634 
8635 	/*
8636 	 *  Allocate the IRQ.
8637 	 */
8638 	i = 0;
8639 	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8640 					     RF_ACTIVE | RF_SHAREABLE);
8641 	if (!np->irq_res) {
8642 		device_printf(dev, "failed to allocate IRQ resource\n");
8643 		goto attach_failed;
8644 	}
8645 
8646 #ifdef	SYM_CONF_IOMAPPED
8647 	/*
8648 	 *  User want us to use normal IO with PCI.
8649 	 *  Alloc/get/map/retrieve everything that deals with IO.
8650 	 */
8651 	if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
8652 		int regs_id = SYM_PCI_IO;
8653 		np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
8654 						    &regs_id, RF_ACTIVE);
8655 	}
8656 	if (!np->io_res) {
8657 		device_printf(dev, "failed to allocate IO resources\n");
8658 		goto attach_failed;
8659 	}
8660 
8661 #endif /* SYM_CONF_IOMAPPED */
8662 
8663 	/*
8664 	 *  If the chip has RAM.
8665 	 *  Alloc/get/map/retrieve the corresponding resources.
8666 	 */
8667 	if ((np->features & (FE_RAM|FE_RAM8K)) &&
8668 	    (command & PCIM_CMD_MEMEN) != 0) {
8669 		int regs_id = SYM_PCI_RAM;
8670 		if (np->features & FE_64BIT)
8671 			regs_id = SYM_PCI_RAM64;
8672 		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8673 						     &regs_id, RF_ACTIVE);
8674 		if (!np->ram_res) {
8675 			device_printf(dev,"failed to allocate RAM resources\n");
8676 			goto attach_failed;
8677 		}
8678 		np->ram_id  = regs_id;
8679 		np->ram_ba = rman_get_start(np->ram_res);
8680 	}
8681 
8682 	/*
8683 	 *  Save setting of some IO registers, so we will
8684 	 *  be able to probe specific implementations.
8685 	 */
8686 	sym_save_initial_setting (np);
8687 
8688 	/*
8689 	 *  Reset the chip now, since it has been reported
8690 	 *  that SCSI clock calibration may not work properly
8691 	 *  if the chip is currently active.
8692 	 */
8693 	sym_chip_reset (np);
8694 
8695 	/*
8696 	 *  Try to read the user set-up.
8697 	 */
8698 	(void) sym_read_nvram(np, &nvram);
8699 
8700 	/*
8701 	 *  Prepare controller and devices settings, according
8702 	 *  to chip features, user set-up and driver set-up.
8703 	 */
8704 	(void) sym_prepare_setting(np, &nvram);
8705 
8706 	/*
8707 	 *  Check the PCI clock frequency.
8708 	 *  Must be performed after prepare_setting since it destroys
8709 	 *  STEST1 that is used to probe for the clock doubler.
8710 	 */
8711 	i = sym_getpciclock(np);
8712 	if (i > 37000)
8713 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8714 
8715 	/*
8716 	 *  Allocate the start queue.
8717 	 */
8718 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8719 	if (!np->squeue)
8720 		goto attach_failed;
8721 	np->squeue_ba = vtobus(np->squeue);
8722 
8723 	/*
8724 	 *  Allocate the done queue.
8725 	 */
8726 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8727 	if (!np->dqueue)
8728 		goto attach_failed;
8729 	np->dqueue_ba = vtobus(np->dqueue);
8730 
8731 	/*
8732 	 *  Allocate the target bus address array.
8733 	 */
8734 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8735 	if (!np->targtbl)
8736 		goto attach_failed;
8737 	np->targtbl_ba = vtobus(np->targtbl);
8738 
8739 	/*
8740 	 *  Allocate SCRIPTS areas.
8741 	 */
8742 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8743 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8744 	if (!np->scripta0 || !np->scriptb0)
8745 		goto attach_failed;
8746 
8747 	/*
8748 	 *  Allocate the CCBs. We need at least ONE.
8749 	 */
8750 	for (i = 0; sym_alloc_ccb(np) != NULL; i++)
8751 		;
8752 	if (i < 1)
8753 		goto attach_failed;
8754 
8755 	/*
8756 	 *  Calculate BUS addresses where we are going
8757 	 *  to load the SCRIPTS.
