xref: /freebsd/sys/dev/uart/uart_core.c (revision 315ee00f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2003 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/conf.h>
34 #include <sys/cons.h>
35 #include <sys/fcntl.h>
36 #include <sys/interrupt.h>
37 #include <sys/kdb.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/queue.h>
41 #include <sys/reboot.h>
42 #include <sys/sysctl.h>
43 #include <machine/bus.h>
44 #include <sys/rman.h>
45 #include <machine/resource.h>
46 #include <machine/stdarg.h>
47 
48 #include <dev/uart/uart.h>
49 #include <dev/uart/uart_bus.h>
50 #include <dev/uart/uart_cpu.h>
51 #include <dev/uart/uart_ppstypes.h>
52 
53 #include "uart_if.h"
54 
55 const char uart_driver_name[] = "uart";
56 
57 SLIST_HEAD(uart_devinfo_list, uart_devinfo) uart_sysdevs =
58     SLIST_HEAD_INITIALIZER(uart_sysdevs);
59 
60 static MALLOC_DEFINE(M_UART, "UART", "UART driver");
61 
62 #ifndef	UART_POLL_FREQ
63 #define	UART_POLL_FREQ		50
64 #endif
65 static int uart_poll_freq = UART_POLL_FREQ;
66 SYSCTL_INT(_debug, OID_AUTO, uart_poll_freq, CTLFLAG_RDTUN, &uart_poll_freq,
67     0, "UART poll frequency");
68 
69 static int uart_force_poll;
70 SYSCTL_INT(_debug, OID_AUTO, uart_force_poll, CTLFLAG_RDTUN, &uart_force_poll,
71     0, "Force UART polling");
72 
73 static inline int
74 uart_pps_mode_valid(int pps_mode)
75 {
76 	int opt;
77 
78 	switch(pps_mode & UART_PPS_SIGNAL_MASK) {
79 	case UART_PPS_DISABLED:
80 	case UART_PPS_CTS:
81 	case UART_PPS_DCD:
82 		break;
83 	default:
84 		return (false);
85 	}
86 
87 	opt = pps_mode & UART_PPS_OPTION_MASK;
88 	if ((opt & ~(UART_PPS_INVERT_PULSE | UART_PPS_NARROW_PULSE)) != 0)
89 		return (false);
90 
91 	return (true);
92 }
93 
94 static void
95 uart_pps_print_mode(struct uart_softc *sc)
96 {
97 
98 	device_printf(sc->sc_dev, "PPS capture mode: ");
99 	switch(sc->sc_pps_mode & UART_PPS_SIGNAL_MASK) {
100 	case UART_PPS_DISABLED:
101 		printf("disabled");
102 		break;
103 	case UART_PPS_CTS:
104 		printf("CTS");
105 		break;
106 	case UART_PPS_DCD:
107 		printf("DCD");
108 		break;
109 	default:
110 		printf("invalid");
111 		break;
112 	}
113 	if (sc->sc_pps_mode & UART_PPS_INVERT_PULSE)
114 		printf("-Inverted");
115 	if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE)
116 		printf("-NarrowPulse");
117 	printf("\n");
118 }
119 
120 static int
121 uart_pps_mode_sysctl(SYSCTL_HANDLER_ARGS)
122 {
123 	struct uart_softc *sc;
124 	int err, tmp;
125 
126 	sc = arg1;
127 	tmp = sc->sc_pps_mode;
128 	err = sysctl_handle_int(oidp, &tmp, 0, req);
129 	if (err != 0 || req->newptr == NULL)
130 		return (err);
131 	if (!uart_pps_mode_valid(tmp))
132 		return (EINVAL);
133 	sc->sc_pps_mode = tmp;
134 	return(0);
135 }
136 
137 static void
138 uart_pps_process(struct uart_softc *sc, int ser_sig)
139 {
140 	sbintime_t now;
141 	int is_assert, pps_sig;
142 
143 	/* Which signal is configured as PPS?  Early out if none. */
144 	switch(sc->sc_pps_mode & UART_PPS_SIGNAL_MASK) {
145 	case UART_PPS_CTS:
146 		pps_sig = SER_CTS;
147 		break;
148 	case UART_PPS_DCD:
149 		pps_sig = SER_DCD;
150 		break;
151 	default:
152 		return;
153 	}
154 
155 	/* Early out if there is no change in the signal configured as PPS. */
156 	if ((ser_sig & SER_DELTA(pps_sig)) == 0)
157 		return;
158 
159 	/*
160 	 * In narrow-pulse mode we need to synthesize both capture and clear
161 	 * events from a single "delta occurred" indication from the uart
162 	 * hardware because the pulse width is too narrow to reliably detect
163 	 * both edges.  However, when the pulse width is close to our interrupt
164 	 * processing latency we might intermittantly catch both edges.  To
165 	 * guard against generating spurious events when that happens, we use a
166 	 * separate timer to ensure at least half a second elapses before we
167 	 * generate another event.
