xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision 10ff414c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2003 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "opt_acpi.h"
30 #include "opt_platform.h"
31 #include "opt_uart.h"
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/conf.h>
40 #include <sys/kernel.h>
41 #include <sys/sysctl.h>
42 #include <machine/bus.h>
43 
44 #ifdef FDT
45 #include <dev/fdt/fdt_common.h>
46 #include <dev/ofw/ofw_bus.h>
47 #include <dev/ofw/ofw_bus_subr.h>
48 #endif
49 
50 #include <dev/uart/uart.h>
51 #include <dev/uart/uart_cpu.h>
52 #ifdef FDT
53 #include <dev/uart/uart_cpu_fdt.h>
54 #endif
55 #include <dev/uart/uart_bus.h>
56 #include <dev/uart/uart_dev_ns8250.h>
57 #include <dev/uart/uart_ppstypes.h>
58 #ifdef DEV_ACPI
59 #include <dev/uart/uart_cpu_acpi.h>
60 #include <contrib/dev/acpica/include/acpi.h>
61 #endif
62 
63 #include <dev/ic/ns16550.h>
64 
65 #include "uart_if.h"
66 
67 #define	DEFAULT_RCLK	1843200
68 
69 /*
70  * Set the default baudrate tolerance to 3.0%.
71  *
72  * Some embedded boards have odd reference clocks (eg 25MHz)
73  * and we need to handle higher variances in the target baud rate.
74  */
75 #ifndef	UART_DEV_TOLERANCE_PCT
76 #define	UART_DEV_TOLERANCE_PCT	30
77 #endif	/* UART_DEV_TOLERANCE_PCT */
78 
79 static int broken_txfifo = 0;
80 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
81 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
82 
83 /*
84  * Clear pending interrupts. THRE is cleared by reading IIR. Data
85  * that may have been received gets lost here.
86  */
87 static void
88 ns8250_clrint(struct uart_bas *bas)
89 {
90 	uint8_t iir, lsr;
91 
92 	iir = uart_getreg(bas, REG_IIR);
93 	while ((iir & IIR_NOPEND) == 0) {
94 		iir &= IIR_IMASK;
95 		if (iir == IIR_RLS) {
96 			lsr = uart_getreg(bas, REG_LSR);
97 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
98 				(void)uart_getreg(bas, REG_DATA);
99 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
100 			(void)uart_getreg(bas, REG_DATA);
101 		else if (iir == IIR_MLSC)
102 			(void)uart_getreg(bas, REG_MSR);
103 		uart_barrier(bas);
104 		iir = uart_getreg(bas, REG_IIR);
105 	}
106 }
107 
108 static int
109 ns8250_delay(struct uart_bas *bas)
110 {
111 	int divisor;
112 	u_char lcr;
113 
114 	lcr = uart_getreg(bas, REG_LCR);
115 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
116 	uart_barrier(bas);
117 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
118 	uart_barrier(bas);
119 	uart_setreg(bas, REG_LCR, lcr);
120 	uart_barrier(bas);
121 
122 	/* 1/10th the time to transmit 1 character (estimate). */
123 	if (divisor <= 134)
124 		return (16000000 * divisor / bas->rclk);
125 	return (16000 * divisor / (bas->rclk / 1000));
126 }
127 
128 static int
129 ns8250_divisor(int rclk, int baudrate)
130 {
131 	int actual_baud, divisor;
132 	int error;
133 
134 	if (baudrate == 0)
135 		return (0);
136 
137 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
138 	if (divisor == 0 || divisor >= 65536)
139 		return (0);
140 	actual_baud = rclk / (divisor << 4);
141 
142 	/* 10 times error in percent: */
143 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) / 2;
144 
145 	/* enforce maximum error tolerance: */
146 	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
147 		return (0);
148 
149 	return (divisor);
150 }
151 
152 static int
153 ns8250_drain(struct uart_bas *bas, int what)
154 {
155 	int delay, limit;
156 
157 	delay = ns8250_delay(bas);
158 
159 	if (what & UART_DRAIN_TRANSMITTER) {
160 		/*
161 		 * Pick an arbitrary high limit to avoid getting stuck in
162 		 * an infinite loop when the hardware is broken. Make the
163 		 * limit high enough to handle large FIFOs.