8758 	 */
8759 	np->scripta_ba	= vtobus(np->scripta0);
8760 	np->scriptb_ba	= vtobus(np->scriptb0);
8761 	np->scriptb0_ba	= np->scriptb_ba;
8762 
8763 	if (np->ram_ba) {
8764 		np->scripta_ba	= np->ram_ba;
8765 		if (np->features & FE_RAM8K) {
8766 			np->ram_ws = 8192;
8767 			np->scriptb_ba = np->scripta_ba + 4096;
8768 #ifdef __LP64__
8769 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8770 #endif
8771 		}
8772 		else
8773 			np->ram_ws = 4096;
8774 	}
8775 
8776 	/*
8777 	 *  Copy scripts to controller instance.
8778 	 */
8779 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8780 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8781 
8782 	/*
8783 	 *  Setup variable parts in scripts and compute
8784 	 *  scripts bus addresses used from the C code.
8785 	 */
8786 	np->fw_setup(np, fw);
8787 
8788 	/*
8789 	 *  Bind SCRIPTS with physical addresses usable by the
8790 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8791 	 */
8792 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8793 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8794 
8795 #ifdef SYM_CONF_IARB_SUPPORT
8796 	/*
8797 	 *    If user wants IARB to be set when we win arbitration
8798 	 *    and have other jobs, compute the max number of consecutive
8799 	 *    settings of IARB hints before we leave devices a chance to
8800 	 *    arbitrate for reselection.
8801 	 */
8802 #ifdef	SYM_SETUP_IARB_MAX
8803 	np->iarb_max = SYM_SETUP_IARB_MAX;
8804 #else
8805 	np->iarb_max = 4;
8806 #endif
8807 #endif
8808 
8809 	/*
8810 	 *  Prepare the idle and invalid task actions.
8811 	 */
8812 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8813 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8814 	np->idletask_ba		= vtobus(&np->idletask);
8815 
8816 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8817 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8818 	np->notask_ba		= vtobus(&np->notask);
8819 
8820 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8821 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8822 	np->bad_itl_ba		= vtobus(&np->bad_itl);
8823 
8824 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8825 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8826 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8827 
8828 	/*
8829 	 *  Allocate and prepare the lun JUMP table that is used
8830 	 *  for a target prior the probing of devices (bad lun table).
8831 	 *  A private table will be allocated for the target on the
8832 	 *  first INQUIRY response received.
8833 	 */
8834 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8835 	if (!np->badluntbl)
8836 		goto attach_failed;
8837 
8838 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8839 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8840 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8841 
8842 	/*
8843 	 *  Prepare the bus address array that contains the bus
8844 	 *  address of each target control block.
8845 	 *  For now, assume all logical units are wrong. :)
8846 	 */
8847 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8848 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8849 		np->target[i].head.luntbl_sa =
8850 				cpu_to_scr(vtobus(np->badluntbl));
8851 		np->target[i].head.lun0_sa =
8852 				cpu_to_scr(vtobus(&np->badlun_sa));
8853 	}
8854 
8855 	/*
8856 	 *  Now check the cache handling of the pci chipset.
8857 	 */
8858 	if (sym_snooptest (np)) {
8859 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8860 		goto attach_failed;
8861 	};
8862 
8863 	/*
8864 	 *  Now deal with CAM.
8865 	 *  Hopefully, we will succeed with that one.:)
8866 	 */
8867 	if (!sym_cam_attach(np))
8868 		goto attach_failed;
8869 
8870 	/*
8871 	 *  Sigh! we are done.
8872 	 */
8873 	return 0;
8874 
8875 	/*
8876 	 *  We have failed.
8877 	 *  We will try to free all the resources we have
8878 	 *  allocated, but if we are a boot device, this
8879 	 *  will not help that much.;)
8880 	 */
8881 attach_failed:
8882 	if (np)
8883 		sym_pci_free(np);
8884 	return ENXIO;
8885 }
8886 
8887 /*
8888  *  Free everything that have been allocated for this device.
