xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision aa0a1e58)
1 /*-
2  * Copyright (c) 2003 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/conf.h>
34 #include <machine/bus.h>
35 
36 #include <dev/uart/uart.h>
37 #include <dev/uart/uart_cpu.h>
38 #include <dev/uart/uart_bus.h>
39 
40 #include <dev/ic/ns16550.h>
41 
42 #include "uart_if.h"
43 
44 #define	DEFAULT_RCLK	1843200
45 
46 /*
47  * Clear pending interrupts. THRE is cleared by reading IIR. Data
48  * that may have been received gets lost here.
49  */
50 static void
51 ns8250_clrint(struct uart_bas *bas)
52 {
53 	uint8_t iir, lsr;
54 
55 	iir = uart_getreg(bas, REG_IIR);
56 	while ((iir & IIR_NOPEND) == 0) {
57 		iir &= IIR_IMASK;
58 		if (iir == IIR_RLS) {
59 			lsr = uart_getreg(bas, REG_LSR);
60 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
61 				(void)uart_getreg(bas, REG_DATA);
62 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
63 			(void)uart_getreg(bas, REG_DATA);
64 		else if (iir == IIR_MLSC)
65 			(void)uart_getreg(bas, REG_MSR);
66 		uart_barrier(bas);
67 		iir = uart_getreg(bas, REG_IIR);
68 	}
69 }
70 
71 static int
72 ns8250_delay(struct uart_bas *bas)
73 {
74 	int divisor;
75 	u_char lcr;
76 
77 	lcr = uart_getreg(bas, REG_LCR);
78 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
79 	uart_barrier(bas);
80 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
81 	uart_barrier(bas);
82 	uart_setreg(bas, REG_LCR, lcr);
83 	uart_barrier(bas);
84 
85 	/* 1/10th the time to transmit 1 character (estimate). */
86 	if (divisor <= 134)
87 		return (16000000 * divisor / bas->rclk);
88 	return (16000 * divisor / (bas->rclk / 1000));
89 }
90 
91 static int
92 ns8250_divisor(int rclk, int baudrate)
93 {
94 	int actual_baud, divisor;
95 	int error;
96 
97 	if (baudrate == 0)
98 		return (0);
99 
100 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
101 	if (divisor == 0 || divisor >= 65536)
102 		return (0);
103 	actual_baud = rclk / (divisor << 4);
104 
105 	/* 10 times error in percent: */
106 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
107 
108 	/* 3.0% maximum error tolerance: */
109 	if (error < -30 || error > 30)
110 		return (0);
111 
112 	return (divisor);
113 }
114 
115 static int
116 ns8250_drain(struct uart_bas *bas, int what)
117 {
118 	int delay, limit;
119 
120 	delay = ns8250_delay(bas);
121 
122 	if (what & UART_DRAIN_TRANSMITTER) {
123 		/*
124 		 * Pick an arbitrary high limit to avoid getting stuck in
125 		 * an infinite loop when the hardware is broken. Make the
126 		 * limit high enough to handle large FIFOs.
127 		 */
128 		limit = 10*1024;
129 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
130 			DELAY(delay);
131 		if (limit == 0) {
132 			/* printf("ns8250: transmitter appears stuck... "); */
133 			return (EIO);
134 		}
135 	}
136 
137 	if (what & UART_DRAIN_RECEIVER) {
138 		/*
139 		 * Pick an arbitrary high limit to avoid getting stuck in
140 		 * an infinite loop when the hardware is broken. Make the
141 		 * limit high enough to handle large FIFOs and integrated
142 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
143 		 * management board that tend to get a lot of data send
144 		 * to it when the UART is first activated.
145 		 */
146 		limit=10*4096;
147 		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
148 			(void)uart_getreg(bas, REG_DATA);
149 			uart_barrier(bas);
150 			DELAY(delay << 2);
151 		}
152 		if (limit == 0) {
153 			/* printf("ns8250: receiver appears broken... "); */
154 			return (EIO);
155 		}
156 	}
157 
158 	return (0);
159 }
160 
161 /*
162  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
163  * drained. WARNING: this function clobbers the FIFO setting!