168 	 */
169 	pps_capture(&sc->sc_pps);
170 	if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
171 		now = getsbinuptime();
172 		if (now > sc->sc_pps_captime + 500 * SBT_1MS) {
173 			sc->sc_pps_captime = now;
174 			pps_event(&sc->sc_pps, PPS_CAPTUREASSERT);
175 			pps_event(&sc->sc_pps, PPS_CAPTURECLEAR);
176 		}
177 	} else  {
178 		is_assert = ser_sig & pps_sig;
179 		if (sc->sc_pps_mode & UART_PPS_INVERT_PULSE)
180 			is_assert = !is_assert;
181 		pps_event(&sc->sc_pps, is_assert ? PPS_CAPTUREASSERT :
182 		    PPS_CAPTURECLEAR);
183 	}
184 }
185 
186 static void
187 uart_pps_init(struct uart_softc *sc)
188 {
189 	struct sysctl_ctx_list *ctx;
190 	struct sysctl_oid *tree;
191 
192 	ctx = device_get_sysctl_ctx(sc->sc_dev);
193 	tree = device_get_sysctl_tree(sc->sc_dev);
194 
195 	/*
196 	 * The historical default for pps capture mode is either DCD or CTS,
197 	 * depending on the UART_PPS_ON_CTS kernel option.  Start with that,
198 	 * then try to fetch the tunable that overrides the mode for all uart
199 	 * devices, then try to fetch the sysctl-tunable that overrides the mode
200 	 * for one specific device.
201 	 */
202 #ifdef UART_PPS_ON_CTS
203 	sc->sc_pps_mode = UART_PPS_CTS;
204 #else
205 	sc->sc_pps_mode = UART_PPS_DCD;
206 #endif
207 	TUNABLE_INT_FETCH("hw.uart.pps_mode", &sc->sc_pps_mode);
208 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "pps_mode",
209 	    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, sc, 0,
210 	    uart_pps_mode_sysctl, "I", "pulse mode: 0/1/2=disabled/CTS/DCD; "
211 	    "add 0x10 to invert, 0x20 for narrow pulse");
212 
213 	if (!uart_pps_mode_valid(sc->sc_pps_mode)) {
214 		device_printf(sc->sc_dev,
215 		    "Invalid pps_mode 0x%02x configured; disabling PPS capture\n",
216 		    sc->sc_pps_mode);
217 		sc->sc_pps_mode = UART_PPS_DISABLED;
218 	} else if (bootverbose) {
219 		uart_pps_print_mode(sc);
220 	}
221 
222 	sc->sc_pps.ppscap = PPS_CAPTUREBOTH;
223 	sc->sc_pps.driver_mtx = uart_tty_getlock(sc);
224 	sc->sc_pps.driver_abi = PPS_ABI_VERSION;
225 	pps_init_abi(&sc->sc_pps);
226 }
227 
228 void
229 uart_add_sysdev(struct uart_devinfo *di)
230 {
231 	SLIST_INSERT_HEAD(&uart_sysdevs, di, next);
232 }
233 
234 const char *
235 uart_getname(struct uart_class *uc)
236 {
237 	return ((uc != NULL) ? uc->name : NULL);
238 }
239 
240 struct uart_ops *
241 uart_getops(struct uart_class *uc)
242 {
243 	return ((uc != NULL) ? uc->uc_ops : NULL);
244 }
245 
246 int
247 uart_getrange(struct uart_class *uc)
248 {
249 	return ((uc != NULL) ? uc->uc_range : 0);
250 }
251 
252 u_int
253 uart_getregshift(struct uart_class *uc)
254 {
255 	return ((uc != NULL) ? uc->uc_rshift : 0);
256 }
257 
258 u_int
259 uart_getregiowidth(struct uart_class *uc)
260 {
261 	return ((uc != NULL) ? uc->uc_riowidth : 0);
262 }
263 
264 /*
265  * Schedule a soft interrupt. We do this on the 0 to !0 transition
266  * of the TTY pending interrupt status.
