xref: /freebsd/sys/dev/tsec/if_tsec.c (revision 61e21613)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski
5  * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver.
31  */
32 #include <sys/cdefs.h>
33 #ifdef HAVE_KERNEL_OPTION_HEADERS
34 #include "opt_device_polling.h"
35 #endif
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/endian.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 
48 #include <net/bpf.h>
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in_systm.h>
59 #include <netinet/in.h>
60 #include <netinet/ip.h>
61 
62 #include <machine/bus.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #include <dev/tsec/if_tsec.h>
68 #include <dev/tsec/if_tsecreg.h>
69 
70 static int	tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag,
71     bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr,
72     const char *dname);
73 static void	tsec_dma_ctl(struct tsec_softc *sc, int state);
74 static void	 tsec_encap(if_t ifp, struct tsec_softc *sc,
75     struct mbuf *m0, uint16_t fcb_flags, int *start_tx);
76 static void	tsec_free_dma(struct tsec_softc *sc);
77 static void	tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr);
78 static int	tsec_ifmedia_upd(if_t ifp);
79 static void	tsec_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr);
80 static int	tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
81     struct mbuf **mbufp, uint32_t *paddr);
82 static void	tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs,
83     int nseg, int error);
84 static void	tsec_intrs_ctl(struct tsec_softc *sc, int state);
85 static void	tsec_init(void *xsc);
86 static void	tsec_init_locked(struct tsec_softc *sc);
87 static int	tsec_ioctl(if_t ifp, u_long command, caddr_t data);
88 static void	tsec_reset_mac(struct tsec_softc *sc);
89 static void	tsec_setfilter(struct tsec_softc *sc);
90 static void	tsec_set_mac_address(struct tsec_softc *sc);
91 static void	tsec_start(if_t ifp);
92 static void	tsec_start_locked(if_t ifp);
93 static void	tsec_stop(struct tsec_softc *sc);
94 static void	tsec_tick(void *arg);
95 static void	tsec_watchdog(struct tsec_softc *sc);
96 static void	tsec_add_sysctls(struct tsec_softc *sc);
97 static int	tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS);
98 static int	tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS);
99 static void	tsec_set_rxic(struct tsec_softc *sc);
100 static void	tsec_set_txic(struct tsec_softc *sc);
101 static int	tsec_receive_intr_locked(struct tsec_softc *sc, int count);
102 static void	tsec_transmit_intr_locked(struct tsec_softc *sc);
103 static void	tsec_error_intr_locked(struct tsec_softc *sc, int count);
104 static void	tsec_offload_setup(struct tsec_softc *sc);
105 static void	tsec_offload_process_frame(struct tsec_softc *sc,
106     struct mbuf *m);
107 static void	tsec_setup_multicast(struct tsec_softc *sc);
108 static int	tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu);
109 
110 DRIVER_MODULE(miibus, tsec, miibus_driver, 0, 0);
111 MODULE_DEPEND(tsec, ether, 1, 1, 1);
112 MODULE_DEPEND(tsec, miibus, 1, 1, 1);
113 
114 struct mtx tsec_phy_mtx;
115 
116 int
117 tsec_attach(struct tsec_softc *sc)
118 {
119 	uint8_t hwaddr[ETHER_ADDR_LEN];
120 	if_t ifp;
121 	int error = 0;
122 	int i;
123 
124 	/* Initialize global (because potentially shared) MII lock */
125 	if (!mtx_initialized(&tsec_phy_mtx))
126 		mtx_init(&tsec_phy_mtx, "tsec mii", NULL, MTX_DEF);
127 
128 	/* Reset all TSEC counters */
129 	TSEC_TX_RX_COUNTERS_INIT(sc);
130 
131 	/* Stop DMA engine if enabled by firmware */
132 	tsec_dma_ctl(sc, 0);
133 
134 	/* Reset MAC */
135 	tsec_reset_mac(sc);
136 
137 	/* Disable interrupts for now */
138 	tsec_intrs_ctl(sc, 0);
139 
140 	/* Configure defaults for interrupts coalescing */
141 	sc->rx_ic_time = 768;
142 	sc->rx_ic_count = 16;
143 	sc->tx_ic_time = 768;
144 	sc->tx_ic_count = 16;
145 	tsec_set_rxic(sc);
146 	tsec_set_txic(sc);
147 	tsec_add_sysctls(sc);
148 
149 	/* Allocate a busdma tag and DMA safe memory for TX descriptors. */
150 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag,
151 	    &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC,
152 	    (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX");
153 
154 	if (error) {
155 		tsec_detach(sc);
156 		return (ENXIO);
157 	}
158 
159 	/* Allocate a busdma tag and DMA safe memory for RX descriptors. */
160 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag,
161 	    &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC,
162 	    (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX");
163 	if (error) {
164 		tsec_detach(sc);
165 		return (ENXIO);
166 	}
167 
168 	/* Allocate a busdma tag for TX mbufs. */
169 	error = bus_dma_tag_create(NULL,	/* parent */
170 	    TSEC_TXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
171 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
172 	    BUS_SPACE_MAXADDR,			/* highaddr */
173 	    NULL, NULL,				/* filtfunc, filtfuncarg */
174 	    MCLBYTES * (TSEC_TX_NUM_DESC - 1),	/* maxsize */
175 	    TSEC_TX_MAX_DMA_SEGS,		/* nsegments */
176 	    MCLBYTES, 0,			/* maxsegsz, flags */
177 	    NULL, NULL,				/* lockfunc, lockfuncarg */
178 	    &sc->tsec_tx_mtag);			/* dmat */
179 	if (error) {
180 		device_printf(sc->dev, "failed to allocate busdma tag "
181 		    "(tx mbufs)\n");
182 		tsec_detach(sc);
183 		return (ENXIO);
184 	}
185 
186 	/* Allocate a busdma tag for RX mbufs. */
187 	error = bus_dma_tag_create(NULL,	/* parent */
188 	    TSEC_RXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
189 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
190 	    BUS_SPACE_MAXADDR,			/* highaddr */
191 	    NULL, NULL,				/* filtfunc, filtfuncarg */
192 	    MCLBYTES,				/* maxsize */
193 	    1,					/* nsegments */
194 	    MCLBYTES, 0,			/* maxsegsz, flags */
195 	    NULL, NULL,				/* lockfunc, lockfuncarg */
196 	    &sc->tsec_rx_mtag);			/* dmat */
197 	if (error) {
198 		device_printf(sc->dev, "failed to allocate busdma tag "
199 		    "(rx mbufs)\n");
200 		tsec_detach(sc);
201 		return (ENXIO);
202 	}
203 
204 	/* Create TX busdma maps */
205 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
206 		error = bus_dmamap_create(sc->tsec_tx_mtag, 0,
207 		   &sc->tx_bufmap[i].map);
208 		if (error) {
209 			device_printf(sc->dev, "failed to init TX ring\n");
210 			tsec_detach(sc);
211 			return (ENXIO);
212 		}
213 		sc->tx_bufmap[i].map_initialized = 1;
214 	}
215 
216 	/* Create RX busdma maps and zero mbuf handlers */
217 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