164  */
165 static void
166 ns8250_flush(struct uart_bas *bas, int what)
167 {
168 	uint8_t fcr;
169 
170 	fcr = FCR_ENABLE;
171 	if (what & UART_FLUSH_TRANSMITTER)
172 		fcr |= FCR_XMT_RST;
173 	if (what & UART_FLUSH_RECEIVER)
174 		fcr |= FCR_RCV_RST;
175 	uart_setreg(bas, REG_FCR, fcr);
176 	uart_barrier(bas);
177 }
178 
179 static int
180 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
181     int parity)
182 {
183 	int divisor;
184 	uint8_t lcr;
185 
186 	lcr = 0;
187 	if (databits >= 8)
188 		lcr |= LCR_8BITS;
189 	else if (databits == 7)
190 		lcr |= LCR_7BITS;
191 	else if (databits == 6)
192 		lcr |= LCR_6BITS;
193 	else
194 		lcr |= LCR_5BITS;
195 	if (stopbits > 1)
196 		lcr |= LCR_STOPB;
197 	lcr |= parity << 3;
198 
199 	/* Set baudrate. */
200 	if (baudrate > 0) {
201 		divisor = ns8250_divisor(bas->rclk, baudrate);
202 		if (divisor == 0)
203 			return (EINVAL);
204 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
205 		uart_barrier(bas);
206 		uart_setreg(bas, REG_DLL, divisor & 0xff);
207 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
208 		uart_barrier(bas);
209 	}
210 
211 	/* Set LCR and clear DLAB. */
212 	uart_setreg(bas, REG_LCR, lcr);
213 	uart_barrier(bas);
214 	return (0);
215 }
216 
217 /*
218  * Low-level UART interface.
219  */
220 static int ns8250_probe(struct uart_bas *bas);
221 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
222 static void ns8250_term(struct uart_bas *bas);
223 static void ns8250_putc(struct uart_bas *bas, int);
224 static int ns8250_rxready(struct uart_bas *bas);
225 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
226 
227 static struct uart_ops uart_ns8250_ops = {
228 	.probe = ns8250_probe,
229 	.init = ns8250_init,
230 	.term = ns8250_term,
231 	.putc = ns8250_putc,
232 	.rxready = ns8250_rxready,
233 	.getc = ns8250_getc,
234 };
235 
236 static int
237 ns8250_probe(struct uart_bas *bas)
238 {
239 	u_char val;
240 
241 	/* Check known 0 bits that don't depend on DLAB. */
242 	val = uart_getreg(bas, REG_IIR);
243 	if (val & 0x30)
244 		return (ENXIO);
245 	val = uart_getreg(bas, REG_MCR);
246 	if (val & 0xe0)
247 		return (ENXIO);
248 
249 	return (0);
250 }
251 
252 static void
253 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
254     int parity)
255 {
256 	u_char	ier;
257 
258 	if (bas->rclk == 0)
259 		bas->rclk = DEFAULT_RCLK;
260 	ns8250_param(bas, baudrate, databits, stopbits, parity);
261 
262 	/* Disable all interrupt sources. */
263 	/*
264 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
265 	 * UARTs split the receive time-out interrupt bit out separately as
266 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
267 	 */
268 	ier = uart_getreg(bas, REG_IER) & 0xe0;
269 	uart_setreg(bas, REG_IER, ier);
270 	uart_barrier(bas);
271 
272 	/* Disable the FIFO (if present). */
273 	uart_setreg(bas, REG_FCR, 0);
274 	uart_barrier(bas);
275 
276 	/* Set RTS & DTR. */
277 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
278 	uart_barrier(bas);
279 
280 	ns8250_clrint(bas);
281 }
282 
283 static void
284 ns8250_term(struct uart_bas *bas)
285 {
286 
287 	/* Clear RTS & DTR. */
288 	uart_setreg(bas, REG_MCR, MCR_IE);
289 	uart_barrier(bas);
290 }
291 
292 static void
293 ns8250_putc(struct uart_bas *bas, int c)
294 {
295 	int limit;
296 
297 	limit = 250000;
298 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
299 		DELAY(4);
300 	uart_setreg(bas, REG_DATA, c);
301 	uart_barrier(bas);
302 	limit = 250000;
303 	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
304 		DELAY(4);
305 }
306 
307 static int
308 ns8250_rxready(struct uart_bas *bas)
309 {
310 
311 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
312 }
313 
314 static int
315 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
316 {
317 	int c;
318 
319 	uart_lock(hwmtx);
320 
321 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
322 		uart_unlock(hwmtx);
323 		DELAY(4);
324 		uart_lock(hwmtx);
325 	}
326 
327 	c = uart_getreg(bas, REG_DATA);
328 
329 	uart_unlock(hwmtx);
330 
331 	return (c);
332 }
333 
334 /*
335  * High-level UART interface.