267  */
268 void
269 uart_sched_softih(struct uart_softc *sc, uint32_t ipend)
270 {
271 	uint32_t new, old;
272 
273 	do {
274 		old = sc->sc_ttypend;
275 		new = old | ipend;
276 	} while (!atomic_cmpset_32(&sc->sc_ttypend, old, new));
277 
278 	if ((old & SER_INT_MASK) == 0)
279 		swi_sched(sc->sc_softih, 0);
280 }
281 
282 /*
283  * A break condition has been detected. We treat the break condition as
284  * a special case that should not happen during normal operation. When
285  * the break condition is to be passed to higher levels in the form of
286  * a NUL character, we really want the break to be in the right place in
287  * the input stream. The overhead to achieve that is not in relation to
288  * the exceptional nature of the break condition, so we permit ourselves
289  * to be sloppy.
290  */
291 static __inline int
292 uart_intr_break(void *arg)
293 {
294 	struct uart_softc *sc = arg;
295 
296 #if defined(KDB)
297 	if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
298 		if (kdb_break())
299 			return (0);
300 	}
301 #endif
302 	if (sc->sc_opened)
303 		uart_sched_softih(sc, SER_INT_BREAK);
304 	return (0);
305 }
306 
307 /*
308  * Handle a receiver overrun situation. We lost at least 1 byte in the
309  * input stream and it's our job to contain the situation. We grab as
310  * much of the data we can, but otherwise flush the receiver FIFO to
311  * create some breathing room. The net effect is that we avoid the
312  * overrun condition to happen for the next X characters, where X is
313  * related to the FIFO size at the cost of losing data right away.
314  * So, instead of having multiple overrun interrupts in close proximity
315  * to each other and possibly pessimizing UART interrupt latency for
316  * other UARTs in a multiport configuration, we create a longer segment
317  * of missing characters by freeing up the FIFO.
318  * Each overrun condition is marked in the input buffer by a token. The
319  * token represents the loss of at least one, but possible more bytes in
320  * the input stream.
321  */
322 static __inline int
323 uart_intr_overrun(void *arg)
324 {
325 	struct uart_softc *sc = arg;
326 
327 	if (sc->sc_opened) {
328 		UART_RECEIVE(sc);
329 		if (uart_rx_put(sc, UART_STAT_OVERRUN))
330 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
331 		uart_sched_softih(sc, SER_INT_RXREADY);
332 	}
333 	sc->sc_rxoverruns++;
334 	UART_FLUSH(sc, UART_FLUSH_RECEIVER);
335 	return (0);
336 }
337 
338 /*
339  * Received data ready.
340  */
341 static __inline int
342 uart_intr_rxready(void *arg)
343 {
344 	struct uart_softc *sc = arg;
345 #if defined(KDB)
346 	int rxp;
347 
348 	rxp = sc->sc_rxput;
349 #endif
350 	UART_RECEIVE(sc);
351 #if defined(KDB)
352 	if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
353 		while (rxp != sc->sc_rxput) {
354 			kdb_alt_break(sc->sc_rxbuf[rxp++], &sc->sc_altbrk);
355 			if (rxp == sc->sc_rxbufsz)
356 				rxp = 0;
357 		}
358 	}
359 #endif
360 	if (sc->sc_opened)
361 		uart_sched_softih(sc, SER_INT_RXREADY);
362 	else
363 		sc->sc_rxput = sc->sc_rxget;	/* Ignore received data. */
364 	return (1);
365 }
366 
367 /*
368  * Line or modem status change (OOB signalling).
369  * We pass the signals to the software interrupt handler for further
370  * processing. Note that we merge the delta bits, but set the state
371  * bits. This is to avoid losing state transitions due to having more
372  * than 1 hardware interrupt between software interrupts.