218 		error = bus_dmamap_create(sc->tsec_rx_mtag, 0,
219 		    &sc->rx_data[i].map);
220 		if (error) {
221 			device_printf(sc->dev, "failed to init RX ring\n");
222 			tsec_detach(sc);
223 			return (ENXIO);
224 		}
225 		sc->rx_data[i].mbuf = NULL;
226 	}
227 
228 	/* Create mbufs for RX buffers */
229 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
230 		error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map,
231 		    &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr);
232 		if (error) {
233 			device_printf(sc->dev, "can't load rx DMA map %d, "
234 			    "error = %d\n", i, error);
235 			tsec_detach(sc);
236 			return (error);
237 		}
238 	}
239 
240 	/* Create network interface for upper layers */
241 	ifp = sc->tsec_ifp = if_alloc(IFT_ETHER);
242 	if (ifp == NULL) {
243 		device_printf(sc->dev, "if_alloc() failed\n");
244 		tsec_detach(sc);
245 		return (ENOMEM);
246 	}
247 
248 	if_setsoftc(ifp, sc);
249 	if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
250 	if_setflags(ifp, IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST);
251 	if_setinitfn(ifp, tsec_init);
252 	if_setstartfn(ifp, tsec_start);
253 	if_setioctlfn(ifp, tsec_ioctl);
254 
255 	if_setsendqlen(ifp, TSEC_TX_NUM_DESC - 1);
256 	if_setsendqready(ifp);
257 
258 	if_setcapabilities(ifp, IFCAP_VLAN_MTU);
259 	if (sc->is_etsec)
260 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM, 0);
261 
262 	if_setcapenable(ifp, if_getcapabilities(ifp));
263 
264 #ifdef DEVICE_POLLING
265 	/* Advertise that polling is supported */
266 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
267 #endif
268 
269 	/* Attach PHY(s) */
270 	error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd,
271 	    tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY,
272 	    0);
273 	if (error) {
274 		device_printf(sc->dev, "attaching PHYs failed\n");
275 		if_free(ifp);
276 		sc->tsec_ifp = NULL;
277 		tsec_detach(sc);
278 		return (error);
279 	}
280 	sc->tsec_mii = device_get_softc(sc->tsec_miibus);
281 
282 	/* Set MAC address */
283 	tsec_get_hwaddr(sc, hwaddr);
284 	ether_ifattach(ifp, hwaddr);
285 
286 	return (0);
287 }
288 
289 int
290 tsec_detach(struct tsec_softc *sc)
291 {
292 
293 	if (sc->tsec_ifp != NULL) {
294 #ifdef DEVICE_POLLING
295 		if (if_getcapenable(sc->tsec_ifp) & IFCAP_POLLING)
296 			ether_poll_deregister(sc->tsec_ifp);
297 #endif
298 
299 		/* Stop TSEC controller and free TX queue */
300 		if (sc->sc_rres)
301 			tsec_shutdown(sc->dev);
302 
303 		/* Detach network interface */
304 		ether_ifdetach(sc->tsec_ifp);
305 		if_free(sc->tsec_ifp);
306 		sc->tsec_ifp = NULL;
307 	}
308 
309 	/* Free DMA resources */
310 	tsec_free_dma(sc);
311 
312 	return (0);
313 }
314 
315 int
316 tsec_shutdown(device_t dev)
317 {
318 	struct tsec_softc *sc;
319 
320 	sc = device_get_softc(dev);
321 
322 	TSEC_GLOBAL_LOCK(sc);
323 	tsec_stop(sc);
324 	TSEC_GLOBAL_UNLOCK(sc);
325 	return (0);
326 }
327 
328 int
329 tsec_suspend(device_t dev)
330 {
331 
332 	/* TODO not implemented! */
333 	return (0);
334 }
335 
336 int
337 tsec_resume(device_t dev)
338 {
339 
340 	/* TODO not implemented! */
341 	return (0);
342 }
343 
344 static void
345 tsec_init(void *xsc)
346 {
347 	struct tsec_softc *sc = xsc;
348 
349 	TSEC_GLOBAL_LOCK(sc);
350 	tsec_init_locked(sc);
351 	TSEC_GLOBAL_UNLOCK(sc);
352 }
353 
354 static int
355 tsec_mii_wait(struct tsec_softc *sc, uint32_t flags)
356 {
357 	int timeout;
358 
359 	/*
360 	 * The status indicators are not set immediately after a command.
361 	 * Discard the first value.
362 	 */
363 	TSEC_PHY_READ(sc, TSEC_REG_MIIMIND);
364 
365 	timeout = TSEC_READ_RETRY;
366 	while ((TSEC_PHY_READ(sc, TSEC_REG_MIIMIND) & flags) && --timeout)
367 		DELAY(TSEC_READ_DELAY);
368 
369 	return (timeout == 0);
370 }
371 
372 static void
373 tsec_init_locked(struct tsec_softc *sc)
374 {
375 	struct tsec_desc *tx_desc = sc->tsec_tx_vaddr;
376 	struct tsec_desc *rx_desc = sc->tsec_rx_vaddr;
377 	if_t ifp = sc->tsec_ifp;
378 	uint32_t val, i;
379 	int timeout;
380 
381 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
382 		return;
383 
384 	TSEC_GLOBAL_LOCK_ASSERT(sc);
385 	tsec_stop(sc);
386 
387 	/*
388 	 * These steps are according to the MPC8555E PowerQUICCIII RM:
389 	 * 14.7 Initialization/Application Information
390 	 */
391 
392 	/* Step 1: soft reset MAC */
393 	tsec_reset_mac(sc);
394 
395 	/* Step 2: Initialize MACCFG2 */
396 	TSEC_WRITE(sc, TSEC_REG_MACCFG2,
397 	    TSEC_MACCFG2_FULLDUPLEX |	/* Full Duplex = 1 */
398 	    TSEC_MACCFG2_PADCRC |	/* PAD/CRC append */
399 	    TSEC_MACCFG2_GMII |		/* I/F Mode bit */
400 	    TSEC_MACCFG2_PRECNT		/* Preamble count = 7 */
401 	);
402 
403 	/* Step 3: Initialize ECNTRL
404 	 * While the documentation states that R100M is ignored if RPM is
405 	 * not set, it does seem to be needed to get the orange boxes to
406 	 * work (which have a Marvell 88E1111 PHY). Go figure.
407 	 */
408 
409 	/*
410 	 * XXX kludge - use circumstancial evidence to program ECNTRL
411 	 * correctly. Ideally we need some board information to guide
412 	 * us here.
413 	 */
414 	i = TSEC_READ(sc, TSEC_REG_ID2);
415 	val = (i & 0xffff)
416 	    ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM)	/* Sumatra */
417 	    : TSEC_ECNTRL_R100M;			/* Orange + CDS */
418 	TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val);
419 
420 	/* Step 4: Initialize MAC station address */
421 	tsec_set_mac_address(sc);
422 
423 	/*
424 	 * Step 5: Assign a Physical address to the TBI so as to not conflict
425 	 * with the external PHY physical address
426 	 */
427 	TSEC_WRITE(sc, TSEC_REG_TBIPA, 5);
428 
429 	TSEC_PHY_LOCK(sc);
430 
431 	/* Step 6: Reset the management interface */
432 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT);
433 
434 	/* Step 7: Setup the MII Mgmt clock speed */
435 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28);
436 
437 	/* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */
438 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY);
439 
440 	TSEC_PHY_UNLOCK(sc);
441 	if (timeout) {
442 		if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n");
443 		return;
444 	}
445 
446 	/* Step 9: Setup the MII Mgmt */
447 	mii_mediachg(sc->tsec_mii);
448 
449 	/* Step 10: Clear IEVENT register */
450 	TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff);
451 
452 	/* Step 11: Enable interrupts */
453 #ifdef DEVICE_POLLING
454 	/*
455 	 * ...only if polling is not turned on. Disable interrupts explicitly
456 	 * if polling is enabled.