164 		 */
165 		limit = 10*1024;
166 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
167 			DELAY(delay);
168 		if (limit == 0) {
169 			/* printf("ns8250: transmitter appears stuck... "); */
170 			return (EIO);
171 		}
172 	}
173 
174 	if (what & UART_DRAIN_RECEIVER) {
175 		/*
176 		 * Pick an arbitrary high limit to avoid getting stuck in
177 		 * an infinite loop when the hardware is broken. Make the
178 		 * limit high enough to handle large FIFOs and integrated
179 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
180 		 * management board that tend to get a lot of data send
181 		 * to it when the UART is first activated.
182 		 */
183 		limit=10*4096;
184 		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
185 			(void)uart_getreg(bas, REG_DATA);
186 			uart_barrier(bas);
187 			DELAY(delay << 2);
188 		}
189 		if (limit == 0) {
190 			/* printf("ns8250: receiver appears broken... "); */
191 			return (EIO);
192 		}
193 	}
194 
195 	return (0);
196 }
197 
198 /*
199  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
200  * drained. WARNING: this function clobbers the FIFO setting!
201  */
202 static void
203 ns8250_flush(struct uart_bas *bas, int what)
204 {
205 	uint8_t fcr;
206 
207 	fcr = FCR_ENABLE;
208 #ifdef CPU_XBURST
209 	fcr |= FCR_UART_ON;
210 #endif
211 	if (what & UART_FLUSH_TRANSMITTER)
212 		fcr |= FCR_XMT_RST;
213 	if (what & UART_FLUSH_RECEIVER)
214 		fcr |= FCR_RCV_RST;
215 	uart_setreg(bas, REG_FCR, fcr);
216 	uart_barrier(bas);
217 }
218 
219 static int
220 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
221     int parity)
222 {
223 	int divisor;
224 	uint8_t lcr;
225 
226 	lcr = 0;
227 	if (databits >= 8)
228 		lcr |= LCR_8BITS;
229 	else if (databits == 7)
230 		lcr |= LCR_7BITS;
231 	else if (databits == 6)
232 		lcr |= LCR_6BITS;
233 	else
234 		lcr |= LCR_5BITS;
235 	if (stopbits > 1)
236 		lcr |= LCR_STOPB;
237 	lcr |= parity << 3;
238 
239 	/* Set baudrate. */
240 	if (baudrate > 0) {
241 		divisor = ns8250_divisor(bas->rclk, baudrate);
242 		if (divisor == 0)
243 			return (EINVAL);
244 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
245 		uart_barrier(bas);
246 		uart_setreg(bas, REG_DLL, divisor & 0xff);
247 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
248 		uart_barrier(bas);
249 	}
250 
251 	/* Set LCR and clear DLAB. */
252 	uart_setreg(bas, REG_LCR, lcr);
253 	uart_barrier(bas);
254 	return (0);
255 }
256 
257 /*
258  * Low-level UART interface.
259  */
260 static int ns8250_probe(struct uart_bas *bas);
261 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
262 static void ns8250_term(struct uart_bas *bas);
263 static void ns8250_putc(struct uart_bas *bas, int);
264 static int ns8250_rxready(struct uart_bas *bas);
265 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
266 
267 struct uart_ops uart_ns8250_ops = {
268 	.probe = ns8250_probe,
269 	.init = ns8250_init,
270 	.term = ns8250_term,
271 	.putc = ns8250_putc,
272 	.rxready = ns8250_rxready,
273 	.getc = ns8250_getc,
274 };
275 
276 static int
277 ns8250_probe(struct uart_bas *bas)
278 {
279 	u_char val;
280 
281 #ifdef CPU_XBURST
282 	uart_setreg(bas, REG_FCR, FCR_UART_ON);
283 #endif
284 
285 	/* Check known 0 bits that don't depend on DLAB. */
286 	val = uart_getreg(bas, REG_IIR);
287 	if (val & 0x30)
288 		return (ENXIO);
289 	/*
290 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
291 	 * chip, but otherwise doesn't seem to have a function. In
292 	 * other words, uart(4) works regardless. Ignore that bit so
293 	 * the probe succeeds.