8889  */
8890 static void sym_pci_free(hcb_p np)
8891 {
8892 	SYM_QUEHEAD *qp;
8893 	ccb_p cp;
8894 	tcb_p tp;
8895 	lcb_p lp;
8896 	int target, lun;
8897 
8898 	/*
8899 	 *  First free CAM resources.
8900 	 */
8901 	sym_cam_free(np);
8902 
8903 	/*
8904 	 *  Now every should be quiet for us to
8905 	 *  free other resources.
8906 	 */
8907 	if (np->ram_res)
8908 		bus_release_resource(np->device, SYS_RES_MEMORY,
8909 				     np->ram_id, np->ram_res);
8910 	if (np->mmio_res)
8911 		bus_release_resource(np->device, SYS_RES_MEMORY,
8912 				     SYM_PCI_MMIO, np->mmio_res);
8913 	if (np->io_res)
8914 		bus_release_resource(np->device, SYS_RES_IOPORT,
8915 				     SYM_PCI_IO, np->io_res);
8916 	if (np->irq_res)
8917 		bus_release_resource(np->device, SYS_RES_IRQ,
8918 				     0, np->irq_res);
8919 
8920 	if (np->scriptb0)
8921 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8922 	if (np->scripta0)
8923 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8924 	if (np->squeue)
8925 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8926 	if (np->dqueue)
8927 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8928 
8929 	while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
8930 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8931 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8932 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8933 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
8934 	}
8935 
8936 	if (np->badluntbl)
8937 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8938 
8939 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8940 		tp = &np->target[target];
8941 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8942 			lp = sym_lp(np, tp, lun);
8943 			if (!lp)
8944 				continue;
8945 			if (lp->itlq_tbl)
8946 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8947 				       "ITLQ_TBL");
8948 			if (lp->cb_tags)
8949 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8950 				       "CB_TAGS");
8951 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
8952 		}
8953 #if SYM_CONF_MAX_LUN > 1
8954 		if (tp->lunmp)
8955 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8956 			       "LUNMP");
8957 #endif
8958 	}
8959 #ifdef __amd64__
8960 	if (np->target)
8961 		sym_mfree_dma(np->target,
8962 			SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8963 #endif
8964 	if (np->targtbl)
8965 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8966 	if (np->data_dmat)
8967 		bus_dma_tag_destroy(np->data_dmat);
8968 	if (SYM_LOCK_INITIALIZED() != 0)
8969 		SYM_LOCK_DESTROY();
8970 	device_set_softc(np->device, NULL);
8971 	sym_mfree_dma(np, sizeof(*np), "HCB");
8972 }
8973 
8974 /*
8975  *  Allocate CAM resources and register a bus to CAM.
8976  */
8977 static int sym_cam_attach(hcb_p np)
8978 {
8979 	struct cam_devq *devq = NULL;
8980 	struct cam_sim *sim = NULL;
8981 	struct cam_path *path = NULL;
8982 	int err;
8983 
8984 	/*
8985 	 *  Establish our interrupt handler.
8986 	 */
8987 	err = bus_setup_intr(np->device, np->irq_res,
8988 			INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM,
8989 			NULL, sym_intr, np, &np->intr);
8990 	if (err) {
8991 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
8992 			      err);
8993 		goto fail;
8994 	}
8995 
8996 	/*
8997 	 *  Create the device queue for our sym SIM.
8998 	 */
8999 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
9000 	if (!devq)
9001 		goto fail;
9002 
9003 	/*
9004 	 *  Construct our SIM entry.
9005 	 */
9006 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np,
9007 			device_get_unit(np->device),
9008 			&np->mtx, 1, SYM_SETUP_MAX_TAG, devq);
9009 	if (!sim)
9010 		goto fail;
9011 
9012 	SYM_LOCK();
9013 
9014 	if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
9015 		goto fail;
9016 	np->sim = sim;
9017 
9018 	if (xpt_create_path(&path, 0,
9019 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
9020 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
9021 		goto fail;
9022 	}
9023 	np->path = path;
9024 
9025 	/*
9026 	 *  Establish our async notification handler.