457 	 */
458 	if (if_getcapenable(ifp) & IFCAP_POLLING )
459 		tsec_intrs_ctl(sc, 0);
460 	else
461 #endif /* DEVICE_POLLING */
462 	tsec_intrs_ctl(sc, 1);
463 
464 	/* Step 12: Initialize IADDRn */
465 	TSEC_WRITE(sc, TSEC_REG_IADDR0, 0);
466 	TSEC_WRITE(sc, TSEC_REG_IADDR1, 0);
467 	TSEC_WRITE(sc, TSEC_REG_IADDR2, 0);
468 	TSEC_WRITE(sc, TSEC_REG_IADDR3, 0);
469 	TSEC_WRITE(sc, TSEC_REG_IADDR4, 0);
470 	TSEC_WRITE(sc, TSEC_REG_IADDR5, 0);
471 	TSEC_WRITE(sc, TSEC_REG_IADDR6, 0);
472 	TSEC_WRITE(sc, TSEC_REG_IADDR7, 0);
473 
474 	/* Step 13: Initialize GADDRn */
475 	TSEC_WRITE(sc, TSEC_REG_GADDR0, 0);
476 	TSEC_WRITE(sc, TSEC_REG_GADDR1, 0);
477 	TSEC_WRITE(sc, TSEC_REG_GADDR2, 0);
478 	TSEC_WRITE(sc, TSEC_REG_GADDR3, 0);
479 	TSEC_WRITE(sc, TSEC_REG_GADDR4, 0);
480 	TSEC_WRITE(sc, TSEC_REG_GADDR5, 0);
481 	TSEC_WRITE(sc, TSEC_REG_GADDR6, 0);
482 	TSEC_WRITE(sc, TSEC_REG_GADDR7, 0);
483 
484 	/* Step 14: Initialize RCTRL */
485 	TSEC_WRITE(sc, TSEC_REG_RCTRL, 0);
486 
487 	/* Step 15: Initialize DMACTRL */
488 	tsec_dma_ctl(sc, 1);
489 
490 	/* Step 16: Initialize FIFO_PAUSE_CTRL */
491 	TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN);
492 
493 	/*
494 	 * Step 17: Initialize transmit/receive descriptor rings.
495 	 * Initialize TBASE and RBASE.
496 	 */
497 	TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr);
498 	TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr);
499 
500 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
501 		tx_desc[i].bufptr = 0;
502 		tx_desc[i].length = 0;
503 		tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ?
504 		    TSEC_TXBD_W : 0);
505 	}
506 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
507 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
508 
509 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
510 		rx_desc[i].bufptr = sc->rx_data[i].paddr;
511 		rx_desc[i].length = 0;
512 		rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I |
513 		    ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0);
514 	}
515 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
516 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
517 
518 	/* Step 18: Initialize the maximum receive buffer length */
519 	TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES);
520 
521 	/* Step 19: Configure ethernet frame sizes */
522 	TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE);
523 	tsec_set_mtu(sc, if_getmtu(ifp));
524 
525 	/* Step 20: Enable Rx and RxBD sdata snooping */
526 	TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN);
527 	TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0);
528 
529 	/* Step 21: Reset collision counters in hardware */
530 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
531 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
532 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
533 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
534 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
535 
536 	/* Step 22: Mask all CAM interrupts */
537 	TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff);
538 	TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff);
539 
540 	/* Step 23: Enable Rx and Tx */
541 	val = TSEC_READ(sc, TSEC_REG_MACCFG1);
542 	val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
543 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, val);
544 
545 	/* Step 24: Reset TSEC counters for Tx and Rx rings */
546 	TSEC_TX_RX_COUNTERS_INIT(sc);
547 
548 	/* Step 25: Setup TCP/IP Off-Load engine */
549 	if (sc->is_etsec)
550 		tsec_offload_setup(sc);
551 
552 	/* Step 26: Setup multicast filters */
553 	tsec_setup_multicast(sc);
554 
555 	/* Step 27: Activate network interface */
556 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
557 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
558 	sc->tsec_if_flags = if_getflags(ifp);
559 	sc->tsec_watchdog = 0;
560 
561 	/* Schedule watchdog timeout */
562 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
563 }
564 
565 static void
566 tsec_set_mac_address(struct tsec_softc *sc)
567 {
568 	uint32_t macbuf[2] = { 0, 0 };
569 	char *macbufp, *curmac;
570 	int i;
571 
572 	TSEC_GLOBAL_LOCK_ASSERT(sc);
573 
574 	KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)),
575 	    ("tsec_set_mac_address: (%d <= %zd", ETHER_ADDR_LEN,
576 	    sizeof(macbuf)));
577 
578 	macbufp = (char *)macbuf;
579 	curmac = (char *)if_getlladdr(sc->tsec_ifp);
580 
581 	/* Correct order of MAC address bytes */
582 	for (i = 1; i <= ETHER_ADDR_LEN; i++)
583 		macbufp[ETHER_ADDR_LEN-i] = curmac[i-1];
584 
585 	/* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */
586 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]);
587 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]);
588 }
589 
590 /*
591  * DMA control function, if argument state is:
592  * 0 - DMA engine will be disabled
593  * 1 - DMA engine will be enabled
594  */
595 static void
596 tsec_dma_ctl(struct tsec_softc *sc, int state)
597 {
598 	device_t dev;
599 	uint32_t dma_flags, timeout;
600 
601 	dev = sc->dev;
602 
603 	dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL);
604 
605 	switch (state) {
606 	case 0:
607 		/* Temporarily clear stop graceful stop bits. */
608 		tsec_dma_ctl(sc, 1000);
609 
610 		/* Set it again */
611 		dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
612 		break;
613 	case 1000:
614 	case 1:
615 		/* Set write with response (WWR), wait (WOP) and snoop bits */
616 		dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN |
617 		    DMACTRL_WWR | DMACTRL_WOP);
618 
619 		/* Clear graceful stop bits */
620 		dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
621 		break;
622 	default:
623 		device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n",
624 		    state);
625 	}
626 
627 	TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags);
628 
629 	switch (state) {
630 	case 0:
631 		/* Wait for DMA stop */
632 		timeout = TSEC_READ_RETRY;
633 		while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) &
634 		    (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC))))
635 			DELAY(TSEC_READ_DELAY);
636 
637 		if (timeout == 0)
638 			device_printf(dev, "tsec_dma_ctl(): timeout!\n");
639 		break;
640 	case 1:
641 		/* Restart transmission function */
642 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
643 	}
644 }
645 
646 /*
647  * Interrupts control function, if argument state is:
648  * 0 - all TSEC interrupts will be masked
649  * 1 - all TSEC interrupts will be unmasked
650  */
651 static void
652 tsec_intrs_ctl(struct tsec_softc *sc, int state)
653 {
654 	device_t dev;
655 
656 	dev = sc->dev;
657 
658 	switch (state) {
659 	case 0:
660 		TSEC_WRITE(sc, TSEC_REG_IMASK, 0);
661 		break;
662 	case 1:
663 		TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN |
664 		    TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN |
665 		    TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN |
666 		    TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN);
667 		break;
668 	default:
669 		device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n",
670 		    state);
671 	}
672 }
673 
674 static void
675 tsec_reset_mac(struct tsec_softc *sc)
676 {
677 	uint32_t maccfg1_flags;
678 
679 	/* Set soft reset bit */
680 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
681 	maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET;
682 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
683 
684 	/* Clear soft reset bit */
685 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
686 	maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET;
687 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
688 }
689 
690 static void
691 tsec_watchdog(struct tsec_softc *sc)
692 {
693 	if_t ifp;
694 
695 	TSEC_GLOBAL_LOCK_ASSERT(sc);
696 
697 	if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0)
698 		return;
699 
700 	ifp = sc->tsec_ifp;
701 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
702 	if_printf(ifp, "watchdog timeout\n");
703 
704 	tsec_stop(sc);
705 	tsec_init_locked(sc);
706 }
707 
708 static void
709 tsec_start(if_t ifp)
710 {
711 	struct tsec_softc *sc = if_getsoftc(ifp);
712 
713 	TSEC_TRANSMIT_LOCK(sc);
714 	tsec_start_locked(ifp);
715 	TSEC_TRANSMIT_UNLOCK(sc);
716 }
717 
718 static void
719 tsec_start_locked(if_t ifp)
720 {
721 	struct tsec_softc *sc;
722 	struct mbuf *m0;
723 	struct tsec_tx_fcb *tx_fcb;
724 	int csum_flags;
725 	int start_tx;
726 	uint16_t fcb_flags;
727 
728 	sc = if_getsoftc(ifp);
729 	start_tx = 0;
730 
731 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
732 
733 	if (sc->tsec_link == 0)
734 		return;
735 
736 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
737 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
738 
739 	for (;;) {
740 		if (TSEC_FREE_TX_DESC(sc) < TSEC_TX_MAX_DMA_SEGS) {
741 			/* No free descriptors */
742 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
743 			break;
744 		}
745 
746 		/* Get packet from the queue */
747 		m0 = if_dequeue(ifp);
748 		if (m0 == NULL)
749 			break;
750 
751 		/* Insert TCP/IP Off-load frame control block */
752 		fcb_flags = 0;
753 		csum_flags = m0->m_pkthdr.csum_flags;
754 		if (csum_flags) {
755 			M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_NOWAIT);
756 			if (m0 == NULL)
757 				break;
758 
759 			if (csum_flags & CSUM_IP)
760 				fcb_flags |= TSEC_TX_FCB_IP4 |
761 				    TSEC_TX_FCB_CSUM_IP;
762 
763 			if (csum_flags & CSUM_TCP)
764 				fcb_flags |= TSEC_TX_FCB_TCP |
765 				    TSEC_TX_FCB_CSUM_TCP_UDP;
766 
767 			if (csum_flags & CSUM_UDP)
768 				fcb_flags |= TSEC_TX_FCB_UDP |
769 				    TSEC_TX_FCB_CSUM_TCP_UDP;
770 
771 			tx_fcb = mtod(m0, struct tsec_tx_fcb *);
772 			tx_fcb->flags = fcb_flags;
773 			tx_fcb->l3_offset = ETHER_HDR_LEN;
774 			tx_fcb->l4_offset = sizeof(struct ip);
775 		}
776 
777 		tsec_encap(ifp, sc, m0, fcb_flags, &start_tx);
778 	}
779 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
780 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
781 
782 	if (start_tx) {
783 		/* Enable transmitter and watchdog timer */
784 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
785 		sc->tsec_watchdog = 5;
786 	}
787 }
788 
789 static void
790 tsec_encap(if_t ifp, struct tsec_softc *sc, struct mbuf *m0,
791     uint16_t fcb_flags, int *start_tx)
792 {
793 	bus_dma_segment_t segs[TSEC_TX_MAX_DMA_SEGS];
794 	int error, i, nsegs;
795 	struct tsec_bufmap *tx_bufmap;
796 	uint32_t tx_idx;
797 	uint16_t flags;
798 
799 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
800 
801 	tx_idx = sc->tx_idx_head;
802 	tx_bufmap = &sc->tx_bufmap[tx_idx];
803 
804 	/* Create mapping in DMA memory */
805 	error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag, tx_bufmap->map, m0,
806 	    segs, &nsegs, BUS_DMA_NOWAIT);
807 	if (error == EFBIG) {
808 		/* Too many segments!  Defrag and try again. */
809 		struct mbuf *m = m_defrag(m0, M_NOWAIT);
810 
811 		if (m == NULL) {
812 			m_freem(m0);
813 			return;
814 		}
815 		m0 = m;
816 		error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag,
817 		    tx_bufmap->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
818 	}
819 	if (error != 0) {
820 		/* Give up. */
821 		m_freem(m0);
822 		return;
823 	}
824 
825 	bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map,
826 	    BUS_DMASYNC_PREWRITE);
827 	tx_bufmap->mbuf = m0;
828 
829 	/*
830 	 * Fill in the TX descriptors back to front so that READY bit in first
831 	 * descriptor is set last.
832 	 */
833 	tx_idx = (tx_idx + (uint32_t)nsegs) & (TSEC_TX_NUM_DESC - 1);
834 	sc->tx_idx_head = tx_idx;
835 	flags = TSEC_TXBD_L | TSEC_TXBD_I | TSEC_TXBD_R | TSEC_TXBD_TC;
836 	for (i = nsegs - 1; i >= 0; i--) {
837 		struct tsec_desc *tx_desc;
838 
839 		tx_idx = (tx_idx - 1) & (TSEC_TX_NUM_DESC - 1);
840 		tx_desc = &sc->tsec_tx_vaddr[tx_idx];
841 		tx_desc->length = segs[i].ds_len;
842 		tx_desc->bufptr = segs[i].ds_addr;
843 
844 		if (i == 0) {
845 			wmb();
846 
847 			if (fcb_flags != 0)
848 				flags |= TSEC_TXBD_TOE;
849 		}
850 
851 		/*
852 		 * Set flags:
853 		 *   - wrap
854 		 *   - checksum
855 		 *   - ready to send
856 		 *   - transmit the CRC sequence after the last data byte
857 		 *   - interrupt after the last buffer
858 		 */
859 		tx_desc->flags = (tx_idx == (TSEC_TX_NUM_DESC - 1) ?
860 		    TSEC_TXBD_W : 0) | flags;
861 
862 		flags &= ~(TSEC_TXBD_L | TSEC_TXBD_I);
863 	}
864 
865 	BPF_MTAP(ifp, m0);
866 	*start_tx = 1;
867 }
868 
869 static void
870 tsec_setfilter(struct tsec_softc *sc)
871 {
872 	if_t ifp;
873 	uint32_t flags;
874 
875 	ifp = sc->tsec_ifp;
876 	flags = TSEC_READ(sc, TSEC_REG_RCTRL);
877 
878 	/* Promiscuous mode */
879 	if (if_getflags(ifp) & IFF_PROMISC)
880 		flags |= TSEC_RCTRL_PROM;
881 	else
882 		flags &= ~TSEC_RCTRL_PROM;
883 
884 	TSEC_WRITE(sc, TSEC_REG_RCTRL, flags);
885 }
886 
887 #ifdef DEVICE_POLLING
888 static poll_handler_t tsec_poll;
889 
890 static int
891 tsec_poll(if_t ifp, enum poll_cmd cmd, int count)
892 {
893 	uint32_t ie;
894 	struct tsec_softc *sc = if_getsoftc(ifp);
895 	int rx_npkts;
896 
897 	rx_npkts = 0;
898 
899 	TSEC_GLOBAL_LOCK(sc);
900 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
901 		TSEC_GLOBAL_UNLOCK(sc);
902 		return (rx_npkts);
903 	}
904 
905 	if (cmd == POLL_AND_CHECK_STATUS) {
906 		tsec_error_intr_locked(sc, count);
907 
908 		/* Clear all events reported */
909 		ie = TSEC_READ(sc, TSEC_REG_IEVENT);
910 		TSEC_WRITE(sc, TSEC_REG_IEVENT, ie);
911 	}
912 
913 	tsec_transmit_intr_locked(sc);
914 
915 	TSEC_GLOBAL_TO_RECEIVE_LOCK(sc);
916 
917 	rx_npkts = tsec_receive_intr_locked(sc, count);
918 
919 	TSEC_RECEIVE_UNLOCK(sc);
920 
921 	return (rx_npkts);
922 }
923 #endif /* DEVICE_POLLING */
924 
925 static int
