xref: /freebsd/sys/dev/sym/sym_hipd.c (revision e17f5b1d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
5  *  PCI-SCSI controllers.
6  *
7  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
8  *
9  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
10  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
11  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
12  *
13  *
14  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
15  *  Copyright (C) 1998-1999  Gerard Roudier
16  *
17  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
18  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
19  *
20  *  The original ncr driver has been written for 386bsd and FreeBSD by
21  *          Wolfgang Stanglmeier        <wolf@cologne.de>
22  *          Stefan Esser                <se@mi.Uni-Koeln.de>
23  *  Copyright (C) 1994  Wolfgang Stanglmeier
24  *
25  *  The initialisation code, and part of the code that addresses
26  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
27  *  written by Justin T. Gibbs.
28  *
29  *  Other major contributions:
30  *
31  *  NVRAM detection and reading.
32  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
33  *
34  *-----------------------------------------------------------------------------
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. The name of the author may not be used to endorse or promote products
45  *    derived from this software without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
51  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
64 
65 /* #define SYM_DEBUG_GENERIC_SUPPORT */
66 
67 #include <sys/param.h>
68 
69 /*
70  *  Driver configuration options.
71  */
72 #include "opt_sym.h"
73 #include <dev/sym/sym_conf.h>
74 
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/lock.h>
80 #include <sys/mutex.h>
81 #include <sys/module.h>
82 #include <sys/bus.h>
83 
84 #include <sys/proc.h>
85 
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88 
89 #include <machine/bus.h>
90 #include <machine/resource.h>
91 #include <machine/atomic.h>
92 
93 #include <sys/rman.h>
94 
95 #include <cam/cam.h>
96 #include <cam/cam_ccb.h>
97 #include <cam/cam_sim.h>
98 #include <cam/cam_xpt_sim.h>
99 #include <cam/cam_debug.h>
100 
101 #include <cam/scsi/scsi_all.h>
102 #include <cam/scsi/scsi_message.h>
103 
104 /* Short and quite clear integer types */
105 typedef int8_t    s8;
106 typedef int16_t   s16;
107 typedef	int32_t   s32;
108 typedef u_int8_t  u8;
109 typedef u_int16_t u16;
110 typedef	u_int32_t u32;
111 
112 /*
113  *  Driver definitions.
114  */
115 #include <dev/sym/sym_defs.h>
116 #include <dev/sym/sym_fw.h>
117 
118 /*
119  *  IA32 architecture does not reorder STORES and prevents
120  *  LOADS from passing STORES. It is called `program order'
121  *  by Intel and allows device drivers to deal with memory
122  *  ordering by only ensuring that the code is not reordered
123  *  by the compiler when ordering is required.
124  *  Other architectures implement a weaker ordering that
125  *  requires memory barriers (and also IO barriers when they
126  *  make sense) to be used.
127  */
128 #if	defined	__i386__ || defined __amd64__
129 #define MEMORY_BARRIER()	do { ; } while(0)
130 #elif	defined	__powerpc__
131 #define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
132 #elif	defined	__arm__
133 #define MEMORY_BARRIER()	dmb()
134 #elif	defined	__aarch64__
135 #define MEMORY_BARRIER()	dmb(sy)
136 #elif	defined __riscv
137 #define MEMORY_BARRIER()	fence()
138 #else
139 #error	"Not supported platform"
140 #endif
141 
142 /*
143  *  A la VMS/CAM-3 queue management.
144  */
145 typedef struct sym_quehead {
146 	struct sym_quehead *flink;	/* Forward  pointer */
147 	struct sym_quehead *blink;	/* Backward pointer */
148 } SYM_QUEHEAD;
149 
150 #define sym_que_init(ptr) do { \
151 	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
152 } while (0)
153 
154 static __inline void __sym_que_add(struct sym_quehead * new,
155 	struct sym_quehead * blink,
156 	struct sym_quehead * flink)
157 {
158 	flink->blink	= new;
159 	new->flink	= flink;
160 	new->blink	= blink;
161 	blink->flink	= new;
162 }
163 
164 static __inline void __sym_que_del(struct sym_quehead * blink,
165 	struct sym_quehead * flink)
166 {
167 	flink->blink = blink;
168 	blink->flink = flink;
169 }
170 
171 static __inline int sym_que_empty(struct sym_quehead *head)
172 {
173 	return head->flink == head;
174 }
175 
176 static __inline void sym_que_splice(struct sym_quehead *list,
177 	struct sym_quehead *head)
178 {
179 	struct sym_quehead *first = list->flink;
180 
181 	if (first != list) {
182 		struct sym_quehead *last = list->blink;
183 		struct sym_quehead *at   = head->flink;
184 
185 		first->blink = head;
186 		head->flink  = first;
187 
188 		last->flink = at;
189 		at->blink   = last;
190 	}
191 }
192 
193 #define sym_que_entry(ptr, type, member) \
194 	((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
195 
196 #define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
197 
198 #define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
199 
200 #define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
201 
202 static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
203 {
204 	struct sym_quehead *elem = head->flink;
205 
206 	if (elem != head)
207 		__sym_que_del(head, elem->flink);
208 	else
209 		elem = NULL;
210 	return elem;
211 }
212 
213 #define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
214 
215 /*
216  *  This one may be useful.
217  */
218 #define FOR_EACH_QUEUED_ELEMENT(head, qp) \
219 	for (qp = (head)->flink; qp != (head); qp = qp->flink)
220 /*
221  *  FreeBSD does not offer our kind of queue in the CAM CCB.
222  *  So, we have to cast.
223  */
224 #define sym_qptr(p)	((struct sym_quehead *) (p))
225 
226 /*
227  *  Simple bitmap operations.
228  */
229 #define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
230 #define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
231 #define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
232 
233 /*
234  *  Number of tasks per device we want to handle.
235  */
236 #if	SYM_CONF_MAX_TAG_ORDER > 8
237 #error	"more than 256 tags per logical unit not allowed."
238 #endif
239 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
240 
241 /*
242  *  Donnot use more tasks that we can handle.
243  */
244 #ifndef	SYM_CONF_MAX_TAG
245 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
246 #endif
247 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
248 #undef	SYM_CONF_MAX_TAG
249 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
250 #endif
251 
252 /*
253  *    This one means 'NO TAG for this job'
254  */
255 #define NO_TAG	(256)
256 
257 /*
258  *  Number of SCSI targets.
259  */
260 #if	SYM_CONF_MAX_TARGET > 16
261 #error	"more than 16 targets not allowed."
262 #endif
263 
264 /*
265  *  Number of logical units per target.
266  */
267 #if	SYM_CONF_MAX_LUN > 64
268 #error	"more than 64 logical units per target not allowed."
269 #endif
270 
271 /*
272  *    Asynchronous pre-scaler (ns). Shall be 40 for
273  *    the SCSI timings to be compliant.
274  */
275 #define	SYM_CONF_MIN_ASYNC (40)
276 
277 /*
278  *  Number of entries in the START and DONE queues.
279  *
280  *  We limit to 1 PAGE in order to succeed allocation of
281  *  these queues. Each entry is 8 bytes long (2 DWORDS).
282  */
283 #ifdef	SYM_CONF_MAX_START
284 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
285 #else
286 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
287 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
288 #endif
289 
290 #if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
291 #undef	SYM_CONF_MAX_QUEUE
292 #define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
293 #undef	SYM_CONF_MAX_START
294 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
295 #endif
296 
297 /*
298  *  For this one, we want a short name :-)
299  */
300 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
301 
302 /*
303  *  Active debugging tags and verbosity.
304  */
305 #define DEBUG_ALLOC	(0x0001)
306 #define DEBUG_PHASE	(0x0002)
307 #define DEBUG_POLL	(0x0004)
308 #define DEBUG_QUEUE	(0x0008)
309 #define DEBUG_RESULT	(0x0010)
310 #define DEBUG_SCATTER	(0x0020)
311 #define DEBUG_SCRIPT	(0x0040)
312 #define DEBUG_TINY	(0x0080)
313 #define DEBUG_TIMING	(0x0100)
314 #define DEBUG_NEGO	(0x0200)
315 #define DEBUG_TAGS	(0x0400)
316 #define DEBUG_POINTER	(0x0800)
317 
318 #if 0
319 static int sym_debug = 0;
320 	#define DEBUG_FLAGS sym_debug
321 #else
322 /*	#define DEBUG_FLAGS (0x0631) */
323 	#define DEBUG_FLAGS (0x0000)
324 
325 #endif
326 #define sym_verbose	(np->verbose)
327 
328 /*
329  *  Insert a delay in micro-seconds and milli-seconds.
330  */
331 static void UDELAY(int us) { DELAY(us); }
332 static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
333 
334 /*
335  *  Simple power of two buddy-like allocator.
336  *
337  *  This simple code is not intended to be fast, but to
338  *  provide power of 2 aligned memory allocations.
339  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
340  *  this allocator allows simple and fast address calculations
341  *  from the SCRIPTS code. In addition, cache line alignment
342  *  is guaranteed for power of 2 cache line size.
343  *
344  *  This allocator has been developed for the Linux sym53c8xx
345  *  driver, since this O/S does not provide naturally aligned
346  *  allocations.
347  *  It has the advantage of allowing the driver to use private
348  *  pages of memory that will be useful if we ever need to deal
349  *  with IO MMUs for PCI.
350  */
351 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
352 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
353 #if 0
354 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
355 #endif
356 #define MEMO_WARN	1
357 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
358 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
359 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
360 
361 #define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
362 #define free_pages(p)		free((p), M_DEVBUF)
363 
364 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
365 
366 typedef struct m_link {		/* Link between free memory chunks */
367 	struct m_link *next;
368 } m_link_s;
369 
370 typedef struct m_vtob {		/* Virtual to Bus address translation */
371 	struct m_vtob	*next;
372 	bus_dmamap_t	dmamap;	/* Map for this chunk */
373 	m_addr_t	vaddr;	/* Virtual address */
374 	m_addr_t	baddr;	/* Bus physical address */
375 } m_vtob_s;
376 /* Hash this stuff a bit to speed up translations */
377 #define VTOB_HASH_SHIFT		5
378 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
379 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
380 #define VTOB_HASH_CODE(m)	\
381 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
382 
383 typedef struct m_pool {		/* Memory pool of a given kind */
384 	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
385 	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
386 	m_addr_t (*getp)(struct m_pool *);
387 #ifdef	MEMO_FREE_UNUSED
388 	void (*freep)(struct m_pool *, m_addr_t);
389 #endif
390 #define M_GETP()		mp->getp(mp)
391 #define M_FREEP(p)		mp->freep(mp, p)
392 	int nump;
393 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
394 	struct m_pool *next;
395 	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
396 } m_pool_s;
397 
398 static void *___sym_malloc(m_pool_s *mp, int size)
399 {
400 	int i = 0;
401 	int s = (1 << MEMO_SHIFT);
402 	int j;
403 	m_addr_t a;
404 	m_link_s *h = mp->h;
405 
406 	if (size > MEMO_CLUSTER_SIZE)
407 		return NULL;
408 
409 	while (size > s) {
410 		s <<= 1;
411 		++i;
412 	}
413 
414 	j = i;
415 	while (!h[j].next) {
416 		if (s == MEMO_CLUSTER_SIZE) {
417 			h[j].next = (m_link_s *) M_GETP();
418 			if (h[j].next)
419 				h[j].next->next = NULL;
420 			break;
421 		}
422 		++j;
423 		s <<= 1;
424 	}
425 	a = (m_addr_t) h[j].next;
426 	if (a) {
427 		h[j].next = h[j].next->next;
428 		while (j > i) {
429 			j -= 1;
430 			s >>= 1;
431 			h[j].next = (m_link_s *) (a+s);
432 			h[j].next->next = NULL;
433 		}
434 	}
435 #ifdef DEBUG
436 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
437 #endif
438 	return (void *) a;
439 }
440 
441 static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
442 {
443 	int i = 0;
444 	int s = (1 << MEMO_SHIFT);
445 	m_link_s *q;
446 	m_addr_t a, b;
447 	m_link_s *h = mp->h;
448 
449 #ifdef DEBUG
450 	printf("___sym_mfree(%p, %d)\n", ptr, size);
451 #endif
452 
453 	if (size > MEMO_CLUSTER_SIZE)
454 		return;
455 
456 	while (size > s) {
457 		s <<= 1;
458 		++i;
459 	}
460 
461 	a = (m_addr_t) ptr;
462 
463 	while (1) {
464 #ifdef MEMO_FREE_UNUSED
465 		if (s == MEMO_CLUSTER_SIZE) {
466 			M_FREEP(a);
467 			break;
468 		}
469 #endif
470 		b = a ^ s;
471 		q = &h[i];
472 		while (q->next && q->next != (m_link_s *) b) {
473 			q = q->next;
474 		}
475 		if (!q->next) {
476 			((m_link_s *) a)->next = h[i].next;
477 			h[i].next = (m_link_s *) a;
478 			break;
479 		}
480 		q->next = q->next->next;
481 		a = a & b;
482 		s <<= 1;
483 		++i;
484 	}
485 }
486 
487 static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
488 {
489 	void *p;
490 
491 	p = ___sym_malloc(mp, size);
492 
493 	if (DEBUG_FLAGS & DEBUG_ALLOC)
494 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
495 
496 	if (p)
497 		bzero(p, size);
498 	else if (uflags & MEMO_WARN)
499 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
500 
501 	return p;
502 }
503 
504 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
505 
506 static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
507 {
508 	if (DEBUG_FLAGS & DEBUG_ALLOC)
509 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
510 
511 	___sym_mfree(mp, ptr, size);
512 
513 }
514 
515 /*
516  * Default memory pool we donnot need to involve in DMA.
517  */
518 /*
519  * With the `bus dma abstraction', we use a separate pool for
520  * memory we donnot need to involve in DMA.
521  */
522 static m_addr_t ___mp0_getp(m_pool_s *mp)
523 {
524 	m_addr_t m = (m_addr_t) get_pages();
525 	if (m)
526 		++mp->nump;
527 	return m;
528 }
529 
530 #ifdef	MEMO_FREE_UNUSED
531 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
532 {
533 	free_pages(m);
534 	--mp->nump;
535 }
536 #endif
537 
538 #ifdef	MEMO_FREE_UNUSED
539 static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
540 #else
541 static m_pool_s mp0 = {0, 0, ___mp0_getp};
542 #endif
543 
544 /*
545  * Actual memory allocation routine for non-DMAed memory.
546  */
547 static void *sym_calloc(int size, char *name)
548 {
549 	void *m;
550 	/* Lock */
551 	m = __sym_calloc(&mp0, size, name);
552 	/* Unlock */
553 	return m;
554 }
555 
556 /*
557  * Actual memory allocation routine for non-DMAed memory.
558  */
559 static void sym_mfree(void *ptr, int size, char *name)
560 {
561 	/* Lock */
562 	__sym_mfree(&mp0, ptr, size, name);
563 	/* Unlock */
564 }
565 
566 /*
567  * DMAable pools.
568  */
569 /*
570  * With `bus dma abstraction', we use a separate pool per parent
571  * BUS handle. A reverse table (hashed) is maintained for virtual
572  * to BUS address translation.
573  */
574 static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg __unused,
575     int error)
576 {
577 	bus_addr_t *baddr;
578 
579 	KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg));
580 
581 	baddr = (bus_addr_t *)arg;
582 	if (error)
583 		*baddr = 0;
584 	else
585 		*baddr = segs->ds_addr;
586 }
587 
588 static m_addr_t ___dma_getp(m_pool_s *mp)
589 {
590 	m_vtob_s *vbp;
591 	void *vaddr = NULL;
592 	bus_addr_t baddr = 0;
593 
594 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
595 	if (!vbp)
596 		goto out_err;
597 
598 	if (bus_dmamem_alloc(mp->dmat, &vaddr,
599 			BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap))
600 		goto out_err;
601 	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
602 			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
603 	if (baddr) {
604 		int hc = VTOB_HASH_CODE(vaddr);
605 		vbp->vaddr = (m_addr_t) vaddr;
606 		vbp->baddr = (m_addr_t) baddr;
607 		vbp->next = mp->vtob[hc];
608 		mp->vtob[hc] = vbp;
609 		++mp->nump;
610 		return (m_addr_t) vaddr;
611 	}
612 out_err:
613 	if (baddr)
614 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
615 	if (vaddr)
616 		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
617 	if (vbp)
618 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
619 	return 0;
620 }
621 
622 #ifdef	MEMO_FREE_UNUSED
623 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
624 {
625 	m_vtob_s **vbpp, *vbp;
626 	int hc = VTOB_HASH_CODE(m);
627 
628 	vbpp = &mp->vtob[hc];
629 	while (*vbpp && (*vbpp)->vaddr != m)
630 		vbpp = &(*vbpp)->next;
631 	if (*vbpp) {
632 		vbp = *vbpp;
633 		*vbpp = (*vbpp)->next;
634 		bus_dmamap_unload(mp->dmat, vbp->dmamap);
635 		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
636 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
637 		--mp->nump;
638 	}
639 }
640 #endif
641 
642 static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
643 {
644 	m_pool_s *mp;
645 	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
646 	return mp;
647 }
648 
649 static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
650 {
651 	m_pool_s *mp = NULL;
652 
653 	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
654 	if (mp) {
655 		mp->dev_dmat = dev_dmat;
656 		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
657 			       BUS_SPACE_MAXADDR_32BIT,
658 			       BUS_SPACE_MAXADDR,
659 			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
660 			       MEMO_CLUSTER_SIZE, 0,
661 			       NULL, NULL, &mp->dmat)) {
662 			mp->getp = ___dma_getp;
663 #ifdef	MEMO_FREE_UNUSED
664 			mp->freep = ___dma_freep;
665 #endif
666 			mp->next = mp0.next;
667 			mp0.next = mp;
668 			return mp;
669 		}
670 	}
671 	if (mp)
672 		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
673 	return NULL;
674 }
675 
676 #ifdef	MEMO_FREE_UNUSED
677 static void ___del_dma_pool(m_pool_s *p)
678 {
679 	struct m_pool **pp = &mp0.next;
680 
681 	while (*pp && *pp != p)
682 		pp = &(*pp)->next;
683 	if (*pp) {
684 		*pp = (*pp)->next;
685 		bus_dma_tag_destroy(p->dmat);
686 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
687 	}
688 }
689 #endif
690 
691 static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
692 {
693 	struct m_pool *mp;
694 	void *m = NULL;
695 
696 	/* Lock */
697 	mp = ___get_dma_pool(dev_dmat);
698 	if (!mp)
699 		mp = ___cre_dma_pool(dev_dmat);
700 	if (mp)
701 		m = __sym_calloc(mp, size, name);
702 #ifdef	MEMO_FREE_UNUSED
703 	if (mp && !mp->nump)
704 		___del_dma_pool(mp);
705 #endif
706 	/* Unlock */
707 
708 	return m;
709 }
710 
711 static void
712 __sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
713 {
714 	struct m_pool *mp;
715 
716 	/* Lock */
717 	mp = ___get_dma_pool(dev_dmat);
718 	if (mp)
719 		__sym_mfree(mp, m, size, name);
720 #ifdef	MEMO_FREE_UNUSED
721 	if (mp && !mp->nump)
722 		___del_dma_pool(mp);
723 #endif
724 	/* Unlock */
725 }
726 
727 static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
728 {
729 	m_pool_s *mp;
730 	int hc = VTOB_HASH_CODE(m);
731 	m_vtob_s *vp = NULL;
732 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
733 
734 	/* Lock */
735 	mp = ___get_dma_pool(dev_dmat);
736 	if (mp) {
737 		vp = mp->vtob[hc];
738 		while (vp && (m_addr_t) vp->vaddr != a)
739 			vp = vp->next;
740 	}
741 	/* Unlock */
742 	if (!vp)
743 		panic("sym: VTOBUS FAILED!\n");
744 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
745 }
746 
747 /*
748  * Verbs for DMAable memory handling.
749  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
750  * being discarded.
751  */
752 #define _uvptv_(p) ((void *)((vm_offset_t)(p)))
753 #define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
754 #define _sym_mfree_dma(np, p, s, n)	\
755 				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
756 #define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
757 #define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
758 #define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
759 #define vtobus(p)			_vtobus(np, p)
760 
761 /*
762  *  Print a buffer in hexadecimal format.
763  */
764 static void sym_printb_hex (u_char *p, int n)
765 {
766 	while (n-- > 0)
767 		printf (" %x", *p++);
768 }
769 
770 /*
771  *  Same with a label at beginning and .\n at end.
772  */
773 static void sym_printl_hex (char *label, u_char *p, int n)
774 {
775 	printf ("%s", label);
776 	sym_printb_hex (p, n);
777 	printf (".\n");
778 }
779 
780 /*
781  *  Return a string for SCSI BUS mode.
782  */
783 static const char *sym_scsi_bus_mode(int mode)
784 {
785 	switch(mode) {
786 	case SMODE_HVD:	return "HVD";
787 	case SMODE_SE:	return "SE";
788 	case SMODE_LVD: return "LVD";
789 	}
790 	return "??";
791 }
792 
793 /*
794  *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
795  */
796 #ifdef SYM_CONF_NVRAM_SUPPORT
797 static const u_char Tekram_sync[16] =
798 	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
799 #endif
800 
801 /*
802  *  Union of supported NVRAM formats.
803  */
804 struct sym_nvram {
805 	int type;
806 #define	SYM_SYMBIOS_NVRAM	(1)
807 #define	SYM_TEKRAM_NVRAM	(2)
808 #ifdef	SYM_CONF_NVRAM_SUPPORT
809 	union {
810 		Symbios_nvram Symbios;
811 		Tekram_nvram Tekram;
812 	} data;
813 #endif
814 };
815 
816 /*
817  *  This one is hopefully useless, but actually useful. :-)
818  */
819 #ifndef assert
820 #define	assert(expression) { \
821 	if (!(expression)) { \
822 		(void)panic( \
823 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
824 			#expression, \
825 			__FILE__, __LINE__); \
826 	} \
827 }
828 #endif
829 
830 /*
831  *  Some provision for a possible big endian mode supported by
832  *  Symbios chips (never seen, by the way).
833  *  For now, this stuff does not deserve any comments. :)
834  */
835 #define sym_offb(o)	(o)
836 #define sym_offw(o)	(o)
837 
838 /*
839  *  Some provision for support for BIG ENDIAN CPU.
840  */
841 #define cpu_to_scr(dw)	htole32(dw)
842 #define scr_to_cpu(dw)	le32toh(dw)
843 
844 /*
845  *  Access to the chip IO registers and on-chip RAM.
846  *  We use the `bus space' interface under FreeBSD-4 and
847  *  later kernel versions.
848  */
849 #if defined(SYM_CONF_IOMAPPED)
850 
851 #define INB_OFF(o)	bus_read_1(np->io_res, (o))
852 #define INW_OFF(o)	bus_read_2(np->io_res, (o))
853 #define INL_OFF(o)	bus_read_4(np->io_res, (o))
854 
855 #define OUTB_OFF(o, v)	bus_write_1(np->io_res, (o), (v))
856 #define OUTW_OFF(o, v)	bus_write_2(np->io_res, (o), (v))
857 #define OUTL_OFF(o, v)	bus_write_4(np->io_res, (o), (v))
858 
859 #else	/* Memory mapped IO */
860 
861 #define INB_OFF(o)	bus_read_1(np->mmio_res, (o))
862 #define INW_OFF(o)	bus_read_2(np->mmio_res, (o))
863 #define INL_OFF(o)	bus_read_4(np->mmio_res, (o))
864 
865 #define OUTB_OFF(o, v)	bus_write_1(np->mmio_res, (o), (v))
866 #define OUTW_OFF(o, v)	bus_write_2(np->mmio_res, (o), (v))
867 #define OUTL_OFF(o, v)	bus_write_4(np->mmio_res, (o), (v))
868 
869 #endif	/* SYM_CONF_IOMAPPED */
870 
871 #define OUTRAM_OFF(o, a, l)	\
872 	bus_write_region_1(np->ram_res, (o), (a), (l))
873 
874 /*
875  *  Common definitions for both bus space and legacy IO methods.
876  */
877 #define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
878 #define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
879 #define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
880 
881 #define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
882 #define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
883 #define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
884 
885 #define OUTONB(r, m)	OUTB(r, INB(r) | (m))
886 #define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
887 #define OUTONW(r, m)	OUTW(r, INW(r) | (m))
888 #define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
889 #define OUTONL(r, m)	OUTL(r, INL(r) | (m))
890 #define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
891 
892 /*
893  *  We normally want the chip to have a consistent view
894  *  of driver internal data structures when we restart it.
895  *  Thus these macros.
896  */
897 #define OUTL_DSP(v)				\
898 	do {					\
899 		MEMORY_BARRIER();		\
900 		OUTL (nc_dsp, (v));		\
901 	} while (0)
902 
903 #define OUTONB_STD()				\
904 	do {					\
905 		MEMORY_BARRIER();		\
906 		OUTONB (nc_dcntl, (STD|NOCOM));	\
907 	} while (0)
908 
909 /*
910  *  Command control block states.
911  */
912 #define HS_IDLE		(0)
913 #define HS_BUSY		(1)
914 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
915 #define HS_DISCONNECT	(3)	/* Disconnected by target */
916 #define HS_WAIT		(4)	/* waiting for resource	  */
917 
918 #define HS_DONEMASK	(0x80)
919 #define HS_COMPLETE	(4|HS_DONEMASK)
920 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
921 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
922 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
923 
924 /*
925  *  Software Interrupt Codes
926  */
927 #define	SIR_BAD_SCSI_STATUS	(1)
928 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
929 #define	SIR_MSG_RECEIVED	(3)
930 #define	SIR_MSG_WEIRD		(4)
931 #define	SIR_NEGO_FAILED		(5)
932 #define	SIR_NEGO_PROTO		(6)
933 #define	SIR_SCRIPT_STOPPED	(7)
934 #define	SIR_REJECT_TO_SEND	(8)
935 #define	SIR_SWIDE_OVERRUN	(9)
936 #define	SIR_SODL_UNDERRUN	(10)
937 #define	SIR_RESEL_NO_MSG_IN	(11)
938 #define	SIR_RESEL_NO_IDENTIFY	(12)
939 #define	SIR_RESEL_BAD_LUN	(13)
940 #define	SIR_TARGET_SELECTED	(14)
941 #define	SIR_RESEL_BAD_I_T_L	(15)
942 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
943 #define	SIR_ABORT_SENT		(17)
944 #define	SIR_RESEL_ABORTED	(18)
945 #define	SIR_MSG_OUT_DONE	(19)
946 #define	SIR_COMPLETE_ERROR	(20)
947 #define	SIR_DATA_OVERRUN	(21)
948 #define	SIR_BAD_PHASE		(22)
949 #define	SIR_MAX			(22)
950 
951 /*
952  *  Extended error bit codes.
953  *  xerr_status field of struct sym_ccb.
954  */
955 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
956 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
957 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
958 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
959 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
960 
961 /*
962  *  Negotiation status.
963  *  nego_status field of struct sym_ccb.
964  */
965 #define NS_SYNC		(1)
966 #define NS_WIDE		(2)
967 #define NS_PPR		(3)
968 
969 /*
970  *  A CCB hashed table is used to retrieve CCB address
971  *  from DSA value.
972  */
973 #define CCB_HASH_SHIFT		8
974 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
975 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
976 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
977 
978 /*
979  *  Device flags.
980  */
981 #define SYM_DISC_ENABLED	(1)
982 #define SYM_TAGS_ENABLED	(1<<1)
983 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
984 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
985 
986 /*
987  *  Host adapter miscellaneous flags.
988  */
989 #define SYM_AVOID_BUS_RESET	(1)
990 #define SYM_SCAN_TARGETS_HILO	(1<<1)
991 
992 /*
993  *  Device quirks.
994  *  Some devices, for example the CHEETAH 2 LVD, disconnects without
995  *  saving the DATA POINTER then reselects and terminates the IO.
996  *  On reselection, the automatic RESTORE DATA POINTER makes the
997  *  CURRENT DATA POINTER not point at the end of the IO.
998  *  This behaviour just breaks our calculation of the residual.
999  *  For now, we just force an AUTO SAVE on disconnection and will
1000  *  fix that in a further driver version.
1001  */
1002 #define SYM_QUIRK_AUTOSAVE 1
1003 
1004 /*
1005  *  Misc.
1006  */
1007 #define	SYM_LOCK()		mtx_lock(&np->mtx)
1008 #define	SYM_LOCK_ASSERT(_what)	mtx_assert(&np->mtx, (_what))
1009 #define	SYM_LOCK_DESTROY()	mtx_destroy(&np->mtx)
1010 #define	SYM_LOCK_INIT()		mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF)
1011 #define	SYM_LOCK_INITIALIZED()	mtx_initialized(&np->mtx)
1012 #define	SYM_UNLOCK()		mtx_unlock(&np->mtx)
1013 
1014 #define SYM_SNOOP_TIMEOUT (10000000)
1015 #define SYM_PCI_IO	PCIR_BAR(0)
1016 #define SYM_PCI_MMIO	PCIR_BAR(1)
1017 #define SYM_PCI_RAM	PCIR_BAR(2)
1018 #define SYM_PCI_RAM64	PCIR_BAR(3)
1019 
1020 /*
1021  *  Back-pointer from the CAM CCB to our data structures.
1022  */
1023 #define sym_hcb_ptr	spriv_ptr0
1024 /* #define sym_ccb_ptr	spriv_ptr1 */
1025 
1026 /*
1027  *  We mostly have to deal with pointers.
1028  *  Thus these typedef's.
1029  */
1030 typedef struct sym_tcb *tcb_p;
1031 typedef struct sym_lcb *lcb_p;
1032 typedef struct sym_ccb *ccb_p;
1033 typedef struct sym_hcb *hcb_p;
1034 
1035 /*
1036  *  Gather negotiable parameters value
1037  */
1038 struct sym_trans {
1039 	u8 scsi_version;
1040 	u8 spi_version;
1041 	u8 period;
1042 	u8 offset;
1043 	u8 width;
1044 	u8 options;	/* PPR options */
1045 };
1046 
1047 struct sym_tinfo {
1048 	struct sym_trans current;
1049 	struct sym_trans goal;
1050 	struct sym_trans user;
1051 };
1052 
1053 #define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1054 #define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1055 
1056 /*
1057  *  Global TCB HEADER.
1058  *
1059  *  Due to lack of indirect addressing on earlier NCR chips,
1060  *  this substructure is copied from the TCB to a global
1061  *  address after selection.
1062  *  For SYMBIOS chips that support LOAD/STORE this copy is
1063  *  not needed and thus not performed.
1064  */
1065 struct sym_tcbh {
1066 	/*
1067 	 *  Scripts bus addresses of LUN table accessed from scripts.
1068 	 *  LUN #0 is a special case, since multi-lun devices are rare,
1069 	 *  and we we want to speed-up the general case and not waste
1070 	 *  resources.
1071 	 */
1072 	u32	luntbl_sa;	/* bus address of this table	*/
1073 	u32	lun0_sa;	/* bus address of LCB #0	*/
1074 	/*
1075 	 *  Actual SYNC/WIDE IO registers value for this target.
1076 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1077 	 *  so have alignment constraints.
1078 	 */
1079 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1080 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
1081 /*2*/	u_char	filler1;
1082 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1083 };
1084 
1085 /*
1086  *  Target Control Block
1087  */
1088 struct sym_tcb {
1089 	/*
1090 	 *  TCB header.
1091 	 *  Assumed at offset 0.
1092 	 */
1093 /*0*/	struct sym_tcbh head;
1094 
1095 	/*
1096 	 *  LUN table used by the SCRIPTS processor.
1097 	 *  An array of bus addresses is used on reselection.
1098 	 */
1099 	u32	*luntbl;	/* LCBs bus address table	*/
1100 
1101 	/*
1102 	 *  LUN table used by the C code.
1103 	 */
1104 	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1105 #if SYM_CONF_MAX_LUN > 1
1106 	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1107 #endif
1108 
1109 	/*
1110 	 *  Bitmap that tells about LUNs that succeeded at least
1111 	 *  1 IO and therefore assumed to be a real device.
1112 	 *  Avoid useless allocation of the LCB structure.
1113 	 */
1114 	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1115 
1116 	/*
1117 	 *  Bitmap that tells about LUNs that haven't yet an LCB
1118 	 *  allocated (not discovered or LCB allocation failed).
1119 	 */
1120 	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1121 
1122 	/*
1123 	 *  Transfer capabilities (SIP)
1124 	 */
1125 	struct sym_tinfo tinfo;
1126 
1127 	/*
1128 	 * Keep track of the CCB used for the negotiation in order
1129 	 * to ensure that only 1 negotiation is queued at a time.
1130 	 */
1131 	ccb_p   nego_cp;	/* CCB used for the nego		*/
1132 
1133 	/*
1134 	 *  Set when we want to reset the device.
1135 	 */
1136 	u_char	to_reset;
1137 
1138 	/*
1139 	 *  Other user settable limits and options.
1140 	 *  These limits are read from the NVRAM if present.
1141 	 */
1142 	u_char	usrflags;
1143 	u_short	usrtags;
1144 };
1145 
1146 /*
1147  *  Assert some alignments required by the chip.
1148  */
1149 CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^
1150     offsetof(struct sym_tcb, head.sval)) &3) == 0);
1151 CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^
1152     offsetof(struct sym_tcb, head.wval)) &3) == 0);
1153 
1154 /*
1155  *  Global LCB HEADER.
1156  *
1157  *  Due to lack of indirect addressing on earlier NCR chips,
1158  *  this substructure is copied from the LCB to a global
1159  *  address after selection.
1160  *  For SYMBIOS chips that support LOAD/STORE this copy is
1161  *  not needed and thus not performed.
1162  */
1163 struct sym_lcbh {
1164 	/*
1165 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1166 	 *  For not probed logical units, this address points to
1167 	 *  SCRIPTS that deal with bad LU handling (must be at
1168 	 *  offset zero of the LCB for that reason).
1169 	 */
1170 /*0*/	u32	resel_sa;
1171 
1172 	/*
1173 	 *  Task (bus address of a CCB) read from SCRIPTS that points
1174 	 *  to the unique ITL nexus allowed to be disconnected.
1175 	 */
1176 	u32	itl_task_sa;
1177 
1178 	/*
1179 	 *  Task table bus address (read from SCRIPTS).
1180 	 */
1181 	u32	itlq_tbl_sa;
1182 };
1183 
1184 /*
1185  *  Logical Unit Control Block
1186  */
1187 struct sym_lcb {
1188 	/*
1189 	 *  TCB header.
1190 	 *  Assumed at offset 0.
1191 	 */
1192 /*0*/	struct sym_lcbh head;
1193 
1194 	/*
1195 	 *  Task table read from SCRIPTS that contains pointers to
1196 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1197 	 *  inside the header.
1198 	 */
1199 	u32	*itlq_tbl;	/* Kernel virtual address	*/
1200 
1201 	/*
1202 	 *  Busy CCBs management.
1203 	 */
1204 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1205 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1206 
1207 	/*
1208 	 *  Circular tag allocation buffer.
1209 	 */
1210 	u_short	ia_tag;		/* Tag allocation index		*/
1211 	u_short	if_tag;		/* Tag release index		*/
1212 	u_char	*cb_tags;	/* Circular tags buffer		*/
1213 
1214 	/*
1215 	 *  Set when we want to clear all tasks.
1216 	 */
1217 	u_char to_clear;
1218 
1219 	/*
1220 	 *  Capabilities.
1221 	 */
1222 	u_char	user_flags;
1223 	u_char	current_flags;
1224 };
1225 
1226 /*
1227  *  Action from SCRIPTS on a task.
1228  *  Is part of the CCB, but is also used separately to plug
1229  *  error handling action to perform from SCRIPTS.
1230  */
1231 struct sym_actscr {
1232 	u32	start;		/* Jumped by SCRIPTS after selection	*/
1233 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1234 };
1235 
1236 /*
1237  *  Phase mismatch context.
1238  *
1239  *  It is part of the CCB and is used as parameters for the
1240  *  DATA pointer. We need two contexts to handle correctly the
1241  *  SAVED DATA POINTER.
1242  */
1243 struct sym_pmc {
1244 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1245 	u32	ret;		/* SCRIPT return address	*/
1246 };
1247 
1248 /*
1249  *  LUN control block lookup.
1250  *  We use a direct pointer for LUN #0, and a table of
1251  *  pointers which is only allocated for devices that support
1252  *  LUN(s) > 0.
1253  */
1254 #if SYM_CONF_MAX_LUN <= 1
1255 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0
1256 #else
1257 #define sym_lp(tp, lun) \
1258 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1259 #endif
1260 
1261 /*
1262  *  Status are used by the host and the script processor.
1263  *
1264  *  The last four bytes (status[4]) are copied to the
1265  *  scratchb register (declared as scr0..scr3) just after the
1266  *  select/reselect, and copied back just after disconnecting.
1267  *  Inside the script the XX_REG are used.