9027 	 */
9028 	if (xpt_register_async(AC_LOST_DEVICE, sym_async, sim, path) !=
9029 	    CAM_REQ_CMP)
9030 		goto fail;
9031 
9032 	/*
9033 	 *  Start the chip now, without resetting the BUS, since
9034 	 *  it seems that this must stay under control of CAM.
9035 	 *  With LVD/SE capable chips and BUS in SE mode, we may
9036 	 *  get a spurious SMBC interrupt.
9037 	 */
9038 	sym_init (np, 0);
9039 
9040 	SYM_UNLOCK();
9041 
9042 	return 1;
9043 fail:
9044 	if (sim)
9045 		cam_sim_free(sim, FALSE);
9046 	if (devq)
9047 		cam_simq_free(devq);
9048 
9049 	SYM_UNLOCK();
9050 
9051 	sym_cam_free(np);
9052 
9053 	return 0;
9054 }
9055 
9056 /*
9057  *  Free everything that deals with CAM.
9058  */
9059 static void sym_cam_free(hcb_p np)
9060 {
9061 	SYM_LOCK_ASSERT(MA_NOTOWNED);
9062 
9063 	if (np->intr) {
9064 		bus_teardown_intr(np->device, np->irq_res, np->intr);
9065 		np->intr = NULL;
9066 	}
9067 
9068 	SYM_LOCK();
9069 
9070 	if (np->sim) {
9071 		xpt_bus_deregister(cam_sim_path(np->sim));
9072 		cam_sim_free(np->sim, /*free_devq*/ TRUE);
9073 		np->sim = NULL;
9074 	}
9075 	if (np->path) {
9076 		xpt_free_path(np->path);
9077 		np->path = NULL;
9078 	}
9079 
9080 	SYM_UNLOCK();
9081 }
9082 
9083 /*============ OPTIONNAL NVRAM SUPPORT =================*/
9084 
9085 /*
9086  *  Get host setup from NVRAM.
9087  */
9088 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
9089 {
9090 #ifdef SYM_CONF_NVRAM_SUPPORT
9091 	/*
9092 	 *  Get parity checking, host ID, verbose mode
9093 	 *  and miscellaneous host flags from NVRAM.
9094 	 */
9095 	switch(nvram->type) {
9096 	case SYM_SYMBIOS_NVRAM:
9097 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
9098 			np->rv_scntl0  &= ~0x0a;
9099 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
9100 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
9101 			np->verbose += 1;
9102 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
9103 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
9104 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
9105 			np->usrflags |= SYM_AVOID_BUS_RESET;
9106 		break;
9107 	case SYM_TEKRAM_NVRAM:
9108 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
9109 		break;
9110 	default:
9111 		break;
9112 	}
9113 #endif
9114 }
9115 
9116 /*
9117  *  Get target setup from NVRAM.
9118  */
9119 #ifdef SYM_CONF_NVRAM_SUPPORT
9120 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
9121 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
9122 #endif
9123 
9124 static void
9125 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9126 {
9127 #ifdef SYM_CONF_NVRAM_SUPPORT
9128 	switch(nvp->type) {
9129 	case SYM_SYMBIOS_NVRAM:
9130 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9131 		break;
9132 	case SYM_TEKRAM_NVRAM:
9133 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9134 		break;
9135 	default:
9136 		break;
9137 	}
9138 #endif
9139 }
9140 
9141 #ifdef SYM_CONF_NVRAM_SUPPORT
9142 /*
9143  *  Get target set-up from Symbios format NVRAM.
9144  */
9145 static void
9146 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9147 {
9148 	tcb_p tp = &np->target[target];
9149 	Symbios_target *tn = &nvram->target[target];
9150 
9151 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9152 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9153 	tp->usrtags =
9154 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9155 
9156 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9157 		tp->usrflags &= ~SYM_DISC_ENABLED;
9158 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9159 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9160 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9161 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9162 }
9163 
9164 /*
9165  *  Get target set-up from Tekram format NVRAM.