926 tsec_ioctl(if_t ifp, u_long command, caddr_t data)
927 {
928 	struct tsec_softc *sc = if_getsoftc(ifp);
929 	struct ifreq *ifr = (struct ifreq *)data;
930 	int mask, error = 0;
931 
932 	switch (command) {
933 	case SIOCSIFMTU:
934 		TSEC_GLOBAL_LOCK(sc);
935 		if (tsec_set_mtu(sc, ifr->ifr_mtu))
936 			if_setmtu(ifp, ifr->ifr_mtu);
937 		else
938 			error = EINVAL;
939 		TSEC_GLOBAL_UNLOCK(sc);
940 		break;
941 	case SIOCSIFFLAGS:
942 		TSEC_GLOBAL_LOCK(sc);
943 		if (if_getflags(ifp) & IFF_UP) {
944 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
945 				if ((sc->tsec_if_flags ^ if_getflags(ifp)) &
946 				    IFF_PROMISC)
947 					tsec_setfilter(sc);
948 
949 				if ((sc->tsec_if_flags ^ if_getflags(ifp)) &
950 				    IFF_ALLMULTI)
951 					tsec_setup_multicast(sc);
952 			} else
953 				tsec_init_locked(sc);
954 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
955 			tsec_stop(sc);
956 
957 		sc->tsec_if_flags = if_getflags(ifp);
958 		TSEC_GLOBAL_UNLOCK(sc);
959 		break;
960 	case SIOCADDMULTI:
961 	case SIOCDELMULTI:
962 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
963 			TSEC_GLOBAL_LOCK(sc);
964 			tsec_setup_multicast(sc);
965 			TSEC_GLOBAL_UNLOCK(sc);
966 		}
967 	case SIOCGIFMEDIA:
968 	case SIOCSIFMEDIA:
969 		error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media,
970 		    command);
971 		break;
972 	case SIOCSIFCAP:
973 		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
974 		if ((mask & IFCAP_HWCSUM) && sc->is_etsec) {
975 			TSEC_GLOBAL_LOCK(sc);
976 			if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
977 			if_setcapenablebit(ifp, IFCAP_HWCSUM & ifr->ifr_reqcap, 0);
978 			tsec_offload_setup(sc);
979 			TSEC_GLOBAL_UNLOCK(sc);
980 		}
981 #ifdef DEVICE_POLLING
982 		if (mask & IFCAP_POLLING) {
983 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
984 				error = ether_poll_register(tsec_poll, ifp);
985 				if (error)
986 					return (error);
987 
988 				TSEC_GLOBAL_LOCK(sc);
989 				/* Disable interrupts */
990 				tsec_intrs_ctl(sc, 0);
991 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
992 				TSEC_GLOBAL_UNLOCK(sc);
993 			} else {
994 				error = ether_poll_deregister(ifp);
995 				TSEC_GLOBAL_LOCK(sc);
996 				/* Enable interrupts */
997 				tsec_intrs_ctl(sc, 1);
998 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
999 				TSEC_GLOBAL_UNLOCK(sc);
1000 			}
1001 		}
1002 #endif
1003 		break;
1004 
1005 	default:
1006 		error = ether_ioctl(ifp, command, data);
1007 	}
1008 
1009 	/* Flush buffers if not empty */
1010 	if (if_getflags(ifp) & IFF_UP)
1011 		tsec_start(ifp);
1012 	return (error);
1013 }
1014 
1015 static int
1016 tsec_ifmedia_upd(if_t ifp)
1017 {
1018 	struct tsec_softc *sc = if_getsoftc(ifp);
1019 	struct mii_data *mii;
1020 
1021 	TSEC_TRANSMIT_LOCK(sc);
1022 
1023 	mii = sc->tsec_mii;
1024 	mii_mediachg(mii);
1025 
1026 	TSEC_TRANSMIT_UNLOCK(sc);
1027 	return (0);
1028 }
1029 
1030 static void
1031 tsec_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
1032 {
1033 	struct tsec_softc *sc = if_getsoftc(ifp);
1034 	struct mii_data *mii;
1035 
1036 	TSEC_TRANSMIT_LOCK(sc);
1037 
1038 	mii = sc->tsec_mii;
1039 	mii_pollstat(mii);
1040 
1041 	ifmr->ifm_active = mii->mii_media_active;
1042 	ifmr->ifm_status = mii->mii_media_status;
1043 
1044 	TSEC_TRANSMIT_UNLOCK(sc);
1045 }
1046 
1047 static int
1048 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
1049     uint32_t *paddr)
1050 {
1051 	struct mbuf *new_mbuf;
1052 	bus_dma_segment_t seg[1];
1053 	int error, nsegs;
1054 
1055 	KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
1056 
1057 	new_mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MCLBYTES);
1058 	if (new_mbuf == NULL)
1059 		return (ENOBUFS);
1060 	new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
1061 
1062 	if (*mbufp) {
1063 		bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
1064 		bus_dmamap_unload(tag, map);
1065 	}
1066 
1067 	error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
1068 	    BUS_DMA_NOWAIT);
1069 	KASSERT(nsegs == 1, ("Too many segments returned!"));
1070 	if (nsegs != 1 || error)
1071 		panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
1072 
1073 #if 0
1074 	if (error) {
1075 		printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n",
1076 			error);
1077 		m_freem(new_mbuf);
1078 		return (ENOBUFS);
1079 	}
1080 #endif
1081 
1082 #if 0
1083 	KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0,
1084 		("Wrong alignment of RX buffer!"));
1085 #endif
1086 	bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
1087 
1088 	(*mbufp) = new_mbuf;
1089 	(*paddr) = seg->ds_addr;
1090 	return (0);
1091 }
1092 
1093 static void
1094 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1095 {
1096 	u_int32_t *paddr;
1097 
1098 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1099 	paddr = arg;
1100 	*paddr = segs->ds_addr;
1101 }
1102 
1103 static int
1104 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap,
1105     bus_size_t dsize, void **vaddr, void *raddr, const char *dname)
1106 {
1107 	int error;
1108 
1109 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1110 	error = bus_dma_tag_create(NULL,	/* parent */
1111 	    PAGE_SIZE, 0,			/* alignment, boundary */
1112 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1113 	    BUS_SPACE_MAXADDR,			/* highaddr */
1114 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1115 	    dsize, 1,				/* maxsize, nsegments */
1116 	    dsize, 0,				/* maxsegsz, flags */
1117 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1118 	    dtag);				/* dmat */
1119 
1120 	if (error) {
1121 		device_printf(dev, "failed to allocate busdma %s tag\n",
1122 		    dname);
1123 		(*vaddr) = NULL;
1124 		return (ENXIO);
1125 	}
1126 
1127 	error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1128 	    dmap);
1129 	if (error) {
1130 		device_printf(dev, "failed to allocate %s DMA safe memory\n",
1131 		    dname);
1132 		bus_dma_tag_destroy(*dtag);
1133 		(*vaddr) = NULL;
1134 		return (ENXIO);
1135 	}
1136 
1137 	error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize,
1138 	    tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT);
1139 	if (error) {
1140 		device_printf(dev, "cannot get address of the %s "
1141 		    "descriptors\n", dname);
1142 		bus_dmamem_free(*dtag, *vaddr, *dmap);
1143 		bus_dma_tag_destroy(*dtag);
1144 		(*vaddr) = NULL;
1145 		return (ENXIO);
1146 	}
1147 
1148 	return (0);
1149 }
1150 
1151 static void
1152 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr)
1153 {
1154 
1155 	if (vaddr == NULL)
1156 		return;
1157 
1158 	/* Unmap descriptors from DMA memory */
1159 	bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD |
1160 	    BUS_DMASYNC_POSTWRITE);
1161 	bus_dmamap_unload(dtag, dmap);
1162 
1163 	/* Free descriptors memory */
1164 	bus_dmamem_free(dtag, vaddr, dmap);
1165 
1166 	/* Destroy descriptors tag */