294 	 */
295 	val = uart_getreg(bas, REG_MCR);
296 	if (val & 0xa0)
297 		return (ENXIO);
298 
299 	return (0);
300 }
301 
302 static void
303 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
304     int parity)
305 {
306 	u_char ier, val;
307 
308 	if (bas->rclk == 0)
309 		bas->rclk = DEFAULT_RCLK;
310 	ns8250_param(bas, baudrate, databits, stopbits, parity);
311 
312 	/* Disable all interrupt sources. */
313 	/*
314 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
315 	 * UARTs split the receive time-out interrupt bit out separately as
316 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
317 	 */
318 	ier = uart_getreg(bas, REG_IER) & 0xe0;
319 	uart_setreg(bas, REG_IER, ier);
320 	uart_barrier(bas);
321 
322 	/* Disable the FIFO (if present). */
323 	val = 0;
324 #ifdef CPU_XBURST
325 	val |= FCR_UART_ON;
326 #endif
327 	uart_setreg(bas, REG_FCR, val);
328 	uart_barrier(bas);
329 
330 	/* Set RTS & DTR. */
331 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
332 	uart_barrier(bas);
333 
334 	ns8250_clrint(bas);
335 }
336 
337 static void
338 ns8250_term(struct uart_bas *bas)
339 {
340 
341 	/* Clear RTS & DTR. */
342 	uart_setreg(bas, REG_MCR, MCR_IE);
343 	uart_barrier(bas);
344 }
345 
346 static void
347 ns8250_putc(struct uart_bas *bas, int c)
348 {
349 	int limit;
350 
351 	limit = 250000;
352 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
353 		DELAY(4);
354 	uart_setreg(bas, REG_DATA, c);
355 	uart_barrier(bas);
356 }
357 
358 static int
359 ns8250_rxready(struct uart_bas *bas)
360 {
361 
362 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
363 }
364 
365 static int
366 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
367 {
368 	int c;
369 
370 	uart_lock(hwmtx);
371 
372 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
373 		uart_unlock(hwmtx);
374 		DELAY(4);
375 		uart_lock(hwmtx);
376 	}
377 
378 	c = uart_getreg(bas, REG_DATA);
379 
380 	uart_unlock(hwmtx);
381 
382 	return (c);
383 }
384 
385 static kobj_method_t ns8250_methods[] = {
386 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
387 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
388 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
389 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
390 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
391 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
392 	KOBJMETHOD(uart_param,		ns8250_bus_param),
393 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
394 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
395 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
396 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
397 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
398 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
399 	{ 0, 0 }
400 };
401 
402 struct uart_class uart_ns8250_class = {
403 	"ns8250",
404 	ns8250_methods,
405 	sizeof(struct ns8250_softc),
406 	.uc_ops = &uart_ns8250_ops,
407 	.uc_range = 8,
408 	.uc_rclk = DEFAULT_RCLK,
409 	.uc_rshift = 0
410 };
411 
412 /*
413  * XXX -- refactor out ACPI and FDT ifdefs
414  */
415 #ifdef DEV_ACPI
416 static struct acpi_uart_compat_data acpi_compat_data[] = {
417 	{"AMD0020",	&uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
418 	{"AMDI0020", &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
419 	{"MRVL0001", &uart_ns8250_class, ACPI_DBG2_16550_SUBSET, 2, 0, 200000000, UART_F_BUSY_DETECT, "Marvell / Synopsys Designware UART"},
420 	{"SCX0006",  &uart_ns8250_class, 0, 2, 0, 62500000, UART_F_BUSY_DETECT, "SynQuacer / Synopsys Designware UART"},
421 	{"HISI0031", &uart_ns8250_class, 0, 2, 0, 200000000, UART_F_BUSY_DETECT, "HiSilicon / Synopsys Designware UART"},
422 	{"PNP0500", &uart_ns8250_class, 0, 0, 0, 0, 0, "Standard PC COM port"},
423 	{"PNP0501", &uart_ns8250_class, 0, 0, 0, 0, 0, "16550A-compatible COM port"},
424 	{"PNP0502", &uart_ns8250_class, 0, 0, 0, 0, 0, "Multiport serial device (non-intelligent 16550)"},
425 	{"PNP0510", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
426 	{"PNP0511", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
427 	{"WACF004", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen"},
428 	{"WACF00E", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen 00e"},
429 	{"FUJ02E5", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet at FuS Lifebook T"},
430 	{NULL, 			NULL, 0, 0 , 0, 0, 0, NULL},
431 };
432 UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data);
433 #endif
434 
435 #ifdef FDT
436 static struct ofw_compat_data compat_data[] = {
437 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
438 	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
439 	{NULL,			(uintptr_t)NULL},
440 };
441 UART_FDT_CLASS_AND_DEVICE(compat_data);
442 #endif
443 
444 /* Use token-pasting to form SER_ and MSR_ named constants. */
445 #define	SER(sig)	SER_##sig
446 #define	SERD(sig)	SER_D##sig
447 #define	MSR(sig)	MSR_##sig
448 #define	MSRD(sig)	MSR_D##sig
449 
450 /*
451  * Detect signal changes using software delta detection.  The previous state of
452  * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
453  * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
454  * new state of both the signal and the delta bits.