1268  */
1269 
1270 /*
1271  *  Last four bytes (script)
1272  */
1273 #define  QU_REG	scr0
1274 #define  HS_REG	scr1
1275 #define  HS_PRT	nc_scr1
1276 #define  SS_REG	scr2
1277 #define  SS_PRT	nc_scr2
1278 #define  HF_REG	scr3
1279 #define  HF_PRT	nc_scr3
1280 
1281 /*
1282  *  Last four bytes (host)
1283  */
1284 #define  actualquirks  phys.head.status[0]
1285 #define  host_status   phys.head.status[1]
1286 #define  ssss_status   phys.head.status[2]
1287 #define  host_flags    phys.head.status[3]
1288 
1289 /*
1290  *  Host flags
1291  */
1292 #define HF_IN_PM0	1u
1293 #define HF_IN_PM1	(1u<<1)
1294 #define HF_ACT_PM	(1u<<2)
1295 #define HF_DP_SAVED	(1u<<3)
1296 #define HF_SENSE	(1u<<4)
1297 #define HF_EXT_ERR	(1u<<5)
1298 #define HF_DATA_IN	(1u<<6)
1299 #ifdef SYM_CONF_IARB_SUPPORT
1300 #define HF_HINT_IARB	(1u<<7)
1301 #endif
1302 
1303 /*
1304  *  Global CCB HEADER.
1305  *
1306  *  Due to lack of indirect addressing on earlier NCR chips,
1307  *  this substructure is copied from the ccb to a global
1308  *  address after selection (or reselection) and copied back
1309  *  before disconnect.
1310  *  For SYMBIOS chips that support LOAD/STORE this copy is
1311  *  not needed and thus not performed.
1312  */
1313 struct sym_ccbh {
1314 	/*
1315 	 *  Start and restart SCRIPTS addresses (must be at 0).
1316 	 */
1317 /*0*/	struct sym_actscr go;
1318 
1319 	/*
1320 	 *  SCRIPTS jump address that deal with data pointers.
1321 	 *  'savep' points to the position in the script responsible
1322 	 *  for the actual transfer of data.
1323 	 *  It's written on reception of a SAVE_DATA_POINTER message.
1324 	 */
1325 	u32	savep;		/* Jump address to saved data pointer	*/
1326 	u32	lastp;		/* SCRIPTS address at end of data	*/
1327 	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1328 
1329 	/*
1330 	 *  Status fields.
1331 	 */
1332 	u8	status[4];
1333 };
1334 
1335 /*
1336  *  Data Structure Block
1337  *
1338  *  During execution of a ccb by the script processor, the
1339  *  DSA (data structure address) register points to this
1340  *  substructure of the ccb.
1341  */
1342 struct sym_dsb {
1343 	/*
1344 	 *  CCB header.
1345 	 *  Also assumed at offset 0 of the sym_ccb structure.
1346 	 */
1347 /*0*/	struct sym_ccbh head;
1348 
1349 	/*
1350 	 *  Phase mismatch contexts.
1351 	 *  We need two to handle correctly the SAVED DATA POINTER.
1352 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1353 	 *  for address calculation from SCRIPTS.
1354 	 */
1355 	struct sym_pmc pm0;
1356 	struct sym_pmc pm1;
1357 
1358 	/*
1359 	 *  Table data for Script
1360 	 */
1361 	struct sym_tblsel  select;
1362 	struct sym_tblmove smsg;
1363 	struct sym_tblmove smsg_ext;
1364 	struct sym_tblmove cmd;
1365 	struct sym_tblmove sense;
1366 	struct sym_tblmove wresid;
1367 	struct sym_tblmove data [SYM_CONF_MAX_SG];
1368 };
1369 
1370 /*
1371  *  Our Command Control Block
1372  */
1373 struct sym_ccb {
1374 	/*
1375 	 *  This is the data structure which is pointed by the DSA
1376 	 *  register when it is executed by the script processor.
1377 	 *  It must be the first entry.
1378 	 */
1379 	struct sym_dsb phys;
1380 
1381 	/*
1382 	 *  Pointer to CAM ccb and related stuff.
1383 	 */
1384 	struct callout ch;	/* callout handle		*/
1385 	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1386 	u8	cdb_buf[16];	/* Copy of CDB			*/
1387 	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1388 #define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1389 	int	data_len;	/* Total data length		*/
1390 	int	segments;	/* Number of SG segments	*/
1391 
1392 	/*
1393 	 *  Miscellaneous status'.
1394 	 */
1395 	u_char	nego_status;	/* Negotiation status		*/
1396 	u_char	xerr_status;	/* Extended error flags		*/
1397 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1398 
1399 	/*
1400 	 *  Message areas.
1401 	 *  We prepare a message to be sent after selection.
1402 	 *  We may use a second one if the command is rescheduled
1403 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1404 	 *  Contents are IDENTIFY and SIMPLE_TAG.
1405 	 *  While negotiating sync or wide transfer,
1406 	 *  a SDTR or WDTR message is appended.
1407 	 */
1408 	u_char	scsi_smsg [12];
1409 	u_char	scsi_smsg2[12];
1410 
1411 	/*
1412 	 *  Auto request sense related fields.
1413 	 */
1414 	u_char	sensecmd[6];	/* Request Sense command	*/
1415 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1416 	u_char	sv_xerr_status;	/* Saved extended status	*/
1417 	int	sv_resid;	/* Saved residual		*/
1418 
1419 	/*
1420 	 *  Map for the DMA of user data.
1421 	 */
1422 	void		*arg;	/* Argument for some callback	*/
1423 	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1424 	u_char		dmamapped;
1425 #define SYM_DMA_NONE	0
1426 #define SYM_DMA_READ	1
1427 #define SYM_DMA_WRITE	2
1428 	/*
1429 	 *  Other fields.
1430 	 */
1431 	u32	ccb_ba;		/* BUS address of this CCB	*/
1432 	u_short	tag;		/* Tag for this transfer	*/
1433 				/*  NO_TAG means no tag		*/
1434 	u_char	target;
1435 	u_char	lun;
1436 	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1437 	SYM_QUEHEAD
1438 		link_ccbq;	/* Link to free/busy CCB queue	*/
1439 	u32	startp;		/* Initial data pointer		*/
1440 	int	ext_sg;		/* Extreme data pointer, used	*/
1441 	int	ext_ofs;	/*  to calculate the residual.	*/
1442 	u_char	to_abort;	/* Want this IO to be aborted	*/
1443 };
1444 
1445 #define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1446 
1447 /*
1448  *  Host Control Block
1449  */
1450 struct sym_hcb {
1451 	struct mtx	mtx;
1452 
1453 	/*
1454 	 *  Global headers.
1455 	 *  Due to poorness of addressing capabilities, earlier
1456 	 *  chips (810, 815, 825) copy part of the data structures
1457 	 *  (CCB, TCB and LCB) in fixed areas.
1458 	 */
1459 #ifdef	SYM_CONF_GENERIC_SUPPORT
1460 	struct sym_ccbh	ccb_head;
1461 	struct sym_tcbh	tcb_head;
1462 	struct sym_lcbh	lcb_head;
1463 #endif
1464 	/*
1465 	 *  Idle task and invalid task actions and
1466 	 *  their bus addresses.
1467 	 */
1468 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1469 	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1470 
1471 	/*
1472 	 *  Dummy lun table to protect us against target
1473 	 *  returning bad lun number on reselection.
1474 	 */
1475 	u32	*badluntbl;	/* Table physical address	*/
1476 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1477 
1478 	/*
1479 	 *  Bus address of this host control block.
1480 	 */
1481 	u32	hcb_ba;
1482 
1483 	/*
1484 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1485 	 *  The START_RAM64 script loads the MMRS and MMWS from this
1486 	 *  field.
1487 	 */
1488 	u32	scr_ram_seg;
1489 
1490 	/*
1491 	 *  Chip and controller indentification.
1492 	 */
1493 	device_t device;
1494 
1495 	/*
1496 	 *  Initial value of some IO register bits.
1497 	 *  These values are assumed to have been set by BIOS, and may
1498 	 *  be used to probe adapter implementation differences.
1499 	 */
1500 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1501 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1502 		sv_stest1;
1503 
1504 	/*
1505 	 *  Actual initial value of IO register bits used by the
1506 	 *  driver. They are loaded at initialisation according to
1507 	 *  features that are to be enabled/disabled.
1508 	 */
1509 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1510 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1511 
1512 	/*
1513 	 *  Target data.
1514 	 */
1515 #ifdef __amd64__
1516 	struct sym_tcb	*target;
1517 #else
1518 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1519 #endif
1520 
1521 	/*
1522 	 *  Target control block bus address array used by the SCRIPT
1523 	 *  on reselection.
1524 	 */
1525 	u32		*targtbl;
1526 	u32		targtbl_ba;
1527 
1528 	/*
1529 	 *  CAM SIM information for this instance.
1530 	 */
1531 	struct		cam_sim  *sim;
1532 	struct		cam_path *path;
1533 
1534 	/*
1535 	 *  Allocated hardware resources.
1536 	 */
1537 	struct resource	*irq_res;
1538 	struct resource	*io_res;
1539 	struct resource	*mmio_res;
1540 	struct resource	*ram_res;
1541 	int		ram_id;
1542 	void *intr;
1543 
1544 	/*
1545 	 *  Bus stuff.
1546 	 *
1547 	 *  My understanding of PCI is that all agents must share the
1548 	 *  same addressing range and model.
1549 	 *  But some hardware architecture guys provide complex and
1550 	 *  brain-deaded stuff that makes shit.
1551 	 *  This driver only support PCI compliant implementations and
1552 	 *  deals with part of the BUS stuff complexity only to fit O/S
1553 	 *  requirements.
1554 	 */
1555 
1556 	/*
1557 	 *  DMA stuff.
1558 	 */
1559 	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1560 	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1561 	/*
1562 	 *  BUS addresses of the chip
1563 	 */
1564 	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1565 	int		mmio_ws;	/* MMIO Window size		*/
1566 
1567 	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1568 	int		ram_ws;		/* RAM window size		*/
1569 
1570 	/*
1571 	 *  SCRIPTS virtual and physical bus addresses.
1572 	 *  'script'  is loaded in the on-chip RAM if present.
1573 	 *  'scripth' stays in main memory for all chips except the
1574 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1575 	 */
1576 	u_char		*scripta0;	/* Copies of script and scripth	*/
1577 	u_char		*scriptb0;	/* Copies of script and scripth	*/
1578 	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1579 	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1580 	vm_offset_t	scriptb0_ba;
1581 	u_short		scripta_sz;	/* Actual size of script A	*/
1582 	u_short		scriptb_sz;	/* Actual size of script B	*/
1583 
1584 	/*
1585 	 *  Bus addresses, setup and patch methods for
1586 	 *  the selected firmware.
1587 	 */
1588 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1589 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1590 	void		(*fw_setup)(hcb_p np, const struct sym_fw *fw);
1591 	void		(*fw_patch)(hcb_p np);
1592 	const char	*fw_name;
1593 
1594 	/*
1595 	 *  General controller parameters and configuration.
1596 	 */
1597 	u_short	device_id;	/* PCI device id		*/
1598 	u_char	revision_id;	/* PCI device revision id	*/
1599 	u_int	features;	/* Chip features map		*/
1600 	u_char	myaddr;		/* SCSI id of the adapter	*/
1601 	u_char	maxburst;	/* log base 2 of dwords burst	*/
1602 	u_char	maxwide;	/* Maximum transfer width	*/
1603 	u_char	minsync;	/* Min sync period factor (ST)	*/
1604 	u_char	maxsync;	/* Max sync period factor (ST)	*/
1605 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1606 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1607 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1608 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1609 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1610 	u_char	clock_divn;	/* Number of clock divisors	*/
1611 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1612 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1613 	/*
1614 	 *  Start queue management.
1615 	 *  It is filled up by the host processor and accessed by the
1616 	 *  SCRIPTS processor in order to start SCSI commands.
1617 	 */
1618 	volatile		/* Prevent code optimizations	*/
1619 	u32	*squeue;	/* Start queue virtual address	*/
1620 	u32	squeue_ba;	/* Start queue BUS address	*/
1621 	u_short	squeueput;	/* Next free slot of the queue	*/
1622 	u_short	actccbs;	/* Number of allocated CCBs	*/
1623 
1624 	/*
1625 	 *  Command completion queue.
1626 	 *  It is the same size as the start queue to avoid overflow.
1627 	 */
1628 	u_short	dqueueget;	/* Next position to scan	*/
1629 	volatile		/* Prevent code optimizations	*/
1630 	u32	*dqueue;	/* Completion (done) queue	*/
1631 	u32	dqueue_ba;	/* Done queue BUS address	*/
1632 
1633 	/*
1634 	 *  Miscellaneous buffers accessed by the scripts-processor.
1635 	 *  They shall be DWORD aligned, because they may be read or
1636 	 *  written with a script command.
1637 	 */
1638 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1639 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1640 	u32		lastmsg;	/* Last SCSI message sent	*/
1641 	u_char		scratch;	/* Scratch for SCSI receive	*/
1642 
1643 	/*
1644 	 *  Miscellaneous configuration and status parameters.
1645 	 */
1646 	u_char		usrflags;	/* Miscellaneous user flags	*/
1647 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1648 	u_char		verbose;	/* Verbosity for this controller*/
1649 	u32		cache;		/* Used for cache test at init.	*/
1650 
1651 	/*
1652 	 *  CCB lists and queue.
1653 	 */
1654 	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1655 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1656 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1657 
1658 	/*
1659 	 *  During error handling and/or recovery,
1660 	 *  active CCBs that are to be completed with
1661 	 *  error or requeued are moved from the busy_ccbq
1662 	 *  to the comp_ccbq prior to completion.
1663 	 */
1664 	SYM_QUEHEAD	comp_ccbq;
1665 
1666 	/*
1667 	 *  CAM CCB pending queue.
1668 	 */
1669 	SYM_QUEHEAD	cam_ccbq;
1670 
1671 	/*
1672 	 *  IMMEDIATE ARBITRATION (IARB) control.
1673 	 *
1674 	 *  We keep track in 'last_cp' of the last CCB that has been
1675 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1676 	 *  this CCB completes. If last_cp is not zero at the moment
1677 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1678 	 *  used by the SCRIPTS as a hint for setting IARB.
1679 	 *  We donnot set more than 'iarb_max' consecutive hints for
1680 	 *  IARB in order to leave devices a chance to reselect.
1681 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1682 	 */
1683 #ifdef SYM_CONF_IARB_SUPPORT
1684 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1685 	u_short		iarb_count;	/* Actual # of these hints	*/
1686 	ccb_p		last_cp;
1687 #endif
1688 
1689 	/*
1690 	 *  Command abort handling.
1691 	 *  We need to synchronize tightly with the SCRIPTS
1692 	 *  processor in order to handle things correctly.
1693 	 */
1694 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1695 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1696 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1697 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1698 };
1699 
1700 #define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1701 
1702 /*
1703  *  Return the name of the controller.
1704  */
1705 static __inline const char *sym_name(hcb_p np)
1706 {
1707 	return device_get_nameunit(np->device);
1708 }
1709 
1710 /*--------------------------------------------------------------------------*/
1711 /*------------------------------ FIRMWARES ---------------------------------*/
1712 /*--------------------------------------------------------------------------*/
1713 
1714 /*
1715  *  This stuff will be moved to a separate source file when
1716  *  the driver will be broken into several source modules.
1717  */
1718 
1719 /*
1720  *  Macros used for all firmwares.
1721  */
1722 #define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1723 #define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1724 #define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1725 #define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1726 
1727 #ifdef	SYM_CONF_GENERIC_SUPPORT
1728 /*
1729  *  Allocate firmware #1 script area.
1730  */
1731 #define	SYM_FWA_SCR		sym_fw1a_scr
1732 #define	SYM_FWB_SCR		sym_fw1b_scr
1733 #include <dev/sym/sym_fw1.h>
1734 static const struct sym_fwa_ofs sym_fw1a_ofs = {
1735 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1736 };
1737 static const struct sym_fwb_ofs sym_fw1b_ofs = {
1738 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1739 };
1740 #undef	SYM_FWA_SCR
1741 #undef	SYM_FWB_SCR
1742 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1743 
1744 /*
1745  *  Allocate firmware #2 script area.
1746  */
1747 #define	SYM_FWA_SCR		sym_fw2a_scr
1748 #define	SYM_FWB_SCR		sym_fw2b_scr
1749 #include <dev/sym/sym_fw2.h>
1750 static const struct sym_fwa_ofs sym_fw2a_ofs = {
1751 	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1752 };
1753 static const struct sym_fwb_ofs sym_fw2b_ofs = {
1754 	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1755 	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1756 	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1757 };
1758 #undef	SYM_FWA_SCR
1759 #undef	SYM_FWB_SCR
1760 
1761 #undef	SYM_GEN_A
1762 #undef	SYM_GEN_B
1763 #undef	PADDR_A
1764 #undef	PADDR_B
1765 
1766 #ifdef	SYM_CONF_GENERIC_SUPPORT
1767 /*
1768  *  Patch routine for firmware #1.
1769  */
1770 static void
1771 sym_fw1_patch(hcb_p np)
1772 {
1773 	struct sym_fw1a_scr *scripta0;
1774 	struct sym_fw1b_scr *scriptb0;
1775 
1776 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1777 	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1778 
1779 	/*
1780 	 *  Remove LED support if not needed.
1781 	 */
1782 	if (!(np->features & FE_LED0)) {
1783 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1784 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1785 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1786 	}
1787 
1788 #ifdef SYM_CONF_IARB_SUPPORT
1789 	/*
1790 	 *    If user does not want to use IMMEDIATE ARBITRATION
1791 	 *    when we are reselected while attempting to arbitrate,
1792 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1793 	 */
1794 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1795 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1796 #endif
1797 	/*
1798 	 *  Patch some data in SCRIPTS.
1799 	 *  - start and done queue initial bus address.
1800 	 *  - target bus address table bus address.
1801 	 */
1802 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1803 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1804 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1805 }
1806 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1807 
1808 /*
1809  *  Patch routine for firmware #2.
1810  */
1811 static void
1812 sym_fw2_patch(hcb_p np)
1813 {
1814 	struct sym_fw2a_scr *scripta0;
1815 	struct sym_fw2b_scr *scriptb0;
1816 
1817 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1818 	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1819 
1820 	/*
1821 	 *  Remove LED support if not needed.
1822 	 */
1823 	if (!(np->features & FE_LED0)) {
1824 		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1825 		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1826 		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1827 	}
1828 
1829 #ifdef SYM_CONF_IARB_SUPPORT
1830 	/*
1831 	 *    If user does not want to use IMMEDIATE ARBITRATION
1832 	 *    when we are reselected while attempting to arbitrate,
1833 	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1834 	 */
1835 	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1836 		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1837 #endif
1838 	/*
1839 	 *  Patch some variable in SCRIPTS.
1840 	 *  - start and done queue initial bus address.
1841 	 *  - target bus address table bus address.
1842 	 */
1843 	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1844 	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1845 	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1846 
1847 	/*
1848 	 *  Remove the load of SCNTL4 on reselection if not a C10.
1849 	 */
1850 	if (!(np->features & FE_C10)) {
1851 		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1852 		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1853 	}
1854 
1855 	/*
1856 	 *  Remove a couple of work-arounds specific to C1010 if
1857 	 *  they are not desirable. See `sym_fw2.h' for more details.
1858 	 */
1859 	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1860 	      np->revision_id < 0x1 &&
1861 	      np->pciclk_khz < 60000)) {
1862 		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1863 		scripta0->datao_phase[1] = cpu_to_scr(0);
1864 	}
1865 	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1866 	      /* np->revision_id < 0xff */ 1)) {
1867 		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1868 		scripta0->sel_done[1] = cpu_to_scr(0);
1869 	}
1870 
1871 	/*
1872 	 *  Patch some other variables in SCRIPTS.
1873 	 *  These ones are loaded by the SCRIPTS processor.
1874 	 */
1875 	scriptb0->pm0_data_addr[0] =
1876 		cpu_to_scr(np->scripta_ba +
1877 			   offsetof(struct sym_fw2a_scr, pm0_data));
1878 	scriptb0->pm1_data_addr[0] =
1879 		cpu_to_scr(np->scripta_ba +
1880 			   offsetof(struct sym_fw2a_scr, pm1_data));
1881 }
1882 
1883 /*
1884  *  Fill the data area in scripts.
1885  *  To be done for all firmwares.
1886  */
1887 static void
1888 sym_fw_fill_data (u32 *in, u32 *out)
1889 {
1890 	int	i;
1891 
1892 	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1893 		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1894 		*in++  = offsetof (struct sym_dsb, data[i]);
1895 		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1896 		*out++ = offsetof (struct sym_dsb, data[i]);
1897 	}
1898 }
1899 
1900 /*
1901  *  Setup useful script bus addresses.
1902  *  To be done for all firmwares.
1903  */
1904 static void
1905 sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw)
1906 {
1907 	u32 *pa;
1908 	const u_short *po;
1909 	int i;
1910 
1911 	/*
1912 	 *  Build the bus address table for script A
1913 	 *  from the script A offset table.
1914 	 */
1915 	po = (const u_short *) fw->a_ofs;
1916 	pa = (u32 *) &np->fwa_bas;
1917 	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1918 		pa[i] = np->scripta_ba + po[i];
1919 
1920 	/*
1921 	 *  Same for script B.
1922 	 */
1923 	po = (const u_short *) fw->b_ofs;
1924 	pa = (u32 *) &np->fwb_bas;
1925 	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1926 		pa[i] = np->scriptb_ba + po[i];
1927 }
1928 
1929 #ifdef	SYM_CONF_GENERIC_SUPPORT
1930 /*
1931  *  Setup routine for firmware #1.
1932  */
1933 static void
1934 sym_fw1_setup(hcb_p np, const struct sym_fw *fw)
1935 {
1936 	struct sym_fw1a_scr *scripta0;
1937 
1938 	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1939 
1940 	/*
1941 	 *  Fill variable parts in scripts.
1942 	 */
1943 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1944 
1945 	/*
1946 	 *  Setup bus addresses used from the C code..
1947 	 */
1948 	sym_fw_setup_bus_addresses(np, fw);
1949 }
1950 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1951 
1952 /*
1953  *  Setup routine for firmware #2.
1954  */
1955 static void
1956 sym_fw2_setup(hcb_p np, const struct sym_fw *fw)
1957 {
1958 	struct sym_fw2a_scr *scripta0;
1959 
1960 	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1961 
1962 	/*
1963 	 *  Fill variable parts in scripts.
1964 	 */
1965 	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1966 
1967 	/*
1968 	 *  Setup bus addresses used from the C code..
1969 	 */
1970 	sym_fw_setup_bus_addresses(np, fw);
1971 }
1972 
1973 /*
1974  *  Allocate firmware descriptors.
1975  */
1976 #ifdef	SYM_CONF_GENERIC_SUPPORT
1977 static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
1978 #endif	/* SYM_CONF_GENERIC_SUPPORT */
1979 static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
1980 
1981 /*
1982  *  Find the most appropriate firmware for a chip.
1983  */
1984 static const struct sym_fw *
1985 sym_find_firmware(const struct sym_pci_chip *chip)
1986 {
1987 	if (chip->features & FE_LDSTR)
1988 		return &sym_fw2;
1989 #ifdef	SYM_CONF_GENERIC_SUPPORT
1990 	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
1991 		return &sym_fw1;
1992 #endif
1993 	else
1994 		return NULL;
1995 }
1996 
1997 /*
1998  *  Bind a script to physical addresses.
1999  */
2000 static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2001 {
2002 	u32 opcode, new, old, tmp1, tmp2;
2003 	u32 *end, *cur;
2004 	int relocs;
2005 
2006 	cur = start;
2007 	end = start + len/4;
2008 
2009 	while (cur < end) {
2010 
2011 		opcode = *cur;
2012 
2013 		/*
2014 		 *  If we forget to change the length
2015 		 *  in scripts, a field will be
2016 		 *  padded with 0. This is an illegal
2017 		 *  command.
2018 		 */
2019 		if (opcode == 0) {
2020 			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2021 				sym_name(np), (int) (cur-start));
2022 			MDELAY (10000);
2023 			++cur;
2024 			continue;
2025 		}
2026 
2027 		/*
2028 		 *  We use the bogus value 0xf00ff00f ;-)
2029 		 *  to reserve data area in SCRIPTS.
2030 		 */
2031 		if (opcode == SCR_DATA_ZERO) {
2032 			*cur++ = 0;
2033 			continue;
2034 		}
2035 
2036 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2037 			printf ("%d:  <%x>\n", (int) (cur-start),
2038 				(unsigned)opcode);
2039 
2040 		/*
2041 		 *  We don't have to decode ALL commands
2042 		 */
2043 		switch (opcode >> 28) {
2044 		case 0xf:
2045 			/*
2046 			 *  LOAD / STORE DSA relative, don't relocate.
2047 			 */
2048 			relocs = 0;
2049 			break;
2050 		case 0xe:
2051 			/*
2052 			 *  LOAD / STORE absolute.
2053 			 */
2054 			relocs = 1;
2055 			break;
2056 		case 0xc:
2057 			/*
2058 			 *  COPY has TWO arguments.
2059 			 */
2060 			relocs = 2;
2061 			tmp1 = cur[1];
2062 			tmp2 = cur[2];
2063 			if ((tmp1 ^ tmp2) & 3) {
2064 				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2065 					sym_name(np), (int) (cur-start));
2066 				MDELAY (10000);
2067 			}
2068 			/*
2069 			 *  If PREFETCH feature not enabled, remove
2070 			 *  the NO FLUSH bit if present.
2071 			 */
2072 			if ((opcode & SCR_NO_FLUSH) &&
2073 			    !(np->features & FE_PFEN)) {
2074 				opcode = (opcode & ~SCR_NO_FLUSH);
2075 			}
2076 			break;
2077 		case 0x0:
2078 			/*
2079 			 *  MOVE/CHMOV (absolute address)
2080 			 */
2081 			if (!(np->features & FE_WIDE))
2082 				opcode = (opcode | OPC_MOVE);
2083 			relocs = 1;
2084 			break;
2085 		case 0x1:
2086 			/*
2087 			 *  MOVE/CHMOV (table indirect)
2088 			 */
2089 			if (!(np->features & FE_WIDE))
2090 				opcode = (opcode | OPC_MOVE);
2091 			relocs = 0;
2092 			break;
2093 		case 0x8:
2094 			/*
2095 			 *  JUMP / CALL
2096 			 *  dont't relocate if relative :-)
2097 			 */
2098 			if (opcode & 0x00800000)
2099 				relocs = 0;
2100 			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2101 				relocs = 2;
2102 			else
2103 				relocs = 1;
2104 			break;
2105 		case 0x4:
2106 		case 0x5:
2107 		case 0x6:
2108 		case 0x7:
2109 			relocs = 1;
2110 			break;
2111 		default:
2112 			relocs = 0;
2113 			break;
2114 		}
2115 
2116 		/*
2117 		 *  Scriptify:) the opcode.
2118 		 */
2119 		*cur++ = cpu_to_scr(opcode);
2120 
2121 		/*
2122 		 *  If no relocation, assume 1 argument
2123 		 *  and just scriptize:) it.
2124 		 */
2125 		if (!relocs) {
2126 			*cur = cpu_to_scr(*cur);
2127 			++cur;
2128 			continue;
2129 		}
2130 
2131 		/*
2132 		 *  Otherwise performs all needed relocations.
2133 		 */
2134 		while (relocs--) {
2135 			old = *cur;
2136 
2137 			switch (old & RELOC_MASK) {
2138 			case RELOC_REGISTER:
2139 				new = (old & ~RELOC_MASK) + np->mmio_ba;
2140 				break;
2141 			case RELOC_LABEL_A:
2142 				new = (old & ~RELOC_MASK) + np->scripta_ba;
2143 				break;
2144 			case RELOC_LABEL_B:
2145 				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2146 				break;
2147 			case RELOC_SOFTC:
2148 				new = (old & ~RELOC_MASK) + np->hcb_ba;
2149 				break;
2150 			case 0:
2151 				/*
2152 				 *  Don't relocate a 0 address.
2153 				 *  They are mostly used for patched or
2154 				 *  script self-modified areas.
2155 				 */
2156 				if (old == 0) {
2157 					new = old;
2158 					break;
2159 				}
2160 				/* fall through */
2161 			default:
2162 				new = 0;
2163 				panic("sym_fw_bind_script: "
2164 				      "weird relocation %x\n", old);
2165 				break;
2166 			}
2167 
2168 			*cur++ = cpu_to_scr(new);
2169 		}
2170 	}
2171 }
2172 
2173 /*---------------------------------------------------------------------------*/
2174 /*--------------------------- END OF FIRMWARES  -----------------------------*/
2175 /*---------------------------------------------------------------------------*/
2176 
2177 /*
2178  *  Function prototypes.
2179  */
2180 static void sym_save_initial_setting (hcb_p np);
2181 static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2182 static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2183 static void sym_put_start_queue (hcb_p np, ccb_p cp);
2184 static void sym_chip_reset (hcb_p np);
2185 static void sym_soft_reset (hcb_p np);
2186 static void sym_start_reset (hcb_p np);
2187 static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2188 static int  sym_wakeup_done (hcb_p np);
2189 static void sym_flush_busy_queue (hcb_p np, int cam_status);
2190 static void sym_flush_comp_queue (hcb_p np, int cam_status);
2191 static void sym_init (hcb_p np, int reason);
2192 static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2193 		        u_char *fakp);
2194 static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2195 			 u_char div, u_char fak);
2196 static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2197 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2198 			 u_char per, u_char wide, u_char div, u_char fak);
2199 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2200 			 u_char per, u_char wide, u_char div, u_char fak);
2201 static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2202 static void sym_intr (void *arg);
2203 static void sym_poll (struct cam_sim *sim);
2204 static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2205 static void sym_int_sto (hcb_p np);
2206 static void sym_int_udc (hcb_p np);
2207 static void sym_int_sbmc (hcb_p np);
2208 static void sym_int_par (hcb_p np, u_short sist);
2209 static void sym_int_ma (hcb_p np);
2210 static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2211 				    int task);
2212 static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp);
2213 static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2214 static void sym_sir_task_recovery (hcb_p np, int num);
2215 static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2216 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs);
2217 static int  sym_compute_residual (hcb_p np, ccb_p cp);
2218 static int  sym_show_msg (u_char * msg);
2219 static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2220 static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2221 static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2222 static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2223 static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2224 static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2225 static void sym_int_sir (hcb_p np);
2226 static void sym_free_ccb (hcb_p np, ccb_p cp);
2227 static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2228 static ccb_p sym_alloc_ccb (hcb_p np);
2229 static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2230 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2231 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2232 static int  sym_snooptest (hcb_p np);
2233 static void sym_selectclock(hcb_p np, u_char scntl3);
2234 static void sym_getclock (hcb_p np, int mult);
2235 static int  sym_getpciclock (hcb_p np);
2236 static void sym_complete_ok (hcb_p np, ccb_p cp);
2237 static void sym_complete_error (hcb_p np, ccb_p cp);
2238 static void sym_callout (void *arg);
2239 static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2240 static void sym_reset_dev (hcb_p np, union ccb *ccb);
2241 static void sym_action (struct cam_sim *sim, union ccb *ccb);
2242 static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2243 static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2244 				      ccb_p cp);
2245 static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2246 					bus_dma_segment_t *psegs, int nsegs);
2247 static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2248 				    bus_dma_segment_t *psegs, int nsegs);
2249 static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2250 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
2251 			      struct ccb_trans_settings *cts);
2252 static void sym_update_dflags(hcb_p np, u_char *flags,
2253 			      struct ccb_trans_settings *cts);
2254 
2255 static const struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2256 static int  sym_pci_probe (device_t dev);
2257 static int  sym_pci_attach (device_t dev);
2258 
2259 static void sym_pci_free (hcb_p np);
2260 static int  sym_cam_attach (hcb_p np);
2261 static void sym_cam_free (hcb_p np);
2262 
2263 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2264 static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2265 static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2266 
2267 /*
2268  *  Print something which allows to retrieve the controller type,
2269  *  unit, target, lun concerned by a kernel message.
2270  */
2271 static void PRINT_TARGET (hcb_p np, int target)
2272 {
2273 	printf ("%s:%d:", sym_name(np), target);
2274 }
2275 
2276 static void PRINT_LUN(hcb_p np, int target, int lun)
2277 {
2278 	printf ("%s:%d:%d:", sym_name(np), target, lun);
2279 }
2280 
2281 static void PRINT_ADDR (ccb_p cp)
2282 {
2283 	if (cp && cp->cam_ccb)
2284 		xpt_print_path(cp->cam_ccb->ccb_h.path);
2285 }
2286 
2287 /*
2288  *  Take into account this ccb in the freeze count.
2289  */
2290 static void sym_freeze_cam_ccb(union ccb *ccb)
2291 {
2292 	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2293 		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2294 			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2295 			xpt_freeze_devq(ccb->ccb_h.path, 1);
2296 		}
2297 	}
2298 }
2299 
2300 /*
2301  *  Set the status field of a CAM CCB.
2302  */
2303 static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2304 {
2305 	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2306 	ccb->ccb_h.status |= status;
2307 }
2308 
2309 /*
2310  *  Get the status field of a CAM CCB.
2311  */
2312 static __inline int sym_get_cam_status(union ccb *ccb)
2313 {
2314 	return ccb->ccb_h.status & CAM_STATUS_MASK;
2315 }
2316 
2317 /*
2318  *  Enqueue a CAM CCB.
2319  */
2320 static void sym_enqueue_cam_ccb(ccb_p cp)
2321 {
2322 	hcb_p np;
2323 	union ccb *ccb;
2324 
2325 	ccb = cp->cam_ccb;
2326 	np = (hcb_p) cp->arg;
2327 
2328 	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2329 	ccb->ccb_h.status = CAM_REQ_INPROG;
2330 
2331 	callout_reset_sbt(&cp->ch, SBT_1MS * ccb->ccb_h.timeout, 0, sym_callout,
2332 	    (caddr_t)ccb, 0);
2333 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2334 	ccb->ccb_h.sym_hcb_ptr = np;
2335 
2336 	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2337 }
2338 
2339 /*
2340  *  Complete a pending CAM CCB.
2341  */
2342 
2343 static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
2344 {
2345 
2346 	SYM_LOCK_ASSERT(MA_OWNED);
2347 
2348 	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2349 		callout_stop(&cp->ch);
2350 		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2351 		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2352 		ccb->ccb_h.sym_hcb_ptr = NULL;
2353 	}
2354 	xpt_done(ccb);
2355 }
2356 
2357 static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2358 {
2359 
2360 	SYM_LOCK_ASSERT(MA_OWNED);
2361 
2362 	sym_set_cam_status(ccb, cam_status);
2363 	xpt_done(ccb);
2364 }
2365 
2366 /*
2367  *  SYMBIOS chip clock divisor table.
2368  *
2369  *  Divisors are multiplied by 10,000,000 in order to make
2370  *  calculations more simple.
2371  */
2372 #define _5M 5000000
2373 static const u32 div_10M[] =
2374 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2375 
2376 /*
2377  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2378  *  128 transfers. All chips support at least 16 transfers
2379  *  bursts. The 825A, 875 and 895 chips support bursts of up
2380  *  to 128 transfers and the 895A and 896 support bursts of up
2381  *  to 64 transfers. All other chips support up to 16
2382  *  transfers bursts.
2383  *
2384  *  For PCI 32 bit data transfers each transfer is a DWORD.
2385  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2386  *
2387  *  We use log base 2 (burst length) as internal code, with
2388  *  value 0 meaning "burst disabled".
2389  */
2390 
2391 /*
2392  *  Burst length from burst code.
2393  */
2394 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2395 
2396 /*
2397  *  Burst code from io register bits.
2398  */
2399 #define burst_code(dmode, ctest4, ctest5) \
2400 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2401 
2402 /*
2403  *  Set initial io register bits from burst code.
2404  */
2405 static __inline void sym_init_burst(hcb_p np, u_char bc)
2406 {
2407 	np->rv_ctest4	&= ~0x80;
2408 	np->rv_dmode	&= ~(0x3 << 6);
2409 	np->rv_ctest5	&= ~0x4;
2410 
2411 	if (!bc) {
2412 		np->rv_ctest4	|= 0x80;
2413 	}
2414 	else {
2415 		--bc;
2416 		np->rv_dmode	|= ((bc & 0x3) << 6);
2417 		np->rv_ctest5	|= (bc & 0x4);
2418 	}
2419 }
2420 
2421 /*
2422  * Print out the list of targets that have some flag disabled by user.
2423  */
2424 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2425 {
2426 	int cnt;
2427 	int i;
2428 
2429 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2430 		if (i == np->myaddr)
2431 			continue;
2432 		if (np->target[i].usrflags & mask) {
2433 			if (!cnt++)
2434 				printf("%s: %s disabled for targets",
2435 					sym_name(np), msg);
2436 			printf(" %d", i);
2437 		}
2438 	}
2439 	if (cnt)
2440 		printf(".\n");
2441 }
2442 
2443 /*
2444  *  Save initial settings of some IO registers.
2445  *  Assumed to have been set by BIOS.
2446  *  We cannot reset the chip prior to reading the
2447  *  IO registers, since informations will be lost.
2448  *  Since the SCRIPTS processor may be running, this
2449  *  is not safe on paper, but it seems to work quite
2450  *  well. :)
2451  */
2452 static void sym_save_initial_setting (hcb_p np)
2453 {
2454 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2455 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2456 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2457 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2458 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2459 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2460 	np->sv_gpcntl	= INB(nc_gpcntl);
2461 	np->sv_stest1	= INB(nc_stest1);
2462 	np->sv_stest2	= INB(nc_stest2) & 0x20;
2463 	np->sv_stest4	= INB(nc_stest4);
2464 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2465 		np->sv_scntl4	= INB(nc_scntl4);
2466 		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2467 	}
2468 	else
2469 		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2470 }
2471 
2472 /*
2473  *  Prepare io register values used by sym_init() according
2474  *  to selected and supported features.