373  */
374 static __inline int
375 uart_intr_sigchg(void *arg)
376 {
377 	struct uart_softc *sc = arg;
378 	int new, old, sig;
379 
380 	sig = UART_GETSIG(sc);
381 
382 	/*
383 	 * Time pulse counting support, invoked whenever the PPS parameters are
384 	 * currently set to capture either edge of the signal.
385 	 */
386 	if (sc->sc_pps.ppsparam.mode & PPS_CAPTUREBOTH) {
387 		uart_pps_process(sc, sig);
388 	}
389 
390 	/*
391 	 * Keep track of signal changes, even when the device is not
392 	 * opened. This allows us to inform upper layers about a
393 	 * possible loss of DCD and thus the existence of a (possibly)
394 	 * different connection when we have DCD back, during the time
395 	 * that the device was closed.
396 	 */
397 	do {
398 		old = sc->sc_ttypend;
399 		new = old & ~SER_MASK_STATE;
400 		new |= sig & SER_INT_SIGMASK;
401 	} while (!atomic_cmpset_32(&sc->sc_ttypend, old, new));
402 
403 	if (sc->sc_opened)
404 		uart_sched_softih(sc, SER_INT_SIGCHG);
405 	return (1);
406 }
407 
408 /*
409  * The transmitter can accept more data.
410  */
411 static __inline int
412 uart_intr_txidle(void *arg)
413 {
414 	struct uart_softc *sc = arg;
415 
416 	if (sc->sc_txbusy) {
417 		sc->sc_txbusy = 0;
418 		uart_sched_softih(sc, SER_INT_TXIDLE);
419 	}
420 	return (0);
421 }
422 
423 static int
424 uart_intr(void *arg)
425 {
426 	struct uart_softc *sc = arg;
427 	int cnt, ipend, testintr;
428 
429 	if (sc->sc_leaving)
430 		return (FILTER_STRAY);
431 
432 	cnt = 0;
433 	testintr = sc->sc_testintr;
434 	while ((!testintr || cnt < 20) && (ipend = UART_IPEND(sc)) != 0) {
435 		cnt++;
436 		if (ipend & SER_INT_OVERRUN)
437 			uart_intr_overrun(sc);
438 		if (ipend & SER_INT_BREAK)
439 			uart_intr_break(sc);
440 		if (ipend & SER_INT_RXREADY)
441 			uart_intr_rxready(sc);
442 		if (ipend & SER_INT_SIGCHG)
443 			uart_intr_sigchg(sc);
444 		if (ipend & SER_INT_TXIDLE)
445 			uart_intr_txidle(sc);
446 	}
447 
448 	if (sc->sc_polled) {
449 		callout_reset(&sc->sc_timer, hz / uart_poll_freq,
450 		    (callout_func_t *)uart_intr, sc);
451 	}
452 
453 	return ((cnt == 0) ? FILTER_STRAY :
454 	    ((testintr && cnt == 20) ? FILTER_SCHEDULE_THREAD :
455 	    FILTER_HANDLED));
456 }
457 
458 serdev_intr_t *
459 uart_bus_ihand(device_t dev, int ipend)
460 {
461 
462 	switch (ipend) {
463 	case SER_INT_BREAK:
464 		return (uart_intr_break);
465 	case SER_INT_OVERRUN:
466 		return (uart_intr_overrun);
467 	case SER_INT_RXREADY:
468 		return (uart_intr_rxready);
469 	case SER_INT_SIGCHG:
470 		return (uart_intr_sigchg);
471 	case SER_INT_TXIDLE:
472 		return (uart_intr_txidle);
473 	}
474 	return (NULL);
475 }
476 
477 int
478 uart_bus_ipend(device_t dev)
479 {
480 	struct uart_softc *sc;
481 
482 	sc = device_get_softc(dev);
483 	return (UART_IPEND(sc));
484 }
485 
486 int
487 uart_bus_sysdev(device_t dev)
488 {
489 	struct uart_softc *sc;
490 
491 	sc = device_get_softc(dev);
492 	return ((sc->sc_sysdev != NULL) ? 1 : 0);
493 }
494 
495 int
496 uart_bus_probe(device_t dev, int regshft, int regiowidth, int rclk, int rid, int chan, int quirks)
497 {
498 	struct uart_softc *sc;
499 	struct uart_devinfo *sysdev;
500 	int error;
501 
502 	sc = device_get_softc(dev);
503 
504 	/*
505 	 * All uart_class references are weak. Check that the needed
506 	 * class has been compiled-in. Fail if not.