9166  */
9167 static void
9168 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9169 {
9170 	tcb_p tp = &np->target[target];
9171 	struct Tekram_target *tn = &nvram->target[target];
9172 	int i;
9173 
9174 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9175 		i = tn->sync_index & 0xf;
9176 		tp->tinfo.user.period = Tekram_sync[i];
9177 	}
9178 
9179 	tp->tinfo.user.width =
9180 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9181 
9182 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9183 		tp->usrtags = 2 << nvram->max_tags_index;
9184 	}
9185 
9186 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9187 		tp->usrflags |= SYM_DISC_ENABLED;
9188 
9189 	/* If any device does not support parity, we will not use this option */
9190 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9191 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9192 }
9193 
9194 #ifdef	SYM_CONF_DEBUG_NVRAM
9195 /*
9196  *  Dump Symbios format NVRAM for debugging purpose.
9197  */
9198 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9199 {
9200 	int i;
9201 
9202 	/* display Symbios nvram host data */
9203 	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9204 		sym_name(np), nvram->host_id & 0x0f,
9205 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9206 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9207 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9208 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9209 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9210 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9211 
9212 	/* display Symbios nvram drive data */
9213 	for (i = 0 ; i < 15 ; i++) {
9214 		struct Symbios_target *tn = &nvram->target[i];
9215 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9216 		sym_name(np), i,
9217 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9218 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9219 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9220 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9221 		tn->bus_width,
9222 		tn->sync_period / 4,
9223 		tn->timeout);
9224 	}
9225 }
9226 
9227 /*
9228  *  Dump TEKRAM format NVRAM for debugging purpose.
9229  */
9230 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9231 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9232 {
9233 	int i, tags, boot_delay;
9234 	char *rem;
9235 
9236 	/* display Tekram nvram host data */
9237 	tags = 2 << nvram->max_tags_index;
9238 	boot_delay = 0;
9239 	if (nvram->boot_delay_index < 6)
9240 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9241 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9242 	default:
9243 	case 0:	rem = "";			break;
9244 	case 1: rem = " REMOVABLE=boot device";	break;
9245 	case 2: rem = " REMOVABLE=all";		break;
9246 	}
9247 
9248 	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9249 		sym_name(np), nvram->host_id & 0x0f,
9250 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9251 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9252 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9253 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9254 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9255 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9256 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9257 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9258 		rem, boot_delay, tags);
9259 
9260 	/* display Tekram nvram drive data */
9261 	for (i = 0; i <= 15; i++) {
9262 		int sync, j;
9263 		struct Tekram_target *tn = &nvram->target[i];
9264 		j = tn->sync_index & 0xf;
9265 		sync = Tekram_sync[j];
9266 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9267 		sym_name(np), i,
9268 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9269 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9270 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9271 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9272 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9273 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9274 		sync);
9275 	}
9276 }
9277 #endif	/* SYM_CONF_DEBUG_NVRAM */
9278 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9279 
9280 
9281 /*
9282  *  Try reading Symbios or Tekram NVRAM
9283  */
9284 #ifdef SYM_CONF_NVRAM_SUPPORT
9285 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9286 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9287 #endif
9288 
9289 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9290 {
9291 #ifdef SYM_CONF_NVRAM_SUPPORT
9292 	/*
9293 	 *  Try to read SYMBIOS nvram.
9294 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9295 	 */
9296 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9297 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9298 		nvp->type = SYM_SYMBIOS_NVRAM;
9299 #ifdef SYM_CONF_DEBUG_NVRAM
9300 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9301 #endif
9302 	}
9303 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9304 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9305 		nvp->type = SYM_TEKRAM_NVRAM;
9306 #ifdef SYM_CONF_DEBUG_NVRAM
9307 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9308 #endif
9309 	}
9310 	else
9311 		nvp->type = 0;
9312 #else
9313 	nvp->type = 0;
9314 #endif
9315 	return nvp->type;
9316 }
9317 
9318 
9319 #ifdef SYM_CONF_NVRAM_SUPPORT
9320 /*
9321  *  24C16 EEPROM reading.
9322  *
9323  *  GPOI0 - data in/data out
9324  *  GPIO1 - clock
9325  *  Symbios NVRAM wiring now also used by Tekram.