2475  */
2476 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2477 {
2478 	u_char	burst_max;
2479 	u32	period;
2480 	int i;
2481 
2482 	/*
2483 	 *  Wide ?
2484 	 */
2485 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2486 
2487 	/*
2488 	 *  Get the frequency of the chip's clock.
2489 	 */
2490 	if	(np->features & FE_QUAD)
2491 		np->multiplier	= 4;
2492 	else if	(np->features & FE_DBLR)
2493 		np->multiplier	= 2;
2494 	else
2495 		np->multiplier	= 1;
2496 
2497 	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2498 	np->clock_khz	*= np->multiplier;
2499 
2500 	if (np->clock_khz != 40000)
2501 		sym_getclock(np, np->multiplier);
2502 
2503 	/*
2504 	 * Divisor to be used for async (timer pre-scaler).
2505 	 */
2506 	i = np->clock_divn - 1;
2507 	while (--i >= 0) {
2508 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2509 			++i;
2510 			break;
2511 		}
2512 	}
2513 	np->rv_scntl3 = i+1;
2514 
2515 	/*
2516 	 * The C1010 uses hardwired divisors for async.
2517 	 * So, we just throw away, the async. divisor.:-)
2518 	 */
2519 	if (np->features & FE_C10)
2520 		np->rv_scntl3 = 0;
2521 
2522 	/*
2523 	 * Minimum synchronous period factor supported by the chip.
2524 	 * Btw, 'period' is in tenths of nanoseconds.
2525 	 */
2526 	period = howmany(4 * div_10M[0], np->clock_khz);
2527 	if	(period <= 250)		np->minsync = 10;
2528 	else if	(period <= 303)		np->minsync = 11;
2529 	else if	(period <= 500)		np->minsync = 12;
2530 	else				np->minsync = howmany(period, 40);
2531 
2532 	/*
2533 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2534 	 */
2535 	if	(np->minsync < 25 &&
2536 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2537 		np->minsync = 25;
2538 	else if	(np->minsync < 12 &&
2539 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2540 		np->minsync = 12;
2541 
2542 	/*
2543 	 * Maximum synchronous period factor supported by the chip.
2544 	 */
2545 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2546 	np->maxsync = period > 2540 ? 254 : period / 10;
2547 
2548 	/*
2549 	 * If chip is a C1010, guess the sync limits in DT mode.
2550 	 */
2551 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2552 		if (np->clock_khz == 160000) {
2553 			np->minsync_dt = 9;
2554 			np->maxsync_dt = 50;
2555 			np->maxoffs_dt = 62;
2556 		}
2557 	}
2558 
2559 	/*
2560 	 *  64 bit addressing  (895A/896/1010) ?
2561 	 */
2562 	if (np->features & FE_DAC)
2563 #ifdef __LP64__
2564 		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2565 #else
2566 		np->rv_ccntl1	|= (DDAC);
2567 #endif
2568 
2569 	/*
2570 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2571   	 */
2572 	if (np->features & FE_NOPM)
2573 		np->rv_ccntl0	|= (ENPMJ);
2574 
2575  	/*
2576 	 *  C1010 Errata.
2577 	 *  In dual channel mode, contention occurs if internal cycles
2578 	 *  are used. Disable internal cycles.
2579 	 */
2580 	if (np->device_id == PCI_ID_LSI53C1010 &&
2581 	    np->revision_id < 0x2)
2582 		np->rv_ccntl0	|=  DILS;
2583 
2584 	/*
2585 	 *  Select burst length (dwords)
2586 	 */
2587 	burst_max	= SYM_SETUP_BURST_ORDER;
2588 	if (burst_max == 255)
2589 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2590 				       np->sv_ctest5);
2591 	if (burst_max > 7)
2592 		burst_max = 7;
2593 	if (burst_max > np->maxburst)
2594 		burst_max = np->maxburst;
2595 
2596 	/*
2597 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2598 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2599 	 *  based transactions on LOAD/STORE instructions. So we have
2600 	 *  to prevent these chips from using such PCI transactions in
2601 	 *  this driver. The generic ncr driver that does not use
2602 	 *  LOAD/STORE instructions does not need this work-around.
2603 	 */
2604 	if ((np->device_id == PCI_ID_SYM53C810 &&
2605 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2606 	    (np->device_id == PCI_ID_SYM53C860 &&
2607 	     np->revision_id <= 0x1))
2608 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2609 
2610 	/*
2611 	 *  Select all supported special features.
2612 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2613 	 *  does not help, but burst op fetch (BOF) does.
2614 	 *  Disabling PFEN makes sure BOF will be used.
2615 	 */
2616 	if (np->features & FE_ERL)
2617 		np->rv_dmode	|= ERL;		/* Enable Read Line */
2618 	if (np->features & FE_BOF)
2619 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2620 	if (np->features & FE_ERMP)
2621 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2622 #if 1
2623 	if ((np->features & FE_PFEN) && !np->ram_ba)
2624 #else
2625 	if (np->features & FE_PFEN)
2626 #endif
2627 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2628 	if (np->features & FE_CLSE)
2629 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2630 	if (np->features & FE_WRIE)
2631 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2632 	if (np->features & FE_DFS)
2633 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2634 
2635 	/*
2636 	 *  Select some other
2637 	 */
2638 	if (SYM_SETUP_PCI_PARITY)
2639 		np->rv_ctest4	|= MPEE; /* Master parity checking */
2640 	if (SYM_SETUP_SCSI_PARITY)
2641 		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2642 
2643 	/*
2644 	 *  Get parity checking, host ID and verbose mode from NVRAM
2645 	 */
2646 	np->myaddr = 255;
2647 	sym_nvram_setup_host (np, nvram);
2648 
2649 	/*
2650 	 *  Get SCSI addr of host adapter (set by bios?).
2651 	 */
2652 	if (np->myaddr == 255) {
2653 		np->myaddr = INB(nc_scid) & 0x07;
2654 		if (!np->myaddr)
2655 			np->myaddr = SYM_SETUP_HOST_ID;
2656 	}
2657 
2658 	/*
2659 	 *  Prepare initial io register bits for burst length
2660 	 */
2661 	sym_init_burst(np, burst_max);
2662 
2663 	/*
2664 	 *  Set SCSI BUS mode.
2665 	 *  - LVD capable chips (895/895A/896/1010) report the
2666 	 *    current BUS mode through the STEST4 IO register.
2667 	 *  - For previous generation chips (825/825A/875),
2668 	 *    user has to tell us how to check against HVD,
2669 	 *    since a 100% safe algorithm is not possible.
2670 	 */
2671 	np->scsi_mode = SMODE_SE;
2672 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2673 		np->scsi_mode = (np->sv_stest4 & SMODE);
2674 	else if	(np->features & FE_DIFF) {
2675 		if (SYM_SETUP_SCSI_DIFF == 1) {
2676 			if (np->sv_scntl3) {
2677 				if (np->sv_stest2 & 0x20)
2678 					np->scsi_mode = SMODE_HVD;
2679 			}
2680 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2681 				if (!(INB(nc_gpreg) & 0x08))
2682 					np->scsi_mode = SMODE_HVD;
2683 			}
2684 		}
2685 		else if	(SYM_SETUP_SCSI_DIFF == 2)
2686 			np->scsi_mode = SMODE_HVD;
2687 	}
2688 	if (np->scsi_mode == SMODE_HVD)
2689 		np->rv_stest2 |= 0x20;
2690 
2691 	/*
2692 	 *  Set LED support from SCRIPTS.
2693 	 *  Ignore this feature for boards known to use a
2694 	 *  specific GPIO wiring and for the 895A, 896
2695 	 *  and 1010 that drive the LED directly.
2696 	 */
2697 	if ((SYM_SETUP_SCSI_LED ||
2698 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2699 	      (nvram->type == SYM_TEKRAM_NVRAM &&
2700 	       np->device_id == PCI_ID_SYM53C895))) &&
2701 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2702 		np->features |= FE_LED0;
2703 
2704 	/*
2705 	 *  Set irq mode.
2706 	 */
2707 	switch(SYM_SETUP_IRQ_MODE & 3) {
2708 	case 2:
2709 		np->rv_dcntl	|= IRQM;
2710 		break;
2711 	case 1:
2712 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2713 		break;
2714 	default:
2715 		break;
2716 	}
2717 
2718 	/*
2719 	 *  Configure targets according to driver setup.
2720 	 *  If NVRAM present get targets setup from NVRAM.
2721 	 */
2722 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2723 		tcb_p tp = &np->target[i];
2724 
2725 		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2726 		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2727 		tp->tinfo.user.period = np->minsync;
2728 		if (np->features & FE_ULTRA3)
2729 			tp->tinfo.user.period = np->minsync_dt;
2730 		tp->tinfo.user.offset = np->maxoffs;
2731 		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2732 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2733 		tp->usrtags = SYM_SETUP_MAX_TAG;
2734 
2735 		sym_nvram_setup_target (np, i, nvram);
2736 
2737 		/*
2738 		 *  For now, guess PPR/DT support from the period
2739 		 *  and BUS width.
2740 		 */
2741 		if (np->features & FE_ULTRA3) {
2742 			if (tp->tinfo.user.period <= 9	&&
2743 			    tp->tinfo.user.width == BUS_16_BIT) {
2744 				tp->tinfo.user.options |= PPR_OPT_DT;
2745 				tp->tinfo.user.offset   = np->maxoffs_dt;
2746 				tp->tinfo.user.spi_version = 3;
2747 			}
2748 		}
2749 
2750 		if (!tp->usrtags)
2751 			tp->usrflags &= ~SYM_TAGS_ENABLED;
2752 	}
2753 
2754 	/*
2755 	 *  Let user know about the settings.
2756 	 */
2757 	i = nvram->type;
2758 	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2759 		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2760 		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2761 		np->myaddr,
2762 		(np->features & FE_ULTRA3) ? 80 :
2763 		(np->features & FE_ULTRA2) ? 40 :
2764 		(np->features & FE_ULTRA)  ? 20 : 10,
2765 		sym_scsi_bus_mode(np->scsi_mode),
2766 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2767 	/*
2768 	 *  Tell him more on demand.
2769 	 */
2770 	if (sym_verbose) {
2771 		printf("%s: %s IRQ line driver%s\n",
2772 			sym_name(np),
2773 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2774 			np->ram_ba ? ", using on-chip SRAM" : "");
2775 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2776 		if (np->features & FE_NOPM)
2777 			printf("%s: handling phase mismatch from SCRIPTS.\n",
2778 			       sym_name(np));
2779 	}
2780 	/*
2781 	 *  And still more.
2782 	 */
2783 	if (sym_verbose > 1) {
2784 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2785 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2786 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2787 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2788 
2789 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2790 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2791 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2792 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2793 	}
2794 	/*
2795 	 *  Let user be aware of targets that have some disable flags set.
2796 	 */
2797 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2798 	if (sym_verbose)
2799 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2800 				       "SCAN FOR LUNS");
2801 
2802 	return 0;
2803 }
2804 
2805 /*
2806  *  Prepare the next negotiation message if needed.
2807  *
2808  *  Fill in the part of message buffer that contains the
2809  *  negotiation and the nego_status field of the CCB.
2810  *  Returns the size of the message in bytes.
2811  */
2812 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2813 {
2814 	tcb_p tp = &np->target[cp->target];
2815 	int msglen = 0;
2816 
2817 	/*
2818 	 *  Early C1010 chips need a work-around for DT
2819 	 *  data transfer to work.
2820 	 */
2821 	if (!(np->features & FE_U3EN))
2822 		tp->tinfo.goal.options = 0;
2823 	/*
2824 	 *  negotiate using PPR ?
2825 	 */
2826 	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2827 		nego = NS_PPR;
2828 	/*
2829 	 *  negotiate wide transfers ?
2830 	 */
2831 	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2832 		nego = NS_WIDE;
2833 	/*
2834 	 *  negotiate synchronous transfers?
2835 	 */
2836 	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2837 		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2838 		nego = NS_SYNC;
2839 
2840 	switch (nego) {
2841 	case NS_SYNC:
2842 		msgptr[msglen++] = M_EXTENDED;
2843 		msgptr[msglen++] = 3;
2844 		msgptr[msglen++] = M_X_SYNC_REQ;
2845 		msgptr[msglen++] = tp->tinfo.goal.period;
2846 		msgptr[msglen++] = tp->tinfo.goal.offset;
2847 		break;
2848 	case NS_WIDE:
2849 		msgptr[msglen++] = M_EXTENDED;
2850 		msgptr[msglen++] = 2;
2851 		msgptr[msglen++] = M_X_WIDE_REQ;
2852 		msgptr[msglen++] = tp->tinfo.goal.width;
2853 		break;
2854 	case NS_PPR:
2855 		msgptr[msglen++] = M_EXTENDED;
2856 		msgptr[msglen++] = 6;
2857 		msgptr[msglen++] = M_X_PPR_REQ;
2858 		msgptr[msglen++] = tp->tinfo.goal.period;
2859 		msgptr[msglen++] = 0;
2860 		msgptr[msglen++] = tp->tinfo.goal.offset;
2861 		msgptr[msglen++] = tp->tinfo.goal.width;
2862 		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2863 		break;
2864 	}
2865 
2866 	cp->nego_status = nego;
2867 
2868 	if (nego) {
2869 		tp->nego_cp = cp; /* Keep track a nego will be performed */
2870 		if (DEBUG_FLAGS & DEBUG_NEGO) {
2871 			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2872 					  nego == NS_WIDE ? "wide msgout" :
2873 					  "ppr msgout", msgptr);
2874 		}
2875 	}
2876 
2877 	return msglen;
2878 }
2879 
2880 /*
2881  *  Insert a job into the start queue.
2882  */
2883 static void sym_put_start_queue(hcb_p np, ccb_p cp)
2884 {
2885 	u_short	qidx;
2886 
2887 #ifdef SYM_CONF_IARB_SUPPORT
2888 	/*
2889 	 *  If the previously queued CCB is not yet done,
2890 	 *  set the IARB hint. The SCRIPTS will go with IARB
2891 	 *  for this job when starting the previous one.
2892 	 *  We leave devices a chance to win arbitration by
2893 	 *  not using more than 'iarb_max' consecutive
2894 	 *  immediate arbitrations.
2895 	 */
2896 	if (np->last_cp && np->iarb_count < np->iarb_max) {
2897 		np->last_cp->host_flags |= HF_HINT_IARB;
2898 		++np->iarb_count;
2899 	}
2900 	else
2901 		np->iarb_count = 0;
2902 	np->last_cp = cp;
2903 #endif
2904 
2905 	/*
2906 	 *  Insert first the idle task and then our job.
2907 	 *  The MB should ensure proper ordering.
2908 	 */
2909 	qidx = np->squeueput + 2;
2910 	if (qidx >= MAX_QUEUE*2) qidx = 0;
2911 
2912 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2913 	MEMORY_BARRIER();
2914 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2915 
2916 	np->squeueput = qidx;
2917 
2918 	if (DEBUG_FLAGS & DEBUG_QUEUE)
2919 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2920 
2921 	/*
2922 	 *  Script processor may be waiting for reselect.
2923 	 *  Wake it up.
2924 	 */
2925 	MEMORY_BARRIER();
2926 	OUTB (nc_istat, SIGP|np->istat_sem);
2927 }
2928 
2929 /*
2930  *  Soft reset the chip.
2931  *
2932  *  Raising SRST when the chip is running may cause
2933  *  problems on dual function chips (see below).
2934  *  On the other hand, LVD devices need some delay
2935  *  to settle and report actual BUS mode in STEST4.
2936  */
2937 static void sym_chip_reset (hcb_p np)
2938 {
2939 	OUTB (nc_istat, SRST);
2940 	UDELAY (10);
2941 	OUTB (nc_istat, 0);
2942 	UDELAY(2000);	/* For BUS MODE to settle */
2943 }
2944 
2945 /*
2946  *  Soft reset the chip.
2947  *
2948  *  Some 896 and 876 chip revisions may hang-up if we set
2949  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2950  *  are running.
2951  *  So, we need to abort the current operation prior to
2952  *  soft resetting the chip.
2953  */
2954 static void sym_soft_reset (hcb_p np)
2955 {
2956 	u_char istat;
2957 	int i;
2958 
2959 	OUTB (nc_istat, CABRT);
2960 	for (i = 1000000 ; i ; --i) {
2961 		istat = INB (nc_istat);
2962 		if (istat & SIP) {
2963 			INW (nc_sist);
2964 			continue;
2965 		}
2966 		if (istat & DIP) {
2967 			OUTB (nc_istat, 0);
2968 			INB (nc_dstat);
2969 			break;
2970 		}
2971 	}
2972 	if (!i)
2973 		printf("%s: unable to abort current chip operation.\n",
2974 			sym_name(np));
2975 	sym_chip_reset (np);
2976 }
2977 
2978 /*
2979  *  Start reset process.
2980  *
2981  *  The interrupt handler will reinitialize the chip.
2982  */
2983 static void sym_start_reset(hcb_p np)
2984 {
2985 	(void) sym_reset_scsi_bus(np, 1);
2986 }
2987 
2988 static int sym_reset_scsi_bus(hcb_p np, int enab_int)
2989 {
2990 	u32 term;
2991 	int retv = 0;
2992 
2993 	sym_soft_reset(np);	/* Soft reset the chip */
2994 	if (enab_int)
2995 		OUTW (nc_sien, RST);
2996 	/*
2997 	 *  Enable Tolerant, reset IRQD if present and
2998 	 *  properly set IRQ mode, prior to resetting the bus.
2999 	 */
3000 	OUTB (nc_stest3, TE);
3001 	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3002 	OUTB (nc_scntl1, CRST);
3003 	UDELAY (200);
3004 
3005 	if (!SYM_SETUP_SCSI_BUS_CHECK)
3006 		goto out;
3007 	/*
3008 	 *  Check for no terminators or SCSI bus shorts to ground.
3009 	 *  Read SCSI data bus, data parity bits and control signals.
3010 	 *  We are expecting RESET to be TRUE and other signals to be
3011 	 *  FALSE.
3012 	 */
3013 	term =	INB(nc_sstat0);
3014 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3015 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3016 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3017 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3018 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3019 
3020 	if (!(np->features & FE_WIDE))
3021 		term &= 0x3ffff;
3022 
3023 	if (term != (2<<7)) {
3024 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
3025 			sym_name(np));
3026 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3027 			"0x%lx, expecting 0x%lx\n",
3028 			sym_name(np),
3029 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3030 			(u_long)term, (u_long)(2<<7));
3031 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3032 			retv = 1;
3033 	}
3034 out:
3035 	OUTB (nc_scntl1, 0);
3036 	/* MDELAY(100); */
3037 	return retv;
3038 }
3039 
3040 /*
3041  *  The chip may have completed jobs. Look at the DONE QUEUE.
3042  *
3043  *  On architectures that may reorder LOAD/STORE operations,
3044  *  a memory barrier may be needed after the reading of the
3045  *  so-called `flag' and prior to dealing with the data.
3046  */
3047 static int sym_wakeup_done (hcb_p np)
3048 {
3049 	ccb_p cp;
3050 	int i, n;
3051 	u32 dsa;
3052 
3053 	SYM_LOCK_ASSERT(MA_OWNED);
3054 
3055 	n = 0;
3056 	i = np->dqueueget;
3057 	while (1) {
3058 		dsa = scr_to_cpu(np->dqueue[i]);
3059 		if (!dsa)
3060 			break;
3061 		np->dqueue[i] = 0;
3062 		if ((i = i+2) >= MAX_QUEUE*2)
3063 			i = 0;
3064 
3065 		cp = sym_ccb_from_dsa(np, dsa);
3066 		if (cp) {
3067 			MEMORY_BARRIER();
3068 			sym_complete_ok (np, cp);
3069 			++n;
3070 		}
3071 		else
3072 			printf ("%s: bad DSA (%x) in done queue.\n",
3073 				sym_name(np), (u_int) dsa);
3074 	}
3075 	np->dqueueget = i;
3076 
3077 	return n;
3078 }
3079 
3080 /*
3081  *  Complete all active CCBs with error.
3082  *  Used on CHIP/SCSI RESET.
3083  */
3084 static void sym_flush_busy_queue (hcb_p np, int cam_status)
3085 {
3086 	/*
3087 	 *  Move all active CCBs to the COMP queue
3088 	 *  and flush this queue.
3089 	 */
3090 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3091 	sym_que_init(&np->busy_ccbq);
3092 	sym_flush_comp_queue(np, cam_status);
3093 }
3094 
3095 /*
3096  *  Start chip.
3097  *
3098  *  'reason' means:
3099  *     0: initialisation.
3100  *     1: SCSI BUS RESET delivered or received.
3101  *     2: SCSI BUS MODE changed.
3102  */
3103 static void sym_init (hcb_p np, int reason)
3104 {
3105  	int	i;
3106 	u32	phys;
3107 
3108 	SYM_LOCK_ASSERT(MA_OWNED);
3109 
3110  	/*
3111 	 *  Reset chip if asked, otherwise just clear fifos.
3112  	 */
3113 	if (reason == 1)
3114 		sym_soft_reset(np);
3115 	else {
3116 		OUTB (nc_stest3, TE|CSF);
3117 		OUTONB (nc_ctest3, CLF);
3118 	}
3119 
3120 	/*
3121 	 *  Clear Start Queue
3122 	 */
3123 	phys = np->squeue_ba;
3124 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3125 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3126 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3127 	}
3128 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3129 
3130 	/*
3131 	 *  Start at first entry.
3132 	 */
3133 	np->squeueput = 0;
3134 
3135 	/*
3136 	 *  Clear Done Queue
3137 	 */
3138 	phys = np->dqueue_ba;
3139 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3140 		np->dqueue[i]   = 0;
3141 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3142 	}
3143 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3144 
3145 	/*
3146 	 *  Start at first entry.
3147 	 */
3148 	np->dqueueget = 0;
3149 
3150 	/*
3151 	 *  Install patches in scripts.
3152 	 *  This also let point to first position the start
3153 	 *  and done queue pointers used from SCRIPTS.
3154 	 */
3155 	np->fw_patch(np);
3156 
3157 	/*
3158 	 *  Wakeup all pending jobs.
3159 	 */
3160 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3161 
3162 	/*
3163 	 *  Init chip.
3164 	 */
3165 	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3166 	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3167 
3168 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3169 					/*  full arb., ena parity, par->ATN  */
3170 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3171 
3172 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3173 
3174 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3175 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3176 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3177 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3178 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3179 
3180 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3181 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3182 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3183 
3184 	/* Extended Sreq/Sack filtering not supported on the C10 */
3185 	if (np->features & FE_C10)
3186 		OUTB (nc_stest2, np->rv_stest2);
3187 	else
3188 		OUTB (nc_stest2, EXT|np->rv_stest2);
3189 
3190 	OUTB (nc_stest3, TE);			/* TolerANT enable */
3191 	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3192 
3193 	/*
3194 	 *  For now, disable AIP generation on C1010-66.
3195 	 */
3196 	if (np->device_id == PCI_ID_LSI53C1010_2)
3197 		OUTB (nc_aipcntl1, DISAIP);
3198 
3199 	/*
3200 	 *  C10101 Errata.
3201 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3202 	 *  STEST1 register to disable SGE. We probably should do
3203 	 *  that from SCRIPTS for each selection/reselection, but
3204 	 *  I just don't want. :)
3205 	 */
3206 	if (np->device_id == PCI_ID_LSI53C1010 &&
3207 	    /* np->revision_id < 0xff */ 1)
3208 		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3209 
3210 	/*
3211 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3212 	 *  Disable overlapped arbitration for some dual function devices,
3213 	 *  regardless revision id (kind of post-chip-design feature. ;-))
3214 	 */
3215 	if (np->device_id == PCI_ID_SYM53C875)
3216 		OUTB (nc_ctest0, (1<<5));
3217 	else if (np->device_id == PCI_ID_SYM53C896)
3218 		np->rv_ccntl0 |= DPR;
3219 
3220 	/*
3221 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3222 	 *  and/or hardware phase mismatch, since only such chips
3223 	 *  seem to support those IO registers.
3224 	 */
3225 	if (np->features & (FE_DAC|FE_NOPM)) {
3226 		OUTB (nc_ccntl0, np->rv_ccntl0);
3227 		OUTB (nc_ccntl1, np->rv_ccntl1);
3228 	}
3229 
3230 	/*
3231 	 *  If phase mismatch handled by scripts (895A/896/1010),
3232 	 *  set PM jump addresses.
3233 	 */
3234 	if (np->features & FE_NOPM) {
3235 		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3236 		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3237 	}
3238 
3239 	/*
3240 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3241 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3242 	 */
3243 	if (np->features & FE_LED0)
3244 		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3245 	else if (np->features & FE_LEDC)
3246 		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3247 
3248 	/*
3249 	 *      enable ints
3250 	 */
3251 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3252 	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3253 
3254 	/*
3255 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3256 	 *  Try to eat the spurious SBMC interrupt that may occur when
3257 	 *  we reset the chip but not the SCSI BUS (at initialization).
3258 	 */
3259 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3260 		OUTONW (nc_sien, SBMC);
3261 		if (reason == 0) {
3262 			MDELAY(100);
3263 			INW (nc_sist);
3264 		}
3265 		np->scsi_mode = INB (nc_stest4) & SMODE;
3266 	}
3267 
3268 	/*
3269 	 *  Fill in target structure.
3270 	 *  Reinitialize usrsync.
3271 	 *  Reinitialize usrwide.
3272 	 *  Prepare sync negotiation according to actual SCSI bus mode.
3273 	 */
3274 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3275 		tcb_p tp = &np->target[i];
3276 
3277 		tp->to_reset  = 0;
3278 		tp->head.sval = 0;
3279 		tp->head.wval = np->rv_scntl3;
3280 		tp->head.uval = 0;
3281 
3282 		tp->tinfo.current.period = 0;
3283 		tp->tinfo.current.offset = 0;
3284 		tp->tinfo.current.width  = BUS_8_BIT;
3285 		tp->tinfo.current.options = 0;
3286 	}
3287 
3288 	/*
3289 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3290 	 *  and start script processor.
3291 	 */
3292 	if (np->ram_ba) {
3293 		if (sym_verbose > 1)
3294 			printf ("%s: Downloading SCSI SCRIPTS.\n",
3295 				sym_name(np));
3296 		if (np->ram_ws == 8192) {
3297 			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3298 			OUTL (nc_mmws, np->scr_ram_seg);
3299 			OUTL (nc_mmrs, np->scr_ram_seg);
3300 			OUTL (nc_sfs,  np->scr_ram_seg);
3301 			phys = SCRIPTB_BA (np, start64);
3302 		}
3303 		else
3304 			phys = SCRIPTA_BA (np, init);
3305 		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3306 	}
3307 	else
3308 		phys = SCRIPTA_BA (np, init);
3309 
3310 	np->istat_sem = 0;
3311 
3312 	OUTL (nc_dsa, np->hcb_ba);
3313 	OUTL_DSP (phys);
3314 
3315 	/*
3316 	 *  Notify the XPT about the RESET condition.
3317 	 */
3318 	if (reason != 0)
3319 		xpt_async(AC_BUS_RESET, np->path, NULL);
3320 }
3321 
3322 /*
3323  *  Get clock factor and sync divisor for a given
3324  *  synchronous factor period.
3325  */
3326 static int
3327 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3328 {
3329 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3330 	int	div = np->clock_divn;	/* Number of divisors supported	*/
3331 	u32	fak;			/* Sync factor in sxfer		*/
3332 	u32	per;			/* Period in tenths of ns	*/
3333 	u32	kpc;			/* (per * clk)			*/
3334 	int	ret;
3335 
3336 	/*
3337 	 *  Compute the synchronous period in tenths of nano-seconds
3338 	 */
3339 	if (dt && sfac <= 9)	per = 125;
3340 	else if	(sfac <= 10)	per = 250;
3341 	else if	(sfac == 11)	per = 303;
3342 	else if	(sfac == 12)	per = 500;
3343 	else			per = 40 * sfac;
3344 	ret = per;
3345 
3346 	kpc = per * clk;
3347 	if (dt)
3348 		kpc <<= 1;
3349 
3350 	/*
3351 	 *  For earliest C10 revision 0, we cannot use extra
3352 	 *  clocks for the setting of the SCSI clocking.
3353 	 *  Note that this limits the lowest sync data transfer
3354 	 *  to 5 Mega-transfers per second and may result in
3355 	 *  using higher clock divisors.
3356 	 */
3357 #if 1
3358 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3359 		/*
3360 		 *  Look for the lowest clock divisor that allows an
3361 		 *  output speed not faster than the period.
3362 		 */
3363 		while (div > 0) {
3364 			--div;
3365 			if (kpc > (div_10M[div] << 2)) {
3366 				++div;
3367 				break;
3368 			}
3369 		}
3370 		fak = 0;			/* No extra clocks */
3371 		if (div == np->clock_divn) {	/* Are we too fast ? */
3372 			ret = -1;
3373 		}
3374 		*divp = div;
3375 		*fakp = fak;
3376 		return ret;
3377 	}
3378 #endif
3379 
3380 	/*
3381 	 *  Look for the greatest clock divisor that allows an
3382 	 *  input speed faster than the period.
3383 	 */
3384 	while (div-- > 0)
3385 		if (kpc >= (div_10M[div] << 2)) break;
3386 
3387 	/*
3388 	 *  Calculate the lowest clock factor that allows an output
3389 	 *  speed not faster than the period, and the max output speed.
3390 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3391 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3392 	 */
3393 	if (dt) {
3394 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3395 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3396 	}
3397 	else {
3398 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3399 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3400 	}
3401 
3402 	/*
3403 	 *  Check against our hardware limits, or bugs :).
3404 	 */
3405 	if (fak > 2)	{fak = 2; ret = -1;}
3406 
3407 	/*
3408 	 *  Compute and return sync parameters.
3409 	 */
3410 	*divp = div;
3411 	*fakp = fak;
3412 
3413 	return ret;
3414 }
3415 
3416 /*
3417  *  Tell the SCSI layer about the new transfer parameters.
3418  */
3419 static void
3420 sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3421 {
3422 	struct ccb_trans_settings cts;
3423 	struct cam_path *path;
3424 	int sts;
3425 	tcb_p tp = &np->target[target];
3426 
3427 	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3428 	                      CAM_LUN_WILDCARD);
3429 	if (sts != CAM_REQ_CMP)
3430 		return;
3431 
3432 	bzero(&cts, sizeof(cts));
3433 
3434 #define	cts__scsi (cts.proto_specific.scsi)
3435 #define	cts__spi  (cts.xport_specific.spi)
3436 
3437 	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3438 	cts.protocol  = PROTO_SCSI;
3439 	cts.transport = XPORT_SPI;
3440 	cts.protocol_version  = tp->tinfo.current.scsi_version;
3441 	cts.transport_version = tp->tinfo.current.spi_version;
3442 
3443 	cts__spi.valid = spi_valid;
3444 	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3445 		cts__spi.sync_period = tp->tinfo.current.period;
3446 	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3447 		cts__spi.sync_offset = tp->tinfo.current.offset;
3448 	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3449 		cts__spi.bus_width   = tp->tinfo.current.width;
3450 	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3451 		cts__spi.ppr_options = tp->tinfo.current.options;
3452 #undef cts__spi
3453 #undef cts__scsi
3454 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3455 	xpt_async(AC_TRANSFER_NEG, path, &cts);
3456 	xpt_free_path(path);
3457 }
3458 
3459 #define SYM_SPI_VALID_WDTR		\
3460 	CTS_SPI_VALID_BUS_WIDTH |	\
3461 	CTS_SPI_VALID_SYNC_RATE |	\
3462 	CTS_SPI_VALID_SYNC_OFFSET
3463 #define SYM_SPI_VALID_SDTR		\
3464 	CTS_SPI_VALID_SYNC_RATE |	\
3465 	CTS_SPI_VALID_SYNC_OFFSET
3466 #define SYM_SPI_VALID_PPR		\
3467 	CTS_SPI_VALID_PPR_OPTIONS |	\
3468 	CTS_SPI_VALID_BUS_WIDTH |	\
3469 	CTS_SPI_VALID_SYNC_RATE |	\
3470 	CTS_SPI_VALID_SYNC_OFFSET
3471 
3472 /*
3473  *  We received a WDTR.
3474  *  Let everything be aware of the changes.
3475  */
3476 static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3477 {
3478 	tcb_p tp = &np->target[cp->target];
3479 
3480 	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3481 
3482 	/*
3483 	 *  Tell the SCSI layer about the new transfer parameters.
3484 	 */
3485 	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3486 	tp->tinfo.current.offset = 0;
3487 	tp->tinfo.current.period = 0;
3488 	tp->tinfo.current.options = 0;
3489 
3490 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3491 }
3492 
3493 /*
3494  *  We received a SDTR.
3495  *  Let everything be aware of the changes.
3496  */
3497 static void
3498 sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3499 {
3500 	tcb_p tp = &np->target[cp->target];
3501 	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3502 
3503 	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3504 
3505 	/*
3506 	 *  Tell the SCSI layer about the new transfer parameters.
3507 	 */
3508 	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3509 	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3510 	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3511 
3512 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3513 }
3514 
3515 /*
3516  *  We received a PPR.
3517  *  Let everything be aware of the changes.
3518  */
3519 static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3520 			 u_char per, u_char wide, u_char div, u_char fak)
3521 {
3522 	tcb_p tp = &np->target[cp->target];
3523 
3524 	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3525 
3526 	/*
3527 	 *  Tell the SCSI layer about the new transfer parameters.
3528 	 */
3529 	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3530 	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3531 	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3532 	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3533 
3534 	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3535 }
3536 
3537 /*
3538  *  Switch trans mode for current job and it's target.
3539  */
3540 static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3541 			 u_char per, u_char wide, u_char div, u_char fak)
3542 {
3543 	SYM_QUEHEAD *qp;
3544 	union	ccb *ccb;
3545 	tcb_p tp;
3546 	u_char target = INB (nc_sdid) & 0x0f;
3547 	u_char sval, wval, uval;
3548 
3549 	assert (cp);
3550 	if (!cp) return;
3551 	ccb = cp->cam_ccb;
3552 	assert (ccb);
3553 	if (!ccb) return;
3554 	assert (target == (cp->target & 0xf));
3555 	tp = &np->target[target];
3556 
3557 	sval = tp->head.sval;
3558 	wval = tp->head.wval;
3559 	uval = tp->head.uval;
3560 
3561 #if 0
3562 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3563 		sval, wval, uval, np->rv_scntl3);
3564 #endif
3565 	/*
3566 	 *  Set the offset.
3567 	 */
3568 	if (!(np->features & FE_C10))
3569 		sval = (sval & ~0x1f) | ofs;
3570 	else
3571 		sval = (sval & ~0x3f) | ofs;
3572 
3573 	/*
3574 	 *  Set the sync divisor and extra clock factor.
3575 	 */
3576 	if (ofs != 0) {
3577 		wval = (wval & ~0x70) | ((div+1) << 4);
3578 		if (!(np->features & FE_C10))
3579 			sval = (sval & ~0xe0) | (fak << 5);
3580 		else {
3581 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3582 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3583 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3584 		}
3585 	}
3586 
3587 	/*
3588 	 *  Set the bus width.
3589 	 */
3590 	wval = wval & ~EWS;
3591 	if (wide != 0)
3592 		wval |= EWS;
3593 
3594 	/*
3595 	 *  Set misc. ultra enable bits.
3596 	 */
3597 	if (np->features & FE_C10) {
3598 		uval = uval & ~(U3EN|AIPCKEN);
3599 		if (dt)	{
3600 			assert(np->features & FE_U3EN);
3601 			uval |= U3EN;
3602 		}
3603 	}
3604 	else {
3605 		wval = wval & ~ULTRA;
3606 		if (per <= 12)	wval |= ULTRA;
3607 	}
3608 
3609 	/*
3610 	 *   Stop there if sync parameters are unchanged.
3611 	 */
3612 	if (tp->head.sval == sval &&
3613 	    tp->head.wval == wval &&
3614 	    tp->head.uval == uval)
3615 		return;
3616 	tp->head.sval = sval;
3617 	tp->head.wval = wval;
3618 	tp->head.uval = uval;
3619 
3620 	/*
3621 	 *  Disable extended Sreq/Sack filtering if per < 50.
3622 	 *  Not supported on the C1010.
3623 	 */
3624 	if (per < 50 && !(np->features & FE_C10))
3625 		OUTOFFB (nc_stest2, EXT);
3626 
3627 	/*
3628 	 *  set actual value and sync_status
3629 	 */
3630 	OUTB (nc_sxfer,  tp->head.sval);
3631 	OUTB (nc_scntl3, tp->head.wval);
3632 
3633 	if (np->features & FE_C10) {
3634 		OUTB (nc_scntl4, tp->head.uval);
3635 	}
3636 
3637 	/*
3638 	 *  patch ALL busy ccbs of this target.