455  */
456 #define SIGCHGSW(var, msr, sig)					\
457 	if ((msr) & MSR(sig)) {					\
458 		if ((var & SER(sig)) == 0)			\
459 			var |= SERD(sig) | SER(sig);		\
460 	} else {						\
461 		if ((var & SER(sig)) != 0)			\
462 			var = SERD(sig) | (var & ~SER(sig));	\
463 	}
464 
465 /*
466  * Detect signal changes using the hardware msr delta bits.  This is currently
467  * used only when PPS timing information is being captured using the "narrow
468  * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
469  * by time the interrupt handler is invoked.  The hardware will latch the fact
470  * that it changed in the delta bits.
471  */
472 #define SIGCHGHW(var, msr, sig)					\
473 	if ((msr) & MSRD(sig)) {				\
474 		if (((msr) & MSR(sig)) != 0)			\
475 			var |= SERD(sig) | SER(sig);		\
476 		else						\
477 			var = SERD(sig) | (var & ~SER(sig));	\
478 	}
479 
480 int
481 ns8250_bus_attach(struct uart_softc *sc)
482 {
483 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
484 	struct uart_bas *bas;
485 	unsigned int ivar;
486 #ifdef FDT
487 	phandle_t node;
488 	pcell_t cell;
489 #endif
490 
491 #ifdef FDT
492 	/* Check whether uart has a broken txfifo. */
493 	node = ofw_bus_get_node(sc->sc_dev);
494 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
495 		broken_txfifo =  cell ? 1 : 0;
496 #endif
497 
498 	bas = &sc->sc_bas;
499 
500 	ns8250->busy_detect = bas->busy_detect;
501 	ns8250->mcr = uart_getreg(bas, REG_MCR);
502 	ns8250->fcr = FCR_ENABLE;
503 #ifdef CPU_XBURST
504 	ns8250->fcr |= FCR_UART_ON;
505 #endif
506 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
507 	    &ivar)) {
508 		if (UART_FLAGS_FCR_RX_LOW(ivar))
509 			ns8250->fcr |= FCR_RX_LOW;
510 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
511 			ns8250->fcr |= FCR_RX_MEDL;
512 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
513 			ns8250->fcr |= FCR_RX_HIGH;
514 		else
515 			ns8250->fcr |= FCR_RX_MEDH;
516 	} else
517 		ns8250->fcr |= FCR_RX_MEDH;
518 
519 	/* Get IER mask */
520 	ivar = 0xf0;
521 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
522 	    &ivar);
523 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
524 
525 	/* Get IER RX interrupt bits */
526 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
527 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
528 	    &ivar);
529 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
530 
531 	uart_setreg(bas, REG_FCR, ns8250->fcr);
532 	uart_barrier(bas);
533 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
534 
535 	if (ns8250->mcr & MCR_DTR)
536 		sc->sc_hwsig |= SER_DTR;
537 	if (ns8250->mcr & MCR_RTS)
538 		sc->sc_hwsig |= SER_RTS;
539 	ns8250_bus_getsig(sc);
540 
541 	ns8250_clrint(bas);
542 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
543 	ns8250->ier |= ns8250->ier_rxbits;
544 	uart_setreg(bas, REG_IER, ns8250->ier);
545 	uart_barrier(bas);
546 
547 	/*
548 	 * Timing of the H/W access was changed with r253161 of uart_core.c
549 	 * It has been observed that an ITE IT8513E would signal a break
550 	 * condition with pretty much every character it received, unless
551 	 * it had enough time to settle between ns8250_bus_attach() and
552 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
553 	 * It's not understood why the UART chip behaves this way and it
554 	 * could very well be that the DELAY make the H/W work in the same
555 	 * accidental manner as before. More analysis is warranted, but
556 	 * at least now we fixed a known regression.