336  */
337 struct ns8250_softc {
338 	struct uart_softc base;
339 	uint8_t		fcr;
340 	uint8_t		ier;
341 	uint8_t		mcr;
342 
343 	uint8_t		ier_mask;
344 	uint8_t		ier_rxbits;
345 };
346 
347 static int ns8250_bus_attach(struct uart_softc *);
348 static int ns8250_bus_detach(struct uart_softc *);
349 static int ns8250_bus_flush(struct uart_softc *, int);
350 static int ns8250_bus_getsig(struct uart_softc *);
351 static int ns8250_bus_ioctl(struct uart_softc *, int, intptr_t);
352 static int ns8250_bus_ipend(struct uart_softc *);
353 static int ns8250_bus_param(struct uart_softc *, int, int, int, int);
354 static int ns8250_bus_probe(struct uart_softc *);
355 static int ns8250_bus_receive(struct uart_softc *);
356 static int ns8250_bus_setsig(struct uart_softc *, int);
357 static int ns8250_bus_transmit(struct uart_softc *);
358 
359 static kobj_method_t ns8250_methods[] = {
360 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
361 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
362 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
363 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
364 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
365 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
366 	KOBJMETHOD(uart_param,		ns8250_bus_param),
367 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
368 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
369 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
370 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
371 	{ 0, 0 }
372 };
373 
374 struct uart_class uart_ns8250_class = {
375 	"ns8250",
376 	ns8250_methods,
377 	sizeof(struct ns8250_softc),
378 	.uc_ops = &uart_ns8250_ops,
379 	.uc_range = 8,
380 	.uc_rclk = DEFAULT_RCLK
381 };
382 
383 #define	SIGCHG(c, i, s, d)				\
384 	if (c) {					\
385 		i |= (i & s) ? s : s | d;		\
386 	} else {					\
387 		i = (i & s) ? (i & ~s) | d : i;		\
388 	}
389 
390 static int
391 ns8250_bus_attach(struct uart_softc *sc)
392 {
393 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
394 	struct uart_bas *bas;
395 	unsigned int ivar;
396 
397 	bas = &sc->sc_bas;
398 
399 	ns8250->mcr = uart_getreg(bas, REG_MCR);
400 	ns8250->fcr = FCR_ENABLE;
401 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
402 	    &ivar)) {
403 		if (UART_FLAGS_FCR_RX_LOW(ivar))
404 			ns8250->fcr |= FCR_RX_LOW;
405 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
406 			ns8250->fcr |= FCR_RX_MEDL;
407 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
408 			ns8250->fcr |= FCR_RX_HIGH;
409 		else
410 			ns8250->fcr |= FCR_RX_MEDH;
411 	} else
412 		ns8250->fcr |= FCR_RX_MEDH;
413 
414 	/* Get IER mask */
415 	ivar = 0xf0;
416 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
417 	    &ivar);
418 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
419 
420 	/* Get IER RX interrupt bits */
421 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
422 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
423 	    &ivar);
424 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
425 
426 	uart_setreg(bas, REG_FCR, ns8250->fcr);
427 	uart_barrier(bas);
428 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
429 
430 	if (ns8250->mcr & MCR_DTR)
431 		sc->sc_hwsig |= SER_DTR;
432 	if (ns8250->mcr & MCR_RTS)
433 		sc->sc_hwsig |= SER_RTS;
434 	ns8250_bus_getsig(sc);
435 
436 	ns8250_clrint(bas);
437 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
438 	ns8250->ier |= ns8250->ier_rxbits;
439 	uart_setreg(bas, REG_IER, ns8250->ier);
440 	uart_barrier(bas);
441 
442 	return (0);
443 }
444 