3639 	 */
3640 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3641 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3642 		if (cp->target != target)
3643 			continue;
3644 		cp->phys.select.sel_scntl3 = tp->head.wval;
3645 		cp->phys.select.sel_sxfer  = tp->head.sval;
3646 		if (np->features & FE_C10) {
3647 			cp->phys.select.sel_scntl4 = tp->head.uval;
3648 		}
3649 	}
3650 }
3651 
3652 /*
3653  *  log message for real hard errors
3654  *
3655  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3656  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3657  *
3658  *  exception register:
3659  *  	ds:	dstat
3660  *  	si:	sist
3661  *
3662  *  SCSI bus lines:
3663  *  	so:	control lines as driven by chip.
3664  *  	si:	control lines as seen by chip.
3665  *  	sd:	scsi data lines as seen by chip.
3666  *
3667  *  wide/fastmode:
3668  *  	sxfer:	(see the manual)
3669  *  	scntl3:	(see the manual)
3670  *
3671  *  current script command:
3672  *  	dsp:	script address (relative to start of script).
3673  *  	dbc:	first word of script command.
3674  *
3675  *  First 24 register of the chip:
3676  *  	r0..rf
3677  */
3678 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3679 {
3680 	u32	dsp;
3681 	int	script_ofs;
3682 	int	script_size;
3683 	char	*script_name;
3684 	u_char	*script_base;
3685 	int	i;
3686 
3687 	dsp	= INL (nc_dsp);
3688 
3689 	if	(dsp > np->scripta_ba &&
3690 		 dsp <= np->scripta_ba + np->scripta_sz) {
3691 		script_ofs	= dsp - np->scripta_ba;
3692 		script_size	= np->scripta_sz;
3693 		script_base	= (u_char *) np->scripta0;
3694 		script_name	= "scripta";
3695 	}
3696 	else if (np->scriptb_ba < dsp &&
3697 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3698 		script_ofs	= dsp - np->scriptb_ba;
3699 		script_size	= np->scriptb_sz;
3700 		script_base	= (u_char *) np->scriptb0;
3701 		script_name	= "scriptb";
3702 	} else {
3703 		script_ofs	= dsp;
3704 		script_size	= 0;
3705 		script_base	= NULL;
3706 		script_name	= "mem";
3707 	}
3708 
3709 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3710 		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3711 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3712 		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3713 		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3714 		(unsigned)INL (nc_dbc));
3715 
3716 	if (((script_ofs & 3) == 0) &&
3717 	    (unsigned)script_ofs < script_size) {
3718 		printf ("%s: script cmd = %08x\n", sym_name(np),
3719 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3720 	}
3721 
3722         printf ("%s: regdump:", sym_name(np));
3723         for (i=0; i<24;i++)
3724             printf (" %02x", (unsigned)INB_OFF(i));
3725         printf (".\n");
3726 
3727 	/*
3728 	 *  PCI BUS error, read the PCI ststus register.
3729 	 */
3730 	if (dstat & (MDPE|BF)) {
3731 		u_short pci_sts;
3732 		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3733 		if (pci_sts & 0xf900) {
3734 			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3735 			printf("%s: PCI STATUS = 0x%04x\n",
3736 				sym_name(np), pci_sts & 0xf900);
3737 		}
3738 	}
3739 }
3740 
3741 /*
3742  *  chip interrupt handler
3743  *
3744  *  In normal situations, interrupt conditions occur one at
3745  *  a time. But when something bad happens on the SCSI BUS,
3746  *  the chip may raise several interrupt flags before
3747  *  stopping and interrupting the CPU. The additionnal
3748  *  interrupt flags are stacked in some extra registers
3749  *  after the SIP and/or DIP flag has been raised in the
3750  *  ISTAT. After the CPU has read the interrupt condition
3751  *  flag from SIST or DSTAT, the chip unstacks the other
3752  *  interrupt flags and sets the corresponding bits in
3753  *  SIST or DSTAT. Since the chip starts stacking once the
3754  *  SIP or DIP flag is set, there is a small window of time
3755  *  where the stacking does not occur.
3756  *
3757  *  Typically, multiple interrupt conditions may happen in
3758  *  the following situations:
3759  *
3760  *  - SCSI parity error + Phase mismatch  (PAR|MA)
3761  *    When a parity error is detected in input phase
3762  *    and the device switches to msg-in phase inside a
3763  *    block MOV.
3764  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3765  *    When a stupid device does not want to handle the
3766  *    recovery of an SCSI parity error.
3767  *  - Some combinations of STO, PAR, UDC, ...
3768  *    When using non compliant SCSI stuff, when user is
3769  *    doing non compliant hot tampering on the BUS, when
3770  *    something really bad happens to a device, etc ...
3771  *
3772  *  The heuristic suggested by SYMBIOS to handle
3773  *  multiple interrupts is to try unstacking all
3774  *  interrupts conditions and to handle them on some
3775  *  priority based on error severity.
3776  *  This will work when the unstacking has been
3777  *  successful, but we cannot be 100 % sure of that,
3778  *  since the CPU may have been faster to unstack than
3779  *  the chip is able to stack. Hmmm ... But it seems that
3780  *  such a situation is very unlikely to happen.
3781  *
3782  *  If this happen, for example STO caught by the CPU
3783  *  then UDC happenning before the CPU have restarted
3784  *  the SCRIPTS, the driver may wrongly complete the
3785  *  same command on UDC, since the SCRIPTS didn't restart
3786  *  and the DSA still points to the same command.
3787  *  We avoid this situation by setting the DSA to an
3788  *  invalid value when the CCB is completed and before
3789  *  restarting the SCRIPTS.
3790  *
3791  *  Another issue is that we need some section of our
3792  *  recovery procedures to be somehow uninterruptible but
3793  *  the SCRIPTS processor does not provides such a
3794  *  feature. For this reason, we handle recovery preferently
3795  *  from the C code and check against some SCRIPTS critical
3796  *  sections from the C code.
3797  *
3798  *  Hopefully, the interrupt handling of the driver is now
3799  *  able to resist to weird BUS error conditions, but donnot
3800  *  ask me for any guarantee that it will never fail. :-)
3801  *  Use at your own decision and risk.
3802  */
3803 static void sym_intr1 (hcb_p np)
3804 {
3805 	u_char	istat, istatc;
3806 	u_char	dstat;
3807 	u_short	sist;
3808 
3809 	SYM_LOCK_ASSERT(MA_OWNED);
3810 
3811 	/*
3812 	 *  interrupt on the fly ?
3813 	 *
3814 	 *  A `dummy read' is needed to ensure that the
3815 	 *  clear of the INTF flag reaches the device
3816 	 *  before the scanning of the DONE queue.
3817 	 */
3818 	istat = INB (nc_istat);
3819 	if (istat & INTF) {
3820 		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3821 		istat = INB (nc_istat);		/* DUMMY READ */
3822 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3823 		(void)sym_wakeup_done (np);
3824 	}
3825 
3826 	if (!(istat & (SIP|DIP)))
3827 		return;
3828 
3829 #if 0	/* We should never get this one */
3830 	if (istat & CABRT)
3831 		OUTB (nc_istat, CABRT);
3832 #endif
3833 
3834 	/*
3835 	 *  PAR and MA interrupts may occur at the same time,
3836 	 *  and we need to know of both in order to handle
3837 	 *  this situation properly. We try to unstack SCSI
3838 	 *  interrupts for that reason. BTW, I dislike a LOT
3839 	 *  such a loop inside the interrupt routine.
3840 	 *  Even if DMA interrupt stacking is very unlikely to
3841 	 *  happen, we also try unstacking these ones, since
3842 	 *  this has no performance impact.
3843 	 */
3844 	sist	= 0;
3845 	dstat	= 0;
3846 	istatc	= istat;
3847 	do {
3848 		if (istatc & SIP)
3849 			sist  |= INW (nc_sist);
3850 		if (istatc & DIP)
3851 			dstat |= INB (nc_dstat);
3852 		istatc = INB (nc_istat);
3853 		istat |= istatc;
3854 	} while (istatc & (SIP|DIP));
3855 
3856 	if (DEBUG_FLAGS & DEBUG_TINY)
3857 		printf ("<%d|%x:%x|%x:%x>",
3858 			(int)INB(nc_scr0),
3859 			dstat,sist,
3860 			(unsigned)INL(nc_dsp),
3861 			(unsigned)INL(nc_dbc));
3862 	/*
3863 	 *  On paper, a memory barrier may be needed here.
3864 	 *  And since we are paranoid ... :)
3865 	 */
3866 	MEMORY_BARRIER();
3867 
3868 	/*
3869 	 *  First, interrupts we want to service cleanly.
3870 	 *
3871 	 *  Phase mismatch (MA) is the most frequent interrupt
3872 	 *  for chip earlier than the 896 and so we have to service
3873 	 *  it as quickly as possible.
3874 	 *  A SCSI parity error (PAR) may be combined with a phase
3875 	 *  mismatch condition (MA).
3876 	 *  Programmed interrupts (SIR) are used to call the C code
3877 	 *  from SCRIPTS.
3878 	 *  The single step interrupt (SSI) is not used in this
3879 	 *  driver.
3880 	 */
3881 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3882 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3883 		if	(sist & PAR)	sym_int_par (np, sist);
3884 		else if (sist & MA)	sym_int_ma (np);
3885 		else if (dstat & SIR)	sym_int_sir (np);
3886 		else if (dstat & SSI)	OUTONB_STD ();
3887 		else			goto unknown_int;
3888 		return;
3889 	}
3890 
3891 	/*
3892 	 *  Now, interrupts that donnot happen in normal
3893 	 *  situations and that we may need to recover from.
3894 	 *
3895 	 *  On SCSI RESET (RST), we reset everything.
3896 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3897 	 *  active CCBs with RESET status, prepare all devices
3898 	 *  for negotiating again and restart the SCRIPTS.
3899 	 *  On STO and UDC, we complete the CCB with the corres-
3900 	 *  ponding status and restart the SCRIPTS.
3901 	 */
3902 	if (sist & RST) {
3903 		xpt_print_path(np->path);
3904 		printf("SCSI BUS reset detected.\n");
3905 		sym_init (np, 1);
3906 		return;
3907 	}
3908 
3909 	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3910 	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3911 
3912 	if (!(sist  & (GEN|HTH|SGE)) &&
3913 	    !(dstat & (MDPE|BF|ABRT|IID))) {
3914 		if	(sist & SBMC)	sym_int_sbmc (np);
3915 		else if (sist & STO)	sym_int_sto (np);
3916 		else if (sist & UDC)	sym_int_udc (np);
3917 		else			goto unknown_int;
3918 		return;
3919 	}
3920 
3921 	/*
3922 	 *  Now, interrupts we are not able to recover cleanly.
3923 	 *
3924 	 *  Log message for hard errors.
3925 	 *  Reset everything.
3926 	 */
3927 
3928 	sym_log_hard_error(np, sist, dstat);
3929 
3930 	if ((sist & (GEN|HTH|SGE)) ||
3931 		(dstat & (MDPE|BF|ABRT|IID))) {
3932 		sym_start_reset(np);
3933 		return;
3934 	}
3935 
3936 unknown_int:
3937 	/*
3938 	 *  We just miss the cause of the interrupt. :(
3939 	 *  Print a message. The timeout will do the real work.
3940 	 */
3941 	printf(	"%s: unknown interrupt(s) ignored, "
3942 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3943 		sym_name(np), istat, dstat, sist);
3944 }
3945 
3946 static void sym_intr(void *arg)
3947 {
3948 	hcb_p np = arg;
3949 
3950 	SYM_LOCK();
3951 
3952 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
3953 	sym_intr1((hcb_p) arg);
3954 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
3955 
3956 	SYM_UNLOCK();
3957 }
3958 
3959 static void sym_poll(struct cam_sim *sim)
3960 {
3961 	sym_intr1(cam_sim_softc(sim));
3962 }
3963 
3964 /*
3965  *  generic recovery from scsi interrupt
3966  *
3967  *  The doc says that when the chip gets an SCSI interrupt,
3968  *  it tries to stop in an orderly fashion, by completing
3969  *  an instruction fetch that had started or by flushing
3970  *  the DMA fifo for a write to memory that was executing.
3971  *  Such a fashion is not enough to know if the instruction
3972  *  that was just before the current DSP value has been
3973  *  executed or not.
3974  *
3975  *  There are some small SCRIPTS sections that deal with
3976  *  the start queue and the done queue that may break any
3977  *  assomption from the C code if we are interrupted
3978  *  inside, so we reset if this happens. Btw, since these
3979  *  SCRIPTS sections are executed while the SCRIPTS hasn't
3980  *  started SCSI operations, it is very unlikely to happen.
3981  *
3982  *  All the driver data structures are supposed to be
3983  *  allocated from the same 4 GB memory window, so there
3984  *  is a 1 to 1 relationship between DSA and driver data
3985  *  structures. Since we are careful :) to invalidate the
3986  *  DSA when we complete a command or when the SCRIPTS
3987  *  pushes a DSA into a queue, we can trust it when it
3988  *  points to a CCB.
3989  */
3990 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
3991 {
3992 	u32	dsp	= INL (nc_dsp);
3993 	u32	dsa	= INL (nc_dsa);
3994 	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
3995 
3996 	/*
3997 	 *  If we haven't been interrupted inside the SCRIPTS
3998 	 *  critical paths, we can safely restart the SCRIPTS
3999 	 *  and trust the DSA value if it matches a CCB.
4000 	 */
4001 	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4002 	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4003 	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4004 	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4005 	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4006 	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4007 	    (!(dsp > SCRIPTA_BA (np, done) &&
4008 	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4009 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4010 		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4011 		/*
4012 		 *  If we have a CCB, let the SCRIPTS call us back for
4013 		 *  the handling of the error with SCRATCHA filled with
4014 		 *  STARTPOS. This way, we will be able to freeze the
4015 		 *  device queue and requeue awaiting IOs.
4016 		 */
4017 		if (cp) {
4018 			cp->host_status = hsts;
4019 			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4020 		}
4021 		/*
4022 		 *  Otherwise just restart the SCRIPTS.
4023 		 */
4024 		else {
4025 			OUTL (nc_dsa, 0xffffff);
4026 			OUTL_DSP (SCRIPTA_BA (np, start));
4027 		}
4028 	}
4029 	else
4030 		goto reset_all;
4031 
4032 	return;
4033 
4034 reset_all:
4035 	sym_start_reset(np);
4036 }
4037 
4038 /*
4039  *  chip exception handler for selection timeout
4040  */
4041 static void sym_int_sto (hcb_p np)
4042 {
4043 	u32 dsp	= INL (nc_dsp);
4044 
4045 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4046 
4047 	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4048 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4049 	else
4050 		sym_start_reset(np);
4051 }
4052 
4053 /*
4054  *  chip exception handler for unexpected disconnect
4055  */
4056 static void sym_int_udc (hcb_p np)
4057 {
4058 	printf ("%s: unexpected disconnect\n", sym_name(np));
4059 	sym_recover_scsi_int(np, HS_UNEXPECTED);
4060 }
4061 
4062 /*
4063  *  chip exception handler for SCSI bus mode change
4064  *
4065  *  spi2-r12 11.2.3 says a transceiver mode change must
4066  *  generate a reset event and a device that detects a reset
4067  *  event shall initiate a hard reset. It says also that a
4068  *  device that detects a mode change shall set data transfer
4069  *  mode to eight bit asynchronous, etc...
4070  *  So, just reinitializing all except chip should be enough.
4071  */
4072 static void sym_int_sbmc (hcb_p np)
4073 {
4074 	u_char scsi_mode = INB (nc_stest4) & SMODE;
4075 
4076 	/*
4077 	 *  Notify user.
4078 	 */
4079 	xpt_print_path(np->path);
4080 	printf("SCSI BUS mode change from %s to %s.\n",
4081 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4082 
4083 	/*
4084 	 *  Should suspend command processing for a few seconds and
4085 	 *  reinitialize all except the chip.
4086 	 */
4087 	sym_init (np, 2);
4088 }
4089 
4090 /*
4091  *  chip exception handler for SCSI parity error.
4092  *
4093  *  When the chip detects a SCSI parity error and is
4094  *  currently executing a (CH)MOV instruction, it does
4095  *  not interrupt immediately, but tries to finish the
4096  *  transfer of the current scatter entry before
4097  *  interrupting. The following situations may occur:
4098  *
4099  *  - The complete scatter entry has been transferred
4100  *    without the device having changed phase.
4101  *    The chip will then interrupt with the DSP pointing
4102  *    to the instruction that follows the MOV.
4103  *
4104  *  - A phase mismatch occurs before the MOV finished
4105  *    and phase errors are to be handled by the C code.
4106  *    The chip will then interrupt with both PAR and MA
4107  *    conditions set.
4108  *
4109  *  - A phase mismatch occurs before the MOV finished and
4110  *    phase errors are to be handled by SCRIPTS.
4111  *    The chip will load the DSP with the phase mismatch
4112  *    JUMP address and interrupt the host processor.
4113  */
4114 static void sym_int_par (hcb_p np, u_short sist)
4115 {
4116 	u_char	hsts	= INB (HS_PRT);
4117 	u32	dsp	= INL (nc_dsp);
4118 	u32	dbc	= INL (nc_dbc);
4119 	u32	dsa	= INL (nc_dsa);
4120 	u_char	sbcl	= INB (nc_sbcl);
4121 	u_char	cmd	= dbc >> 24;
4122 	int phase	= cmd & 7;
4123 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4124 
4125 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4126 		sym_name(np), hsts, dbc, sbcl);
4127 
4128 	/*
4129 	 *  Check that the chip is connected to the SCSI BUS.
4130 	 */
4131 	if (!(INB (nc_scntl1) & ISCON)) {
4132 		sym_recover_scsi_int(np, HS_UNEXPECTED);
4133 		return;
4134 	}
4135 
4136 	/*
4137 	 *  If the nexus is not clearly identified, reset the bus.
4138 	 *  We will try to do better later.
4139 	 */
4140 	if (!cp)
4141 		goto reset_all;
4142 
4143 	/*
4144 	 *  Check instruction was a MOV, direction was INPUT and
4145 	 *  ATN is asserted.
4146 	 */
4147 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4148 		goto reset_all;
4149 
4150 	/*
4151 	 *  Keep track of the parity error.
4152 	 */
4153 	OUTONB (HF_PRT, HF_EXT_ERR);
4154 	cp->xerr_status |= XE_PARITY_ERR;
4155 
4156 	/*
4157 	 *  Prepare the message to send to the device.
4158 	 */
4159 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4160 
4161 	/*
4162 	 *  If the old phase was DATA IN phase, we have to deal with
4163 	 *  the 3 situations described above.
4164 	 *  For other input phases (MSG IN and STATUS), the device
4165 	 *  must resend the whole thing that failed parity checking
4166 	 *  or signal error. So, jumping to dispatcher should be OK.
4167 	 */
4168 	if (phase == 1 || phase == 5) {
4169 		/* Phase mismatch handled by SCRIPTS */
4170 		if (dsp == SCRIPTB_BA (np, pm_handle))
4171 			OUTL_DSP (dsp);
4172 		/* Phase mismatch handled by the C code */
4173 		else if (sist & MA)
4174 			sym_int_ma (np);
4175 		/* No phase mismatch occurred */
4176 		else {
4177 			OUTL (nc_temp, dsp);
4178 			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4179 		}
4180 	}
4181 	else
4182 		OUTL_DSP (SCRIPTA_BA (np, clrack));
4183 	return;
4184 
4185 reset_all:
4186 	sym_start_reset(np);
4187 }
4188 
4189 /*
4190  *  chip exception handler for phase errors.
4191  *
4192  *  We have to construct a new transfer descriptor,
4193  *  to transfer the rest of the current block.
4194  */
4195 static void sym_int_ma (hcb_p np)
4196 {
4197 	u32	dbc;
4198 	u32	rest;
4199 	u32	dsp;
4200 	u32	dsa;
4201 	u32	nxtdsp;
4202 	u32	*vdsp;
4203 	u32	oadr, olen;
4204 	u32	*tblp;
4205         u32	newcmd;
4206 	u_int	delta;
4207 	u_char	cmd;
4208 	u_char	hflags, hflags0;
4209 	struct	sym_pmc *pm;
4210 	ccb_p	cp;
4211 
4212 	dsp	= INL (nc_dsp);
4213 	dbc	= INL (nc_dbc);
4214 	dsa	= INL (nc_dsa);
4215 
4216 	cmd	= dbc >> 24;
4217 	rest	= dbc & 0xffffff;
4218 	delta	= 0;
4219 
4220 	/*
4221 	 *  locate matching cp if any.
4222 	 */
4223 	cp = sym_ccb_from_dsa(np, dsa);
4224 
4225 	/*
4226 	 *  Donnot take into account dma fifo and various buffers in
4227 	 *  INPUT phase since the chip flushes everything before
4228 	 *  raising the MA interrupt for interrupted INPUT phases.
4229 	 *  For DATA IN phase, we will check for the SWIDE later.
4230 	 */
4231 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4232 		u_char ss0, ss2;
4233 
4234 		if (np->features & FE_DFBC)
4235 			delta = INW (nc_dfbc);
4236 		else {
4237 			u32 dfifo;
4238 
4239 			/*
4240 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4241 			 */
4242 			dfifo = INL(nc_dfifo);
4243 
4244 			/*
4245 			 *  Calculate remaining bytes in DMA fifo.
4246 			 *  (CTEST5 = dfifo >> 16)
4247 			 */
4248 			if (dfifo & (DFS << 16))
4249 				delta = ((((dfifo >> 8) & 0x300) |
4250 				          (dfifo & 0xff)) - rest) & 0x3ff;
4251 			else
4252 				delta = ((dfifo & 0xff) - rest) & 0x7f;
4253 		}
4254 
4255 		/*
4256 		 *  The data in the dma fifo has not been transferred to
4257 		 *  the target -> add the amount to the rest
4258 		 *  and clear the data.
4259 		 *  Check the sstat2 register in case of wide transfer.
4260 		 */
4261 		rest += delta;
4262 		ss0  = INB (nc_sstat0);
4263 		if (ss0 & OLF) rest++;
4264 		if (!(np->features & FE_C10))
4265 			if (ss0 & ORF) rest++;
4266 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4267 			ss2 = INB (nc_sstat2);
4268 			if (ss2 & OLF1) rest++;
4269 			if (!(np->features & FE_C10))
4270 				if (ss2 & ORF1) rest++;
4271 		}
4272 
4273 		/*
4274 		 *  Clear fifos.
4275 		 */
4276 		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4277 		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4278 	}
4279 
4280 	/*
4281 	 *  log the information
4282 	 */
4283 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4284 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4285 			(unsigned) rest, (unsigned) delta);
4286 
4287 	/*
4288 	 *  try to find the interrupted script command,
4289 	 *  and the address at which to continue.
4290 	 */
4291 	vdsp	= NULL;
4292 	nxtdsp	= 0;
4293 	if	(dsp >  np->scripta_ba &&
4294 		 dsp <= np->scripta_ba + np->scripta_sz) {
4295 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4296 		nxtdsp = dsp;
4297 	}
4298 	else if	(dsp >  np->scriptb_ba &&
4299 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4300 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4301 		nxtdsp = dsp;
4302 	}
4303 
4304 	/*
4305 	 *  log the information
4306 	 */
4307 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4308 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4309 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4310 	}
4311 
4312 	if (!vdsp) {
4313 		printf ("%s: interrupted SCRIPT address not found.\n",
4314 			sym_name (np));
4315 		goto reset_all;
4316 	}
4317 
4318 	if (!cp) {
4319 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4320 			sym_name (np));
4321 		goto reset_all;
4322 	}
4323 
4324 	/*
4325 	 *  get old startaddress and old length.
4326 	 */
4327 	oadr = scr_to_cpu(vdsp[1]);
4328 
4329 	if (cmd & 0x10) {	/* Table indirect */
4330 		tblp = (u32 *) ((char*) &cp->phys + oadr);
4331 		olen = scr_to_cpu(tblp[0]);
4332 		oadr = scr_to_cpu(tblp[1]);
4333 	} else {
4334 		tblp = (u32 *) 0;
4335 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4336 	}
4337 
4338 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4339 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4340 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4341 			tblp,
4342 			(unsigned) olen,
4343 			(unsigned) oadr);
4344 	}
4345 
4346 	/*
4347 	 *  check cmd against assumed interrupted script command.
4348 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4349 	 *  the phase.
4350 	 */
4351 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4352 		PRINT_ADDR(cp);
4353 		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4354 			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4355 
4356 		goto reset_all;
4357 	}
4358 
4359 	/*
4360 	 *  if old phase not dataphase, leave here.
4361 	 */
4362 	if (cmd & 2) {
4363 		PRINT_ADDR(cp);
4364 		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4365 			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4366 			(unsigned)oadr, (unsigned)rest);
4367 		goto unexpected_phase;
4368 	}
4369 
4370 	/*
4371 	 *  Choose the correct PM save area.
4372 	 *
4373 	 *  Look at the PM_SAVE SCRIPT if you want to understand
4374 	 *  this stuff. The equivalent code is implemented in
4375 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4376 	 *  handle PM from the SCRIPTS processor.
4377 	 */
4378 	hflags0 = INB (HF_PRT);
4379 	hflags = hflags0;
4380 
4381 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4382 		if (hflags & HF_IN_PM0)
4383 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4384 		else if	(hflags & HF_IN_PM1)
4385 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4386 
4387 		if (hflags & HF_DP_SAVED)
4388 			hflags ^= HF_ACT_PM;
4389 	}
4390 
4391 	if (!(hflags & HF_ACT_PM)) {
4392 		pm = &cp->phys.pm0;
4393 		newcmd = SCRIPTA_BA (np, pm0_data);
4394 	}
4395 	else {
4396 		pm = &cp->phys.pm1;
4397 		newcmd = SCRIPTA_BA (np, pm1_data);
4398 	}
4399 
4400 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4401 	if (hflags != hflags0)
4402 		OUTB (HF_PRT, hflags);
4403 
4404 	/*
4405 	 *  fillin the phase mismatch context
4406 	 */
4407 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4408 	pm->sg.size = cpu_to_scr(rest);
4409 	pm->ret     = cpu_to_scr(nxtdsp);
4410 
4411 	/*
4412 	 *  If we have a SWIDE,
4413 	 *  - prepare the address to write the SWIDE from SCRIPTS,
4414 	 *  - compute the SCRIPTS address to restart from,
4415 	 *  - move current data pointer context by one byte.
4416 	 */
4417 	nxtdsp = SCRIPTA_BA (np, dispatch);
4418 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4419 	    (INB (nc_scntl2) & WSR)) {
4420 		u32 tmp;
4421 
4422 		/*
4423 		 *  Set up the table indirect for the MOVE
4424 		 *  of the residual byte and adjust the data
4425 		 *  pointer context.
4426 		 */
4427 		tmp = scr_to_cpu(pm->sg.addr);
4428 		cp->phys.wresid.addr = cpu_to_scr(tmp);
4429 		pm->sg.addr = cpu_to_scr(tmp + 1);
4430 		tmp = scr_to_cpu(pm->sg.size);
4431 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4432 		pm->sg.size = cpu_to_scr(tmp - 1);
4433 
4434 		/*
4435 		 *  If only the residual byte is to be moved,
4436 		 *  no PM context is needed.
4437 		 */
4438 		if ((tmp&0xffffff) == 1)
4439 			newcmd = pm->ret;
4440 
4441 		/*
4442 		 *  Prepare the address of SCRIPTS that will
4443 		 *  move the residual byte to memory.
4444 		 */
4445 		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4446 	}
4447 
4448 	if (DEBUG_FLAGS & DEBUG_PHASE) {
4449 		PRINT_ADDR(cp);
4450 		printf ("PM %x %x %x / %x %x %x.\n",
4451 			hflags0, hflags, newcmd,
4452 			(unsigned)scr_to_cpu(pm->sg.addr),
4453 			(unsigned)scr_to_cpu(pm->sg.size),
4454 			(unsigned)scr_to_cpu(pm->ret));
4455 	}
4456 
4457 	/*
4458 	 *  Restart the SCRIPTS processor.
4459 	 */
4460 	OUTL (nc_temp, newcmd);
4461 	OUTL_DSP (nxtdsp);
4462 	return;
4463 
4464 	/*
4465 	 *  Unexpected phase changes that occurs when the current phase
4466 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4467 	 *  Such event may only happen when the SCRIPTS is using a
4468 	 *  multibyte SCSI MOVE.
4469 	 *
4470 	 *  Phase change		Some possible cause
4471 	 *
4472 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4473 	 *  COMMAND  --> STATUS	Bad command or refused by target.
4474 	 *  MSG OUT  --> MSG IN     Message rejected by target.
4475 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4476 	 *  			negotiation messages.
4477 	 *
4478 	 *  The code below does not care of the new phase and so
4479 	 *  trusts the target. Why to annoy it ?
4480 	 *  If the interrupted phase is COMMAND phase, we restart at
4481 	 *  dispatcher.
4482 	 *  If a target does not get all the messages after selection,
4483 	 *  the code assumes blindly that the target discards extended
4484 	 *  messages and clears the negotiation status.
4485 	 *  If the target does not want all our response to negotiation,
4486 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4487 	 *  bloat for such a should_not_happen situation).
4488 	 *  In all other situation, we reset the BUS.
4489 	 *  Are these assumptions reasonnable ? (Wait and see ...)
4490 	 */
4491 unexpected_phase:
4492 	dsp -= 8;
4493 	nxtdsp = 0;
4494 
4495 	switch (cmd & 7) {
4496 	case 2:	/* COMMAND phase */
4497 		nxtdsp = SCRIPTA_BA (np, dispatch);
4498 		break;
4499 #if 0
4500 	case 3:	/* STATUS  phase */
4501 		nxtdsp = SCRIPTA_BA (np, dispatch);
4502 		break;
4503 #endif
4504 	case 6:	/* MSG OUT phase */
4505 		/*
4506 		 *  If the device may want to use untagged when we want
4507 		 *  tagged, we prepare an IDENTIFY without disc. granted,
4508 		 *  since we will not be able to handle reselect.
4509 		 *  Otherwise, we just don't care.
4510 		 */
4511 		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4512 			if (cp->tag != NO_TAG && olen - rest <= 3) {
4513 				cp->host_status = HS_BUSY;
4514 				np->msgout[0] = M_IDENTIFY | cp->lun;
4515 				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4516 			}
4517 			else
4518 				nxtdsp = SCRIPTB_BA (np, ident_break);
4519 		}
4520 		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4521 			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4522 			 dsp == SCRIPTB_BA (np, send_ppr)) {
4523 			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4524 		}
4525 		break;
4526 #if 0
4527 	case 7:	/* MSG IN  phase */
4528 		nxtdsp = SCRIPTA_BA (np, clrack);
4529 		break;
4530 #endif
4531 	}
4532 
4533 	if (nxtdsp) {
4534 		OUTL_DSP (nxtdsp);
4535 		return;
4536 	}
4537 
4538 reset_all:
4539 	sym_start_reset(np);
4540 }
4541 
4542 /*
4543  *  Dequeue from the START queue all CCBs that match
4544  *  a given target/lun/task condition (-1 means all),
4545  *  and move them from the BUSY queue to the COMP queue
4546  *  with CAM_REQUEUE_REQ status condition.
4547  *  This function is used during error handling/recovery.
4548  *  It is called with SCRIPTS not running.
4549  */
4550 static int
4551 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4552 {
4553 	int j;
4554 	ccb_p cp;
4555 
4556 	/*
4557 	 *  Make sure the starting index is within range.
4558 	 */
4559 	assert((i >= 0) && (i < 2*MAX_QUEUE));
4560 
4561 	/*
4562 	 *  Walk until end of START queue and dequeue every job
4563 	 *  that matches the target/lun/task condition.
4564 	 */
4565 	j = i;
4566 	while (i != np->squeueput) {
4567 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4568 		assert(cp);
4569 #ifdef SYM_CONF_IARB_SUPPORT
4570 		/* Forget hints for IARB, they may be no longer relevant */
4571 		cp->host_flags &= ~HF_HINT_IARB;
4572 #endif
4573 		if ((target == -1 || cp->target == target) &&
4574 		    (lun    == -1 || cp->lun    == lun)    &&
4575 		    (task   == -1 || cp->tag    == task)) {
4576 			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4577 			sym_remque(&cp->link_ccbq);
4578 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4579 		}
4580 		else {
4581 			if (i != j)
4582 				np->squeue[j] = np->squeue[i];
4583 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4584 		}
4585 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4586 	}
4587 	if (i != j)		/* Copy back the idle task if needed */
4588 		np->squeue[j] = np->squeue[i];
4589 	np->squeueput = j;	/* Update our current start queue pointer */
4590 
4591 	return (i - j) / 2;
4592 }
4593 
4594 /*
4595  *  Complete all CCBs queued to the COMP queue.
4596  *
4597  *  These CCBs are assumed:
4598  *  - Not to be referenced either by devices or
4599  *    SCRIPTS-related queues and datas.
4600  *  - To have to be completed with an error condition
4601  *    or requeued.
4602  *
4603  *  The device queue freeze count is incremented
4604  *  for each CCB that does not prevent this.
4605  *  This function is called when all CCBs involved
4606  *  in error handling/recovery have been reaped.
4607  */
4608 static void
4609 sym_flush_comp_queue(hcb_p np, int cam_status)
4610 {
4611 	SYM_QUEHEAD *qp;
4612 	ccb_p cp;
4613 
4614 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
4615 		union ccb *ccb;
4616 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4617 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4618 		/* Leave quiet CCBs waiting for resources */
4619 		if (cp->host_status == HS_WAIT)
4620 			continue;
4621 		ccb = cp->cam_ccb;
4622 		if (cam_status)
4623 			sym_set_cam_status(ccb, cam_status);
4624 		sym_freeze_cam_ccb(ccb);
4625 		sym_xpt_done(np, ccb, cp);
4626 		sym_free_ccb(np, cp);
4627 	}
4628 }
4629 
4630 /*
4631  *  chip handler for bad SCSI status condition
4632  *
4633  *  In case of bad SCSI status, we unqueue all the tasks
4634  *  currently queued to the controller but not yet started
4635  *  and then restart the SCRIPTS processor immediately.
4636  *
4637  *  QUEUE FULL and BUSY conditions are handled the same way.
4638  *  Basically all the not yet started tasks are requeued in
4639  *  device queue and the queue is frozen until a completion.
4640  *
4641  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4642  *  the CCB of the failed command to prepare a REQUEST SENSE
4643  *  SCSI command and queue it to the controller queue.
4644  *
4645  *  SCRATCHA is assumed to have been loaded with STARTPOS
4646  *  before the SCRIPTS called the C code.
4647  */
4648 static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp)
4649 {
4650 	tcb_p tp	= &np->target[cp->target];
4651 	u32		startp;
4652 	u_char		s_status = cp->ssss_status;
4653 	u_char		h_flags  = cp->host_flags;
4654 	int		msglen;
4655 	int		nego;
4656 	int		i;
4657 
4658 	SYM_LOCK_ASSERT(MA_OWNED);
4659 
4660 	/*
4661 	 *  Compute the index of the next job to start from SCRIPTS.
4662 	 */
4663 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4664 
4665 	/*
4666 	 *  The last CCB queued used for IARB hint may be
4667 	 *  no longer relevant. Forget it.
4668 	 */
4669 #ifdef SYM_CONF_IARB_SUPPORT
4670 	if (np->last_cp)
4671 		np->last_cp = NULL;
4672 #endif
4673 
4674 	/*
4675 	 *  Now deal with the SCSI status.
4676 	 */
4677 	switch(s_status) {
4678 	case S_BUSY:
4679 	case S_QUEUE_FULL:
4680 		if (sym_verbose >= 2) {
4681 			PRINT_ADDR(cp);
4682 			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4683 		}
4684 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4685 		sym_complete_error (np, cp);
4686 		break;
4687 	case S_TERMINATED:
4688 	case S_CHECK_COND:
4689 		/*
4690 		 *  If we get an SCSI error when requesting sense, give up.
4691 		 */
4692 		if (h_flags & HF_SENSE) {
4693 			sym_complete_error (np, cp);
4694 			break;
4695 		}
4696 
4697 		/*
4698 		 *  Dequeue all queued CCBs for that device not yet started,
4699 		 *  and restart the SCRIPTS processor immediately.
4700 		 */
4701 		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4702 		OUTL_DSP (SCRIPTA_BA (np, start));
4703 
4704  		/*
4705 		 *  Save some info of the actual IO.
4706 		 *  Compute the data residual.
4707 		 */
4708 		cp->sv_scsi_status = cp->ssss_status;
4709 		cp->sv_xerr_status = cp->xerr_status;
4710 		cp->sv_resid = sym_compute_residual(np, cp);
4711 
4712 		/*
4713 		 *  Prepare all needed data structures for
4714 		 *  requesting sense data.
4715 		 */
4716 
4717 		/*
4718 		 *  identify message
4719 		 */
4720 		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4721 		msglen = 1;
4722 
4723 		/*
4724 		 *  If we are currently using anything different from
4725 		 *  async. 8 bit data transfers with that target,
4726 		 *  start a negotiation, since the device may want
4727 		 *  to report us a UNIT ATTENTION condition due to
4728 		 *  a cause we currently ignore, and we donnot want
4729 		 *  to be stuck with WIDE and/or SYNC data transfer.
4730 		 *
4731 		 *  cp->nego_status is filled by sym_prepare_nego().
4732 		 */
4733 		cp->nego_status = 0;
4734 		nego = 0;
4735 		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4736 			nego = NS_PPR;
4737 		else if	(tp->tinfo.current.width != BUS_8_BIT)
4738 			nego = NS_WIDE;
4739 		else if (tp->tinfo.current.offset != 0)
4740 			nego = NS_SYNC;
4741 		if (nego)
4742 			msglen +=
4743 			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4744 		/*
4745 		 *  Message table indirect structure.