557 	 */
558 	DELAY(200);
559 	return (0);
560 }
561 
562 int
563 ns8250_bus_detach(struct uart_softc *sc)
564 {
565 	struct ns8250_softc *ns8250;
566 	struct uart_bas *bas;
567 	u_char ier;
568 
569 	ns8250 = (struct ns8250_softc *)sc;
570 	bas = &sc->sc_bas;
571 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
572 	uart_setreg(bas, REG_IER, ier);
573 	uart_barrier(bas);
574 	ns8250_clrint(bas);
575 	return (0);
576 }
577 
578 int
579 ns8250_bus_flush(struct uart_softc *sc, int what)
580 {
581 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
582 	struct uart_bas *bas;
583 	int error;
584 
585 	bas = &sc->sc_bas;
586 	uart_lock(sc->sc_hwmtx);
587 	if (sc->sc_rxfifosz > 1) {
588 		ns8250_flush(bas, what);
589 		uart_setreg(bas, REG_FCR, ns8250->fcr);
590 		uart_barrier(bas);
591 		error = 0;
592 	} else
593 		error = ns8250_drain(bas, what);
594 	uart_unlock(sc->sc_hwmtx);
595 	return (error);
596 }
597 
598 int
599 ns8250_bus_getsig(struct uart_softc *sc)
600 {
601 	uint32_t old, sig;
602 	uint8_t msr;
603 
604 	/*
605 	 * The delta bits are reputed to be broken on some hardware, so use
606 	 * software delta detection by default.  Use the hardware delta bits
607 	 * when capturing PPS pulses which are too narrow for software detection
608 	 * to see the edges.  Hardware delta for RI doesn't work like the
609 	 * others, so always use software for it.  Other threads may be changing
610 	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
611 	 * update without other changes happening.  Note that the SIGCHGxx()
612 	 * macros carefully preserve the delta bits when we have to loop several
613 	 * times and a signal transitions between iterations.
614 	 */
615 	do {
616 		old = sc->sc_hwsig;
617 		sig = old;
618 		uart_lock(sc->sc_hwmtx);
619 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
620 		uart_unlock(sc->sc_hwmtx);
621 		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
622 			SIGCHGHW(sig, msr, DSR);
623 			SIGCHGHW(sig, msr, CTS);
624 			SIGCHGHW(sig, msr, DCD);
625 		} else {
626 			SIGCHGSW(sig, msr, DSR);
627 			SIGCHGSW(sig, msr, CTS);
628 			SIGCHGSW(sig, msr, DCD);
629 		}
630 		SIGCHGSW(sig, msr, RI);
631 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
632 	return (sig);
633 }
634 
635 int
636 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
637 {
638 	struct uart_bas *bas;
639 	int baudrate, divisor, error;
640 	uint8_t efr, lcr;
641 
642 	bas = &sc->sc_bas;
643 	error = 0;
644 	uart_lock(sc->sc_hwmtx);
645 	switch (request) {
646 	case UART_IOCTL_BREAK:
647 		lcr = uart_getreg(bas, REG_LCR);
648 		if (data)
649 			lcr |= LCR_SBREAK;
650 		else
651 			lcr &= ~LCR_SBREAK;
652 		uart_setreg(bas, REG_LCR, lcr);
653 		uart_barrier(bas);
654 		break;
655 	case UART_IOCTL_IFLOW:
656 		lcr = uart_getreg(bas, REG_LCR);
657 		uart_barrier(bas);
658 		uart_setreg(bas, REG_LCR, 0xbf);
659 		uart_barrier(bas);
660 		efr = uart_getreg(bas, REG_EFR);
661 		if (data)
662 			efr |= EFR_RTS;
663 		else
664 			efr &= ~EFR_RTS;
665 		uart_setreg(bas, REG_EFR, efr);
666 		uart_barrier(bas);
667 		uart_setreg(bas, REG_LCR, lcr);
668 		uart_barrier(bas);
669 		break;
670 	case UART_IOCTL_OFLOW:
671 		lcr = uart_getreg(bas, REG_LCR);
672 		uart_barrier(bas);
673 		uart_setreg(bas, REG_LCR, 0xbf);
674 		uart_barrier(bas);
675 		efr = uart_getreg(bas, REG_EFR);
676 		if (data)
677 			efr |= EFR_CTS;
678 		else
679 			efr &= ~EFR_CTS;
680 		uart_setreg(bas, REG_EFR, efr);
681 		uart_barrier(bas);
682 		uart_setreg(bas, REG_LCR, lcr);
683 		uart_barrier(bas);
684 		break;
685 	case UART_IOCTL_BAUD:
686 		lcr = uart_getreg(bas, REG_LCR);
687 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
688 		uart_barrier(bas);
689 		divisor = uart_getreg(bas, REG_DLL) |