507 	 */
508 	if (sc->sc_class == NULL)
509 		return (ENXIO);
510 
511 	/*
512 	 * Initialize the instance. Note that the instance (=softc) does
513 	 * not necessarily match the hardware specific softc. We can't do
514 	 * anything about it now, because we may not attach to the device.
515 	 * Hardware drivers cannot use any of the class specific fields
516 	 * while probing.
517 	 */
518 	kobj_init((kobj_t)sc, (kobj_class_t)sc->sc_class);
519 	sc->sc_dev = dev;
520 	if (device_get_desc(dev) == NULL)
521 		device_set_desc(dev, uart_getname(sc->sc_class));
522 
523 	/*
524 	 * Allocate the register resource. We assume that all UARTs have
525 	 * a single register window in either I/O port space or memory
526 	 * mapped I/O space. Any UART that needs multiple windows will
527 	 * consequently not be supported by this driver as-is. We try I/O
528 	 * port space first because that's the common case.
529 	 */
530 	sc->sc_rrid = rid;
531 	sc->sc_rtype = SYS_RES_IOPORT;
532 	sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid,
533 	    RF_ACTIVE);
534 	if (sc->sc_rres == NULL) {
535 		sc->sc_rrid = rid;
536 		sc->sc_rtype = SYS_RES_MEMORY;
537 		sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype,
538 		    &sc->sc_rrid, RF_ACTIVE);
539 		if (sc->sc_rres == NULL)
540 			return (ENXIO);
541 	}
542 
543 	/*
544 	 * Fill in the bus access structure and compare this device with
545 	 * a possible console device and/or a debug port. We set the flags
546 	 * in the softc so that the hardware dependent probe can adjust
547 	 * accordingly. In general, you don't want to permanently disrupt
548 	 * console I/O.
549 	 */
550 	sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
551 	sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
552 	sc->sc_bas.chan = chan;
553 	sc->sc_bas.regshft = regshft;
554 	sc->sc_bas.regiowidth = regiowidth;
555 	sc->sc_bas.rclk = (rclk == 0) ? sc->sc_class->uc_rclk : rclk;
556 	sc->sc_bas.busy_detect = !!(quirks & UART_F_BUSY_DETECT);
557 
558 	SLIST_FOREACH(sysdev, &uart_sysdevs, next) {
559 		if (chan == sysdev->bas.chan &&
560 		    uart_cpu_eqres(&sc->sc_bas, &sysdev->bas)) {
561 			/* XXX check if ops matches class. */
562 			sc->sc_sysdev = sysdev;
563 			sysdev->bas.rclk = sc->sc_bas.rclk;
564 		}
565 	}
566 
567 	error = UART_PROBE(sc);
568 	bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
569 	return ((error) ? error : BUS_PROBE_DEFAULT);
570 }
571 
572 int
573 uart_bus_attach(device_t dev)
574 {
575 	struct uart_softc *sc, *sc0;
576 	const char *sep;
577 	int error, filt;
578 
579 	/*
580 	 * The sc_class field defines the type of UART we're going to work
581 	 * with and thus the size of the softc. Replace the generic softc
582 	 * with one that matches the UART now that we're certain we handle
583 	 * the device.
584 	 */
585 	sc0 = device_get_softc(dev);
586 	if (sc0->sc_class->size > device_get_driver(dev)->size) {
587 		sc = malloc(sc0->sc_class->size, M_UART, M_WAITOK|M_ZERO);
588 		bcopy(sc0, sc, sizeof(*sc));
589 		device_set_softc(dev, sc);
590 	} else
591 		sc = sc0;
592 
593 	/*
594 	 * Now that we know the softc for this device, connect the back
595 	 * pointer from the sysdev for this device, if any
596 	 */
597 	if (sc->sc_sysdev != NULL)
598 		sc->sc_sysdev->sc = sc;
599 
600 	/*
601 	 * Protect ourselves against interrupts while we're not completely
602 	 * finished attaching and initializing. We don't expect interrupts
603 	 * until after UART_ATTACH(), though.