4746 		 */
4747 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4748 		cp->phys.smsg.size	= cpu_to_scr(msglen);
4749 
4750 		/*
4751 		 *  sense command
4752 		 */
4753 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4754 		cp->phys.cmd.size	= cpu_to_scr(6);
4755 
4756 		/*
4757 		 *  patch requested size into sense command
4758 		 */
4759 		cp->sensecmd[0]		= 0x03;
4760 		cp->sensecmd[1]		= cp->lun << 5;
4761 		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4762 			cp->sensecmd[1]	= 0;
4763 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4764 		cp->data_len		= SYM_SNS_BBUF_LEN;
4765 
4766 		/*
4767 		 *  sense data
4768 		 */
4769 		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4770 		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4771 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4772 
4773 		/*
4774 		 *  requeue the command.
4775 		 */
4776 		startp = SCRIPTB_BA (np, sdata_in);
4777 
4778 		cp->phys.head.savep	= cpu_to_scr(startp);
4779 		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4780 		cp->phys.head.lastp	= cpu_to_scr(startp);
4781 		cp->startp	= cpu_to_scr(startp);
4782 
4783 		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4784 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4785 		cp->ssss_status = S_ILLEGAL;
4786 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4787 		cp->xerr_status = 0;
4788 		cp->extra_bytes = 0;
4789 
4790 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4791 
4792 		/*
4793 		 *  Requeue the command.
4794 		 */
4795 		sym_put_start_queue(np, cp);
4796 
4797 		/*
4798 		 *  Give back to upper layer everything we have dequeued.
4799 		 */
4800 		sym_flush_comp_queue(np, 0);
4801 		break;
4802 	}
4803 }
4804 
4805 /*
4806  *  After a device has accepted some management message
4807  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4808  *  a device signals a UNIT ATTENTION condition, some
4809  *  tasks are thrown away by the device. We are required
4810  *  to reflect that on our tasks list since the device
4811  *  will never complete these tasks.
4812  *
4813  *  This function move from the BUSY queue to the COMP
4814  *  queue all disconnected CCBs for a given target that
4815  *  match the following criteria:
4816  *  - lun=-1  means any logical UNIT otherwise a given one.
4817  *  - task=-1 means any task, otherwise a given one.
4818  */
4819 static int
4820 sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4821 {
4822 	SYM_QUEHEAD qtmp, *qp;
4823 	int i = 0;
4824 	ccb_p cp;
4825 
4826 	/*
4827 	 *  Move the entire BUSY queue to our temporary queue.
4828 	 */
4829 	sym_que_init(&qtmp);
4830 	sym_que_splice(&np->busy_ccbq, &qtmp);
4831 	sym_que_init(&np->busy_ccbq);
4832 
4833 	/*
4834 	 *  Put all CCBs that matches our criteria into
4835 	 *  the COMP queue and put back other ones into
4836 	 *  the BUSY queue.
4837 	 */
4838 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
4839 		union ccb *ccb;
4840 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4841 		ccb = cp->cam_ccb;
4842 		if (cp->host_status != HS_DISCONNECT ||
4843 		    cp->target != target	     ||
4844 		    (lun  != -1 && cp->lun != lun)   ||
4845 		    (task != -1 &&
4846 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4847 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4848 			continue;
4849 		}
4850 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4851 
4852 		/* Preserve the software timeout condition */
4853 		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4854 			sym_set_cam_status(ccb, cam_status);
4855 		++i;
4856 #if 0
4857 printf("XXXX TASK @%p CLEARED\n", cp);
4858 #endif
4859 	}
4860 	return i;
4861 }
4862 
4863 /*
4864  *  chip handler for TASKS recovery
4865  *
4866  *  We cannot safely abort a command, while the SCRIPTS
4867  *  processor is running, since we just would be in race
4868  *  with it.
4869  *
4870  *  As long as we have tasks to abort, we keep the SEM
4871  *  bit set in the ISTAT. When this bit is set, the
4872  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4873  *  each time it enters the scheduler.
4874  *
4875  *  If we have to reset a target, clear tasks of a unit,
4876  *  or to perform the abort of a disconnected job, we
4877  *  restart the SCRIPTS for selecting the target. Once
4878  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4879  *  If it loses arbitration, the SCRIPTS will interrupt again
4880  *  the next time it will enter its scheduler, and so on ...
4881  *
4882  *  On SIR_TARGET_SELECTED, we scan for the more
4883  *  appropriate thing to do:
4884  *
4885  *  - If nothing, we just sent a M_ABORT message to the
4886  *    target to get rid of the useless SCSI bus ownership.
4887  *    According to the specs, no tasks shall be affected.
4888  *  - If the target is to be reset, we send it a M_RESET
4889  *    message.
4890  *  - If a logical UNIT is to be cleared , we send the
4891  *    IDENTIFY(lun) + M_ABORT.
4892  *  - If an untagged task is to be aborted, we send the
4893  *    IDENTIFY(lun) + M_ABORT.
4894  *  - If a tagged task is to be aborted, we send the
4895  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4896  *
4897  *  Once our 'kiss of death' :) message has been accepted
4898  *  by the target, the SCRIPTS interrupts again
4899  *  (SIR_ABORT_SENT). On this interrupt, we complete
4900  *  all the CCBs that should have been aborted by the
4901  *  target according to our message.
4902  */
4903 static void sym_sir_task_recovery(hcb_p np, int num)
4904 {
4905 	SYM_QUEHEAD *qp;
4906 	ccb_p cp;
4907 	tcb_p tp;
4908 	int target=-1, lun=-1, task;
4909 	int i, k;
4910 
4911 	switch(num) {
4912 	/*
4913 	 *  The SCRIPTS processor stopped before starting
4914 	 *  the next command in order to allow us to perform
4915 	 *  some task recovery.
4916 	 */
4917 	case SIR_SCRIPT_STOPPED:
4918 		/*
4919 		 *  Do we have any target to reset or unit to clear ?
4920 		 */
4921 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4922 			tp = &np->target[i];
4923 			if (tp->to_reset ||
4924 			    (tp->lun0p && tp->lun0p->to_clear)) {
4925 				target = i;
4926 				break;
4927 			}
4928 			if (!tp->lunmp)
4929 				continue;
4930 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4931 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4932 					target	= i;
4933 					break;
4934 				}
4935 			}
4936 			if (target != -1)
4937 				break;
4938 		}
4939 
4940 		/*
4941 		 *  If not, walk the busy queue for any
4942 		 *  disconnected CCB to be aborted.
4943 		 */
4944 		if (target == -1) {
4945 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4946 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4947 				if (cp->host_status != HS_DISCONNECT)
4948 					continue;
4949 				if (cp->to_abort) {
4950 					target = cp->target;
4951 					break;
4952 				}
4953 			}
4954 		}
4955 
4956 		/*
4957 		 *  If some target is to be selected,
4958 		 *  prepare and start the selection.
4959 		 */
4960 		if (target != -1) {
4961 			tp = &np->target[target];
4962 			np->abrt_sel.sel_id	= target;
4963 			np->abrt_sel.sel_scntl3 = tp->head.wval;
4964 			np->abrt_sel.sel_sxfer  = tp->head.sval;
4965 			OUTL(nc_dsa, np->hcb_ba);
4966 			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
4967 			return;
4968 		}
4969 
4970 		/*
4971 		 *  Now look for a CCB to abort that haven't started yet.
4972 		 *  Btw, the SCRIPTS processor is still stopped, so
4973 		 *  we are not in race.
4974 		 */
4975 		i = 0;
4976 		cp = NULL;
4977 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4978 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4979 			if (cp->host_status != HS_BUSY &&
4980 			    cp->host_status != HS_NEGOTIATE)
4981 				continue;
4982 			if (!cp->to_abort)
4983 				continue;
4984 #ifdef SYM_CONF_IARB_SUPPORT
4985 			/*
4986 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
4987 			 *    want to cancel the last queued CCB, since the
4988 			 *    SCRIPTS may have anticipated the selection.
4989 			 */
4990 			if (cp == np->last_cp) {
4991 				cp->to_abort = 0;
4992 				continue;
4993 			}
4994 #endif
4995 			i = 1;	/* Means we have found some */
4996 			break;
4997 		}
4998 		if (!i) {
4999 			/*
5000 			 *  We are done, so we donnot need
5001 			 *  to synchronize with the SCRIPTS anylonger.
5002 			 *  Remove the SEM flag from the ISTAT.
5003 			 */
5004 			np->istat_sem = 0;
5005 			OUTB (nc_istat, SIGP);
5006 			break;
5007 		}
5008 		/*
5009 		 *  Compute index of next position in the start
5010 		 *  queue the SCRIPTS intends to start and dequeue
5011 		 *  all CCBs for that device that haven't been started.
5012 		 */
5013 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5014 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5015 
5016 		/*
5017 		 *  Make sure at least our IO to abort has been dequeued.
5018 		 */
5019 		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5020 
5021 		/*
5022 		 *  Keep track in cam status of the reason of the abort.
5023 		 */
5024 		if (cp->to_abort == 2)
5025 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5026 		else
5027 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5028 
5029 		/*
5030 		 *  Complete with error everything that we have dequeued.
5031 	 	 */
5032 		sym_flush_comp_queue(np, 0);
5033 		break;
5034 	/*
5035 	 *  The SCRIPTS processor has selected a target
5036 	 *  we may have some manual recovery to perform for.
5037 	 */
5038 	case SIR_TARGET_SELECTED:
5039 		target = (INB (nc_sdid) & 0xf);
5040 		tp = &np->target[target];
5041 
5042 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5043 
5044 		/*
5045 		 *  If the target is to be reset, prepare a
5046 		 *  M_RESET message and clear the to_reset flag
5047 		 *  since we donnot expect this operation to fail.
5048 		 */
5049 		if (tp->to_reset) {
5050 			np->abrt_msg[0] = M_RESET;
5051 			np->abrt_tbl.size = 1;
5052 			tp->to_reset = 0;
5053 			break;
5054 		}
5055 
5056 		/*
5057 		 *  Otherwise, look for some logical unit to be cleared.
5058 		 */
5059 		if (tp->lun0p && tp->lun0p->to_clear)
5060 			lun = 0;
5061 		else if (tp->lunmp) {
5062 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5063 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5064 					lun = k;
5065 					break;
5066 				}
5067 			}
5068 		}
5069 
5070 		/*
5071 		 *  If a logical unit is to be cleared, prepare
5072 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5073 		 */
5074 		if (lun != -1) {
5075 			lcb_p lp = sym_lp(tp, lun);
5076 			lp->to_clear = 0; /* We donnot expect to fail here */
5077 			np->abrt_msg[0] = M_IDENTIFY | lun;
5078 			np->abrt_msg[1] = M_ABORT;
5079 			np->abrt_tbl.size = 2;
5080 			break;
5081 		}
5082 
5083 		/*
5084 		 *  Otherwise, look for some disconnected job to
5085 		 *  abort for this target.
5086 		 */
5087 		i = 0;
5088 		cp = NULL;
5089 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5090 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5091 			if (cp->host_status != HS_DISCONNECT)
5092 				continue;
5093 			if (cp->target != target)
5094 				continue;
5095 			if (!cp->to_abort)
5096 				continue;
5097 			i = 1;	/* Means we have some */
5098 			break;
5099 		}
5100 
5101 		/*
5102 		 *  If we have none, probably since the device has
5103 		 *  completed the command before we won abitration,
5104 		 *  send a M_ABORT message without IDENTIFY.
5105 		 *  According to the specs, the device must just
5106 		 *  disconnect the BUS and not abort any task.
5107 		 */
5108 		if (!i) {
5109 			np->abrt_msg[0] = M_ABORT;
5110 			np->abrt_tbl.size = 1;
5111 			break;
5112 		}
5113 
5114 		/*
5115 		 *  We have some task to abort.
5116 		 *  Set the IDENTIFY(lun)
5117 		 */
5118 		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5119 
5120 		/*
5121 		 *  If we want to abort an untagged command, we
5122 		 *  will send an IDENTIFY + M_ABORT.
5123 		 *  Otherwise (tagged command), we will send
5124 		 *  an IDENTIFY + task attributes + ABORT TAG.
5125 		 */
5126 		if (cp->tag == NO_TAG) {
5127 			np->abrt_msg[1] = M_ABORT;
5128 			np->abrt_tbl.size = 2;
5129 		}
5130 		else {
5131 			np->abrt_msg[1] = cp->scsi_smsg[1];
5132 			np->abrt_msg[2] = cp->scsi_smsg[2];
5133 			np->abrt_msg[3] = M_ABORT_TAG;
5134 			np->abrt_tbl.size = 4;
5135 		}
5136 		/*
5137 		 *  Keep track of software timeout condition, since the
5138 		 *  peripheral driver may not count retries on abort
5139 		 *  conditions not due to timeout.
5140 		 */
5141 		if (cp->to_abort == 2)
5142 			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5143 		cp->to_abort = 0; /* We donnot expect to fail here */
5144 		break;
5145 
5146 	/*
5147 	 *  The target has accepted our message and switched
5148 	 *  to BUS FREE phase as we expected.
5149 	 */
5150 	case SIR_ABORT_SENT:
5151 		target = (INB (nc_sdid) & 0xf);
5152 		tp = &np->target[target];
5153 
5154 		/*
5155 		**  If we didn't abort anything, leave here.
5156 		*/
5157 		if (np->abrt_msg[0] == M_ABORT)
5158 			break;
5159 
5160 		/*
5161 		 *  If we sent a M_RESET, then a hardware reset has
5162 		 *  been performed by the target.
5163 		 *  - Reset everything to async 8 bit
5164 		 *  - Tell ourself to negotiate next time :-)
5165 		 *  - Prepare to clear all disconnected CCBs for
5166 		 *    this target from our task list (lun=task=-1)
5167 		 */
5168 		lun = -1;
5169 		task = -1;
5170 		if (np->abrt_msg[0] == M_RESET) {
5171 			tp->head.sval = 0;
5172 			tp->head.wval = np->rv_scntl3;
5173 			tp->head.uval = 0;
5174 			tp->tinfo.current.period = 0;
5175 			tp->tinfo.current.offset = 0;
5176 			tp->tinfo.current.width  = BUS_8_BIT;
5177 			tp->tinfo.current.options = 0;
5178 		}
5179 
5180 		/*
5181 		 *  Otherwise, check for the LUN and TASK(s)
5182 		 *  concerned by the cancellation.
5183 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5184 		 *  or an ABORT message :-)
5185 		 */
5186 		else {
5187 			lun = np->abrt_msg[0] & 0x3f;
5188 			if (np->abrt_msg[1] == M_ABORT_TAG)
5189 				task = np->abrt_msg[2];
5190 		}
5191 
5192 		/*
5193 		 *  Complete all the CCBs the device should have
5194 		 *  aborted due to our 'kiss of death' message.
5195 		 */
5196 		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5197 		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5198 		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5199 		sym_flush_comp_queue(np, 0);
5200 
5201 		/*
5202 		 *  If we sent a BDR, make uper layer aware of that.
5203 		 */
5204 		if (np->abrt_msg[0] == M_RESET)
5205 			xpt_async(AC_SENT_BDR, np->path, NULL);
5206 		break;
5207 	}
5208 
5209 	/*
5210 	 *  Print to the log the message we intend to send.
5211 	 */
5212 	if (num == SIR_TARGET_SELECTED) {
5213 		PRINT_TARGET(np, target);
5214 		sym_printl_hex("control msgout:", np->abrt_msg,
5215 			      np->abrt_tbl.size);
5216 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5217 	}
5218 
5219 	/*
5220 	 *  Let the SCRIPTS processor continue.
5221 	 */
5222 	OUTONB_STD ();
5223 }
5224 
5225 /*
5226  *  Gerard's alchemy:) that deals with with the data
5227  *  pointer for both MDP and the residual calculation.
5228  *
5229  *  I didn't want to bloat the code by more than 200
5230  *  lignes for the handling of both MDP and the residual.
5231  *  This has been achieved by using a data pointer
5232  *  representation consisting in an index in the data
5233  *  array (dp_sg) and a negative offset (dp_ofs) that
5234  *  have the following meaning:
5235  *
5236  *  - dp_sg = SYM_CONF_MAX_SG
5237  *    we are at the end of the data script.
5238  *  - dp_sg < SYM_CONF_MAX_SG
5239  *    dp_sg points to the next entry of the scatter array
5240  *    we want to transfer.
5241  *  - dp_ofs < 0
5242  *    dp_ofs represents the residual of bytes of the
5243  *    previous entry scatter entry we will send first.
5244  *  - dp_ofs = 0
5245  *    no residual to send first.
5246  *
5247  *  The function sym_evaluate_dp() accepts an arbitray
5248  *  offset (basically from the MDP message) and returns
5249  *  the corresponding values of dp_sg and dp_ofs.
5250  */
5251 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5252 {
5253 	u32	dp_scr;
5254 	int	dp_ofs, dp_sg, dp_sgmin;
5255 	int	tmp;
5256 	struct sym_pmc *pm;
5257 
5258 	/*
5259 	 *  Compute the resulted data pointer in term of a script
5260 	 *  address within some DATA script and a signed byte offset.
5261 	 */
5262 	dp_scr = scr;
5263 	dp_ofs = *ofs;
5264 	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5265 		pm = &cp->phys.pm0;
5266 	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5267 		pm = &cp->phys.pm1;
5268 	else
5269 		pm = NULL;
5270 
5271 	if (pm) {
5272 		dp_scr  = scr_to_cpu(pm->ret);
5273 		dp_ofs -= scr_to_cpu(pm->sg.size);
5274 	}
5275 
5276 	/*
5277 	 *  If we are auto-sensing, then we are done.
5278 	 */
5279 	if (cp->host_flags & HF_SENSE) {
5280 		*ofs = dp_ofs;
5281 		return 0;
5282 	}
5283 
5284 	/*
5285 	 *  Deduce the index of the sg entry.
5286 	 *  Keep track of the index of the first valid entry.
5287 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5288 	 *  end of the data.
5289 	 */
5290 	tmp = scr_to_cpu(cp->phys.head.goalp);
5291 	dp_sg = SYM_CONF_MAX_SG;
5292 	if (dp_scr != tmp)
5293 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5294 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5295 
5296 	/*
5297 	 *  Move to the sg entry the data pointer belongs to.
5298 	 *
5299 	 *  If we are inside the data area, we expect result to be:
5300 	 *
5301 	 *  Either,
5302 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5303 	 *      the data pointer belongs to (or the end of the data)
5304 	 *  Or,
5305 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5306 	 *      the data pointer belongs to + 1.
5307 	 */
5308 	if (dp_ofs < 0) {
5309 		int n;
5310 		while (dp_sg > dp_sgmin) {
5311 			--dp_sg;
5312 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5313 			n = dp_ofs + (tmp & 0xffffff);
5314 			if (n > 0) {
5315 				++dp_sg;
5316 				break;
5317 			}
5318 			dp_ofs = n;
5319 		}
5320 	}
5321 	else if (dp_ofs > 0) {
5322 		while (dp_sg < SYM_CONF_MAX_SG) {
5323 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5324 			dp_ofs -= (tmp & 0xffffff);
5325 			++dp_sg;
5326 			if (dp_ofs <= 0)
5327 				break;
5328 		}
5329 	}
5330 
5331 	/*
5332 	 *  Make sure the data pointer is inside the data area.
5333 	 *  If not, return some error.
5334 	 */
5335 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5336 		goto out_err;
5337 	else if	(dp_sg > SYM_CONF_MAX_SG ||
5338 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5339 		goto out_err;
5340 
5341 	/*
5342 	 *  Save the extreme pointer if needed.
5343 	 */
5344 	if (dp_sg > cp->ext_sg ||
5345             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5346 		cp->ext_sg  = dp_sg;
5347 		cp->ext_ofs = dp_ofs;
5348 	}
5349 
5350 	/*
5351 	 *  Return data.
5352 	 */
5353 	*ofs = dp_ofs;
5354 	return dp_sg;
5355 
5356 out_err:
5357 	return -1;
5358 }
5359 
5360 /*
5361  *  chip handler for MODIFY DATA POINTER MESSAGE
5362  *
5363  *  We also call this function on IGNORE WIDE RESIDUE
5364  *  messages that do not match a SWIDE full condition.
5365  *  Btw, we assume in that situation that such a message
5366  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5367  */
5368 static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs)
5369 {
5370 	int dp_ofs	= ofs;
5371 	u32	dp_scr	= INL (nc_temp);
5372 	u32	dp_ret;
5373 	u32	tmp;
5374 	u_char	hflags;
5375 	int	dp_sg;
5376 	struct	sym_pmc *pm;
5377 
5378 	/*
5379 	 *  Not supported for auto-sense.
5380 	 */
5381 	if (cp->host_flags & HF_SENSE)
5382 		goto out_reject;
5383 
5384 	/*
5385 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5386 	 *  to the resulted data pointer.
5387 	 */
5388 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5389 	if (dp_sg < 0)
5390 		goto out_reject;
5391 
5392 	/*
5393 	 *  And our alchemy:) allows to easily calculate the data
5394 	 *  script address we want to return for the next data phase.
5395 	 */
5396 	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5397 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5398 
5399 	/*
5400 	 *  If offset / scatter entry is zero we donnot need
5401 	 *  a context for the new current data pointer.
5402 	 */
5403 	if (dp_ofs == 0) {
5404 		dp_scr = dp_ret;
5405 		goto out_ok;
5406 	}
5407 
5408 	/*
5409 	 *  Get a context for the new current data pointer.
5410 	 */
5411 	hflags = INB (HF_PRT);
5412 
5413 	if (hflags & HF_DP_SAVED)
5414 		hflags ^= HF_ACT_PM;
5415 
5416 	if (!(hflags & HF_ACT_PM)) {
5417 		pm  = &cp->phys.pm0;
5418 		dp_scr = SCRIPTA_BA (np, pm0_data);
5419 	}
5420 	else {
5421 		pm = &cp->phys.pm1;
5422 		dp_scr = SCRIPTA_BA (np, pm1_data);
5423 	}
5424 
5425 	hflags &= ~(HF_DP_SAVED);
5426 
5427 	OUTB (HF_PRT, hflags);
5428 
5429 	/*
5430 	 *  Set up the new current data pointer.
5431 	 *  ofs < 0 there, and for the next data phase, we
5432 	 *  want to transfer part of the data of the sg entry
5433 	 *  corresponding to index dp_sg-1 prior to returning
5434 	 *  to the main data script.
5435 	 */
5436 	pm->ret = cpu_to_scr(dp_ret);
5437 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5438 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5439 	pm->sg.addr = cpu_to_scr(tmp);
5440 	pm->sg.size = cpu_to_scr(-dp_ofs);
5441 
5442 out_ok:
5443 	OUTL (nc_temp, dp_scr);
5444 	OUTL_DSP (SCRIPTA_BA (np, clrack));
5445 	return;
5446 
5447 out_reject:
5448 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5449 }
5450 
5451 /*
5452  *  chip calculation of the data residual.
5453  *
5454  *  As I used to say, the requirement of data residual
5455  *  in SCSI is broken, useless and cannot be achieved
5456  *  without huge complexity.
5457  *  But most OSes and even the official CAM require it.
5458  *  When stupidity happens to be so widely spread inside
5459  *  a community, it gets hard to convince.
5460  *
5461  *  Anyway, I don't care, since I am not going to use
5462  *  any software that considers this data residual as
5463  *  a relevant information. :)
5464  */
5465 static int sym_compute_residual(hcb_p np, ccb_p cp)
5466 {
5467 	int dp_sg, dp_sgmin, resid = 0;
5468 	int dp_ofs = 0;
5469 
5470 	/*
5471 	 *  Check for some data lost or just thrown away.
5472 	 *  We are not required to be quite accurate in this
5473 	 *  situation. Btw, if we are odd for output and the
5474 	 *  device claims some more data, it may well happen
5475 	 *  than our residual be zero. :-)
5476 	 */
5477 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5478 		if (cp->xerr_status & XE_EXTRA_DATA)
5479 			resid -= cp->extra_bytes;
5480 		if (cp->xerr_status & XE_SODL_UNRUN)
5481 			++resid;
5482 		if (cp->xerr_status & XE_SWIDE_OVRUN)
5483 			--resid;
5484 	}
5485 
5486 	/*
5487 	 *  If all data has been transferred,
5488 	 *  there is no residual.
5489 	 */
5490 	if (cp->phys.head.lastp == cp->phys.head.goalp)
5491 		return resid;
5492 
5493 	/*
5494 	 *  If no data transfer occurs, or if the data
5495 	 *  pointer is weird, return full residual.
5496 	 */
5497 	if (cp->startp == cp->phys.head.lastp ||
5498 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5499 			    &dp_ofs) < 0) {
5500 		return cp->data_len;
5501 	}
5502 
5503 	/*
5504 	 *  If we were auto-sensing, then we are done.
5505 	 */
5506 	if (cp->host_flags & HF_SENSE) {
5507 		return -dp_ofs;
5508 	}
5509 
5510 	/*
5511 	 *  We are now full comfortable in the computation
5512 	 *  of the data residual (2's complement).
5513 	 */
5514 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5515 	resid = -cp->ext_ofs;
5516 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5517 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5518 		resid += (tmp & 0xffffff);
5519 	}
5520 
5521 	/*
5522 	 *  Hopefully, the result is not too wrong.
5523 	 */
5524 	return resid;
5525 }
5526 
5527 /*
5528  *  Print out the content of a SCSI message.
5529  */
5530 static int sym_show_msg (u_char * msg)
5531 {
5532 	u_char i;
5533 	printf ("%x",*msg);
5534 	if (*msg==M_EXTENDED) {
5535 		for (i=1;i<8;i++) {
5536 			if (i-1>msg[1]) break;
5537 			printf ("-%x",msg[i]);
5538 		}
5539 		return (i+1);
5540 	} else if ((*msg & 0xf0) == 0x20) {
5541 		printf ("-%x",msg[1]);
5542 		return (2);
5543 	}
5544 	return (1);
5545 }
5546 
5547 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5548 {
5549 	PRINT_ADDR(cp);
5550 	if (label)
5551 		printf ("%s: ", label);
5552 
5553 	(void) sym_show_msg (msg);
5554 	printf (".\n");
5555 }
5556 
5557 /*
5558  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5559  *
5560  *  When we try to negotiate, we append the negotiation message
5561  *  to the identify and (maybe) simple tag message.
5562  *  The host status field is set to HS_NEGOTIATE to mark this
5563  *  situation.
5564  *
5565  *  If the target doesn't answer this message immediately
5566  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5567  *  will be raised eventually.
5568  *  The handler removes the HS_NEGOTIATE status, and sets the
5569  *  negotiated value to the default (async / nowide).
5570  *
5571  *  If we receive a matching answer immediately, we check it
5572  *  for validity, and set the values.
5573  *
5574  *  If we receive a Reject message immediately, we assume the
5575  *  negotiation has failed, and fall back to standard values.
5576  *
5577  *  If we receive a negotiation message while not in HS_NEGOTIATE
5578  *  state, it's a target initiated negotiation. We prepare a
5579  *  (hopefully) valid answer, set our parameters, and send back
5580  *  this answer to the target.
5581  *
5582  *  If the target doesn't fetch the answer (no message out phase),
5583  *  we assume the negotiation has failed, and fall back to default
5584  *  settings (SIR_NEGO_PROTO interrupt).
5585  *
5586  *  When we set the values, we adjust them in all ccbs belonging
5587  *  to this target, in the controller's register, and in the "phys"
5588  *  field of the controller's struct sym_hcb.
5589  */
5590 
5591 /*
5592  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5593  */
5594 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5595 {
5596 	u_char	chg, ofs, per, fak, div;
5597 	int	req = 1;
5598 
5599 	/*
5600 	 *  Synchronous request message received.
5601 	 */
5602 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5603 		sym_print_msg(cp, "sync msgin", np->msgin);
5604 	}
5605 
5606 	/*
5607 	 * request or answer ?
5608 	 */
5609 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5610 		OUTB (HS_PRT, HS_BUSY);
5611 		if (cp->nego_status && cp->nego_status != NS_SYNC)
5612 			goto reject_it;
5613 		req = 0;
5614 	}
5615 
5616 	/*
5617 	 *  get requested values.
5618 	 */
5619 	chg = 0;
5620 	per = np->msgin[3];
5621 	ofs = np->msgin[4];
5622 
5623 	/*
5624 	 *  check values against our limits.
5625 	 */
5626 	if (ofs) {
5627 		if (ofs > np->maxoffs)
5628 			{chg = 1; ofs = np->maxoffs;}
5629 		if (req) {
5630 			if (ofs > tp->tinfo.user.offset)
5631 				{chg = 1; ofs = tp->tinfo.user.offset;}
5632 		}
5633 	}
5634 
5635 	if (ofs) {
5636 		if (per < np->minsync)
5637 			{chg = 1; per = np->minsync;}
5638 		if (req) {
5639 			if (per < tp->tinfo.user.period)
5640 				{chg = 1; per = tp->tinfo.user.period;}
5641 		}
5642 	}
5643 
5644 	div = fak = 0;
5645 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5646 		goto reject_it;
5647 
5648 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5649 		PRINT_ADDR(cp);
5650 		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5651 			ofs, per, div, fak, chg);
5652 	}
5653 
5654 	/*
5655 	 *  This was an answer message
5656 	 */
5657 	if (req == 0) {
5658 		if (chg) 	/* Answer wasn't acceptable. */
5659 			goto reject_it;
5660 		sym_setsync (np, cp, ofs, per, div, fak);
5661 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5662 		return;
5663 	}
5664 
5665 	/*
5666 	 *  It was a request. Set value and
5667 	 *  prepare an answer message
5668 	 */
5669 	sym_setsync (np, cp, ofs, per, div, fak);
5670 
5671 	np->msgout[0] = M_EXTENDED;
5672 	np->msgout[1] = 3;
5673 	np->msgout[2] = M_X_SYNC_REQ;
5674 	np->msgout[3] = per;
5675 	np->msgout[4] = ofs;
5676 
5677 	cp->nego_status = NS_SYNC;
5678 
5679 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5680 		sym_print_msg(cp, "sync msgout", np->msgout);
5681 	}
5682 
5683 	np->msgin [0] = M_NOOP;
5684 
5685 	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5686 	return;
5687 reject_it:
5688 	sym_setsync (np, cp, 0, 0, 0, 0);
5689 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5690 }
5691 
5692 /*
5693  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5694  */
5695 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5696 {
5697 	u_char	chg, ofs, per, fak, dt, div, wide;
5698 	int	req = 1;
5699 
5700 	/*
5701 	 * Synchronous request message received.
5702 	 */
5703 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5704 		sym_print_msg(cp, "ppr msgin", np->msgin);
5705 	}
5706 
5707 	/*
5708 	 *  get requested values.
5709 	 */
5710 	chg  = 0;
5711 	per  = np->msgin[3];
5712 	ofs  = np->msgin[5];
5713 	wide = np->msgin[6];
5714 	dt   = np->msgin[7] & PPR_OPT_DT;
5715 
5716 	/*
5717 	 * request or answer ?
5718 	 */
5719 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5720 		OUTB (HS_PRT, HS_BUSY);
5721 		if (cp->nego_status && cp->nego_status != NS_PPR)
5722 			goto reject_it;
5723 		req = 0;
5724 	}
5725 
5726 	/*
5727 	 *  check values against our limits.
5728 	 */
5729 	if (wide > np->maxwide)
5730 		{chg = 1; wide = np->maxwide;}
5731 	if (!wide || !(np->features & FE_ULTRA3))
5732 		dt &= ~PPR_OPT_DT;
5733 	if (req) {
5734 		if (wide > tp->tinfo.user.width)
5735 			{chg = 1; wide = tp->tinfo.user.width;}
5736 	}
5737 
5738 	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5739 		dt &= ~PPR_OPT_DT;
5740 
5741 	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5742 
5743 	if (ofs) {
5744 		if (dt) {
5745 			if (ofs > np->maxoffs_dt)
5746 				{chg = 1; ofs = np->maxoffs_dt;}
5747 		}
5748 		else if (ofs > np->maxoffs)
5749 			{chg = 1; ofs = np->maxoffs;}
5750 		if (req) {
5751 			if (ofs > tp->tinfo.user.offset)
5752 				{chg = 1; ofs = tp->tinfo.user.offset;}
5753 		}
5754 	}
5755 
5756 	if (ofs) {
5757 		if (dt) {
5758 			if (per < np->minsync_dt)
5759 				{chg = 1; per = np->minsync_dt;}
5760 		}
5761 		else if (per < np->minsync)
5762 			{chg = 1; per = np->minsync;}
5763 		if (req) {
5764 			if (per < tp->tinfo.user.period)
5765 				{chg = 1; per = tp->tinfo.user.period;}
5766 		}
5767 	}
5768 
5769 	div = fak = 0;
5770 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5771 		goto reject_it;
5772 
5773 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5774 		PRINT_ADDR(cp);
5775 		printf ("ppr: "
5776 			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5777 			dt, ofs, per, wide, div, fak, chg);
5778 	}
5779 
5780 	/*
5781 	 *  It was an answer.
5782 	 */
5783 	if (req == 0) {
5784 		if (chg) 	/* Answer wasn't acceptable */
5785 			goto reject_it;
5786 		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5787 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5788 		return;
5789 	}
5790 
5791 	/*
5792 	 *  It was a request. Set value and
5793 	 *  prepare an answer message
5794 	 */
5795 	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5796 
5797 	np->msgout[0] = M_EXTENDED;
5798 	np->msgout[1] = 6;
5799 	np->msgout[2] = M_X_PPR_REQ;
5800 	np->msgout[3] = per;
5801 	np->msgout[4] = 0;
5802 	np->msgout[5] = ofs;
5803 	np->msgout[6] = wide;
5804 	np->msgout[7] = dt;
5805 
5806 	cp->nego_status = NS_PPR;
5807 
5808 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5809 		sym_print_msg(cp, "ppr msgout", np->msgout);
5810 	}
5811 
5812 	np->msgin [0] = M_NOOP;
5813 
5814 	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5815 	return;
5816 reject_it:
5817 	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5818 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5819 	/*
5820 	 *  If it was a device response that should result in
5821 	 *  ST, we may want to try a legacy negotiation later.
5822 	 */
5823 	if (!req && !dt) {
5824 		tp->tinfo.goal.options = 0;
5825 		tp->tinfo.goal.width   = wide;
5826 		tp->tinfo.goal.period  = per;
5827 		tp->tinfo.goal.offset  = ofs;
5828 	}
5829 }
5830 
5831 /*
5832  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5833  */
5834 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5835 {
5836 	u_char	chg, wide;
5837 	int	req = 1;
5838 
5839 	/*
5840 	 *  Wide request message received.
5841 	 */
5842 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5843 		sym_print_msg(cp, "wide msgin", np->msgin);
5844 	}
5845 
5846 	/*
5847 	 * Is it a request from the device?
5848 	 */
5849 	if (INB (HS_PRT) == HS_NEGOTIATE) {
5850 		OUTB (HS_PRT, HS_BUSY);
5851 		if (cp->nego_status && cp->nego_status != NS_WIDE)
5852 			goto reject_it;
5853 		req = 0;
5854 	}
5855 
5856 	/*
5857 	 *  get requested values.
5858 	 */
5859 	chg  = 0;
5860 	wide = np->msgin[3];
5861 
5862 	/*
5863 	 *  check values against driver limits.
5864 	 */
5865 	if (wide > np->maxwide)
5866 		{chg = 1; wide = np->maxwide;}
5867 	if (req) {
5868 		if (wide > tp->tinfo.user.width)
5869 			{chg = 1; wide = tp->tinfo.user.width;}
5870 	}
5871 
5872 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5873 		PRINT_ADDR(cp);
5874 		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5875 	}
5876 
5877 	/*
5878 	 * This was an answer message
5879 	 */
5880 	if (req == 0) {
5881 		if (chg)	/*  Answer wasn't acceptable. */
5882 			goto reject_it;
5883 		sym_setwide (np, cp, wide);
5884 
5885 		/*
5886 		 * Negotiate for SYNC immediately after WIDE response.
5887 		 * This allows to negotiate for both WIDE and SYNC on
5888 		 * a single SCSI command (Suggested by Justin Gibbs).
5889 		 */
5890 		if (tp->tinfo.goal.offset) {
5891 			np->msgout[0] = M_EXTENDED;
5892 			np->msgout[1] = 3;
5893 			np->msgout[2] = M_X_SYNC_REQ;
5894 			np->msgout[3] = tp->tinfo.goal.period;
5895 			np->msgout[4] = tp->tinfo.goal.offset;
5896 
5897 			if (DEBUG_FLAGS & DEBUG_NEGO) {
5898 				sym_print_msg(cp, "sync msgout", np->msgout);
5899 			}
5900 
5901 			cp->nego_status = NS_SYNC;
5902 			OUTB (HS_PRT, HS_NEGOTIATE);
5903 			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5904 			return;
5905 		}
5906 
5907 		OUTL_DSP (SCRIPTA_BA (np, clrack));
5908 		return;
5909 	}
5910 
5911 	/*
5912 	 *  It was a request, set value and
5913 	 *  prepare an answer message
5914 	 */
5915 	sym_setwide (np, cp, wide);
5916 
5917 	np->msgout[0] = M_EXTENDED;
5918 	np->msgout[1] = 2;
5919 	np->msgout[2] = M_X_WIDE_REQ;
5920 	np->msgout[3] = wide;
5921 
5922 	np->msgin [0] = M_NOOP;
5923 
5924 	cp->nego_status = NS_WIDE;
5925 
5926 	if (DEBUG_FLAGS & DEBUG_NEGO) {
5927 		sym_print_msg(cp, "wide msgout", np->msgout);
5928 	}
5929 
5930 	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5931 	return;
5932 reject_it:
5933 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5934 }
5935 
5936 /*
5937  *  Reset SYNC or WIDE to default settings.