9326  */
9327 
9328 #define SET_BIT 0
9329 #define CLR_BIT 1
9330 #define SET_CLK 2
9331 #define CLR_CLK 3
9332 
9333 /*
9334  *  Set/clear data/clock bit in GPIO0
9335  */
9336 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9337 			  int bit_mode)
9338 {
9339 	UDELAY (5);
9340 	switch (bit_mode){
9341 	case SET_BIT:
9342 		*gpreg |= write_bit;
9343 		break;
9344 	case CLR_BIT:
9345 		*gpreg &= 0xfe;
9346 		break;
9347 	case SET_CLK:
9348 		*gpreg |= 0x02;
9349 		break;
9350 	case CLR_CLK:
9351 		*gpreg &= 0xfd;
9352 		break;
9353 
9354 	}
9355 	OUTB (nc_gpreg, *gpreg);
9356 	UDELAY (5);
9357 }
9358 
9359 /*
9360  *  Send START condition to NVRAM to wake it up.
9361  */
9362 static void S24C16_start(hcb_p np, u_char *gpreg)
9363 {
9364 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9365 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9366 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9367 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9368 }
9369 
9370 /*
9371  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9372  */
9373 static void S24C16_stop(hcb_p np, u_char *gpreg)
9374 {
9375 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9376 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9377 }
9378 
9379 /*
9380  *  Read or write a bit to the NVRAM,
9381  *  read if GPIO0 input else write if GPIO0 output
9382  */
9383 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9384 			 u_char *gpreg)
9385 {
9386 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9387 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9388 	if (read_bit)
9389 		*read_bit = INB (nc_gpreg);
9390 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9391 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9392 }
9393 
9394 /*
9395  *  Output an ACK to the NVRAM after reading,
9396  *  change GPIO0 to output and when done back to an input
9397  */
9398 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9399 			    u_char *gpcntl)
9400 {
9401 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9402 	S24C16_do_bit(np, 0, write_bit, gpreg);
9403 	OUTB (nc_gpcntl, *gpcntl);
9404 }
9405 
9406 /*
9407  *  Input an ACK from NVRAM after writing,
9408  *  change GPIO0 to input and when done back to an output
9409  */
9410 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9411 			   u_char *gpcntl)
9412 {
9413 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9414 	S24C16_do_bit(np, read_bit, 1, gpreg);
9415 	OUTB (nc_gpcntl, *gpcntl);
9416 }
9417 
9418 /*
9419  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9420  *  GPIO0 must already be set as an output
9421  */
9422 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9423 			     u_char *gpreg, u_char *gpcntl)
9424 {
9425 	int x;
9426 
9427 	for (x = 0; x < 8; x++)
9428 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9429 
9430 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9431 }
9432 
9433 /*
9434  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9435  *  GPIO0 must already be set as an input
9436  */
9437 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9438 			    u_char *gpreg, u_char *gpcntl)
9439 {
9440 	int x;
9441 	u_char read_bit;
9442 
9443 	*read_data = 0;
9444 	for (x = 0; x < 8; x++) {
9445 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9446 		*read_data |= ((read_bit & 0x01) << (7 - x));
9447 	}
9448 
9449 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9450 }
9451 
9452 /*
9453  *  Read 'len' bytes starting at 'offset'.