604 	 */
605 	sc->sc_leaving = 1;
606 
607 	mtx_init(&sc->sc_hwmtx_s, "uart_hwmtx", NULL, MTX_SPIN);
608 	if (sc->sc_hwmtx == NULL)
609 		sc->sc_hwmtx = &sc->sc_hwmtx_s;
610 
611 	/*
612 	 * Re-allocate. We expect that the softc contains the information
613 	 * collected by uart_bus_probe() intact.
614 	 */
615 	sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid,
616 	    RF_ACTIVE);
617 	if (sc->sc_rres == NULL) {
618 		mtx_destroy(&sc->sc_hwmtx_s);
619 		return (ENXIO);
620 	}
621 	sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
622 	sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
623 
624 	/*
625 	 * Ensure there is room for at least three full FIFOs of data in the
626 	 * receive buffer (handles the case of low-level drivers with huge
627 	 * FIFOs), and also ensure that there is no less than the historical
628 	 * size of 384 bytes (handles the typical small-FIFO case).
629 	 */
630 	sc->sc_rxbufsz = MAX(384, sc->sc_rxfifosz * 3);
631 	sc->sc_rxbuf = malloc(sc->sc_rxbufsz * sizeof(*sc->sc_rxbuf),
632 	    M_UART, M_WAITOK);
633 	sc->sc_txbuf = malloc(sc->sc_txfifosz * sizeof(*sc->sc_txbuf),
634 	    M_UART, M_WAITOK);
635 
636 	error = UART_ATTACH(sc);
637 	if (error)
638 		goto fail;
639 
640 	if (sc->sc_hwiflow || sc->sc_hwoflow) {
641 		sep = "";
642 		device_print_prettyname(dev);
643 		if (sc->sc_hwiflow) {
644 			printf("%sRTS iflow", sep);
645 			sep = ", ";
646 		}
647 		if (sc->sc_hwoflow) {
648 			printf("%sCTS oflow", sep);
649 			sep = ", ";
650 		}
651 		printf("\n");
652 	}
653 
654 	if (sc->sc_sysdev != NULL) {
655 		if (sc->sc_sysdev->baudrate == 0) {
656 			if (UART_IOCTL(sc, UART_IOCTL_BAUD,
657 			    (intptr_t)&sc->sc_sysdev->baudrate) != 0)
658 				sc->sc_sysdev->baudrate = -1;
659 		}
660 		switch (sc->sc_sysdev->type) {
661 		case UART_DEV_CONSOLE:
662 			device_printf(dev, "console");
663 			break;
664 		case UART_DEV_DBGPORT:
665 			device_printf(dev, "debug port");
666 			break;
667 		case UART_DEV_KEYBOARD:
668 			device_printf(dev, "keyboard");
669 			break;
670 		default:
671 			device_printf(dev, "unknown system device");
672 			break;
673 		}
674 		printf(" (%d,%c,%d,%d)\n", sc->sc_sysdev->baudrate,
675 		    "noems"[sc->sc_sysdev->parity], sc->sc_sysdev->databits,
676 		    sc->sc_sysdev->stopbits);
677 	}
678 
679 	sc->sc_leaving = 0;
680 	sc->sc_testintr = 1;
681 	filt = uart_intr(sc);
682 	sc->sc_testintr = 0;
683 
684 	/*
685 	 * Don't use interrupts if we couldn't clear any pending interrupt
686 	 * conditions. We may have broken H/W and polling is probably the
687 	 * safest thing to do.