1167 	bus_dma_tag_destroy(dtag);
1168 }
1169 
1170 static void
1171 tsec_free_dma(struct tsec_softc *sc)
1172 {
1173 	int i;
1174 
1175 	/* Free TX maps */
1176 	for (i = 0; i < TSEC_TX_NUM_DESC; i++)
1177 		if (sc->tx_bufmap[i].map_initialized)
1178 			bus_dmamap_destroy(sc->tsec_tx_mtag,
1179 			    sc->tx_bufmap[i].map);
1180 	/* Destroy tag for TX mbufs */
1181 	bus_dma_tag_destroy(sc->tsec_tx_mtag);
1182 
1183 	/* Free RX mbufs and maps */
1184 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
1185 		if (sc->rx_data[i].mbuf) {
1186 			/* Unload buffer from DMA */
1187 			bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map,
1188 			    BUS_DMASYNC_POSTREAD);
1189 			bus_dmamap_unload(sc->tsec_rx_mtag,
1190 			    sc->rx_data[i].map);
1191 
1192 			/* Free buffer */
1193 			m_freem(sc->rx_data[i].mbuf);
1194 		}
1195 		/* Destroy map for this buffer */
1196 		if (sc->rx_data[i].map != NULL)
1197 			bus_dmamap_destroy(sc->tsec_rx_mtag,
1198 			    sc->rx_data[i].map);
1199 	}
1200 	/* Destroy tag for RX mbufs */
1201 	bus_dma_tag_destroy(sc->tsec_rx_mtag);
1202 
1203 	/* Unload TX/RX descriptors */
1204 	tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1205 	    sc->tsec_tx_vaddr);
1206 	tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1207 	    sc->tsec_rx_vaddr);
1208 }
1209 
1210 static void
1211 tsec_stop(struct tsec_softc *sc)
1212 {
1213 	if_t ifp;
1214 	uint32_t tmpval;
1215 
1216 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1217 
1218 	ifp = sc->tsec_ifp;
1219 
1220 	/* Disable interface and watchdog timer */
1221 	callout_stop(&sc->tsec_callout);
1222 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
1223 	sc->tsec_watchdog = 0;
1224 
1225 	/* Disable all interrupts and stop DMA */
1226 	tsec_intrs_ctl(sc, 0);
1227 	tsec_dma_ctl(sc, 0);
1228 
1229 	/* Remove pending data from TX queue */
1230 	while (sc->tx_idx_tail != sc->tx_idx_head) {
1231 		bus_dmamap_sync(sc->tsec_tx_mtag,
1232 		    sc->tx_bufmap[sc->tx_idx_tail].map,
1233 		    BUS_DMASYNC_POSTWRITE);
1234 		bus_dmamap_unload(sc->tsec_tx_mtag,
1235 		    sc->tx_bufmap[sc->tx_idx_tail].map);
1236 		m_freem(sc->tx_bufmap[sc->tx_idx_tail].mbuf);
1237 		sc->tx_idx_tail = (sc->tx_idx_tail + 1)
1238 		    & (TSEC_TX_NUM_DESC - 1);
1239 	}
1240 
1241 	/* Disable RX and TX */
1242 	tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1);
1243 	tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
1244 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval);
1245 	DELAY(10);
1246 }
1247 
1248 static void
1249 tsec_tick(void *arg)
1250 {
1251 	struct tsec_softc *sc = arg;
1252 	if_t ifp;
1253 	int link;
1254 
1255 	TSEC_GLOBAL_LOCK(sc);
1256 
1257 	tsec_watchdog(sc);
1258 
1259 	ifp = sc->tsec_ifp;
1260 	link = sc->tsec_link;
1261 
1262 	mii_tick(sc->tsec_mii);
1263 
1264 	if (link == 0 && sc->tsec_link == 1 &&
1265 	    (!if_sendq_empty(ifp)))
1266 		tsec_start_locked(ifp);
1267 
1268 	/* Schedule another timeout one second from now. */
1269 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
1270 
1271 	TSEC_GLOBAL_UNLOCK(sc);
1272 }
1273 
1274 /*
1275  *  This is the core RX routine. It replenishes mbufs in the descriptor and
1276  *  sends data which have been dma'ed into host memory to upper layer.
1277  *
1278  *  Loops at most count times if count is > 0, or until done if count < 0.
1279  */
1280 static int
1281 tsec_receive_intr_locked(struct tsec_softc *sc, int count)
1282 {
1283 	struct tsec_desc *rx_desc;
1284 	if_t ifp;
1285 	struct rx_data_type *rx_data;
1286 	struct mbuf *m;
1287 	uint32_t i;
1288 	int c, rx_npkts;
1289 	uint16_t flags;
1290 
1291 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1292 
1293 	ifp = sc->tsec_ifp;
1294 	rx_data = sc->rx_data;
1295 	rx_npkts = 0;
1296 
1297 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1298 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1299 
1300 	for (c = 0; ; c++) {
1301 		if (count >= 0 && count-- == 0)
1302 			break;
1303 
1304 		rx_desc = TSEC_GET_CUR_RX_DESC(sc);
1305 		flags = rx_desc->flags;
1306 
1307 		/* Check if there is anything to receive */
1308 		if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) {
1309 			/*
1310 			 * Avoid generating another interrupt
1311 			 */
1312 			if (flags & TSEC_RXBD_E)
1313 				TSEC_WRITE(sc, TSEC_REG_IEVENT,
1314 				    TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1315 			/*
1316 			 * We didn't consume current descriptor and have to
1317 			 * return it to the queue
1318 			 */
1319 			TSEC_BACK_CUR_RX_DESC(sc);
1320 			break;
1321 		}
1322 
1323 		if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO |
1324 		    TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) {
1325 			rx_desc->length = 0;
1326 			rx_desc->flags = (rx_desc->flags &
1327 			    ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I;
1328 
1329 			if (sc->frame != NULL) {
1330 				m_free(sc->frame);
1331 				sc->frame = NULL;
1332 			}
1333 
1334 			continue;
1335 		}
1336 
1337 		/* Ok... process frame */
1338 		i = TSEC_GET_CUR_RX_DESC_CNT(sc);
1339 		m = rx_data[i].mbuf;
1340 		m->m_len = rx_desc->length;
1341 
1342 		if (sc->frame != NULL) {
1343 			if ((flags & TSEC_RXBD_L) != 0)
1344 				m->m_len -= m_length(sc->frame, NULL);
1345 
1346 			m->m_flags &= ~M_PKTHDR;
1347 			m_cat(sc->frame, m);
1348 		} else {
1349 			sc->frame = m;
1350 		}
1351 
1352 		m = NULL;
1353 
1354 		if ((flags & TSEC_RXBD_L) != 0) {
1355 			m = sc->frame;
1356 			sc->frame = NULL;
1357 		}
1358 
1359 		if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map,
1360 		    &rx_data[i].mbuf, &rx_data[i].paddr)) {
1361 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1362 			/*
1363 			 * We ran out of mbufs; didn't consume current
1364 			 * descriptor and have to return it to the queue.
1365 			 */
1366 			TSEC_BACK_CUR_RX_DESC(sc);
1367 			break;
1368 		}
1369 
1370 		/* Attach new buffer to descriptor and clear flags */
1371 		rx_desc->bufptr = rx_data[i].paddr;
1372 		rx_desc->length = 0;
1373 		rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) |
1374 		    TSEC_RXBD_E | TSEC_RXBD_I;
1375 
1376 		if (m != NULL) {
1377 			m->m_pkthdr.rcvif = ifp;
1378 
1379 			m_fixhdr(m);
1380 			m_adj(m, -ETHER_CRC_LEN);
1381 
1382 			if (sc->is_etsec)
1383 				tsec_offload_process_frame(sc, m);
1384 
1385 			TSEC_RECEIVE_UNLOCK(sc);
1386 			if_input(ifp, m);
1387 			TSEC_RECEIVE_LOCK(sc);
1388 			rx_npkts++;
1389 		}
1390 	}
1391 
1392 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1393 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1394 
1395 	/*
1396 	 * Make sure TSEC receiver is not halted.
1397 	 *
1398 	 * Various conditions can stop the TSEC receiver, but not all are
1399 	 * signaled and handled by error interrupt, so make sure the receiver
1400 	 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when
1401 	 * halted, and is harmless if already running.