690 		    (uart_getreg(bas, REG_DLH) << 8);
691 		uart_barrier(bas);
692 		uart_setreg(bas, REG_LCR, lcr);
693 		uart_barrier(bas);
694 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
695 		if (baudrate > 0)
696 			*(int*)data = baudrate;
697 		else
698 			error = ENXIO;
699 		break;
700 	default:
701 		error = EINVAL;
702 		break;
703 	}
704 	uart_unlock(sc->sc_hwmtx);
705 	return (error);
706 }
707 
708 int
709 ns8250_bus_ipend(struct uart_softc *sc)
710 {
711 	struct uart_bas *bas;
712 	struct ns8250_softc *ns8250;
713 	int ipend;
714 	uint8_t iir, lsr;
715 
716 	ns8250 = (struct ns8250_softc *)sc;
717 	bas = &sc->sc_bas;
718 	uart_lock(sc->sc_hwmtx);
719 	iir = uart_getreg(bas, REG_IIR);
720 
721 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
722 		(void)uart_getreg(bas, DW_REG_USR);
723 		uart_unlock(sc->sc_hwmtx);
724 		return (0);
725 	}
726 	if (iir & IIR_NOPEND) {
727 		uart_unlock(sc->sc_hwmtx);
728 		return (0);
729 	}
730 	ipend = 0;
731 	if (iir & IIR_RXRDY) {
732 		lsr = uart_getreg(bas, REG_LSR);
733 		if (lsr & LSR_OE)
734 			ipend |= SER_INT_OVERRUN;
735 		if (lsr & LSR_BI)
736 			ipend |= SER_INT_BREAK;
737 		if (lsr & LSR_RXRDY)
738 			ipend |= SER_INT_RXREADY;
739 	} else {
740 		if (iir & IIR_TXRDY) {
741 			ipend |= SER_INT_TXIDLE;
742 			ns8250->ier &= ~IER_ETXRDY;
743 			uart_setreg(bas, REG_IER, ns8250->ier);
744 			uart_barrier(bas);
745 		} else
746 			ipend |= SER_INT_SIGCHG;
747 	}
748 	if (ipend == 0)
749 		ns8250_clrint(bas);
750 	uart_unlock(sc->sc_hwmtx);
751 	return (ipend);
752 }
753 
754 int
755 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
756     int stopbits, int parity)
757 {
758 	struct ns8250_softc *ns8250;
759 	struct uart_bas *bas;
760 	int error, limit;
761 
762 	ns8250 = (struct ns8250_softc*)sc;
763 	bas = &sc->sc_bas;
764 	uart_lock(sc->sc_hwmtx);
765 	/*
766 	 * When using DW UART with BUSY detection it is necessary to wait
767 	 * until all serial transfers are finished before manipulating the
768 	 * line control. LCR will not be affected when UART is busy.
769 	 */
770 	if (ns8250->busy_detect != 0) {
771 		/*
772 		 * Pick an arbitrary high limit to avoid getting stuck in
773 		 * an infinite loop in case when the hardware is broken.
774 		 */
775 		limit = 10 * 1024;
776 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
777 		    --limit)
778 			DELAY(4);
779 
780 		if (limit <= 0) {
781 			/* UART appears to be stuck */
782 			uart_unlock(sc->sc_hwmtx);
783 			return (EIO);
784 		}
785 	}
786 
787 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
788 	uart_unlock(sc->sc_hwmtx);
789 	return (error);
790 }
791 
792 int
793 ns8250_bus_probe(struct uart_softc *sc)
794 {
795 	struct uart_bas *bas;
796 	int count, delay, error, limit;
797 	uint8_t lsr, mcr, ier;
798 	uint8_t val;
799 
800 	bas = &sc->sc_bas;
801 
802 	error = ns8250_probe(bas);
803 	if (error)
804 		return (error);
805 
806 	mcr = MCR_IE;
807 	if (sc->sc_sysdev == NULL) {
808 		/* By using ns8250_init() we also set DTR and RTS. */
809 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
810 	} else
811 		mcr |= MCR_DTR | MCR_RTS;
812 
813 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
814 	if (error)
815 		return (error);
816 
817 	/*
818 	 * Set loopback mode. This avoids having garbage on the wire and
819 	 * also allows us send and receive data. We set DTR and RTS to
820 	 * avoid the possibility that automatic flow-control prevents
821 	 * any data from being sent.
822 	 */
823 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
824 	uart_barrier(bas);
825 
826 	/*
827 	 * Enable FIFOs. And check that the UART has them. If not, we're
828 	 * done. Since this is the first time we enable the FIFOs, we reset
829 	 * them.