688 	 */
689 	if (filt != FILTER_SCHEDULE_THREAD && !uart_force_poll) {
690 		sc->sc_ires = bus_alloc_resource_any(dev, SYS_RES_IRQ,
691 		    &sc->sc_irid, RF_ACTIVE | RF_SHAREABLE);
692 	}
693 	if (sc->sc_ires != NULL) {
694 		error = bus_setup_intr(dev, sc->sc_ires, INTR_TYPE_TTY,
695 		    uart_intr, NULL, sc, &sc->sc_icookie);
696 		sc->sc_fastintr = (error == 0) ? 1 : 0;
697 
698 		if (!sc->sc_fastintr)
699 			error = bus_setup_intr(dev, sc->sc_ires,
700 			    INTR_TYPE_TTY | INTR_MPSAFE, NULL,
701 			    (driver_intr_t *)uart_intr, sc, &sc->sc_icookie);
702 
703 		if (error) {
704 			device_printf(dev, "could not activate interrupt\n");
705 			bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
706 			    sc->sc_ires);
707 			sc->sc_ires = NULL;
708 		}
709 	}
710 	if (sc->sc_ires == NULL) {
711 		/* No interrupt resource. Force polled mode. */
712 		sc->sc_polled = 1;
713 		callout_init(&sc->sc_timer, 1);
714 		callout_reset(&sc->sc_timer, hz / uart_poll_freq,
715 		    (callout_func_t *)uart_intr, sc);
716 	}
717 
718 	if (bootverbose && (sc->sc_fastintr || sc->sc_polled)) {
719 		sep = "";
720 		device_print_prettyname(dev);
721 		if (sc->sc_fastintr) {
722 			printf("%sfast interrupt", sep);
723 			sep = ", ";
724 		}
725 		if (sc->sc_polled) {
726 			printf("%spolled mode (%dHz)", sep, uart_poll_freq);
727 			sep = ", ";
728 		}
729 		printf("\n");
730 	}
731 
732 	if (sc->sc_sysdev != NULL && sc->sc_sysdev->attach != NULL) {
733 		if ((error = sc->sc_sysdev->attach(sc)) != 0)
734 			goto fail;
735 	} else {
736 		if ((error = uart_tty_attach(sc)) != 0)
737 			goto fail;
738 		uart_pps_init(sc);
739 	}
740 
741 	if (sc->sc_sysdev != NULL)
742 		sc->sc_sysdev->hwmtx = sc->sc_hwmtx;
743 
744 	if (sc->sc_rxfifosz > 1)
745 		SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
746 		    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
747 		    "rx_overruns", CTLFLAG_RD, &sc->sc_rxoverruns, 0,
748 		    "Receive overruns");
749 
750 	return (0);
751 
752  fail:
753 	free(sc->sc_txbuf, M_UART);
754 	free(sc->sc_rxbuf, M_UART);
755 
756 	if (sc->sc_ires != NULL) {
757 		bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie);
758 		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
759 		    sc->sc_ires);
760 	}
761 	bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
762 
763 	mtx_destroy(&sc->sc_hwmtx_s);
764 
765 	return (error);
766 }
767 
768 int
769 uart_bus_detach(device_t dev)
770 {
771 	struct uart_softc *sc;
772 
773 	sc = device_get_softc(dev);
774 
775 	sc->sc_leaving = 1;
776 
777 	if (sc->sc_sysdev != NULL)
778 		sc->sc_sysdev->hwmtx = NULL;
779 
780 	UART_DETACH(sc);
781 
782 	if (sc->sc_sysdev != NULL && sc->sc_sysdev->detach != NULL)
783 		(*sc->sc_sysdev->detach)(sc);
784 	else
785 		uart_tty_detach(sc);
786 
787 	free(sc->sc_txbuf, M_UART);
788 	free(sc->sc_rxbuf, M_UART);
789 
790 	if (sc->sc_ires != NULL) {
791 		bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie);
792 		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
793 		    sc->sc_ires);
794 	}
795 	bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
796 
797 	mtx_destroy(&sc->sc_hwmtx_s);
798 
799 	if (sc->sc_class->size > device_get_driver(dev)->size) {
800 		device_set_softc(dev, NULL);
801 		free(sc, M_UART);
802 	}
803 
804 	return (0);
805 }
806 
807 int
808 uart_bus_resume(device_t dev)
809 {
810 	struct uart_softc *sc;
811 
812 	sc = device_get_softc(dev);
813 	return (UART_ATTACH(sc));
814 }
815 
816 void
817 uart_grab(struct uart_devinfo *di)
818 {
819 
820 	if (di->sc)
821 		UART_GRAB(di->sc);
822 }
823 
824 void
825 uart_ungrab(struct uart_devinfo *di)
826 {
827 
828 	if (di->sc)
829 		UART_UNGRAB(di->sc);
830 }
831