9454  */
9455 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9456 {
9457 	u_char	gpcntl, gpreg;
9458 	u_char	old_gpcntl, old_gpreg;
9459 	u_char	ack_data;
9460 	int	retv = 1;
9461 	int	x;
9462 
9463 	/* save current state of GPCNTL and GPREG */
9464 	old_gpreg	= INB (nc_gpreg);
9465 	old_gpcntl	= INB (nc_gpcntl);
9466 	gpcntl		= old_gpcntl & 0x1c;
9467 
9468 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9469 	OUTB (nc_gpreg,  old_gpreg);
9470 	OUTB (nc_gpcntl, gpcntl);
9471 
9472 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9473 	gpreg = old_gpreg;
9474 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9475 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9476 
9477 	/* now set NVRAM inactive with GPIO0/1 both high */
9478 	S24C16_stop(np, &gpreg);
9479 
9480 	/* activate NVRAM */
9481 	S24C16_start(np, &gpreg);
9482 
9483 	/* write device code and random address MSB */
9484 	S24C16_write_byte(np, &ack_data,
9485 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9486 	if (ack_data & 0x01)
9487 		goto out;
9488 
9489 	/* write random address LSB */
9490 	S24C16_write_byte(np, &ack_data,
9491 		offset & 0xff, &gpreg, &gpcntl);
9492 	if (ack_data & 0x01)
9493 		goto out;
9494 
9495 	/* regenerate START state to set up for reading */
9496 	S24C16_start(np, &gpreg);
9497 
9498 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9499 	S24C16_write_byte(np, &ack_data,
9500 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9501 	if (ack_data & 0x01)
9502 		goto out;
9503 
9504 	/* now set up GPIO0 for inputting data */
9505 	gpcntl |= 0x01;
9506 	OUTB (nc_gpcntl, gpcntl);
9507 
9508 	/* input all requested data - only part of total NVRAM */
9509 	for (x = 0; x < len; x++)
9510 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9511 
9512 	/* finally put NVRAM back in inactive mode */
9513 	gpcntl &= 0xfe;
9514 	OUTB (nc_gpcntl, gpcntl);
9515 	S24C16_stop(np, &gpreg);
9516 	retv = 0;
9517 out:
9518 	/* return GPIO0/1 to original states after having accessed NVRAM */
9519 	OUTB (nc_gpcntl, old_gpcntl);
9520 	OUTB (nc_gpreg,  old_gpreg);
9521 
9522 	return retv;
9523 }
9524 
9525 #undef SET_BIT /* 0 */
9526 #undef CLR_BIT /* 1 */
9527 #undef SET_CLK /* 2 */
9528 #undef CLR_CLK /* 3 */
9529 
9530 /*
9531  *  Try reading Symbios NVRAM.
9532  *  Return 0 if OK.
9533  */
9534 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9535 {
9536 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9537 	u_char *data = (u_char *) nvram;
9538 	int len  = sizeof(*nvram);
9539 	u_short	csum;
9540 	int x;
9541 
9542 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9543 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9544 		return 1;
9545 
9546 	/* check valid NVRAM signature, verify byte count and checksum */
9547 	if (nvram->type != 0 ||
9548 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9549 	    nvram->byte_count != len - 12)
9550 		return 1;
9551 
9552 	/* verify checksum */
9553 	for (x = 6, csum = 0; x < len - 6; x++)
9554 		csum += data[x];
9555 	if (csum != nvram->checksum)
9556 		return 1;
9557 
9558 	return 0;
9559 }
9560 
9561 /*
9562  *  93C46 EEPROM reading.
9563  *
9564  *  GPOI0 - data in
9565  *  GPIO1 - data out
9566  *  GPIO2 - clock
9567  *  GPIO4 - chip select
9568  *
9569  *  Used by Tekram.