5938  *
5939  *  Called when a negotiation does not succeed either
5940  *  on rejection or on protocol error.
5941  *
5942  *  If it was a PPR that made problems, we may want to
5943  *  try a legacy negotiation later.
5944  */
5945 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5946 {
5947 	/*
5948 	 *  any error in negotiation:
5949 	 *  fall back to default mode.
5950 	 */
5951 	switch (cp->nego_status) {
5952 	case NS_PPR:
5953 #if 0
5954 		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5955 #else
5956 		tp->tinfo.goal.options = 0;
5957 		if (tp->tinfo.goal.period < np->minsync)
5958 			tp->tinfo.goal.period = np->minsync;
5959 		if (tp->tinfo.goal.offset > np->maxoffs)
5960 			tp->tinfo.goal.offset = np->maxoffs;
5961 #endif
5962 		break;
5963 	case NS_SYNC:
5964 		sym_setsync (np, cp, 0, 0, 0, 0);
5965 		break;
5966 	case NS_WIDE:
5967 		sym_setwide (np, cp, 0);
5968 		break;
5969 	}
5970 	np->msgin [0] = M_NOOP;
5971 	np->msgout[0] = M_NOOP;
5972 	cp->nego_status = 0;
5973 }
5974 
5975 /*
5976  *  chip handler for MESSAGE REJECT received in response to
5977  *  a WIDE or SYNCHRONOUS negotiation.
5978  */
5979 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
5980 {
5981 	sym_nego_default(np, tp, cp);
5982 	OUTB (HS_PRT, HS_BUSY);
5983 }
5984 
5985 /*
5986  *  chip exception handler for programmed interrupts.
5987  */
5988 static void sym_int_sir (hcb_p np)
5989 {
5990 	u_char	num	= INB (nc_dsps);
5991 	u32	dsa	= INL (nc_dsa);
5992 	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
5993 	u_char	target	= INB (nc_sdid) & 0x0f;
5994 	tcb_p	tp	= &np->target[target];
5995 	int	tmp;
5996 
5997 	SYM_LOCK_ASSERT(MA_OWNED);
5998 
5999 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
6000 
6001 	switch (num) {
6002 	/*
6003 	 *  Command has been completed with error condition
6004 	 *  or has been auto-sensed.
6005 	 */
6006 	case SIR_COMPLETE_ERROR:
6007 		sym_complete_error(np, cp);
6008 		return;
6009 	/*
6010 	 *  The C code is currently trying to recover from something.
6011 	 *  Typically, user want to abort some command.
6012 	 */
6013 	case SIR_SCRIPT_STOPPED:
6014 	case SIR_TARGET_SELECTED:
6015 	case SIR_ABORT_SENT:
6016 		sym_sir_task_recovery(np, num);
6017 		return;
6018 	/*
6019 	 *  The device didn't go to MSG OUT phase after having
6020 	 *  been selected with ATN. We donnot want to handle
6021 	 *  that.
6022 	 */
6023 	case SIR_SEL_ATN_NO_MSG_OUT:
6024 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6025 			sym_name (np), target);
6026 		goto out_stuck;
6027 	/*
6028 	 *  The device didn't switch to MSG IN phase after
6029 	 *  having reseleted the initiator.
6030 	 */
6031 	case SIR_RESEL_NO_MSG_IN:
6032 		printf ("%s:%d: No MSG IN phase after reselection.\n",
6033 			sym_name (np), target);
6034 		goto out_stuck;
6035 	/*
6036 	 *  After reselection, the device sent a message that wasn't
6037 	 *  an IDENTIFY.
6038 	 */
6039 	case SIR_RESEL_NO_IDENTIFY:
6040 		printf ("%s:%d: No IDENTIFY after reselection.\n",
6041 			sym_name (np), target);
6042 		goto out_stuck;
6043 	/*
6044 	 *  The device reselected a LUN we donnot know about.
6045 	 */
6046 	case SIR_RESEL_BAD_LUN:
6047 		np->msgout[0] = M_RESET;
6048 		goto out;
6049 	/*
6050 	 *  The device reselected for an untagged nexus and we
6051 	 *  haven't any.
6052 	 */
6053 	case SIR_RESEL_BAD_I_T_L:
6054 		np->msgout[0] = M_ABORT;
6055 		goto out;
6056 	/*
6057 	 *  The device reselected for a tagged nexus that we donnot
6058 	 *  have.
6059 	 */
6060 	case SIR_RESEL_BAD_I_T_L_Q:
6061 		np->msgout[0] = M_ABORT_TAG;
6062 		goto out;
6063 	/*
6064 	 *  The SCRIPTS let us know that the device has grabbed
6065 	 *  our message and will abort the job.
6066 	 */
6067 	case SIR_RESEL_ABORTED:
6068 		np->lastmsg = np->msgout[0];
6069 		np->msgout[0] = M_NOOP;
6070 		printf ("%s:%d: message %x sent on bad reselection.\n",
6071 			sym_name (np), target, np->lastmsg);
6072 		goto out;
6073 	/*
6074 	 *  The SCRIPTS let us know that a message has been
6075 	 *  successfully sent to the device.
6076 	 */
6077 	case SIR_MSG_OUT_DONE:
6078 		np->lastmsg = np->msgout[0];
6079 		np->msgout[0] = M_NOOP;
6080 		/* Should we really care of that */
6081 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6082 			if (cp) {
6083 				cp->xerr_status &= ~XE_PARITY_ERR;
6084 				if (!cp->xerr_status)
6085 					OUTOFFB (HF_PRT, HF_EXT_ERR);
6086 			}
6087 		}
6088 		goto out;
6089 	/*
6090 	 *  The device didn't send a GOOD SCSI status.
6091 	 *  We may have some work to do prior to allow
6092 	 *  the SCRIPTS processor to continue.
6093 	 */
6094 	case SIR_BAD_SCSI_STATUS:
6095 		if (!cp)
6096 			goto out;
6097 		sym_sir_bad_scsi_status(np, cp);
6098 		return;
6099 	/*
6100 	 *  We are asked by the SCRIPTS to prepare a
6101 	 *  REJECT message.
6102 	 */
6103 	case SIR_REJECT_TO_SEND:
6104 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6105 		np->msgout[0] = M_REJECT;
6106 		goto out;
6107 	/*
6108 	 *  We have been ODD at the end of a DATA IN
6109 	 *  transfer and the device didn't send a
6110 	 *  IGNORE WIDE RESIDUE message.
6111 	 *  It is a data overrun condition.
6112 	 */
6113 	case SIR_SWIDE_OVERRUN:
6114 		if (cp) {
6115 			OUTONB (HF_PRT, HF_EXT_ERR);
6116 			cp->xerr_status |= XE_SWIDE_OVRUN;
6117 		}
6118 		goto out;
6119 	/*
6120 	 *  We have been ODD at the end of a DATA OUT
6121 	 *  transfer.
6122 	 *  It is a data underrun condition.
6123 	 */
6124 	case SIR_SODL_UNDERRUN:
6125 		if (cp) {
6126 			OUTONB (HF_PRT, HF_EXT_ERR);
6127 			cp->xerr_status |= XE_SODL_UNRUN;
6128 		}
6129 		goto out;
6130 	/*
6131 	 *  The device wants us to transfer more data than
6132 	 *  expected or in the wrong direction.
6133 	 *  The number of extra bytes is in scratcha.
6134 	 *  It is a data overrun condition.
6135 	 */
6136 	case SIR_DATA_OVERRUN:
6137 		if (cp) {
6138 			OUTONB (HF_PRT, HF_EXT_ERR);
6139 			cp->xerr_status |= XE_EXTRA_DATA;
6140 			cp->extra_bytes += INL (nc_scratcha);
6141 		}
6142 		goto out;
6143 	/*
6144 	 *  The device switched to an illegal phase (4/5).
6145 	 */
6146 	case SIR_BAD_PHASE:
6147 		if (cp) {
6148 			OUTONB (HF_PRT, HF_EXT_ERR);
6149 			cp->xerr_status |= XE_BAD_PHASE;
6150 		}
6151 		goto out;
6152 	/*
6153 	 *  We received a message.
6154 	 */
6155 	case SIR_MSG_RECEIVED:
6156 		if (!cp)
6157 			goto out_stuck;
6158 		switch (np->msgin [0]) {
6159 		/*
6160 		 *  We received an extended message.
6161 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6162 		 *  and reject all other extended messages.
6163 		 */
6164 		case M_EXTENDED:
6165 			switch (np->msgin [2]) {
6166 			case M_X_MODIFY_DP:
6167 				if (DEBUG_FLAGS & DEBUG_POINTER)
6168 					sym_print_msg(cp,"modify DP",np->msgin);
6169 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6170 				      (np->msgin[5]<<8)  + (np->msgin[6]);
6171 				sym_modify_dp(np, cp, tmp);
6172 				return;
6173 			case M_X_SYNC_REQ:
6174 				sym_sync_nego(np, tp, cp);
6175 				return;
6176 			case M_X_PPR_REQ:
6177 				sym_ppr_nego(np, tp, cp);
6178 				return;
6179 			case M_X_WIDE_REQ:
6180 				sym_wide_nego(np, tp, cp);
6181 				return;
6182 			default:
6183 				goto out_reject;
6184 			}
6185 			break;
6186 		/*
6187 		 *  We received a 1/2 byte message not handled from SCRIPTS.
6188 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6189 		 *  RESIDUE messages that haven't been anticipated by
6190 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6191 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6192 		 */
6193 		case M_IGN_RESIDUE:
6194 			if (DEBUG_FLAGS & DEBUG_POINTER)
6195 				sym_print_msg(cp,"ign wide residue", np->msgin);
6196 			sym_modify_dp(np, cp, -1);
6197 			return;
6198 		case M_REJECT:
6199 			if (INB (HS_PRT) == HS_NEGOTIATE)
6200 				sym_nego_rejected(np, tp, cp);
6201 			else {
6202 				PRINT_ADDR(cp);
6203 				printf ("M_REJECT received (%x:%x).\n",
6204 					scr_to_cpu(np->lastmsg), np->msgout[0]);
6205 			}
6206 			goto out_clrack;
6207 			break;
6208 		default:
6209 			goto out_reject;
6210 		}
6211 		break;
6212 	/*
6213 	 *  We received an unknown message.
6214 	 *  Ignore all MSG IN phases and reject it.
6215 	 */
6216 	case SIR_MSG_WEIRD:
6217 		sym_print_msg(cp, "WEIRD message received", np->msgin);
6218 		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6219 		return;
6220 	/*
6221 	 *  Negotiation failed.
6222 	 *  Target does not send us the reply.
6223 	 *  Remove the HS_NEGOTIATE status.
6224 	 */
6225 	case SIR_NEGO_FAILED:
6226 		OUTB (HS_PRT, HS_BUSY);
6227 	/*
6228 	 *  Negotiation failed.
6229 	 *  Target does not want answer message.
6230 	 */
6231 	case SIR_NEGO_PROTO:
6232 		sym_nego_default(np, tp, cp);
6233 		goto out;
6234 	}
6235 
6236 out:
6237 	OUTONB_STD ();
6238 	return;
6239 out_reject:
6240 	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6241 	return;
6242 out_clrack:
6243 	OUTL_DSP (SCRIPTA_BA (np, clrack));
6244 	return;
6245 out_stuck:
6246 	return;
6247 }
6248 
6249 /*
6250  *  Acquire a control block
6251  */
6252 static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6253 {
6254 	tcb_p tp = &np->target[tn];
6255 	lcb_p lp = sym_lp(tp, ln);
6256 	u_short tag = NO_TAG;
6257 	SYM_QUEHEAD *qp;
6258 	ccb_p cp = (ccb_p) NULL;
6259 
6260 	/*
6261 	 *  Look for a free CCB
6262 	 */
6263 	if (sym_que_empty(&np->free_ccbq))
6264 		goto out;
6265 	qp = sym_remque_head(&np->free_ccbq);
6266 	if (!qp)
6267 		goto out;
6268 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6269 
6270 	/*
6271 	 *  If the LCB is not yet available and the LUN
6272 	 *  has been probed ok, try to allocate the LCB.
6273 	 */
6274 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6275 		lp = sym_alloc_lcb(np, tn, ln);
6276 		if (!lp)
6277 			goto out_free;
6278 	}
6279 
6280 	/*
6281 	 *  If the LCB is not available here, then the
6282 	 *  logical unit is not yet discovered. For those
6283 	 *  ones only accept 1 SCSI IO per logical unit,
6284 	 *  since we cannot allow disconnections.
6285 	 */
6286 	if (!lp) {
6287 		if (!sym_is_bit(tp->busy0_map, ln))
6288 			sym_set_bit(tp->busy0_map, ln);
6289 		else
6290 			goto out_free;
6291 	} else {
6292 		/*
6293 		 *  If we have been asked for a tagged command.
6294 		 */
6295 		if (tag_order) {
6296 			/*
6297 			 *  Debugging purpose.
6298 			 */
6299 			assert(lp->busy_itl == 0);
6300 			/*
6301 			 *  Allocate resources for tags if not yet.
6302 			 */
6303 			if (!lp->cb_tags) {
6304 				sym_alloc_lcb_tags(np, tn, ln);
6305 				if (!lp->cb_tags)
6306 					goto out_free;
6307 			}
6308 			/*
6309 			 *  Get a tag for this SCSI IO and set up
6310 			 *  the CCB bus address for reselection,
6311 			 *  and count it for this LUN.
6312 			 *  Toggle reselect path to tagged.
6313 			 */
6314 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6315 				tag = lp->cb_tags[lp->ia_tag];
6316 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6317 					lp->ia_tag = 0;
6318 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6319 				++lp->busy_itlq;
6320 				lp->head.resel_sa =
6321 					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6322 			}
6323 			else
6324 				goto out_free;
6325 		}
6326 		/*
6327 		 *  This command will not be tagged.
6328 		 *  If we already have either a tagged or untagged
6329 		 *  one, refuse to overlap this untagged one.
6330 		 */
6331 		else {
6332 			/*
6333 			 *  Debugging purpose.
6334 			 */
6335 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6336 			/*
6337 			 *  Count this nexus for this LUN.
6338 			 *  Set up the CCB bus address for reselection.
6339 			 *  Toggle reselect path to untagged.
6340 			 */
6341 			if (++lp->busy_itl == 1) {
6342 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6343 				lp->head.resel_sa =
6344 				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6345 			}
6346 			else
6347 				goto out_free;
6348 		}
6349 	}
6350 	/*
6351 	 *  Put the CCB into the busy queue.
6352 	 */
6353 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6354 
6355 	/*
6356 	 *  Remember all informations needed to free this CCB.
6357 	 */
6358 	cp->to_abort = 0;
6359 	cp->tag	   = tag;
6360 	cp->target = tn;
6361 	cp->lun    = ln;
6362 
6363 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6364 		PRINT_LUN(np, tn, ln);
6365 		printf ("ccb @%p using tag %d.\n", cp, tag);
6366 	}
6367 
6368 out:
6369 	return cp;
6370 out_free:
6371 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6372 	return NULL;
6373 }
6374 
6375 /*
6376  *  Release one control block
6377  */
6378 static void sym_free_ccb(hcb_p np, ccb_p cp)
6379 {
6380 	tcb_p tp = &np->target[cp->target];
6381 	lcb_p lp = sym_lp(tp, cp->lun);
6382 
6383 	if (DEBUG_FLAGS & DEBUG_TAGS) {
6384 		PRINT_LUN(np, cp->target, cp->lun);
6385 		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6386 	}
6387 
6388 	/*
6389 	 *  If LCB available,
6390 	 */
6391 	if (lp) {
6392 		/*
6393 		 *  If tagged, release the tag, set the relect path
6394 		 */
6395 		if (cp->tag != NO_TAG) {
6396 			/*
6397 			 *  Free the tag value.
6398 			 */
6399 			lp->cb_tags[lp->if_tag] = cp->tag;
6400 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6401 				lp->if_tag = 0;
6402 			/*
6403 			 *  Make the reselect path invalid,
6404 			 *  and uncount this CCB.
6405 			 */
6406 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6407 			--lp->busy_itlq;
6408 		} else {	/* Untagged */
6409 			/*
6410 			 *  Make the reselect path invalid,
6411 			 *  and uncount this CCB.
6412 			 */
6413 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6414 			--lp->busy_itl;
6415 		}
6416 		/*
6417 		 *  If no JOB active, make the LUN reselect path invalid.
6418 		 */
6419 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6420 			lp->head.resel_sa =
6421 				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6422 	}
6423 	/*
6424 	 *  Otherwise, we only accept 1 IO per LUN.
6425 	 *  Clear the bit that keeps track of this IO.
6426 	 */
6427 	else
6428 		sym_clr_bit(tp->busy0_map, cp->lun);
6429 
6430 	/*
6431 	 *  We donnot queue more than 1 ccb per target
6432 	 *  with negotiation at any time. If this ccb was
6433 	 *  used for negotiation, clear this info in the tcb.
6434 	 */
6435 	if (cp == tp->nego_cp)
6436 		tp->nego_cp = NULL;
6437 
6438 #ifdef SYM_CONF_IARB_SUPPORT
6439 	/*
6440 	 *  If we just complete the last queued CCB,
6441 	 *  clear this info that is no longer relevant.
6442 	 */
6443 	if (cp == np->last_cp)
6444 		np->last_cp = NULL;
6445 #endif
6446 
6447 	/*
6448 	 *  Unmap user data from DMA map if needed.
6449 	 */
6450 	if (cp->dmamapped) {
6451 		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6452 		cp->dmamapped = 0;
6453 	}
6454 
6455 	/*
6456 	 *  Make this CCB available.
6457 	 */
6458 	cp->cam_ccb = NULL;
6459 	cp->host_status = HS_IDLE;
6460 	sym_remque(&cp->link_ccbq);
6461 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6462 }
6463 
6464 /*
6465  *  Allocate a CCB from memory and initialize its fixed part.
6466  */
6467 static ccb_p sym_alloc_ccb(hcb_p np)
6468 {
6469 	ccb_p cp = NULL;
6470 	int hcode;
6471 
6472 	SYM_LOCK_ASSERT(MA_NOTOWNED);
6473 
6474 	/*
6475 	 *  Prevent from allocating more CCBs than we can
6476 	 *  queue to the controller.
6477 	 */
6478 	if (np->actccbs >= SYM_CONF_MAX_START)
6479 		return NULL;
6480 
6481 	/*
6482 	 *  Allocate memory for this CCB.
6483 	 */
6484 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6485 	if (!cp)
6486 		return NULL;
6487 
6488 	/*
6489 	 *  Allocate a bounce buffer for sense data.
6490 	 */
6491 	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6492 	if (!cp->sns_bbuf)
6493 		goto out_free;
6494 
6495 	/*
6496 	 *  Allocate a map for the DMA of user data.
6497 	 */
6498 	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6499 		goto out_free;
6500 	/*
6501 	 *  Count it.
6502 	 */
6503 	np->actccbs++;
6504 
6505 	/*
6506 	 * Initialize the callout.
6507 	 */
6508 	callout_init(&cp->ch, 1);
6509 
6510 	/*
6511 	 *  Compute the bus address of this ccb.
6512 	 */
6513 	cp->ccb_ba = vtobus(cp);
6514 
6515 	/*
6516 	 *  Insert this ccb into the hashed list.
6517 	 */
6518 	hcode = CCB_HASH_CODE(cp->ccb_ba);
6519 	cp->link_ccbh = np->ccbh[hcode];
6520 	np->ccbh[hcode] = cp;
6521 
6522 	/*
6523 	 *  Initialize the start and restart actions.
6524 	 */
6525 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6526 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6527 
6528  	/*
6529 	 *  Initilialyze some other fields.
6530 	 */
6531 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6532 
6533 	/*
6534 	 *  Chain into free ccb queue.
6535 	 */
6536 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6537 
6538 	return cp;
6539 out_free:
6540 	if (cp->sns_bbuf)
6541 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
6542 	sym_mfree_dma(cp, sizeof(*cp), "CCB");
6543 	return NULL;
6544 }
6545 
6546 /*
6547  *  Look up a CCB from a DSA value.
6548  */
6549 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6550 {
6551 	int hcode;
6552 	ccb_p cp;
6553 
6554 	hcode = CCB_HASH_CODE(dsa);
6555 	cp = np->ccbh[hcode];
6556 	while (cp) {
6557 		if (cp->ccb_ba == dsa)
6558 			break;
6559 		cp = cp->link_ccbh;
6560 	}
6561 
6562 	return cp;
6563 }
6564 
6565 /*
6566  *  Lun control block allocation and initialization.
6567  */
6568 static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6569 {
6570 	tcb_p tp = &np->target[tn];
6571 	lcb_p lp = sym_lp(tp, ln);
6572 
6573 	/*
6574 	 *  Already done, just return.
6575 	 */
6576 	if (lp)
6577 		return lp;
6578 	/*
6579 	 *  Check against some race.
6580 	 */
6581 	assert(!sym_is_bit(tp->busy0_map, ln));
6582 
6583 	/*
6584 	 *  Allocate the LCB bus address array.
6585 	 *  Compute the bus address of this table.
6586 	 */
6587 	if (ln && !tp->luntbl) {
6588 		int i;
6589 
6590 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6591 		if (!tp->luntbl)
6592 			goto fail;
6593 		for (i = 0 ; i < 64 ; i++)
6594 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6595 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6596 	}
6597 
6598 	/*
6599 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6600 	 */
6601 	if (ln && !tp->lunmp) {
6602 		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6603 				   "LUNMP");
6604 		if (!tp->lunmp)
6605 			goto fail;
6606 	}
6607 
6608 	/*
6609 	 *  Allocate the lcb.
6610 	 *  Make it available to the chip.
6611 	 */
6612 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6613 	if (!lp)
6614 		goto fail;
6615 	if (ln) {
6616 		tp->lunmp[ln] = lp;
6617 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6618 	}
6619 	else {
6620 		tp->lun0p = lp;
6621 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6622 	}
6623 
6624 	/*
6625 	 *  Let the itl task point to error handling.
6626 	 */
6627 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6628 
6629 	/*
6630 	 *  Set the reselect pattern to our default. :)
6631 	 */
6632 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6633 
6634 	/*
6635 	 *  Set user capabilities.
6636 	 */
6637 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6638 
6639 fail:
6640 	return lp;
6641 }
6642 
6643 /*
6644  *  Allocate LCB resources for tagged command queuing.
6645  */
6646 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6647 {
6648 	tcb_p tp = &np->target[tn];
6649 	lcb_p lp = sym_lp(tp, ln);
6650 	int i;
6651 
6652 	/*
6653 	 *  If LCB not available, try to allocate it.
6654 	 */
6655 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6656 		return;
6657 
6658 	/*
6659 	 *  Allocate the task table and and the tag allocation
6660 	 *  circular buffer. We want both or none.
6661 	 */
6662 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6663 	if (!lp->itlq_tbl)
6664 		return;
6665 	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6666 	if (!lp->cb_tags) {
6667 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6668 		lp->itlq_tbl = NULL;
6669 		return;
6670 	}
6671 
6672 	/*
6673 	 *  Initialize the task table with invalid entries.
6674 	 */
6675 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6676 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6677 
6678 	/*
6679 	 *  Fill up the tag buffer with tag numbers.
6680 	 */
6681 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6682 		lp->cb_tags[i] = i;
6683 
6684 	/*
6685 	 *  Make the task table available to SCRIPTS,
6686 	 *  And accept tagged commands now.
6687 	 */
6688 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6689 }
6690 
6691 /*
6692  *  Test the pci bus snoop logic :-(
6693  *
6694  *  Has to be called with interrupts disabled.
6695  */
6696 #ifndef SYM_CONF_IOMAPPED
6697 static int sym_regtest (hcb_p np)
6698 {
6699 	register volatile u32 data;
6700 	/*
6701 	 *  chip registers may NOT be cached.
6702 	 *  write 0xffffffff to a read only register area,
6703 	 *  and try to read it back.
6704 	 */
6705 	data = 0xffffffff;
6706 	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6707 	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6708 #if 1
6709 	if (data == 0xffffffff) {
6710 #else
6711 	if ((data & 0xe2f0fffd) != 0x02000080) {
6712 #endif
6713 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6714 			(unsigned) data);
6715 		return (0x10);
6716 	}
6717 	return (0);
6718 }
6719 #endif
6720 
6721 static int sym_snooptest (hcb_p np)
6722 {
6723 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6724 	int	i, err=0;
6725 #ifndef SYM_CONF_IOMAPPED
6726 	err |= sym_regtest (np);
6727 	if (err) return (err);
6728 #endif
6729 restart_test:
6730 	/*
6731 	 *  Enable Master Parity Checking as we intend
6732 	 *  to enable it for normal operations.
6733 	 */
6734 	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6735 	/*
6736 	 *  init
6737 	 */
6738 	pc  = SCRIPTB0_BA (np, snooptest);
6739 	host_wr = 1;
6740 	sym_wr  = 2;
6741 	/*
6742 	 *  Set memory and register.
6743 	 */
6744 	np->cache = cpu_to_scr(host_wr);
6745 	OUTL (nc_temp, sym_wr);
6746 	/*
6747 	 *  Start script (exchange values)
6748 	 */
6749 	OUTL (nc_dsa, np->hcb_ba);
6750 	OUTL_DSP (pc);
6751 	/*
6752 	 *  Wait 'til done (with timeout)
6753 	 */
6754 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6755 		if (INB(nc_istat) & (INTF|SIP|DIP))
6756 			break;
6757 	if (i>=SYM_SNOOP_TIMEOUT) {
6758 		printf ("CACHE TEST FAILED: timeout.\n");
6759 		return (0x20);
6760 	}
6761 	/*
6762 	 *  Check for fatal DMA errors.
6763 	 */
6764 	dstat = INB (nc_dstat);
6765 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
6766 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6767 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
6768 			"DISABLING MASTER DATA PARITY CHECKING.\n",
6769 			sym_name(np));
6770 		np->rv_ctest4 &= ~MPEE;
6771 		goto restart_test;
6772 	}
6773 #endif
6774 	if (dstat & (MDPE|BF|IID)) {
6775 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6776 		return (0x80);
6777 	}
6778 	/*
6779 	 *  Save termination position.
6780 	 */
6781 	pc = INL (nc_dsp);
6782 	/*
6783 	 *  Read memory and register.
6784 	 */
6785 	host_rd = scr_to_cpu(np->cache);
6786 	sym_rd  = INL (nc_scratcha);
6787 	sym_bk  = INL (nc_temp);
6788 
6789 	/*
6790 	 *  Check termination position.
6791 	 */
6792 	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6793 		printf ("CACHE TEST FAILED: script execution failed.\n");
6794 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
6795 			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6796 			(u_long) SCRIPTB0_BA (np, snoopend) +8);
6797 		return (0x40);
6798 	}
6799 	/*
6800 	 *  Show results.
6801 	 */
6802 	if (host_wr != sym_rd) {
6803 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6804 			(int) host_wr, (int) sym_rd);
6805 		err |= 1;
6806 	}
6807 	if (host_rd != sym_wr) {
6808 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6809 			(int) sym_wr, (int) host_rd);
6810 		err |= 2;
6811 	}
6812 	if (sym_bk != sym_wr) {
6813 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6814 			(int) sym_wr, (int) sym_bk);
6815 		err |= 4;
6816 	}
6817 
6818 	return (err);
6819 }
6820 
6821 /*
6822  *  Determine the chip's clock frequency.
6823  *
6824  *  This is essential for the negotiation of the synchronous
6825  *  transfer rate.
6826  *
6827  *  Note: we have to return the correct value.
6828  *  THERE IS NO SAFE DEFAULT VALUE.
6829  *
6830  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6831  *  53C860 and 53C875 rev. 1 support fast20 transfers but
6832  *  do not have a clock doubler and so are provided with a
6833  *  80 MHz clock. All other fast20 boards incorporate a doubler
6834  *  and so should be delivered with a 40 MHz clock.
6835  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6836  *  clock and provide a clock quadrupler (160 Mhz).
6837  */
6838 
6839 /*
6840  *  Select SCSI clock frequency
6841  */
6842 static void sym_selectclock(hcb_p np, u_char scntl3)
6843 {
6844 	/*
6845 	 *  If multiplier not present or not selected, leave here.
6846 	 */
6847 	if (np->multiplier <= 1) {
6848 		OUTB(nc_scntl3,	scntl3);
6849 		return;
6850 	}
6851 
6852 	if (sym_verbose >= 2)
6853 		printf ("%s: enabling clock multiplier\n", sym_name(np));
6854 
6855 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6856 	/*
6857 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6858 	 *  Otherwise wait 20 micro-seconds.
6859 	 */
6860 	if (np->features & FE_LCKFRQ) {
6861 		int i = 20;
6862 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6863 			UDELAY (20);
6864 		if (!i)
6865 			printf("%s: the chip cannot lock the frequency\n",
6866 				sym_name(np));
6867 	} else
6868 		UDELAY (20);
6869 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6870 	OUTB(nc_scntl3,	scntl3);
6871 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6872 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6873 }
6874 
6875 /*
6876  *  calculate SCSI clock frequency (in KHz)
6877  */
6878 static unsigned getfreq (hcb_p np, int gen)
6879 {
6880 	unsigned int ms = 0;
6881 	unsigned int f;
6882 
6883 	/*
6884 	 * Measure GEN timer delay in order
6885 	 * to calculate SCSI clock frequency
6886 	 *
6887 	 * This code will never execute too
6888 	 * many loop iterations (if DELAY is
6889 	 * reasonably correct). It could get
6890 	 * too low a delay (too high a freq.)
6891 	 * if the CPU is slow executing the
6892 	 * loop for some reason (an NMI, for
6893 	 * example). For this reason we will
6894 	 * if multiple measurements are to be
6895 	 * performed trust the higher delay
6896 	 * (lower frequency returned).
6897 	 */
6898 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6899 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6900 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6901 	(void) INW (nc_sist);	/* another one, just to be sure :) */
6902 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6903 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6904 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6905 	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6906 		UDELAY (1000);	/* count ms */
6907 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6908  	/*
6909  	 * set prescaler to divide by whatever 0 means
6910  	 * 0 ought to choose divide by 2, but appears
6911  	 * to set divide by 3.5 mode in my 53c810 ...
6912  	 */
6913  	OUTB (nc_scntl3, 0);
6914 
6915   	/*
6916  	 * adjust for prescaler, and convert into KHz
6917   	 */
6918 	f = ms ? ((1 << gen) * 4340) / ms : 0;
6919 
6920 	if (sym_verbose >= 2)
6921 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
6922 			sym_name(np), gen, ms, f);
6923 
6924 	return f;
6925 }
6926 
6927 static unsigned sym_getfreq (hcb_p np)
6928 {
6929 	u_int f1, f2;
6930 	int gen = 11;
6931 
6932 	(void) getfreq (np, gen);	/* throw away first result */
6933 	f1 = getfreq (np, gen);
6934 	f2 = getfreq (np, gen);
6935 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
6936 	return f1;
6937 }
6938 
6939 /*
6940  *  Get/probe chip SCSI clock frequency
6941  */
6942 static void sym_getclock (hcb_p np, int mult)
6943 {
6944 	unsigned char scntl3 = np->sv_scntl3;
6945 	unsigned char stest1 = np->sv_stest1;
6946 	unsigned f1;
6947 
6948 	/*
6949 	 *  For the C10 core, assume 40 MHz.
6950 	 */
6951 	if (np->features & FE_C10) {
6952 		np->multiplier = mult;
6953 		np->clock_khz = 40000 * mult;
6954 		return;
6955 	}
6956 
6957 	np->multiplier = 1;
6958 	f1 = 40000;
6959 	/*
6960 	 *  True with 875/895/896/895A with clock multiplier selected
6961 	 */
6962 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
6963 		if (sym_verbose >= 2)
6964 			printf ("%s: clock multiplier found\n", sym_name(np));
6965 		np->multiplier = mult;
6966 	}
6967 
6968 	/*
6969 	 *  If multiplier not found or scntl3 not 7,5,3,
6970 	 *  reset chip and get frequency from general purpose timer.
6971 	 *  Otherwise trust scntl3 BIOS setting.
6972 	 */
6973 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
6974 		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
6975 		f1 = sym_getfreq (np);
6976 
6977 		if (sym_verbose)
6978 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
6979 
6980 		if	(f1 <	45000)		f1 =  40000;
6981 		else if (f1 <	55000)		f1 =  50000;
6982 		else				f1 =  80000;
6983 
6984 		if (f1 < 80000 && mult > 1) {
6985 			if (sym_verbose >= 2)
6986 				printf ("%s: clock multiplier assumed\n",
6987 					sym_name(np));
6988 			np->multiplier	= mult;
6989 		}
6990 	} else {
6991 		if	((scntl3 & 7) == 3)	f1 =  40000;
6992 		else if	((scntl3 & 7) == 5)	f1 =  80000;
6993 		else 				f1 = 160000;
6994 
6995 		f1 /= np->multiplier;
6996 	}
6997 
6998 	/*
6999 	 *  Compute controller synchronous parameters.
7000 	 */
7001 	f1		*= np->multiplier;
7002 	np->clock_khz	= f1;
7003 }
7004 
7005 /*
7006  *  Get/probe PCI clock frequency
7007  */
7008 static int sym_getpciclock (hcb_p np)
7009 {
7010 	int f = 0;
7011 
7012 	/*
7013 	 *  For the C1010-33, this doesn't work.
7014 	 *  For the C1010-66, this will be tested when I'll have
7015 	 *  such a beast to play with.
7016 	 */
7017 	if (!(np->features & FE_C10)) {
7018 		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7019 		f = (int) sym_getfreq (np);
7020 		OUTB (nc_stest1, 0);
7021 	}
7022 	np->pciclk_khz = f;
7023 
7024 	return f;
7025 }
7026 
7027 /*============= DRIVER ACTION/COMPLETION ====================*/
7028 
7029 /*
7030  *  Print something that tells about extended errors.
7031  */
7032 static void sym_print_xerr(ccb_p cp, int x_status)
7033 {
7034 	if (x_status & XE_PARITY_ERR) {
7035 		PRINT_ADDR(cp);
7036 		printf ("unrecovered SCSI parity error.\n");
7037 	}
7038 	if (x_status & XE_EXTRA_DATA) {
7039 		PRINT_ADDR(cp);
7040 		printf ("extraneous data discarded.\n");
7041 	}
7042 	if (x_status & XE_BAD_PHASE) {
7043 		PRINT_ADDR(cp);
7044 		printf ("illegal scsi phase (4/5).\n");
7045 	}
7046 	if (x_status & XE_SODL_UNRUN) {
7047 		PRINT_ADDR(cp);
7048 		printf ("ODD transfer in DATA OUT phase.\n");
7049 	}
7050 	if (x_status & XE_SWIDE_OVRUN) {
7051 		PRINT_ADDR(cp);
7052 		printf ("ODD transfer in DATA IN phase.\n");
7053 	}
7054 }
7055 
7056 /*
7057  *  Choose the more appropriate CAM status if
7058  *  the IO encountered an extended error.
7059  */
7060 static int sym_xerr_cam_status(int cam_status, int x_status)
7061 {
7062 	if (x_status) {
7063 		if	(x_status & XE_PARITY_ERR)
7064 			cam_status = CAM_UNCOR_PARITY;
7065 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7066 			cam_status = CAM_DATA_RUN_ERR;
7067 		else if	(x_status & XE_BAD_PHASE)
7068 			cam_status = CAM_REQ_CMP_ERR;
7069 		else
7070 			cam_status = CAM_REQ_CMP_ERR;
7071 	}
7072 	return cam_status;
7073 }
7074 
7075 /*
7076  *  Complete execution of a SCSI command with extented
7077  *  error, SCSI status error, or having been auto-sensed.
7078  *
7079  *  The SCRIPTS processor is not running there, so we
7080  *  can safely access IO registers and remove JOBs from
7081  *  the START queue.
7082  *  SCRATCHA is assumed to have been loaded with STARTPOS
7083  *  before the SCRIPTS called the C code.
7084  */
7085 static void sym_complete_error (hcb_p np, ccb_p cp)
7086 {
7087 	struct ccb_scsiio *csio;
7088 	u_int cam_status;
7089 	int i, sense_returned;
7090 
7091 	SYM_LOCK_ASSERT(MA_OWNED);
7092 
7093 	/*
7094 	 *  Paranoid check. :)
7095 	 */
7096 	if (!cp || !cp->cam_ccb)
7097 		return;
7098 
7099 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7100 		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7101 			cp->host_status, cp->ssss_status, cp->host_flags,
7102 			cp->target, cp->lun);
7103 		MDELAY(100);
7104 	}
7105 
7106 	/*
7107 	 *  Get CAM command pointer.
7108 	 */
7109 	csio = &cp->cam_ccb->csio;
7110 
7111 	/*
7112 	 *  Check for extended errors.