1402 	 */
1403 	TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT);
1404 	return (rx_npkts);
1405 }
1406 
1407 void
1408 tsec_receive_intr(void *arg)
1409 {
1410 	struct tsec_softc *sc = arg;
1411 
1412 	TSEC_RECEIVE_LOCK(sc);
1413 
1414 #ifdef DEVICE_POLLING
1415 	if (if_getcapenable(sc->tsec_ifp) & IFCAP_POLLING) {
1416 		TSEC_RECEIVE_UNLOCK(sc);
1417 		return;
1418 	}
1419 #endif
1420 
1421 	/* Confirm the interrupt was received by driver */
1422 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1423 	tsec_receive_intr_locked(sc, -1);
1424 
1425 	TSEC_RECEIVE_UNLOCK(sc);
1426 }
1427 
1428 static void
1429 tsec_transmit_intr_locked(struct tsec_softc *sc)
1430 {
1431 	if_t ifp;
1432 	uint32_t tx_idx;
1433 
1434 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
1435 
1436 	ifp = sc->tsec_ifp;
1437 
1438 	/* Update collision statistics */
1439 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, TSEC_READ(sc, TSEC_REG_MON_TNCL));
1440 
1441 	/* Reset collision counters in hardware */
1442 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
1443 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
1444 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
1445 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
1446 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
1447 
1448 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1449 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1450 
1451 	tx_idx = sc->tx_idx_tail;
1452 	while (tx_idx != sc->tx_idx_head) {
1453 		struct tsec_desc *tx_desc;
1454 		struct tsec_bufmap *tx_bufmap;
1455 
1456 		tx_desc = &sc->tsec_tx_vaddr[tx_idx];
1457 		if (tx_desc->flags & TSEC_TXBD_R) {
1458 			break;
1459 		}
1460 
1461 		tx_bufmap = &sc->tx_bufmap[tx_idx];
1462 		tx_idx = (tx_idx + 1) & (TSEC_TX_NUM_DESC - 1);
1463 		if (tx_bufmap->mbuf == NULL)
1464 			continue;
1465 
1466 		/*
1467 		 * This is the last buf in this packet, so unmap and free it.
1468 		 */
1469 		bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map,
1470 		    BUS_DMASYNC_POSTWRITE);
1471 		bus_dmamap_unload(sc->tsec_tx_mtag, tx_bufmap->map);
1472 		m_freem(tx_bufmap->mbuf);
1473 		tx_bufmap->mbuf = NULL;
1474 
1475 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1476 	}
1477 	sc->tx_idx_tail = tx_idx;
1478 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1479 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1480 
1481 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1482 	tsec_start_locked(ifp);
1483 
1484 	if (sc->tx_idx_tail == sc->tx_idx_head)
1485 		sc->tsec_watchdog = 0;
1486 }
1487 
1488 void
1489 tsec_transmit_intr(void *arg)
1490 {
1491 	struct tsec_softc *sc = arg;
1492 
1493 	TSEC_TRANSMIT_LOCK(sc);
1494 
1495 #ifdef DEVICE_POLLING
1496 	if (if_getcapenable(sc->tsec_ifp) & IFCAP_POLLING) {
1497 		TSEC_TRANSMIT_UNLOCK(sc);
1498 		return;
1499 	}
1500 #endif
1501 	/* Confirm the interrupt was received by driver */
1502 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF);
1503 	tsec_transmit_intr_locked(sc);
1504 
1505 	TSEC_TRANSMIT_UNLOCK(sc);
1506 }
1507 
1508 static void
1509 tsec_error_intr_locked(struct tsec_softc *sc, int count)
1510 {
1511 	if_t ifp;
1512 	uint32_t eflags;
1513 
1514 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1515 
1516 	ifp = sc->tsec_ifp;
1517 
1518 	eflags = TSEC_READ(sc, TSEC_REG_IEVENT);
1519 
1520 	/* Clear events bits in hardware */
1521 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY |
1522 	    TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT |
1523 	    TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC |
1524 	    TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN);
1525 
1526 	/* Check transmitter errors */
1527 	if (eflags & TSEC_IEVENT_TXE) {
1528 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1529 
1530 		if (eflags & TSEC_IEVENT_LC)
1531 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1532 
1533 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
1534 	}
1535 
1536 	/* Check for discarded frame due to a lack of buffers */
1537 	if (eflags & TSEC_IEVENT_BSY) {
1538 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1539 	}
1540 
1541 	if (if_getflags(ifp) & IFF_DEBUG)
1542 		if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n",
1543 		    eflags);
1544 
1545 	if (eflags & TSEC_IEVENT_EBERR) {
1546 		if_printf(ifp, "System bus error occurred during"
1547 		    "DMA transaction (flags: 0x%x)\n", eflags);
1548 		tsec_init_locked(sc);
1549 	}
1550 
1551 	if (eflags & TSEC_IEVENT_BABT)
1552 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1553 
1554 	if (eflags & TSEC_IEVENT_BABR)
1555 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1556 }
1557 
1558 void
1559 tsec_error_intr(void *arg)
1560 {
1561 	struct tsec_softc *sc = arg;
1562 
1563 	TSEC_GLOBAL_LOCK(sc);
1564 	tsec_error_intr_locked(sc, -1);
1565 	TSEC_GLOBAL_UNLOCK(sc);
1566 }
1567 
1568 int
1569 tsec_miibus_readreg(device_t dev, int phy, int reg)
1570 {
1571 	struct tsec_softc *sc;
1572 	int timeout;
1573 	int rv;
1574 
1575 	sc = device_get_softc(dev);
1576 
1577 	TSEC_PHY_LOCK();
1578 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1579 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, 0);
1580 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE);
1581 
1582 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY);
1583 	rv = TSEC_PHY_READ(sc, TSEC_REG_MIIMSTAT);
1584 	TSEC_PHY_UNLOCK();
1585 
1586 	if (timeout)
1587 		device_printf(dev, "Timeout while reading from PHY!\n");
1588 
1589 	return (rv);
1590 }
1591 
1592 int
1593 tsec_miibus_writereg(device_t dev, int phy, int reg, int value)
1594 {
1595 	struct tsec_softc *sc;
1596 	int timeout;
1597 
1598 	sc = device_get_softc(dev);
1599 
1600 	TSEC_PHY_LOCK();
1601 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1602 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCON, value);
1603 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY);
1604 	TSEC_PHY_UNLOCK();
1605 
1606 	if (timeout)
1607 		device_printf(dev, "Timeout while writing to PHY!\n");
1608 
1609 	return (0);
1610 }
1611 
1612 void
1613 tsec_miibus_statchg(device_t dev)
1614 {
1615 	struct tsec_softc *sc;
1616 	struct mii_data *mii;
1617 	uint32_t ecntrl, id, tmp;
1618 	int link;
1619 
1620 	sc = device_get_softc(dev);
1621 	mii = sc->tsec_mii;
1622 	link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0);
1623 
1624 	tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF;
1625 
1626 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1627 		tmp |= TSEC_MACCFG2_FULLDUPLEX;
1628 	else
1629 		tmp &= ~TSEC_MACCFG2_FULLDUPLEX;
1630 
1631 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1632 	case IFM_1000_T:
1633 	case IFM_1000_SX:
1634 		tmp |= TSEC_MACCFG2_GMII;
1635 		sc->tsec_link = link;
1636 		break;
1637 	case IFM_100_TX:
1638 	case IFM_10_T:
1639 		tmp |= TSEC_MACCFG2_MII;
1640 		sc->tsec_link = link;
1641 		break;
1642 	case IFM_NONE:
1643 		if (link)
1644 			device_printf(dev, "No speed selected but link "
1645 			    "active!\n");
1646 		sc->tsec_link = 0;
1647 		return;
1648 	default:
1649 		sc->tsec_link = 0;
1650 		device_printf(dev, "Unknown speed (%d), link %s!\n",
1651 		    IFM_SUBTYPE(mii->mii_media_active),
1652 		        ((link) ? "up" : "down"));
1653 		return;
1654 	}
1655 	TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp);
1656 
1657 	/* XXX kludge - use circumstantial evidence for reduced mode. */
1658 	id = TSEC_READ(sc, TSEC_REG_ID2);
1659 	if (id & 0xffff) {
1660 		ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M;
1661 		ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0;
1662 		TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl);
1663 	}
1664 }
1665 
1666 static void
1667 tsec_add_sysctls(struct tsec_softc *sc)
1668 {
1669 	struct sysctl_ctx_list *ctx;
1670 	struct sysctl_oid_list *children;
1671 	struct sysctl_oid *tree;
1672 
1673 	ctx = device_get_sysctl_ctx(sc->dev);
1674 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
1675 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
1676 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "TSEC Interrupts coalescing");
1677 	children = SYSCTL_CHILDREN(tree);
1678 
1679 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
1680 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_RX,
1681 	    tsec_sysctl_ic_time, "I", "IC RX time threshold (0-65535)");
1682 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count",
1683 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_RX,
1684 	    tsec_sysctl_ic_count, "I", "IC RX frame count threshold (0-255)");
1685 
1686 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
1687 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_TX,
1688 	    tsec_sysctl_ic_time, "I", "IC TX time threshold (0-65535)");
1689 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count",
1690 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_TX,
1691 	    tsec_sysctl_ic_count, "I", "IC TX frame count threshold (0-255)");
1692 }
1693 
1694 /*
1695  * With Interrupt Coalescing (IC) active, a transmit/receive frame
1696  * interrupt is raised either upon:
1697  *
1698  * - threshold-defined period of time elapsed, or
1699  * - threshold-defined number of frames is received/transmitted,
1700  *   whichever occurs first.