830 	 */
831 	val = FCR_ENABLE;
832 #ifdef CPU_XBURST
833 	val |= FCR_UART_ON;
834 #endif
835 	uart_setreg(bas, REG_FCR, val);
836 	uart_barrier(bas);
837 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
838 		/*
839 		 * NS16450 or INS8250. We don't bother to differentiate
840 		 * between them. They're too old to be interesting.
841 		 */
842 		uart_setreg(bas, REG_MCR, mcr);
843 		uart_barrier(bas);
844 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
845 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
846 		return (0);
847 	}
848 
849 	val = FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST;
850 #ifdef CPU_XBURST
851 	val |= FCR_UART_ON;
852 #endif
853 	uart_setreg(bas, REG_FCR, val);
854 	uart_barrier(bas);
855 
856 	count = 0;
857 	delay = ns8250_delay(bas);
858 
859 	/* We have FIFOs. Drain the transmitter and receiver. */
860 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
861 	if (error) {
862 		uart_setreg(bas, REG_MCR, mcr);
863 		val = 0;
864 #ifdef CPU_XBURST
865 		val |= FCR_UART_ON;
866 #endif
867 		uart_setreg(bas, REG_FCR, val);
868 		uart_barrier(bas);
869 		goto describe;
870 	}
871 
872 	/*
873 	 * We should have a sufficiently clean "pipe" to determine the
874 	 * size of the FIFOs. We send as much characters as is reasonable
875 	 * and wait for the overflow bit in the LSR register to be
876 	 * asserted, counting the characters as we send them. Based on
877 	 * that count we know the FIFO size.
878 	 */
879 	do {
880 		uart_setreg(bas, REG_DATA, 0);
881 		uart_barrier(bas);
882 		count++;
883 
884 		limit = 30;
885 		lsr = 0;
886 		/*
887 		 * LSR bits are cleared upon read, so we must accumulate
888 		 * them to be able to test LSR_OE below.
889 		 */
890 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
891 		    --limit)
892 			DELAY(delay);
893 		if (limit == 0) {
894 			/* See the comment in ns8250_init(). */
895 			ier = uart_getreg(bas, REG_IER) & 0xe0;
896 			uart_setreg(bas, REG_IER, ier);
897 			uart_setreg(bas, REG_MCR, mcr);
898 			val = 0;
899 #ifdef CPU_XBURST
900 			val |= FCR_UART_ON;
901 #endif
902 			uart_setreg(bas, REG_FCR, val);
903 			uart_barrier(bas);
904 			count = 0;
905 			goto describe;
906 		}
907 	} while ((lsr & LSR_OE) == 0 && count < 260);
908 	count--;
909 
910 	uart_setreg(bas, REG_MCR, mcr);
911 
912 	/* Reset FIFOs. */
913 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
914 
915  describe:
916 	if (count >= 14 && count <= 16) {
917 		sc->sc_rxfifosz = 16;
918 		device_set_desc(sc->sc_dev, "16550 or compatible");
919 	} else if (count >= 28 && count <= 32) {
920 		sc->sc_rxfifosz = 32;
921 		device_set_desc(sc->sc_dev, "16650 or compatible");
922 	} else if (count >= 56 && count <= 64) {
923 		sc->sc_rxfifosz = 64;
924 		device_set_desc(sc->sc_dev, "16750 or compatible");
925 	} else if (count >= 112 && count <= 128) {
926 		sc->sc_rxfifosz = 128;
927 		device_set_desc(sc->sc_dev, "16950 or compatible");
928 	} else if (count >= 224 && count <= 256) {
929 		sc->sc_rxfifosz = 256;
930 		device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
931 	} else {
932 		sc->sc_rxfifosz = 16;
933 		device_set_desc(sc->sc_dev,
934 		    "Non-standard ns8250 class UART with FIFOs");
935 	}
936 
937 	/*
938 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
939 	 * Tx trigger. Also, we assume that all data has been sent when the
940 	 * interrupt happens.
941 	 */
942 	sc->sc_txfifosz = 16;
943 
944 #if 0
945 	/*
946 	 * XXX there are some issues related to hardware flow control and
947 	 * it's likely that uart(4) is the cause. This basically needs more
948 	 * investigation, but we avoid using for hardware flow control
949 	 * until then.