9570  */
9571 
9572 /*
9573  *  Pulse clock bit in GPIO0
9574  */
9575 static void T93C46_Clk(hcb_p np, u_char *gpreg)
9576 {
9577 	OUTB (nc_gpreg, *gpreg | 0x04);
9578 	UDELAY (2);
9579 	OUTB (nc_gpreg, *gpreg);
9580 }
9581 
9582 /*
9583  *  Read bit from NVRAM
9584  */
9585 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9586 {
9587 	UDELAY (2);
9588 	T93C46_Clk(np, gpreg);
9589 	*read_bit = INB (nc_gpreg);
9590 }
9591 
9592 /*
9593  *  Write bit to GPIO0
9594  */
9595 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9596 {
9597 	if (write_bit & 0x01)
9598 		*gpreg |= 0x02;
9599 	else
9600 		*gpreg &= 0xfd;
9601 
9602 	*gpreg |= 0x10;
9603 
9604 	OUTB (nc_gpreg, *gpreg);
9605 	UDELAY (2);
9606 
9607 	T93C46_Clk(np, gpreg);
9608 }
9609 
9610 /*
9611  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9612  */
9613 static void T93C46_Stop(hcb_p np, u_char *gpreg)
9614 {
9615 	*gpreg &= 0xef;
9616 	OUTB (nc_gpreg, *gpreg);
9617 	UDELAY (2);
9618 
9619 	T93C46_Clk(np, gpreg);
9620 }
9621 
9622 /*
9623  *  Send read command and address to NVRAM
9624  */
9625 static void T93C46_Send_Command(hcb_p np, u_short write_data,
9626 				u_char *read_bit, u_char *gpreg)
9627 {
9628 	int x;
9629 
9630 	/* send 9 bits, start bit (1), command (2), address (6)  */
9631 	for (x = 0; x < 9; x++)
9632 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9633 
9634 	*read_bit = INB (nc_gpreg);
9635 }
9636 
9637 /*
9638  *  READ 2 bytes from the NVRAM
9639  */
9640 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9641 {
9642 	int x;
9643 	u_char read_bit;
9644 
9645 	*nvram_data = 0;
9646 	for (x = 0; x < 16; x++) {
9647 		T93C46_Read_Bit(np, &read_bit, gpreg);
9648 
9649 		if (read_bit & 0x01)
9650 			*nvram_data |=  (0x01 << (15 - x));
9651 		else
9652 			*nvram_data &= ~(0x01 << (15 - x));
9653 	}
9654 }
9655 
9656 /*
9657  *  Read Tekram NvRAM data.
9658  */
9659 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9660 {
9661 	u_char	read_bit;
9662 	int	x;
9663 
9664 	for (x = 0; x < len; x++)  {
9665 
9666 		/* output read command and address */
9667 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9668 		if (read_bit & 0x01)
9669 			return 1; /* Bad */
9670 		T93C46_Read_Word(np, &data[x], gpreg);
9671 		T93C46_Stop(np, gpreg);
9672 	}
9673 
9674 	return 0;
9675 }
9676 
9677 /*
9678  *  Try reading 93C46 Tekram NVRAM.
9679  */
9680 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9681 {
9682 	u_char gpcntl, gpreg;
9683 	u_char old_gpcntl, old_gpreg;
9684 	int retv = 1;
9685 
9686 	/* save current state of GPCNTL and GPREG */
9687 	old_gpreg	= INB (nc_gpreg);
9688 	old_gpcntl	= INB (nc_gpcntl);
9689 
9690 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9691 	   1/2/4 out */
9692 	gpreg = old_gpreg & 0xe9;
9693 	OUTB (nc_gpreg, gpreg);
9694 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9695 	OUTB (nc_gpcntl, gpcntl);
9696 
9697 	/* input all of NVRAM, 64 words */
9698 	retv = T93C46_Read_Data(np, (u_short *) nvram,
9699 				sizeof(*nvram) / sizeof(short), &gpreg);
9700 
9701 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9702 	OUTB (nc_gpcntl, old_gpcntl);
9703 	OUTB (nc_gpreg,  old_gpreg);
9704 
9705 	return retv;
9706 }
9707 
9708 /*
9709  *  Try reading Tekram NVRAM.
9710  *  Return 0 if OK.
9711  */
9712 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9713 {
9714 	u_char *data = (u_char *) nvram;
9715 	int len = sizeof(*nvram);
9716 	u_short	csum;
9717 	int x;
9718 
9719 	switch (np->device_id) {
9720 	case PCI_ID_SYM53C885:
9721 	case PCI_ID_SYM53C895:
9722 	case PCI_ID_SYM53C896:
9723 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9724 					  data, len);
9725 		break;
9726 	case PCI_ID_SYM53C875:
9727 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9728 					  data, len);
9729 		if (!x)
9730 			break;
9731 	default:
9732 		x = sym_read_T93C46_nvram(np, nvram);
9733 		break;
9734 	}
9735 	if (x)
9736 		return 1;
9737 
9738 	/* verify checksum */
9739 	for (x = 0, csum = 0; x < len - 1; x += 2)
9740 		csum += data[x] + (data[x+1] << 8);
9741 	if (csum != 0x1234)
9742 		return 1;
9743 
9744 	return 0;
9745 }
9746 
9747 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9748