1701  *
1702  * The following sysctls regulate IC behaviour (for TX/RX separately):
1703  *
1704  * dev.tsec.<unit>.int_coal.rx_time
1705  * dev.tsec.<unit>.int_coal.rx_count
1706  * dev.tsec.<unit>.int_coal.tx_time
1707  * dev.tsec.<unit>.int_coal.tx_count
1708  *
1709  * Values:
1710  *
1711  * - 0 for either time or count disables IC on the given TX/RX path
1712  *
1713  * - count: 1-255 (expresses frame count number; note that value of 1 is
1714  *   effectively IC off)
1715  *
1716  * - time: 1-65535 (value corresponds to a real time period and is
1717  *   expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer
1718  *   threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps,
1719  *   100 Mbps, or 1Gbps, respectively. For detailed discussion consult the
1720  *   TSEC reference manual.
1721  */
1722 static int
1723 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS)
1724 {
1725 	int error;
1726 	uint32_t time;
1727 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1728 
1729 	time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
1730 
1731 	error = sysctl_handle_int(oidp, &time, 0, req);
1732 	if (error != 0)
1733 		return (error);
1734 
1735 	if (time > 65535)
1736 		return (EINVAL);
1737 
1738 	TSEC_IC_LOCK(sc);
1739 	if (arg2 == TSEC_IC_RX) {
1740 		sc->rx_ic_time = time;
1741 		tsec_set_rxic(sc);
1742 	} else {
1743 		sc->tx_ic_time = time;
1744 		tsec_set_txic(sc);
1745 	}
1746 	TSEC_IC_UNLOCK(sc);
1747 
1748 	return (0);
1749 }
1750 
1751 static int
1752 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS)
1753 {
1754 	int error;
1755 	uint32_t count;
1756 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1757 
1758 	count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count;
1759 
1760 	error = sysctl_handle_int(oidp, &count, 0, req);
1761 	if (error != 0)
1762 		return (error);
1763 
1764 	if (count > 255)
1765 		return (EINVAL);
1766 
1767 	TSEC_IC_LOCK(sc);
1768 	if (arg2 == TSEC_IC_RX) {
1769 		sc->rx_ic_count = count;
1770 		tsec_set_rxic(sc);
1771 	} else {
1772 		sc->tx_ic_count = count;
1773 		tsec_set_txic(sc);
1774 	}
1775 	TSEC_IC_UNLOCK(sc);
1776 
1777 	return (0);
1778 }
1779 
1780 static void
1781 tsec_set_rxic(struct tsec_softc *sc)
1782 {
1783 	uint32_t rxic_val;
1784 
1785 	if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0)
1786 		/* Disable RX IC */
1787 		rxic_val = 0;
1788 	else {
1789 		rxic_val = 0x80000000;
1790 		rxic_val |= (sc->rx_ic_count << 21);
1791 		rxic_val |= sc->rx_ic_time;
1792 	}
1793 
1794 	TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val);
1795 }
1796 
1797 static void
1798 tsec_set_txic(struct tsec_softc *sc)
1799 {
1800 	uint32_t txic_val;
1801 
1802 	if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0)
1803 		/* Disable TX IC */
1804 		txic_val = 0;
1805 	else {
1806 		txic_val = 0x80000000;
1807 		txic_val |= (sc->tx_ic_count << 21);
1808 		txic_val |= sc->tx_ic_time;
1809 	}
1810 
1811 	TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val);
1812 }
1813 
1814 static void
1815 tsec_offload_setup(struct tsec_softc *sc)
1816 {
1817 	if_t ifp = sc->tsec_ifp;
1818 	uint32_t reg;
1819 
1820 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1821 
1822 	reg = TSEC_READ(sc, TSEC_REG_TCTRL);
1823 	reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN;
1824 
1825 	if (if_getcapenable(ifp) & IFCAP_TXCSUM)
1826 		if_sethwassist(ifp, TSEC_CHECKSUM_FEATURES);
1827 	else
1828 		if_sethwassist(ifp, 0);
1829 
1830 	TSEC_WRITE(sc, TSEC_REG_TCTRL, reg);
1831 
1832 	reg = TSEC_READ(sc, TSEC_REG_RCTRL);
1833 	reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP);
1834 	reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX;
1835 
1836 	if (if_getcapenable(ifp) & IFCAP_RXCSUM)
1837 		reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN |
1838 		    TSEC_RCTRL_PRSDEP_PARSE_L234;
1839 
1840 	TSEC_WRITE(sc, TSEC_REG_RCTRL, reg);
1841 }
1842 
1843 static void
1844 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m)
1845 {
1846 	struct tsec_rx_fcb rx_fcb;
1847 	int csum_flags = 0;
1848 	int protocol, flags;
1849 
1850 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1851 
1852 	m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb));
1853 	flags = rx_fcb.flags;
1854 	protocol = rx_fcb.protocol;
1855 
1856 	if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) {
1857 		csum_flags |= CSUM_IP_CHECKED;
1858 
1859 		if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0)
1860 			csum_flags |= CSUM_IP_VALID;
1861 	}
1862 
1863 	if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) &&
1864 	    TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) &&
1865 	    (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) {
1866 		csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1867 		m->m_pkthdr.csum_data = 0xFFFF;
1868 	}
1869 
1870 	m->m_pkthdr.csum_flags = csum_flags;
1871 
1872 	if (flags & TSEC_RX_FCB_VLAN) {
1873 		m->m_pkthdr.ether_vtag = rx_fcb.vlan;
1874 		m->m_flags |= M_VLANTAG;
1875 	}
1876 
1877 	m_adj(m, sizeof(struct tsec_rx_fcb));
1878 }
1879 
1880 static u_int
1881 tsec_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1882 {
1883 	uint32_t h, *hashtable = arg;
1884 
1885 	h = (ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 24) & 0xFF;
1886 	hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F));
1887 
1888 	return (1);
1889 }
1890 
1891 static void
1892 tsec_setup_multicast(struct tsec_softc *sc)
1893 {
1894 	uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1895 	if_t ifp = sc->tsec_ifp;
1896 	int i;
1897 
1898 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1899 
1900 	if (if_getflags(ifp) & IFF_ALLMULTI) {
1901 		for (i = 0; i < 8; i++)
1902 			TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF);
1903 
1904 		return;
1905 	}
1906 
1907 	if_foreach_llmaddr(ifp, tsec_hash_maddr, &hashtable);
1908 
1909 	for (i = 0; i < 8; i++)
1910 		TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]);
1911 }
1912 
1913 static int
1914 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu)
1915 {
1916 
1917 	mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1918 
1919 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1920 
1921 	if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) {
1922 		TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu);
1923 		return (mtu);
1924 	}
1925 
1926 	return (0);
1927 }
1928