7113 	 */
7114 	if (cp->xerr_status) {
7115 		if (sym_verbose)
7116 			sym_print_xerr(cp, cp->xerr_status);
7117 		if (cp->host_status == HS_COMPLETE)
7118 			cp->host_status = HS_COMP_ERR;
7119 	}
7120 
7121 	/*
7122 	 *  Calculate the residual.
7123 	 */
7124 	csio->sense_resid = 0;
7125 	csio->resid = sym_compute_residual(np, cp);
7126 
7127 	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7128 		csio->resid  = 0;	/* throw them away. :)		   */
7129 		cp->sv_resid = 0;
7130 	}
7131 
7132 	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7133 		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7134 		csio->sense_resid = csio->resid;	/* Swap residuals */
7135 		csio->resid       = cp->sv_resid;
7136 		cp->sv_resid	  = 0;
7137 		if (sym_verbose && cp->sv_xerr_status)
7138 			sym_print_xerr(cp, cp->sv_xerr_status);
7139 		if (cp->host_status == HS_COMPLETE &&
7140 		    cp->ssss_status == S_GOOD &&
7141 		    cp->xerr_status == 0) {
7142 			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7143 							 cp->sv_xerr_status);
7144 			cam_status |= CAM_AUTOSNS_VALID;
7145 			/*
7146 			 *  Bounce back the sense data to user and
7147 			 *  fix the residual.
7148 			 */
7149 			bzero(&csio->sense_data, sizeof(csio->sense_data));
7150 			sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid;
7151 			if (sense_returned < csio->sense_len)
7152 				csio->sense_resid = csio->sense_len -
7153 				    sense_returned;
7154 			else
7155 				csio->sense_resid = 0;
7156 			bcopy(cp->sns_bbuf, &csio->sense_data,
7157 			    MIN(csio->sense_len, sense_returned));
7158 #if 0
7159 			/*
7160 			 *  If the device reports a UNIT ATTENTION condition
7161 			 *  due to a RESET condition, we should consider all
7162 			 *  disconnect CCBs for this unit as aborted.
7163 			 */
7164 			if (1) {
7165 				u_char *p;
7166 				p  = (u_char *) csio->sense_data;
7167 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7168 					sym_clear_tasks(np, CAM_REQ_ABORTED,
7169 							cp->target,cp->lun, -1);
7170 			}
7171 #endif
7172 		}
7173 		else
7174 			cam_status = CAM_AUTOSENSE_FAIL;
7175 	}
7176 	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7177 		csio->scsi_status = cp->ssss_status;
7178 		cam_status = CAM_SCSI_STATUS_ERROR;
7179 	}
7180 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7181 		cam_status = CAM_SEL_TIMEOUT;
7182 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7183 		cam_status = CAM_UNEXP_BUSFREE;
7184 	else {						/* Extended error */
7185 		if (sym_verbose) {
7186 			PRINT_ADDR(cp);
7187 			printf ("COMMAND FAILED (%x %x %x).\n",
7188 				cp->host_status, cp->ssss_status,
7189 				cp->xerr_status);
7190 		}
7191 		csio->scsi_status = cp->ssss_status;
7192 		/*
7193 		 *  Set the most appropriate value for CAM status.
7194 		 */
7195 		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7196 						 cp->xerr_status);
7197 	}
7198 
7199 	/*
7200 	 *  Dequeue all queued CCBs for that device
7201 	 *  not yet started by SCRIPTS.
7202 	 */
7203 	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7204 	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7205 
7206 	/*
7207 	 *  Restart the SCRIPTS processor.
7208 	 */
7209 	OUTL_DSP (SCRIPTA_BA (np, start));
7210 
7211 	/*
7212 	 *  Synchronize DMA map if needed.
7213 	 */
7214 	if (cp->dmamapped) {
7215 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7216 			(cp->dmamapped == SYM_DMA_READ ?
7217 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7218 	}
7219 	/*
7220 	 *  Add this one to the COMP queue.
7221 	 *  Complete all those commands with either error
7222 	 *  or requeue condition.
7223 	 */
7224 	sym_set_cam_status((union ccb *) csio, cam_status);
7225 	sym_remque(&cp->link_ccbq);
7226 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7227 	sym_flush_comp_queue(np, 0);
7228 }
7229 
7230 /*
7231  *  Complete execution of a successful SCSI command.
7232  *
7233  *  Only successful commands go to the DONE queue,
7234  *  since we need to have the SCRIPTS processor
7235  *  stopped on any error condition.
7236  *  The SCRIPTS processor is running while we are
7237  *  completing successful commands.
7238  */
7239 static void sym_complete_ok (hcb_p np, ccb_p cp)
7240 {
7241 	struct ccb_scsiio *csio;
7242 	tcb_p tp;
7243 	lcb_p lp;
7244 
7245 	SYM_LOCK_ASSERT(MA_OWNED);
7246 
7247 	/*
7248 	 *  Paranoid check. :)
7249 	 */
7250 	if (!cp || !cp->cam_ccb)
7251 		return;
7252 	assert (cp->host_status == HS_COMPLETE);
7253 
7254 	/*
7255 	 *  Get command, target and lun pointers.
7256 	 */
7257 	csio = &cp->cam_ccb->csio;
7258 	tp = &np->target[cp->target];
7259 	lp = sym_lp(tp, cp->lun);
7260 
7261 	/*
7262 	 *  Assume device discovered on first success.
7263 	 */
7264 	if (!lp)
7265 		sym_set_bit(tp->lun_map, cp->lun);
7266 
7267 	/*
7268 	 *  If all data have been transferred, given than no
7269 	 *  extended error did occur, there is no residual.
7270 	 */
7271 	csio->resid = 0;
7272 	if (cp->phys.head.lastp != cp->phys.head.goalp)
7273 		csio->resid = sym_compute_residual(np, cp);
7274 
7275 	/*
7276 	 *  Wrong transfer residuals may be worse than just always
7277 	 *  returning zero. User can disable this feature from
7278 	 *  sym_conf.h. Residual support is enabled by default.
7279 	 */
7280 	if (!SYM_CONF_RESIDUAL_SUPPORT)
7281 		csio->resid  = 0;
7282 
7283 	/*
7284 	 *  Synchronize DMA map if needed.
7285 	 */
7286 	if (cp->dmamapped) {
7287 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7288 			(cp->dmamapped == SYM_DMA_READ ?
7289 				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7290 	}
7291 	/*
7292 	 *  Set status and complete the command.
7293 	 */
7294 	csio->scsi_status = cp->ssss_status;
7295 	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7296 	sym_xpt_done(np, (union ccb *) csio, cp);
7297 	sym_free_ccb(np, cp);
7298 }
7299 
7300 /*
7301  *  Our callout handler
7302  */
7303 static void sym_callout(void *arg)
7304 {
7305 	union ccb *ccb = (union ccb *) arg;
7306 	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7307 
7308 	/*
7309 	 *  Check that the CAM CCB is still queued.
7310 	 */
7311 	if (!np)
7312 		return;
7313 
7314 	SYM_LOCK();
7315 
7316 	switch(ccb->ccb_h.func_code) {
7317 	case XPT_SCSI_IO:
7318 		(void) sym_abort_scsiio(np, ccb, 1);
7319 		break;
7320 	default:
7321 		break;
7322 	}
7323 
7324 	SYM_UNLOCK();
7325 }
7326 
7327 /*
7328  *  Abort an SCSI IO.
7329  */
7330 static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7331 {
7332 	ccb_p cp;
7333 	SYM_QUEHEAD *qp;
7334 
7335 	SYM_LOCK_ASSERT(MA_OWNED);
7336 
7337 	/*
7338 	 *  Look up our CCB control block.
7339 	 */
7340 	cp = NULL;
7341 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7342 		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7343 		if (cp2->cam_ccb == ccb) {
7344 			cp = cp2;
7345 			break;
7346 		}
7347 	}
7348 	if (!cp || cp->host_status == HS_WAIT)
7349 		return -1;
7350 
7351 	/*
7352 	 *  If a previous abort didn't succeed in time,
7353 	 *  perform a BUS reset.
7354 	 */
7355 	if (cp->to_abort) {
7356 		sym_reset_scsi_bus(np, 1);
7357 		return 0;
7358 	}
7359 
7360 	/*
7361 	 *  Mark the CCB for abort and allow time for.
7362 	 */
7363 	cp->to_abort = timed_out ? 2 : 1;
7364 	callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
7365 
7366 	/*
7367 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7368 	 */
7369 	np->istat_sem = SEM;
7370 	OUTB (nc_istat, SIGP|SEM);
7371 	return 0;
7372 }
7373 
7374 /*
7375  *  Reset a SCSI device (all LUNs of a target).
7376  */
7377 static void sym_reset_dev(hcb_p np, union ccb *ccb)
7378 {
7379 	tcb_p tp;
7380 	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7381 
7382 	SYM_LOCK_ASSERT(MA_OWNED);
7383 
7384 	if (ccb_h->target_id   == np->myaddr ||
7385 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7386 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7387 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7388 		return;
7389 	}
7390 
7391 	tp = &np->target[ccb_h->target_id];
7392 
7393 	tp->to_reset = 1;
7394 	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7395 
7396 	np->istat_sem = SEM;
7397 	OUTB (nc_istat, SIGP|SEM);
7398 }
7399 
7400 /*
7401  *  SIM action entry point.
7402  */
7403 static void sym_action(struct cam_sim *sim, union ccb *ccb)
7404 {
7405 	hcb_p	np;
7406 	tcb_p	tp;
7407 	lcb_p	lp;
7408 	ccb_p	cp;
7409 	int 	tmp;
7410 	u_char	idmsg, *msgptr;
7411 	u_int   msglen;
7412 	struct	ccb_scsiio *csio;
7413 	struct	ccb_hdr  *ccb_h;
7414 
7415 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7416 
7417 	/*
7418 	 *  Retrieve our controller data structure.
7419 	 */
7420 	np = (hcb_p) cam_sim_softc(sim);
7421 
7422 	SYM_LOCK_ASSERT(MA_OWNED);
7423 
7424 	/*
7425 	 *  The common case is SCSI IO.
7426 	 *  We deal with other ones elsewhere.
7427 	 */
7428 	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7429 		sym_action2(sim, ccb);
7430 		return;
7431 	}
7432 	csio  = &ccb->csio;
7433 	ccb_h = &csio->ccb_h;
7434 
7435 	/*
7436 	 *  Work around races.
7437 	 */
7438 	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7439 		xpt_done(ccb);
7440 		return;
7441 	}
7442 
7443 	/*
7444 	 *  Minimal checkings, so that we will not
7445 	 *  go outside our tables.
7446 	 */
7447 	if (ccb_h->target_id   == np->myaddr ||
7448 	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7449 	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7450 		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7451 		return;
7452         }
7453 
7454 	/*
7455 	 *  Retrieve the target and lun descriptors.
7456 	 */
7457 	tp = &np->target[ccb_h->target_id];
7458 	lp = sym_lp(tp, ccb_h->target_lun);
7459 
7460 	/*
7461 	 *  Complete the 1st INQUIRY command with error
7462 	 *  condition if the device is flagged NOSCAN
7463 	 *  at BOOT in the NVRAM. This may speed up
7464 	 *  the boot and maintain coherency with BIOS
7465 	 *  device numbering. Clearing the flag allows
7466 	 *  user to rescan skipped devices later.
7467 	 *  We also return error for devices not flagged
7468 	 *  for SCAN LUNS in the NVRAM since some mono-lun
7469 	 *  devices behave badly when asked for some non
7470 	 *  zero LUN. Btw, this is an absolute hack.:-)
7471 	 */
7472 	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7473 	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7474 		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7475 		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7476 		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7477 		     ccb_h->target_lun != 0)) {
7478 			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7479 			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7480 			return;
7481 		}
7482 	}
7483 
7484 	/*
7485 	 *  Get a control block for this IO.
7486 	 */
7487 	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7488 	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7489 	if (!cp) {
7490 		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7491 		return;
7492 	}
7493 
7494 	/*
7495 	 *  Keep track of the IO in our CCB.
7496 	 */
7497 	cp->cam_ccb = ccb;
7498 
7499 	/*
7500 	 *  Build the IDENTIFY message.
7501 	 */
7502 	idmsg = M_IDENTIFY | cp->lun;
7503 	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7504 		idmsg |= 0x40;
7505 
7506 	msgptr = cp->scsi_smsg;
7507 	msglen = 0;
7508 	msgptr[msglen++] = idmsg;
7509 
7510 	/*
7511 	 *  Build the tag message if present.
7512 	 */
7513 	if (cp->tag != NO_TAG) {
7514 		u_char order = csio->tag_action;
7515 
7516 		switch(order) {
7517 		case M_ORDERED_TAG:
7518 			break;
7519 		case M_HEAD_TAG:
7520 			break;
7521 		default:
7522 			order = M_SIMPLE_TAG;
7523 		}
7524 		msgptr[msglen++] = order;
7525 
7526 		/*
7527 		 *  For less than 128 tags, actual tags are numbered
7528 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7529 		 *  with devices that have problems with #TAG 0 or too
7530 		 *  great #TAG numbers. For more tags (up to 256),
7531 		 *  we use directly our tag number.
7532 		 */
7533 #if SYM_CONF_MAX_TASK > (512/4)
7534 		msgptr[msglen++] = cp->tag;
7535 #else
7536 		msgptr[msglen++] = (cp->tag << 1) + 1;
7537 #endif
7538 	}
7539 
7540 	/*
7541 	 *  Build a negotiation message if needed.
7542 	 *  (nego_status is filled by sym_prepare_nego())
7543 	 */
7544 	cp->nego_status = 0;
7545 	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7546 	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7547 	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7548 	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7549 		if (!tp->nego_cp && lp)
7550 			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7551 	}
7552 
7553 	/*
7554 	 *  Fill in our ccb
7555 	 */
7556 
7557 	/*
7558 	 *  Startqueue
7559 	 */
7560 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7561 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7562 
7563 	/*
7564 	 *  select
7565 	 */
7566 	cp->phys.select.sel_id		= cp->target;
7567 	cp->phys.select.sel_scntl3	= tp->head.wval;
7568 	cp->phys.select.sel_sxfer	= tp->head.sval;
7569 	cp->phys.select.sel_scntl4	= tp->head.uval;
7570 
7571 	/*
7572 	 *  message
7573 	 */
7574 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7575 	cp->phys.smsg.size	= cpu_to_scr(msglen);
7576 
7577 	/*
7578 	 *  command
7579 	 */
7580 	if (sym_setup_cdb(np, csio, cp) < 0) {
7581 		sym_xpt_done(np, ccb, cp);
7582 		sym_free_ccb(np, cp);
7583 		return;
7584 	}
7585 
7586 	/*
7587 	 *  status
7588 	 */
7589 #if	0	/* Provision */
7590 	cp->actualquirks	= tp->quirks;
7591 #endif
7592 	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7593 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7594 	cp->ssss_status		= S_ILLEGAL;
7595 	cp->xerr_status		= 0;
7596 	cp->host_flags		= 0;
7597 	cp->extra_bytes		= 0;
7598 
7599 	/*
7600 	 *  extreme data pointer.
7601 	 *  shall be positive, so -1 is lower than lowest.:)
7602 	 */
7603 	cp->ext_sg  = -1;
7604 	cp->ext_ofs = 0;
7605 
7606 	/*
7607 	 *  Build the data descriptor block
7608 	 *  and start the IO.
7609 	 */
7610 	sym_setup_data_and_start(np, csio, cp);
7611 }
7612 
7613 /*
7614  *  Setup buffers and pointers that address the CDB.
7615  *  I bet, physical CDBs will never be used on the planet,
7616  *  since they can be bounced without significant overhead.
7617  */
7618 static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7619 {
7620 	struct ccb_hdr *ccb_h;
7621 	u32	cmd_ba;
7622 	int	cmd_len;
7623 
7624 	SYM_LOCK_ASSERT(MA_OWNED);
7625 
7626 	ccb_h = &csio->ccb_h;
7627 
7628 	/*
7629 	 *  CDB is 16 bytes max.
7630 	 */
7631 	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7632 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7633 		return -1;
7634 	}
7635 	cmd_len = csio->cdb_len;
7636 
7637 	if (ccb_h->flags & CAM_CDB_POINTER) {
7638 		/* CDB is a pointer */
7639 		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7640 			/* CDB pointer is virtual */
7641 			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7642 			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7643 		} else {
7644 			/* CDB pointer is physical */
7645 #if 0
7646 			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7647 #else
7648 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7649 			return -1;
7650 #endif
7651 		}
7652 	} else {
7653 		/* CDB is in the CAM ccb (buffer) */
7654 		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7655 		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7656 	}
7657 
7658 	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7659 	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7660 
7661 	return 0;
7662 }
7663 
7664 /*
7665  *  Set up data pointers used by SCRIPTS.
7666  */
7667 static void __inline
7668 sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7669 {
7670 	u32 lastp, goalp;
7671 
7672 	SYM_LOCK_ASSERT(MA_OWNED);
7673 
7674 	/*
7675 	 *  No segments means no data.
7676 	 */
7677 	if (!cp->segments)
7678 		dir = CAM_DIR_NONE;
7679 
7680 	/*
7681 	 *  Set the data pointer.
7682 	 */
7683 	switch(dir) {
7684 	case CAM_DIR_OUT:
7685 		goalp = SCRIPTA_BA (np, data_out2) + 8;
7686 		lastp = goalp - 8 - (cp->segments * (2*4));
7687 		break;
7688 	case CAM_DIR_IN:
7689 		cp->host_flags |= HF_DATA_IN;
7690 		goalp = SCRIPTA_BA (np, data_in2) + 8;
7691 		lastp = goalp - 8 - (cp->segments * (2*4));
7692 		break;
7693 	case CAM_DIR_NONE:
7694 	default:
7695 		lastp = goalp = SCRIPTB_BA (np, no_data);
7696 		break;
7697 	}
7698 
7699 	cp->phys.head.lastp = cpu_to_scr(lastp);
7700 	cp->phys.head.goalp = cpu_to_scr(goalp);
7701 	cp->phys.head.savep = cpu_to_scr(lastp);
7702 	cp->startp	    = cp->phys.head.savep;
7703 }
7704 
7705 /*
7706  *  Call back routine for the DMA map service.
7707  *  If bounce buffers are used (why ?), we may sleep and then
7708  *  be called there in another context.
7709  */
7710 static void
7711 sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7712 {
7713 	ccb_p	cp;
7714 	hcb_p	np;
7715 	union	ccb *ccb;
7716 
7717 	cp  = (ccb_p) arg;
7718 	ccb = cp->cam_ccb;
7719 	np  = (hcb_p) cp->arg;
7720 
7721 	SYM_LOCK_ASSERT(MA_OWNED);
7722 
7723 	/*
7724 	 *  Deal with weird races.
7725 	 */
7726 	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7727 		goto out_abort;
7728 
7729 	/*
7730 	 *  Deal with weird errors.
7731 	 */
7732 	if (error) {
7733 		cp->dmamapped = 0;
7734 		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7735 		goto out_abort;
7736 	}
7737 
7738 	/*
7739 	 *  Build the data descriptor for the chip.
7740 	 */
7741 	if (nsegs) {
7742 		int retv;
7743 		/* 896 rev 1 requires to be careful about boundaries */
7744 		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7745 			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7746 		else
7747 			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7748 		if (retv < 0) {
7749 			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7750 			goto out_abort;
7751 		}
7752 	}
7753 
7754 	/*
7755 	 *  Synchronize the DMA map only if we have
7756 	 *  actually mapped the data.
7757 	 */
7758 	if (cp->dmamapped) {
7759 		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7760 			(cp->dmamapped == SYM_DMA_READ ?
7761 				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7762 	}
7763 
7764 	/*
7765 	 *  Set host status to busy state.
7766 	 *  May have been set back to HS_WAIT to avoid a race.
7767 	 */
7768 	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7769 
7770 	/*
7771 	 *  Set data pointers.
7772 	 */
7773 	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7774 
7775 	/*
7776 	 *  Enqueue this IO in our pending queue.
7777 	 */
7778 	sym_enqueue_cam_ccb(cp);
7779 
7780 	/*
7781 	 *  When `#ifed 1', the code below makes the driver
7782 	 *  panic on the first attempt to write to a SCSI device.
7783 	 *  It is the first test we want to do after a driver
7784 	 *  change that does not seem obviously safe. :)
7785 	 */
7786 #if 0
7787 	switch (cp->cdb_buf[0]) {
7788 	case 0x0A: case 0x2A: case 0xAA:
7789 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7790 		MDELAY(10000);
7791 		break;
7792 	default:
7793 		break;
7794 	}
7795 #endif
7796 	/*
7797 	 *  Activate this job.
7798 	 */
7799 	sym_put_start_queue(np, cp);
7800 	return;
7801 out_abort:
7802 	sym_xpt_done(np, ccb, cp);
7803 	sym_free_ccb(np, cp);
7804 }
7805 
7806 /*
7807  *  How complex it gets to deal with the data in CAM.
7808  *  The Bus Dma stuff makes things still more complex.
7809  */
7810 static void
7811 sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7812 {
7813 	struct ccb_hdr *ccb_h;
7814 	int dir, retv;
7815 
7816 	SYM_LOCK_ASSERT(MA_OWNED);
7817 
7818 	ccb_h = &csio->ccb_h;
7819 
7820 	/*
7821 	 *  Now deal with the data.
7822 	 */
7823 	cp->data_len = csio->dxfer_len;
7824 	cp->arg      = np;
7825 
7826 	/*
7827 	 *  No direction means no data.
7828 	 */
7829 	dir = (ccb_h->flags & CAM_DIR_MASK);
7830 	if (dir == CAM_DIR_NONE) {
7831 		sym_execute_ccb(cp, NULL, 0, 0);
7832 		return;
7833 	}
7834 
7835 	cp->dmamapped = (dir == CAM_DIR_IN) ?  SYM_DMA_READ : SYM_DMA_WRITE;
7836 	retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap,
7837 			       (union ccb *)csio, sym_execute_ccb, cp, 0);
7838 	if (retv == EINPROGRESS) {
7839 		cp->host_status	= HS_WAIT;
7840 		xpt_freeze_simq(np->sim, 1);
7841 		csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7842 	}
7843 }
7844 
7845 /*
7846  *  Move the scatter list to our data block.
7847  */
7848 static int
7849 sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7850 			     bus_dma_segment_t *psegs, int nsegs)
7851 {
7852 	struct sym_tblmove *data;
7853 	bus_dma_segment_t *psegs2;
7854 
7855 	SYM_LOCK_ASSERT(MA_OWNED);
7856 
7857 	if (nsegs > SYM_CONF_MAX_SG)
7858 		return -1;
7859 
7860 	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7861 	psegs2 = &psegs[nsegs-1];
7862 	cp->segments = nsegs;
7863 
7864 	while (1) {
7865 		data->addr = cpu_to_scr(psegs2->ds_addr);
7866 		data->size = cpu_to_scr(psegs2->ds_len);
7867 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7868 			printf ("%s scatter: paddr=%lx len=%ld\n",
7869 				sym_name(np), (long) psegs2->ds_addr,
7870 				(long) psegs2->ds_len);
7871 		}
7872 		if (psegs2 != psegs) {
7873 			--data;
7874 			--psegs2;
7875 			continue;
7876 		}
7877 		break;
7878 	}
7879 	return 0;
7880 }
7881 
7882 /*
7883  *  Scatter a SG list with physical addresses into bus addressable chunks.
7884  */
7885 static int
7886 sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7887 {
7888 	u_long	ps, pe, pn;
7889 	u_long	k;
7890 	int s, t;
7891 
7892 	SYM_LOCK_ASSERT(MA_OWNED);
7893 
7894 	s  = SYM_CONF_MAX_SG - 1;
7895 	t  = nsegs - 1;
7896 	ps = psegs[t].ds_addr;
7897 	pe = ps + psegs[t].ds_len;
7898 
7899 	while (s >= 0) {
7900 		pn = rounddown2(pe - 1, SYM_CONF_DMA_BOUNDARY);
7901 		if (pn <= ps)
7902 			pn = ps;
7903 		k = pe - pn;
7904 		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7905 			printf ("%s scatter: paddr=%lx len=%ld\n",
7906 				sym_name(np), pn, k);
7907 		}
7908 		cp->phys.data[s].addr = cpu_to_scr(pn);
7909 		cp->phys.data[s].size = cpu_to_scr(k);
7910 		--s;
7911 		if (pn == ps) {
7912 			if (--t < 0)
7913 				break;
7914 			ps = psegs[t].ds_addr;
7915 			pe = ps + psegs[t].ds_len;
7916 		}
7917 		else
7918 			pe = pn;
7919 	}
7920 
7921 	cp->segments = SYM_CONF_MAX_SG - 1 - s;
7922 
7923 	return t >= 0 ? -1 : 0;
7924 }
7925 
7926 /*
7927  *  SIM action for non performance critical stuff.
7928  */
7929 static void sym_action2(struct cam_sim *sim, union ccb *ccb)
7930 {
7931 	union ccb *abort_ccb;
7932 	struct ccb_hdr *ccb_h;
7933 	struct ccb_pathinq *cpi;
7934 	struct ccb_trans_settings *cts;
7935 	struct sym_trans *tip;
7936 	hcb_p	np;
7937 	tcb_p	tp;
7938 	lcb_p	lp;
7939 	u_char dflags;
7940 
7941 	/*
7942 	 *  Retrieve our controller data structure.
7943 	 */
7944 	np = (hcb_p) cam_sim_softc(sim);
7945 
7946 	SYM_LOCK_ASSERT(MA_OWNED);
7947 
7948 	ccb_h = &ccb->ccb_h;
7949 
7950 	switch (ccb_h->func_code) {
7951 	case XPT_SET_TRAN_SETTINGS:
7952 		cts  = &ccb->cts;
7953 		tp = &np->target[ccb_h->target_id];
7954 
7955 		/*
7956 		 *  Update SPI transport settings in TARGET control block.
7957 		 *  Update SCSI device settings in LUN control block.
7958 		 */
7959 		lp = sym_lp(tp, ccb_h->target_lun);
7960 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7961 			sym_update_trans(np, &tp->tinfo.goal, cts);
7962 			if (lp)
7963 				sym_update_dflags(np, &lp->current_flags, cts);
7964 		}
7965 		if (cts->type == CTS_TYPE_USER_SETTINGS) {
7966 			sym_update_trans(np, &tp->tinfo.user, cts);
7967 			if (lp)
7968 				sym_update_dflags(np, &lp->user_flags, cts);
7969 		}
7970 
7971 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7972 		break;
7973 	case XPT_GET_TRAN_SETTINGS:
7974 		cts = &ccb->cts;
7975 		tp = &np->target[ccb_h->target_id];
7976 		lp = sym_lp(tp, ccb_h->target_lun);
7977 
7978 #define	cts__scsi (&cts->proto_specific.scsi)
7979 #define	cts__spi  (&cts->xport_specific.spi)
7980 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7981 			tip = &tp->tinfo.current;
7982 			dflags = lp ? lp->current_flags : 0;
7983 		}
7984 		else {
7985 			tip = &tp->tinfo.user;
7986 			dflags = lp ? lp->user_flags : tp->usrflags;
7987 		}
7988 
7989 		cts->protocol  = PROTO_SCSI;
7990 		cts->transport = XPORT_SPI;
7991 		cts->protocol_version  = tip->scsi_version;
7992 		cts->transport_version = tip->spi_version;
7993 
7994 		cts__spi->sync_period = tip->period;
7995 		cts__spi->sync_offset = tip->offset;
7996 		cts__spi->bus_width   = tip->width;
7997 		cts__spi->ppr_options = tip->options;
7998 
7999 		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8000 		                | CTS_SPI_VALID_SYNC_OFFSET
8001 		                | CTS_SPI_VALID_BUS_WIDTH
8002 		                | CTS_SPI_VALID_PPR_OPTIONS;
8003 
8004 		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8005 		if (dflags & SYM_DISC_ENABLED)
8006 			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8007 		cts__spi->valid |= CTS_SPI_VALID_DISC;
8008 
8009 		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8010 		if (dflags & SYM_TAGS_ENABLED)
8011 			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8012 		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8013 #undef	cts__spi
8014 #undef	cts__scsi
8015 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8016 		break;
8017 	case XPT_CALC_GEOMETRY:
8018 		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8019 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8020 		break;
8021 	case XPT_PATH_INQ:
8022 		cpi = &ccb->cpi;
8023 		cpi->version_num = 1;
8024 		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8025 		if ((np->features & FE_WIDE) != 0)
8026 			cpi->hba_inquiry |= PI_WIDE_16;
8027 		cpi->target_sprt = 0;
8028 		cpi->hba_misc = PIM_UNMAPPED;
8029 		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8030 			cpi->hba_misc |= PIM_SCANHILO;
8031 		if (np->usrflags & SYM_AVOID_BUS_RESET)
8032 			cpi->hba_misc |= PIM_NOBUSRESET;
8033 		cpi->hba_eng_cnt = 0;
8034 		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8035 		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8036 		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8037 		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8038 			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8039 		cpi->bus_id = cam_sim_bus(sim);
8040 		cpi->initiator_id = np->myaddr;
8041 		cpi->base_transfer_speed = 3300;
8042 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8043 		strlcpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8044 		strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8045 		cpi->unit_number = cam_sim_unit(sim);
8046 
8047 		cpi->protocol = PROTO_SCSI;
8048 		cpi->protocol_version = SCSI_REV_2;
8049 		cpi->transport = XPORT_SPI;
8050 		cpi->transport_version = 2;
8051 		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8052 		if (np->features & FE_ULTRA3) {
8053 			cpi->transport_version = 3;
8054 			cpi->xport_specific.spi.ppr_options =
8055 			    SID_SPI_CLOCK_DT_ST;
8056 		}
8057 		cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE;
8058 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8059 		break;
8060 	case XPT_ABORT:
8061 		abort_ccb = ccb->cab.abort_ccb;
8062 		switch(abort_ccb->ccb_h.func_code) {
8063 		case XPT_SCSI_IO:
8064 			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8065 				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8066 				break;
8067 			}
8068 		default:
8069 			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8070 			break;
8071 		}
8072 		break;
8073 	case XPT_RESET_DEV:
8074 		sym_reset_dev(np, ccb);
8075 		break;
8076 	case XPT_RESET_BUS:
8077 		sym_reset_scsi_bus(np, 0);
8078 		if (sym_verbose) {
8079 			xpt_print_path(np->path);
8080 			printf("SCSI BUS reset delivered.\n");
8081 		}
8082 		sym_init (np, 1);
8083 		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8084 		break;
8085 	case XPT_TERM_IO:
8086 	default:
8087 		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8088 		break;
8089 	}
8090 }
8091 
8092 /*
8093  *  Asynchronous notification handler.
8094  */
8095 static void
8096 sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused)
8097 {
8098 	hcb_p np;
8099 	struct cam_sim *sim;
8100 	u_int tn;
8101 	tcb_p tp;
8102 
8103 	sim = (struct cam_sim *) cb_arg;
8104 	np  = (hcb_p) cam_sim_softc(sim);
8105 
8106 	SYM_LOCK_ASSERT(MA_OWNED);
8107 
8108 	switch (code) {
8109 	case AC_LOST_DEVICE:
8110 		tn = xpt_path_target_id(path);
8111 		if (tn >= SYM_CONF_MAX_TARGET)
8112 			break;
8113 
8114 		tp = &np->target[tn];
8115 
8116 		tp->to_reset  = 0;
8117 		tp->head.sval = 0;
8118 		tp->head.wval = np->rv_scntl3;
8119 		tp->head.uval = 0;
8120 
8121 		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8122 		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8123 		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8124 		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8125 
8126 		break;
8127 	default:
8128 		break;
8129 	}
8130 }
8131 
8132 /*
8133  *  Update transfer settings of a target.
8134  */
8135 static void sym_update_trans(hcb_p np, struct sym_trans *tip,
8136     struct ccb_trans_settings *cts)
8137 {
8138 
8139 	SYM_LOCK_ASSERT(MA_OWNED);
8140 
8141 	/*
8142 	 *  Update the infos.
8143 	 */
8144 #define cts__spi (&cts->xport_specific.spi)
8145 	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8146 		tip->width = cts__spi->bus_width;
8147 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8148 		tip->offset = cts__spi->sync_offset;
8149 	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8150 		tip->period = cts__spi->sync_period;
8151 	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8152 		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8153 	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8154 	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8155 		tip->scsi_version = cts->protocol_version;
8156 	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8157 	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8158 		tip->spi_version = cts->transport_version;
8159 #undef cts__spi
8160 	/*
8161 	 *  Scale against driver configuration limits.
8162 	 */
8163 	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8164 	if (tip->period && tip->offset) {
8165 		if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8166 		if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8167 	} else {
8168 		tip->offset = 0;
8169 		tip->period = 0;
8170 	}
8171 
8172 	/*
8173 	 *  Scale against actual controller BUS width.
8174 	 */
8175 	if (tip->width > np->maxwide)
8176 		tip->width  = np->maxwide;
8177 
8178 	/*
8179 	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8180 	 */
8181 	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8182 	    !(tip->width == BUS_16_BIT && tip->offset)) {
8183 		tip->options &= ~PPR_OPT_DT;
8184 	}
8185 
8186 	/*
8187 	 *  Scale period factor and offset against controller limits.
8188 	 */
8189 	if (tip->offset && tip->period) {
8190 		if (tip->options & PPR_OPT_DT) {
8191 			if (tip->period < np->minsync_dt)
8192 				tip->period = np->minsync_dt;
8193 			if (tip->period > np->maxsync_dt)
8194 				tip->period = np->maxsync_dt;
8195 			if (tip->offset > np->maxoffs_dt)
8196 				tip->offset = np->maxoffs_dt;
8197 		}
8198 		else {
8199 			if (tip->period < np->minsync)
8200 				tip->period = np->minsync;
8201 			if (tip->period > np->maxsync)
8202 				tip->period = np->maxsync;
8203 			if (tip->offset > np->maxoffs)
8204 				tip->offset = np->maxoffs;
8205 		}
8206 	}
8207 }
8208 
8209 /*
8210  *  Update flags for a device (logical unit).
8211  */
8212 static void
8213 sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8214 {
8215 
8216 	SYM_LOCK_ASSERT(MA_OWNED);
8217 
8218 #define	cts__scsi (&cts->proto_specific.scsi)
8219 #define	cts__spi  (&cts->xport_specific.spi)
8220 	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8221 		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8222 			*flags |= SYM_DISC_ENABLED;
8223 		else
8224 			*flags &= ~SYM_DISC_ENABLED;
8225 	}
8226 
8227 	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8228 		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8229 			*flags |= SYM_TAGS_ENABLED;
8230 		else
8231 			*flags &= ~SYM_TAGS_ENABLED;
8232 	}
8233 #undef	cts__spi
8234 #undef	cts__scsi
8235 }
8236 
8237 /*============= DRIVER INITIALISATION ==================*/
8238 
8239 static device_method_t sym_pci_methods[] = {
8240 	DEVMETHOD(device_probe,	 sym_pci_probe),
8241 	DEVMETHOD(device_attach, sym_pci_attach),
8242 	DEVMETHOD_END
8243 };
8244 
8245 static driver_t sym_pci_driver = {
8246 	"sym",
8247 	sym_pci_methods,
8248 	1	/* no softc */
8249 };
8250 
8251 static devclass_t sym_devclass;
8252 
8253 DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, NULL, NULL);
8254 MODULE_DEPEND(sym, cam, 1, 1, 1);
8255 MODULE_DEPEND(sym, pci, 1, 1, 1);
8256 
8257 static const struct sym_pci_chip sym_pci_dev_table[] = {
8258  {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8259  FE_ERL}
8260  ,
8261 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8262  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8263  FE_BOF}
8264  ,
8265 #else
8266  {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8267  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8268  ,
8269 #endif
8270  {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8271  FE_BOF|FE_ERL}
8272  ,
8273  {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8274  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8275  ,
8276  {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8277  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8278  ,
8279  {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8280  FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8281  ,
8282  {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8283  FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8284  FE_RAM|FE_DIFF}
8285  ,
8286  {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8287  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8288  FE_RAM|FE_DIFF}
8289  ,
8290  {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8291  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8292  FE_RAM|FE_DIFF}
8293  ,
8294  {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8295  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8296  FE_RAM|FE_DIFF}
8297  ,
8298 #ifdef SYM_DEBUG_GENERIC_SUPPORT
8299  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8300  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8301  FE_RAM|FE_LCKFRQ}
8302  ,
8303 #else
8304  {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8305  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8306  FE_RAM|FE_LCKFRQ}
8307  ,
8308 #endif
8309  {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8310  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8311  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8312  ,
8313  {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8314  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8315  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8316  ,
8317  {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8318  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8319  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8320  FE_C10}
8321  ,
8322  {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8323  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8324  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8325  FE_C10|FE_U3EN}
8326  ,
8327  {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8328  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8329  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8330  FE_C10|FE_U3EN}
8331  ,
8332  {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8333  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8334  FE_RAM|FE_IO256|FE_LEDC}
8335 };
8336 
8337 /*
8338  *  Look up the chip table.
8339  *
8340  *  Return a pointer to the chip entry if found,
8341  *  zero otherwise.