950 	 */
951 	/* 16650s or higher have automatic flow control. */
952 	if (sc->sc_rxfifosz > 16) {
953 		sc->sc_hwiflow = 1;
954 		sc->sc_hwoflow = 1;
955 	}
956 #endif
957 
958 	return (0);
959 }
960 
961 int
962 ns8250_bus_receive(struct uart_softc *sc)
963 {
964 	struct uart_bas *bas;
965 	int xc;
966 	uint8_t lsr;
967 
968 	bas = &sc->sc_bas;
969 	uart_lock(sc->sc_hwmtx);
970 	lsr = uart_getreg(bas, REG_LSR);
971 	while (lsr & LSR_RXRDY) {
972 		if (uart_rx_full(sc)) {
973 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
974 			break;
975 		}
976 		xc = uart_getreg(bas, REG_DATA);
977 		if (lsr & LSR_FE)
978 			xc |= UART_STAT_FRAMERR;
979 		if (lsr & LSR_PE)
980 			xc |= UART_STAT_PARERR;
981 		uart_rx_put(sc, xc);
982 		lsr = uart_getreg(bas, REG_LSR);
983 	}
984 	/* Discard everything left in the Rx FIFO. */
985 	while (lsr & LSR_RXRDY) {
986 		(void)uart_getreg(bas, REG_DATA);
987 		uart_barrier(bas);
988 		lsr = uart_getreg(bas, REG_LSR);
989 	}
990 	uart_unlock(sc->sc_hwmtx);
991  	return (0);
992 }
993 
994 int
995 ns8250_bus_setsig(struct uart_softc *sc, int sig)
996 {
997 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
998 	struct uart_bas *bas;
999 	uint32_t new, old;
1000 
1001 	bas = &sc->sc_bas;
1002 	do {
1003 		old = sc->sc_hwsig;
1004 		new = old;
1005 		if (sig & SER_DDTR) {
1006 			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
1007 		}
1008 		if (sig & SER_DRTS) {
1009 			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
1010 		}
1011 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
1012 	uart_lock(sc->sc_hwmtx);
1013 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
1014 	if (new & SER_DTR)
1015 		ns8250->mcr |= MCR_DTR;
1016 	if (new & SER_RTS)
1017 		ns8250->mcr |= MCR_RTS;
1018 	uart_setreg(bas, REG_MCR, ns8250->mcr);
1019 	uart_barrier(bas);
1020 	uart_unlock(sc->sc_hwmtx);
1021 	return (0);
1022 }
1023 
1024 int
1025 ns8250_bus_transmit(struct uart_softc *sc)
1026 {
1027 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1028 	struct uart_bas *bas;
1029 	int i;
1030 
1031 	bas = &sc->sc_bas;
1032 	uart_lock(sc->sc_hwmtx);
1033 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
1034 		DELAY(4);
1035 	for (i = 0; i < sc->sc_txdatasz; i++) {
1036 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
1037 		uart_barrier(bas);
1038 	}
1039 	if (!broken_txfifo)
1040 		ns8250->ier |= IER_ETXRDY;
1041 	uart_setreg(bas, REG_IER, ns8250->ier);
1042 	uart_barrier(bas);
1043 	if (broken_txfifo)
1044 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1045 	else
1046 		sc->sc_txbusy = 1;
1047 	uart_unlock(sc->sc_hwmtx);
1048 	if (broken_txfifo)
1049 		uart_sched_softih(sc, SER_INT_TXIDLE);
1050 	return (0);
1051 }
1052 
1053 void
1054 ns8250_bus_grab(struct uart_softc *sc)
1055 {
1056 	struct uart_bas *bas = &sc->sc_bas;
1057 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1058 	u_char ier;
1059 
1060 	/*
1061 	 * turn off all interrupts to enter polling mode. Leave the
1062 	 * saved mask alone. We'll restore whatever it was in ungrab.
1063 	 * All pending interrupt signals are reset when IER is set to 0.
1064 	 */
1065 	uart_lock(sc->sc_hwmtx);
1066 	ier = uart_getreg(bas, REG_IER);
1067 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1068 	uart_barrier(bas);
1069 	uart_unlock(sc->sc_hwmtx);
1070 }
1071 
1072 void
1073 ns8250_bus_ungrab(struct uart_softc *sc)
1074 {
1075 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1076 	struct uart_bas *bas = &sc->sc_bas;
1077 
1078 	/*
1079 	 * Restore previous interrupt mask
1080 	 */
1081 	uart_lock(sc->sc_hwmtx);
1082 	uart_setreg(bas, REG_IER, ns8250->ier);
1083 	uart_barrier(bas);
1084 	uart_unlock(sc->sc_hwmtx);
1085 }
1086