8342  */
8343 static const struct sym_pci_chip *
8344 sym_find_pci_chip(device_t dev)
8345 {
8346 	const struct	sym_pci_chip *chip;
8347 	int	i;
8348 	u_short	device_id;
8349 	u_char	revision;
8350 
8351 	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8352 		return NULL;
8353 
8354 	device_id = pci_get_device(dev);
8355 	revision  = pci_get_revid(dev);
8356 
8357 	for (i = 0; i < nitems(sym_pci_dev_table); i++) {
8358 		chip = &sym_pci_dev_table[i];
8359 		if (device_id != chip->device_id)
8360 			continue;
8361 		if (revision > chip->revision_id)
8362 			continue;
8363 		return chip;
8364 	}
8365 
8366 	return NULL;
8367 }
8368 
8369 /*
8370  *  Tell upper layer if the chip is supported.
8371  */
8372 static int
8373 sym_pci_probe(device_t dev)
8374 {
8375 	const struct	sym_pci_chip *chip;
8376 
8377 	chip = sym_find_pci_chip(dev);
8378 	if (chip && sym_find_firmware(chip)) {
8379 		device_set_desc(dev, chip->name);
8380 		return BUS_PROBE_DEFAULT;
8381 	}
8382 	return ENXIO;
8383 }
8384 
8385 /*
8386  *  Attach a sym53c8xx device.
8387  */
8388 static int
8389 sym_pci_attach(device_t dev)
8390 {
8391 	const struct	sym_pci_chip *chip;
8392 	u_short	command;
8393 	u_char	cachelnsz;
8394 	struct	sym_hcb *np = NULL;
8395 	struct	sym_nvram nvram;
8396 	const struct	sym_fw *fw = NULL;
8397 	int 	i;
8398 	bus_dma_tag_t	bus_dmat;
8399 
8400 	bus_dmat = bus_get_dma_tag(dev);
8401 
8402 	/*
8403 	 *  Only probed devices should be attached.
8404 	 *  We just enjoy being paranoid. :)
8405 	 */
8406 	chip = sym_find_pci_chip(dev);
8407 	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8408 		return (ENXIO);
8409 
8410 	/*
8411 	 *  Allocate immediately the host control block,
8412 	 *  since we are only expecting to succeed. :)
8413 	 *  We keep track in the HCB of all the resources that
8414 	 *  are to be released on error.
8415 	 */
8416 	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8417 	if (np)
8418 		np->bus_dmat = bus_dmat;
8419 	else
8420 		return (ENXIO);
8421 	device_set_softc(dev, np);
8422 
8423 	SYM_LOCK_INIT();
8424 
8425 	/*
8426 	 *  Copy some useful infos to the HCB.
8427 	 */
8428 	np->hcb_ba	 = vtobus(np);
8429 	np->verbose	 = bootverbose;
8430 	np->device	 = dev;
8431 	np->device_id	 = pci_get_device(dev);
8432 	np->revision_id  = pci_get_revid(dev);
8433 	np->features	 = chip->features;
8434 	np->clock_divn	 = chip->nr_divisor;
8435 	np->maxoffs	 = chip->offset_max;
8436 	np->maxburst	 = chip->burst_max;
8437 	np->scripta_sz	 = fw->a_size;
8438 	np->scriptb_sz	 = fw->b_size;
8439 	np->fw_setup	 = fw->setup;
8440 	np->fw_patch	 = fw->patch;
8441 	np->fw_name	 = fw->name;
8442 
8443 #ifdef __amd64__
8444 	np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8445 			"TARGET");
8446 	if (!np->target)
8447 		goto attach_failed;
8448 #endif
8449 
8450 	/*
8451 	 *  Initialize the CCB free and busy queues.
8452 	 */
8453 	sym_que_init(&np->free_ccbq);
8454 	sym_que_init(&np->busy_ccbq);
8455 	sym_que_init(&np->comp_ccbq);
8456 	sym_que_init(&np->cam_ccbq);
8457 
8458 	/*
8459 	 *  Allocate a tag for the DMA of user data.
8460 	 */
8461 	if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY,
8462 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
8463 	    BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY,
8464 	    0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) {
8465 		device_printf(dev, "failed to create DMA tag.\n");
8466 		goto attach_failed;
8467 	}
8468 
8469 	/*
8470 	 *  Read and apply some fix-ups to the PCI COMMAND
8471 	 *  register. We want the chip to be enabled for:
8472 	 *  - BUS mastering
8473 	 *  - PCI parity checking (reporting would also be fine)
8474 	 *  - Write And Invalidate.
8475 	 */
8476 	command = pci_read_config(dev, PCIR_COMMAND, 2);
8477 	command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN |
8478 	    PCIM_CMD_MWRICEN;
8479 	pci_write_config(dev, PCIR_COMMAND, command, 2);
8480 
8481 	/*
8482 	 *  Let the device know about the cache line size,
8483 	 *  if it doesn't yet.
8484 	 */
8485 	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8486 	if (!cachelnsz) {
8487 		cachelnsz = 8;
8488 		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8489 	}
8490 
8491 	/*
8492 	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8493 	 */
8494 	i = SYM_PCI_MMIO;
8495 	np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i,
8496 	    RF_ACTIVE);
8497 	if (!np->mmio_res) {
8498 		device_printf(dev, "failed to allocate MMIO resources\n");
8499 		goto attach_failed;
8500 	}
8501 	np->mmio_ba = rman_get_start(np->mmio_res);
8502 
8503 	/*
8504 	 *  Allocate the IRQ.
8505 	 */
8506 	i = 0;
8507 	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8508 					     RF_ACTIVE | RF_SHAREABLE);
8509 	if (!np->irq_res) {
8510 		device_printf(dev, "failed to allocate IRQ resource\n");
8511 		goto attach_failed;
8512 	}
8513 
8514 #ifdef	SYM_CONF_IOMAPPED
8515 	/*
8516 	 *  User want us to use normal IO with PCI.
8517 	 *  Alloc/get/map/retrieve everything that deals with IO.
8518 	 */
8519 	i = SYM_PCI_IO;
8520 	np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE);
8521 	if (!np->io_res) {
8522 		device_printf(dev, "failed to allocate IO resources\n");
8523 		goto attach_failed;
8524 	}
8525 
8526 #endif /* SYM_CONF_IOMAPPED */
8527 
8528 	/*
8529 	 *  If the chip has RAM.
8530 	 *  Alloc/get/map/retrieve the corresponding resources.
8531 	 */
8532 	if (np->features & (FE_RAM|FE_RAM8K)) {
8533 		int regs_id = SYM_PCI_RAM;
8534 		if (np->features & FE_64BIT)
8535 			regs_id = SYM_PCI_RAM64;
8536 		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8537 						     &regs_id, RF_ACTIVE);
8538 		if (!np->ram_res) {
8539 			device_printf(dev,"failed to allocate RAM resources\n");
8540 			goto attach_failed;
8541 		}
8542 		np->ram_id  = regs_id;
8543 		np->ram_ba = rman_get_start(np->ram_res);
8544 	}
8545 
8546 	/*
8547 	 *  Save setting of some IO registers, so we will
8548 	 *  be able to probe specific implementations.
8549 	 */
8550 	sym_save_initial_setting (np);
8551 
8552 	/*
8553 	 *  Reset the chip now, since it has been reported
8554 	 *  that SCSI clock calibration may not work properly
8555 	 *  if the chip is currently active.
8556 	 */
8557 	sym_chip_reset (np);
8558 
8559 	/*
8560 	 *  Try to read the user set-up.
8561 	 */
8562 	(void) sym_read_nvram(np, &nvram);
8563 
8564 	/*
8565 	 *  Prepare controller and devices settings, according
8566 	 *  to chip features, user set-up and driver set-up.
8567 	 */
8568 	(void) sym_prepare_setting(np, &nvram);
8569 
8570 	/*
8571 	 *  Check the PCI clock frequency.
8572 	 *  Must be performed after prepare_setting since it destroys
8573 	 *  STEST1 that is used to probe for the clock doubler.
8574 	 */
8575 	i = sym_getpciclock(np);
8576 	if (i > 37000)
8577 		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8578 
8579 	/*
8580 	 *  Allocate the start queue.
8581 	 */
8582 	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8583 	if (!np->squeue)
8584 		goto attach_failed;
8585 	np->squeue_ba = vtobus(np->squeue);
8586 
8587 	/*
8588 	 *  Allocate the done queue.
8589 	 */
8590 	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8591 	if (!np->dqueue)
8592 		goto attach_failed;
8593 	np->dqueue_ba = vtobus(np->dqueue);
8594 
8595 	/*
8596 	 *  Allocate the target bus address array.
8597 	 */
8598 	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8599 	if (!np->targtbl)
8600 		goto attach_failed;
8601 	np->targtbl_ba = vtobus(np->targtbl);
8602 
8603 	/*
8604 	 *  Allocate SCRIPTS areas.
8605 	 */
8606 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8607 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8608 	if (!np->scripta0 || !np->scriptb0)
8609 		goto attach_failed;
8610 
8611 	/*
8612 	 *  Allocate the CCBs. We need at least ONE.
8613 	 */
8614 	for (i = 0; sym_alloc_ccb(np) != NULL; i++)
8615 		;
8616 	if (i < 1)
8617 		goto attach_failed;
8618 
8619 	/*
8620 	 *  Calculate BUS addresses where we are going
8621 	 *  to load the SCRIPTS.
8622 	 */
8623 	np->scripta_ba	= vtobus(np->scripta0);
8624 	np->scriptb_ba	= vtobus(np->scriptb0);
8625 	np->scriptb0_ba	= np->scriptb_ba;
8626 
8627 	if (np->ram_ba) {
8628 		np->scripta_ba	= np->ram_ba;
8629 		if (np->features & FE_RAM8K) {
8630 			np->ram_ws = 8192;
8631 			np->scriptb_ba = np->scripta_ba + 4096;
8632 #ifdef __LP64__
8633 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8634 #endif
8635 		}
8636 		else
8637 			np->ram_ws = 4096;
8638 	}
8639 
8640 	/*
8641 	 *  Copy scripts to controller instance.
8642 	 */
8643 	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8644 	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8645 
8646 	/*
8647 	 *  Setup variable parts in scripts and compute
8648 	 *  scripts bus addresses used from the C code.
8649 	 */
8650 	np->fw_setup(np, fw);
8651 
8652 	/*
8653 	 *  Bind SCRIPTS with physical addresses usable by the
8654 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8655 	 */
8656 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8657 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8658 
8659 #ifdef SYM_CONF_IARB_SUPPORT
8660 	/*
8661 	 *    If user wants IARB to be set when we win arbitration
8662 	 *    and have other jobs, compute the max number of consecutive
8663 	 *    settings of IARB hints before we leave devices a chance to
8664 	 *    arbitrate for reselection.
8665 	 */
8666 #ifdef	SYM_SETUP_IARB_MAX
8667 	np->iarb_max = SYM_SETUP_IARB_MAX;
8668 #else
8669 	np->iarb_max = 4;
8670 #endif
8671 #endif
8672 
8673 	/*
8674 	 *  Prepare the idle and invalid task actions.
8675 	 */
8676 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8677 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8678 	np->idletask_ba		= vtobus(&np->idletask);
8679 
8680 	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8681 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8682 	np->notask_ba		= vtobus(&np->notask);
8683 
8684 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8685 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8686 	np->bad_itl_ba		= vtobus(&np->bad_itl);
8687 
8688 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8689 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8690 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8691 
8692 	/*
8693 	 *  Allocate and prepare the lun JUMP table that is used
8694 	 *  for a target prior the probing of devices (bad lun table).
8695 	 *  A private table will be allocated for the target on the
8696 	 *  first INQUIRY response received.
8697 	 */
8698 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8699 	if (!np->badluntbl)
8700 		goto attach_failed;
8701 
8702 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8703 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8704 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8705 
8706 	/*
8707 	 *  Prepare the bus address array that contains the bus
8708 	 *  address of each target control block.
8709 	 *  For now, assume all logical units are wrong. :)
8710 	 */
8711 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8712 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8713 		np->target[i].head.luntbl_sa =
8714 				cpu_to_scr(vtobus(np->badluntbl));
8715 		np->target[i].head.lun0_sa =
8716 				cpu_to_scr(vtobus(&np->badlun_sa));
8717 	}
8718 
8719 	/*
8720 	 *  Now check the cache handling of the pci chipset.
8721 	 */
8722 	if (sym_snooptest (np)) {
8723 		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8724 		goto attach_failed;
8725 	}
8726 
8727 	/*
8728 	 *  Now deal with CAM.
8729 	 *  Hopefully, we will succeed with that one.:)
8730 	 */
8731 	if (!sym_cam_attach(np))
8732 		goto attach_failed;
8733 
8734 	/*
8735 	 *  Sigh! we are done.
8736 	 */
8737 	return 0;
8738 
8739 	/*
8740 	 *  We have failed.
8741 	 *  We will try to free all the resources we have
8742 	 *  allocated, but if we are a boot device, this
8743 	 *  will not help that much.;)
8744 	 */
8745 attach_failed:
8746 	if (np)
8747 		sym_pci_free(np);
8748 	return ENXIO;
8749 }
8750 
8751 /*
8752  *  Free everything that have been allocated for this device.
8753  */
8754 static void sym_pci_free(hcb_p np)
8755 {
8756 	SYM_QUEHEAD *qp;
8757 	ccb_p cp;
8758 	tcb_p tp;
8759 	lcb_p lp;
8760 	int target, lun;
8761 
8762 	/*
8763 	 *  First free CAM resources.
8764 	 */
8765 	sym_cam_free(np);
8766 
8767 	/*
8768 	 *  Now every should be quiet for us to
8769 	 *  free other resources.
8770 	 */
8771 	if (np->ram_res)
8772 		bus_release_resource(np->device, SYS_RES_MEMORY,
8773 				     np->ram_id, np->ram_res);
8774 	if (np->mmio_res)
8775 		bus_release_resource(np->device, SYS_RES_MEMORY,
8776 				     SYM_PCI_MMIO, np->mmio_res);
8777 	if (np->io_res)
8778 		bus_release_resource(np->device, SYS_RES_IOPORT,
8779 				     SYM_PCI_IO, np->io_res);
8780 	if (np->irq_res)
8781 		bus_release_resource(np->device, SYS_RES_IRQ,
8782 				     0, np->irq_res);
8783 
8784 	if (np->scriptb0)
8785 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8786 	if (np->scripta0)
8787 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8788 	if (np->squeue)
8789 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8790 	if (np->dqueue)
8791 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8792 
8793 	while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
8794 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8795 		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8796 		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8797 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
8798 	}
8799 
8800 	if (np->badluntbl)
8801 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8802 
8803 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8804 		tp = &np->target[target];
8805 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8806 			lp = sym_lp(tp, lun);
8807 			if (!lp)
8808 				continue;
8809 			if (lp->itlq_tbl)
8810 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8811 				       "ITLQ_TBL");
8812 			if (lp->cb_tags)
8813 				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8814 				       "CB_TAGS");
8815 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
8816 		}
8817 #if SYM_CONF_MAX_LUN > 1
8818 		if (tp->lunmp)
8819 			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8820 			       "LUNMP");
8821 #endif
8822 	}
8823 #ifdef __amd64__
8824 	if (np->target)
8825 		sym_mfree_dma(np->target,
8826 			SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8827 #endif
8828 	if (np->targtbl)
8829 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8830 	if (np->data_dmat)
8831 		bus_dma_tag_destroy(np->data_dmat);
8832 	if (SYM_LOCK_INITIALIZED() != 0)
8833 		SYM_LOCK_DESTROY();
8834 	device_set_softc(np->device, NULL);
8835 	sym_mfree_dma(np, sizeof(*np), "HCB");
8836 }
8837 
8838 /*
8839  *  Allocate CAM resources and register a bus to CAM.
8840  */
8841 static int sym_cam_attach(hcb_p np)
8842 {
8843 	struct cam_devq *devq = NULL;
8844 	struct cam_sim *sim = NULL;
8845 	struct cam_path *path = NULL;
8846 	int err;
8847 
8848 	/*
8849 	 *  Establish our interrupt handler.
8850 	 */
8851 	err = bus_setup_intr(np->device, np->irq_res,
8852 			INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM,
8853 			NULL, sym_intr, np, &np->intr);
8854 	if (err) {
8855 		device_printf(np->device, "bus_setup_intr() failed: %d\n",
8856 			      err);
8857 		goto fail;
8858 	}
8859 
8860 	/*
8861 	 *  Create the device queue for our sym SIM.
8862 	 */
8863 	devq = cam_simq_alloc(SYM_CONF_MAX_START);
8864 	if (!devq)
8865 		goto fail;
8866 
8867 	/*
8868 	 *  Construct our SIM entry.
8869 	 */
8870 	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np,
8871 			device_get_unit(np->device),
8872 			&np->mtx, 1, SYM_SETUP_MAX_TAG, devq);
8873 	if (!sim)
8874 		goto fail;
8875 
8876 	SYM_LOCK();
8877 
8878 	if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
8879 		goto fail;
8880 	np->sim = sim;
8881 	sim = NULL;
8882 
8883 	if (xpt_create_path(&path, NULL,
8884 			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
8885 			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
8886 		goto fail;
8887 	}
8888 	np->path = path;
8889 
8890 	/*
8891 	 *  Establish our async notification handler.
8892 	 */
8893 	if (xpt_register_async(AC_LOST_DEVICE, sym_async, np->sim, path) !=
8894 	    CAM_REQ_CMP)
8895 		goto fail;
8896 
8897 	/*
8898 	 *  Start the chip now, without resetting the BUS, since
8899 	 *  it seems that this must stay under control of CAM.
8900 	 *  With LVD/SE capable chips and BUS in SE mode, we may
8901 	 *  get a spurious SMBC interrupt.
8902 	 */
8903 	sym_init (np, 0);
8904 
8905 	SYM_UNLOCK();
8906 
8907 	return 1;
8908 fail:
8909 	if (sim)
8910 		cam_sim_free(sim, FALSE);
8911 	if (devq)
8912 		cam_simq_free(devq);
8913 
8914 	SYM_UNLOCK();
8915 
8916 	sym_cam_free(np);
8917 
8918 	return 0;
8919 }
8920 
8921 /*
8922  *  Free everything that deals with CAM.
8923  */
8924 static void sym_cam_free(hcb_p np)
8925 {
8926 
8927 	SYM_LOCK_ASSERT(MA_NOTOWNED);
8928 
8929 	if (np->intr) {
8930 		bus_teardown_intr(np->device, np->irq_res, np->intr);
8931 		np->intr = NULL;
8932 	}
8933 
8934 	SYM_LOCK();
8935 
8936 	if (np->sim) {
8937 		xpt_bus_deregister(cam_sim_path(np->sim));
8938 		cam_sim_free(np->sim, /*free_devq*/ TRUE);
8939 		np->sim = NULL;
8940 	}
8941 	if (np->path) {
8942 		xpt_free_path(np->path);
8943 		np->path = NULL;
8944 	}
8945 
8946 	SYM_UNLOCK();
8947 }
8948 
8949 /*============ OPTIONNAL NVRAM SUPPORT =================*/
8950 
8951 /*
8952  *  Get host setup from NVRAM.
8953  */
8954 static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
8955 {
8956 #ifdef SYM_CONF_NVRAM_SUPPORT
8957 	/*
8958 	 *  Get parity checking, host ID, verbose mode
8959 	 *  and miscellaneous host flags from NVRAM.
8960 	 */
8961 	switch(nvram->type) {
8962 	case SYM_SYMBIOS_NVRAM:
8963 		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
8964 			np->rv_scntl0  &= ~0x0a;
8965 		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
8966 		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
8967 			np->verbose += 1;
8968 		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
8969 			np->usrflags |= SYM_SCAN_TARGETS_HILO;
8970 		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
8971 			np->usrflags |= SYM_AVOID_BUS_RESET;
8972 		break;
8973 	case SYM_TEKRAM_NVRAM:
8974 		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
8975 		break;
8976 	default:
8977 		break;
8978 	}
8979 #endif
8980 }
8981 
8982 /*
8983  *  Get target setup from NVRAM.
8984  */
8985 #ifdef SYM_CONF_NVRAM_SUPPORT
8986 static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
8987 static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
8988 #endif
8989 
8990 static void
8991 sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
8992 {
8993 #ifdef SYM_CONF_NVRAM_SUPPORT
8994 	switch(nvp->type) {
8995 	case SYM_SYMBIOS_NVRAM:
8996 		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
8997 		break;
8998 	case SYM_TEKRAM_NVRAM:
8999 		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9000 		break;
9001 	default:
9002 		break;
9003 	}
9004 #endif
9005 }
9006 
9007 #ifdef SYM_CONF_NVRAM_SUPPORT
9008 /*
9009  *  Get target set-up from Symbios format NVRAM.
9010  */
9011 static void
9012 sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9013 {
9014 	tcb_p tp = &np->target[target];
9015 	Symbios_target *tn = &nvram->target[target];
9016 
9017 	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9018 	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9019 	tp->usrtags =
9020 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9021 
9022 	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9023 		tp->usrflags &= ~SYM_DISC_ENABLED;
9024 	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9025 		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9026 	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9027 		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9028 }
9029 
9030 /*
9031  *  Get target set-up from Tekram format NVRAM.
9032  */
9033 static void
9034 sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9035 {
9036 	tcb_p tp = &np->target[target];
9037 	struct Tekram_target *tn = &nvram->target[target];
9038 	int i;
9039 
9040 	if (tn->flags & TEKRAM_SYNC_NEGO) {
9041 		i = tn->sync_index & 0xf;
9042 		tp->tinfo.user.period = Tekram_sync[i];
9043 	}
9044 
9045 	tp->tinfo.user.width =
9046 		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9047 
9048 	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9049 		tp->usrtags = 2 << nvram->max_tags_index;
9050 	}
9051 
9052 	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9053 		tp->usrflags |= SYM_DISC_ENABLED;
9054 
9055 	/* If any device does not support parity, we will not use this option */
9056 	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9057 		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9058 }
9059 
9060 #ifdef	SYM_CONF_DEBUG_NVRAM
9061 /*
9062  *  Dump Symbios format NVRAM for debugging purpose.
9063  */
9064 static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9065 {
9066 	int i;
9067 
9068 	/* display Symbios nvram host data */
9069 	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9070 		sym_name(np), nvram->host_id & 0x0f,
9071 		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9072 		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9073 		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9074 		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9075 		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9076 		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9077 
9078 	/* display Symbios nvram drive data */
9079 	for (i = 0 ; i < 15 ; i++) {
9080 		struct Symbios_target *tn = &nvram->target[i];
9081 		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9082 		sym_name(np), i,
9083 		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9084 		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9085 		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9086 		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9087 		tn->bus_width,
9088 		tn->sync_period / 4,
9089 		tn->timeout);
9090 	}
9091 }
9092 
9093 /*
9094  *  Dump TEKRAM format NVRAM for debugging purpose.
9095  */
9096 static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9097 static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9098 {
9099 	int i, tags, boot_delay;
9100 	char *rem;
9101 
9102 	/* display Tekram nvram host data */
9103 	tags = 2 << nvram->max_tags_index;
9104 	boot_delay = 0;
9105 	if (nvram->boot_delay_index < 6)
9106 		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9107 	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9108 	default:
9109 	case 0:	rem = "";			break;
9110 	case 1: rem = " REMOVABLE=boot device";	break;
9111 	case 2: rem = " REMOVABLE=all";		break;
9112 	}
9113 
9114 	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9115 		sym_name(np), nvram->host_id & 0x0f,
9116 		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9117 		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9118 		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9119 		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9120 		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9121 		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9122 		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9123 		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9124 		rem, boot_delay, tags);
9125 
9126 	/* display Tekram nvram drive data */
9127 	for (i = 0; i <= 15; i++) {
9128 		int sync, j;
9129 		struct Tekram_target *tn = &nvram->target[i];
9130 		j = tn->sync_index & 0xf;
9131 		sync = Tekram_sync[j];
9132 		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9133 		sym_name(np), i,
9134 		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9135 		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9136 		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9137 		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9138 		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9139 		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9140 		sync);
9141 	}
9142 }
9143 #endif	/* SYM_CONF_DEBUG_NVRAM */
9144 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9145 
9146 /*
9147  *  Try reading Symbios or Tekram NVRAM
9148  */
9149 #ifdef SYM_CONF_NVRAM_SUPPORT
9150 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9151 static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9152 #endif
9153 
9154 static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9155 {
9156 #ifdef SYM_CONF_NVRAM_SUPPORT
9157 	/*
9158 	 *  Try to read SYMBIOS nvram.
9159 	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9160 	 */
9161 	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9162 		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9163 		nvp->type = SYM_SYMBIOS_NVRAM;
9164 #ifdef SYM_CONF_DEBUG_NVRAM
9165 		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9166 #endif
9167 	}
9168 	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9169 		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9170 		nvp->type = SYM_TEKRAM_NVRAM;
9171 #ifdef SYM_CONF_DEBUG_NVRAM
9172 		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9173 #endif
9174 	}
9175 	else
9176 		nvp->type = 0;
9177 #else
9178 	nvp->type = 0;
9179 #endif
9180 	return nvp->type;
9181 }
9182 
9183 #ifdef SYM_CONF_NVRAM_SUPPORT
9184 /*
9185  *  24C16 EEPROM reading.
9186  *
9187  *  GPOI0 - data in/data out
9188  *  GPIO1 - clock
9189  *  Symbios NVRAM wiring now also used by Tekram.
9190  */
9191 
9192 #define SET_BIT 0
9193 #define CLR_BIT 1
9194 #define SET_CLK 2
9195 #define CLR_CLK 3
9196 
9197 /*
9198  *  Set/clear data/clock bit in GPIO0
9199  */
9200 static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9201 			  int bit_mode)
9202 {
9203 	UDELAY (5);
9204 	switch (bit_mode){
9205 	case SET_BIT:
9206 		*gpreg |= write_bit;
9207 		break;
9208 	case CLR_BIT:
9209 		*gpreg &= 0xfe;
9210 		break;
9211 	case SET_CLK:
9212 		*gpreg |= 0x02;
9213 		break;
9214 	case CLR_CLK:
9215 		*gpreg &= 0xfd;
9216 		break;
9217 
9218 	}
9219 	OUTB (nc_gpreg, *gpreg);
9220 	UDELAY (5);
9221 }
9222 
9223 /*
9224  *  Send START condition to NVRAM to wake it up.
9225  */
9226 static void S24C16_start(hcb_p np, u_char *gpreg)
9227 {
9228 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9229 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9230 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9231 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9232 }
9233 
9234 /*
9235  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9236  */
9237 static void S24C16_stop(hcb_p np, u_char *gpreg)
9238 {
9239 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9240 	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9241 }
9242 
9243 /*
9244  *  Read or write a bit to the NVRAM,
9245  *  read if GPIO0 input else write if GPIO0 output
9246  */
9247 static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9248 			 u_char *gpreg)
9249 {
9250 	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9251 	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9252 	if (read_bit)
9253 		*read_bit = INB (nc_gpreg);
9254 	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9255 	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9256 }
9257 
9258 /*
9259  *  Output an ACK to the NVRAM after reading,
9260  *  change GPIO0 to output and when done back to an input
9261  */
9262 static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9263 			    u_char *gpcntl)
9264 {
9265 	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9266 	S24C16_do_bit(np, 0, write_bit, gpreg);
9267 	OUTB (nc_gpcntl, *gpcntl);
9268 }
9269 
9270 /*
9271  *  Input an ACK from NVRAM after writing,
9272  *  change GPIO0 to input and when done back to an output
9273  */
9274 static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9275 			   u_char *gpcntl)
9276 {
9277 	OUTB (nc_gpcntl, *gpcntl | 0x01);
9278 	S24C16_do_bit(np, read_bit, 1, gpreg);
9279 	OUTB (nc_gpcntl, *gpcntl);
9280 }
9281 
9282 /*
9283  *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9284  *  GPIO0 must already be set as an output
9285  */
9286 static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9287 			     u_char *gpreg, u_char *gpcntl)
9288 {
9289 	int x;
9290 
9291 	for (x = 0; x < 8; x++)
9292 		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9293 
9294 	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9295 }
9296 
9297 /*
9298  *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9299  *  GPIO0 must already be set as an input
9300  */
9301 static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9302 			    u_char *gpreg, u_char *gpcntl)
9303 {
9304 	int x;
9305 	u_char read_bit;
9306 
9307 	*read_data = 0;
9308 	for (x = 0; x < 8; x++) {
9309 		S24C16_do_bit(np, &read_bit, 1, gpreg);
9310 		*read_data |= ((read_bit & 0x01) << (7 - x));
9311 	}
9312 
9313 	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9314 }
9315 
9316 /*
9317  *  Read 'len' bytes starting at 'offset'.
9318  */
9319 static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9320 {
9321 	u_char	gpcntl, gpreg;
9322 	u_char	old_gpcntl, old_gpreg;
9323 	u_char	ack_data;
9324 	int	retv = 1;
9325 	int	x;
9326 
9327 	/* save current state of GPCNTL and GPREG */
9328 	old_gpreg	= INB (nc_gpreg);
9329 	old_gpcntl	= INB (nc_gpcntl);
9330 	gpcntl		= old_gpcntl & 0x1c;
9331 
9332 	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9333 	OUTB (nc_gpreg,  old_gpreg);
9334 	OUTB (nc_gpcntl, gpcntl);
9335 
9336 	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9337 	gpreg = old_gpreg;
9338 	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9339 	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9340 
9341 	/* now set NVRAM inactive with GPIO0/1 both high */
9342 	S24C16_stop(np, &gpreg);
9343 
9344 	/* activate NVRAM */
9345 	S24C16_start(np, &gpreg);
9346 
9347 	/* write device code and random address MSB */
9348 	S24C16_write_byte(np, &ack_data,
9349 		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9350 	if (ack_data & 0x01)
9351 		goto out;
9352 
9353 	/* write random address LSB */
9354 	S24C16_write_byte(np, &ack_data,
9355 		offset & 0xff, &gpreg, &gpcntl);
9356 	if (ack_data & 0x01)
9357 		goto out;
9358 
9359 	/* regenerate START state to set up for reading */
9360 	S24C16_start(np, &gpreg);
9361 
9362 	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9363 	S24C16_write_byte(np, &ack_data,
9364 		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9365 	if (ack_data & 0x01)
9366 		goto out;
9367 
9368 	/* now set up GPIO0 for inputting data */
9369 	gpcntl |= 0x01;
9370 	OUTB (nc_gpcntl, gpcntl);
9371 
9372 	/* input all requested data - only part of total NVRAM */
9373 	for (x = 0; x < len; x++)
9374 		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9375 
9376 	/* finally put NVRAM back in inactive mode */
9377 	gpcntl &= 0xfe;
9378 	OUTB (nc_gpcntl, gpcntl);
9379 	S24C16_stop(np, &gpreg);
9380 	retv = 0;
9381 out:
9382 	/* return GPIO0/1 to original states after having accessed NVRAM */
9383 	OUTB (nc_gpcntl, old_gpcntl);
9384 	OUTB (nc_gpreg,  old_gpreg);
9385 
9386 	return retv;
9387 }
9388 
9389 #undef SET_BIT /* 0 */
9390 #undef CLR_BIT /* 1 */
9391 #undef SET_CLK /* 2 */
9392 #undef CLR_CLK /* 3 */
9393 
9394 /*
9395  *  Try reading Symbios NVRAM.
9396  *  Return 0 if OK.
9397  */
9398 static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9399 {
9400 	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9401 	u_char *data = (u_char *) nvram;
9402 	int len  = sizeof(*nvram);
9403 	u_short	csum;
9404 	int x;
9405 
9406 	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9407 	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9408 		return 1;
9409 
9410 	/* check valid NVRAM signature, verify byte count and checksum */
9411 	if (nvram->type != 0 ||
9412 	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9413 	    nvram->byte_count != len - 12)
9414 		return 1;
9415 
9416 	/* verify checksum */
9417 	for (x = 6, csum = 0; x < len - 6; x++)
9418 		csum += data[x];
9419 	if (csum != nvram->checksum)
9420 		return 1;
9421 
9422 	return 0;
9423 }
9424 
9425 /*
9426  *  93C46 EEPROM reading.
9427  *
9428  *  GPOI0 - data in
9429  *  GPIO1 - data out
9430  *  GPIO2 - clock
9431  *  GPIO4 - chip select
9432  *
9433  *  Used by Tekram.
9434  */
9435 
9436 /*
9437  *  Pulse clock bit in GPIO0
9438  */
9439 static void T93C46_Clk(hcb_p np, u_char *gpreg)
9440 {
9441 	OUTB (nc_gpreg, *gpreg | 0x04);
9442 	UDELAY (2);
9443 	OUTB (nc_gpreg, *gpreg);
9444 }
9445 
9446 /*
9447  *  Read bit from NVRAM
9448  */
9449 static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9450 {
9451 	UDELAY (2);
9452 	T93C46_Clk(np, gpreg);
9453 	*read_bit = INB (nc_gpreg);
9454 }
9455 
9456 /*
9457  *  Write bit to GPIO0
9458  */
9459 static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9460 {
9461 	if (write_bit & 0x01)
9462 		*gpreg |= 0x02;
9463 	else
9464 		*gpreg &= 0xfd;
9465 
9466 	*gpreg |= 0x10;
9467 
9468 	OUTB (nc_gpreg, *gpreg);
9469 	UDELAY (2);
9470 
9471 	T93C46_Clk(np, gpreg);
9472 }
9473 
9474 /*
9475  *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9476  */
9477 static void T93C46_Stop(hcb_p np, u_char *gpreg)
9478 {
9479 	*gpreg &= 0xef;
9480 	OUTB (nc_gpreg, *gpreg);
9481 	UDELAY (2);
9482 
9483 	T93C46_Clk(np, gpreg);
9484 }
9485 
9486 /*
9487  *  Send read command and address to NVRAM
9488  */
9489 static void T93C46_Send_Command(hcb_p np, u_short write_data,
9490 				u_char *read_bit, u_char *gpreg)
9491 {
9492 	int x;
9493 
9494 	/* send 9 bits, start bit (1), command (2), address (6)  */
9495 	for (x = 0; x < 9; x++)
9496 		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9497 
9498 	*read_bit = INB (nc_gpreg);
9499 }
9500 
9501 /*
9502  *  READ 2 bytes from the NVRAM
9503  */
9504 static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9505 {
9506 	int x;
9507 	u_char read_bit;
9508 
9509 	*nvram_data = 0;
9510 	for (x = 0; x < 16; x++) {
9511 		T93C46_Read_Bit(np, &read_bit, gpreg);
9512 
9513 		if (read_bit & 0x01)
9514 			*nvram_data |=  (0x01 << (15 - x));
9515 		else
9516 			*nvram_data &= ~(0x01 << (15 - x));
9517 	}
9518 }
9519 
9520 /*
9521  *  Read Tekram NvRAM data.
9522  */
9523 static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9524 {
9525 	u_char	read_bit;
9526 	int	x;
9527 
9528 	for (x = 0; x < len; x++)  {
9529 
9530 		/* output read command and address */
9531 		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9532 		if (read_bit & 0x01)
9533 			return 1; /* Bad */
9534 		T93C46_Read_Word(np, &data[x], gpreg);
9535 		T93C46_Stop(np, gpreg);
9536 	}
9537 
9538 	return 0;
9539 }
9540 
9541 /*
9542  *  Try reading 93C46 Tekram NVRAM.
9543  */
9544 static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9545 {
9546 	u_char gpcntl, gpreg;
9547 	u_char old_gpcntl, old_gpreg;
9548 	int retv = 1;
9549 
9550 	/* save current state of GPCNTL and GPREG */
9551 	old_gpreg	= INB (nc_gpreg);
9552 	old_gpcntl	= INB (nc_gpcntl);
9553 
9554 	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9555 	   1/2/4 out */
9556 	gpreg = old_gpreg & 0xe9;
9557 	OUTB (nc_gpreg, gpreg);
9558 	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9559 	OUTB (nc_gpcntl, gpcntl);
9560 
9561 	/* input all of NVRAM, 64 words */
9562 	retv = T93C46_Read_Data(np, (u_short *) nvram,
9563 				sizeof(*nvram) / sizeof(short), &gpreg);
9564 
9565 	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9566 	OUTB (nc_gpcntl, old_gpcntl);
9567 	OUTB (nc_gpreg,  old_gpreg);
9568 
9569 	return retv;
9570 }
9571 
9572 /*
9573  *  Try reading Tekram NVRAM.
9574  *  Return 0 if OK.
9575  */
9576 static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9577 {
9578 	u_char *data = (u_char *) nvram;
9579 	int len = sizeof(*nvram);
9580 	u_short	csum;
9581 	int x;
9582 
9583 	switch (np->device_id) {
9584 	case PCI_ID_SYM53C885:
9585 	case PCI_ID_SYM53C895:
9586 	case PCI_ID_SYM53C896:
9587 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9588 					  data, len);
9589 		break;
9590 	case PCI_ID_SYM53C875:
9591 		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9592 					  data, len);
9593 		if (!x)
9594 			break;
9595 	default:
9596 		x = sym_read_T93C46_nvram(np, nvram);
9597 		break;
9598 	}
9599 	if (x)
9600 		return 1;
9601 
9602 	/* verify checksum */
9603 	for (x = 0, csum = 0; x < len - 1; x += 2)
9604 		csum += data[x] + (data[x+1] << 8);
9605 	if (csum != 0x1234)
9606 		return 1;
9607 
9608 	return 0;
9609 }
9610 
9611 #endif	/* SYM_CONF_NVRAM_SUPPORT */
9612