445 static int
446 ns8250_bus_detach(struct uart_softc *sc)
447 {
448 	struct ns8250_softc *ns8250;
449 	struct uart_bas *bas;
450 	u_char ier;
451 
452 	ns8250 = (struct ns8250_softc *)sc;
453 	bas = &sc->sc_bas;
454 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
455 	uart_setreg(bas, REG_IER, ier);
456 	uart_barrier(bas);
457 	ns8250_clrint(bas);
458 	return (0);
459 }
460 
461 static int
462 ns8250_bus_flush(struct uart_softc *sc, int what)
463 {
464 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
465 	struct uart_bas *bas;
466 	int error;
467 
468 	bas = &sc->sc_bas;
469 	uart_lock(sc->sc_hwmtx);
470 	if (sc->sc_rxfifosz > 1) {
471 		ns8250_flush(bas, what);
472 		uart_setreg(bas, REG_FCR, ns8250->fcr);
473 		uart_barrier(bas);
474 		error = 0;
475 	} else
476 		error = ns8250_drain(bas, what);
477 	uart_unlock(sc->sc_hwmtx);
478 	return (error);
479 }
480 
481 static int
482 ns8250_bus_getsig(struct uart_softc *sc)
483 {
484 	uint32_t new, old, sig;
485 	uint8_t msr;
486 
487 	do {
488 		old = sc->sc_hwsig;
489 		sig = old;
490 		uart_lock(sc->sc_hwmtx);
491 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
492 		uart_unlock(sc->sc_hwmtx);
493 		SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR);
494 		SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS);
495 		SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD);
496 		SIGCHG(msr & MSR_RI,  sig, SER_RI,  SER_DRI);
497 		new = sig & ~SER_MASK_DELTA;
498 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
499 	return (sig);
500 }
501 
502 static int
503 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
504 {
505 	struct uart_bas *bas;
506 	int baudrate, divisor, error;
507 	uint8_t efr, lcr;
508 
509 	bas = &sc->sc_bas;
510 	error = 0;
511 	uart_lock(sc->sc_hwmtx);
512 	switch (request) {
513 	case UART_IOCTL_BREAK:
514 		lcr = uart_getreg(bas, REG_LCR);
515 		if (data)
516 			lcr |= LCR_SBREAK;
517 		else
518 			lcr &= ~LCR_SBREAK;
519 		uart_setreg(bas, REG_LCR, lcr);
520 		uart_barrier(bas);
521 		break;
522 	case UART_IOCTL_IFLOW:
523 		lcr = uart_getreg(bas, REG_LCR);
524 		uart_barrier(bas);
525 		uart_setreg(bas, REG_LCR, 0xbf);
526 		uart_barrier(bas);
527 		efr = uart_getreg(bas, REG_EFR);
528 		if (data)
529 			efr |= EFR_RTS;
530 		else
531 			efr &= ~EFR_RTS;
532 		uart_setreg(bas, REG_EFR, efr);
533 		uart_barrier(bas);
534 		uart_setreg(bas, REG_LCR, lcr);
535 		uart_barrier(bas);
536 		break;
537 	case UART_IOCTL_OFLOW:
538 		lcr = uart_getreg(bas, REG_LCR);
539 		uart_barrier(bas);
540 		uart_setreg(bas, REG_LCR, 0xbf);
541 		uart_barrier(bas);
542 		efr = uart_getreg(bas, REG_EFR);
543 		if (data)
544 			efr |= EFR_CTS;
545 		else
546 			efr &= ~EFR_CTS;
547 		uart_setreg(bas, REG_EFR, efr);
548 		uart_barrier(bas);
549 		uart_setreg(bas, REG_LCR, lcr);
550 		uart_barrier(bas);
551 		break;
552 	case UART_IOCTL_BAUD:
553 		lcr = uart_getreg(bas, REG_LCR);
554 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
555 		uart_barrier(bas);
556 		divisor = uart_getreg(bas, REG_DLL) |
557 		    (uart_getreg(bas, REG_DLH) << 8);
558 		uart_barrier(bas);
559 		uart_setreg(bas, REG_LCR, lcr);
560 		uart_barrier(bas);
561 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
562 		if (baudrate > 0)
563 			*(int*)data = baudrate;
564 		else
565 			error = ENXIO;
566 		break;
567 	default:
568 		error = EINVAL;
569 		break;
570 	}
571 	uart_unlock(sc->sc_hwmtx);
572 	return (error);
573 }
574 
575 static int
576 ns8250_bus_ipend(struct uart_softc *sc)
577 {
578 	struct uart_bas *bas;
579 	int ipend;
580 	uint8_t iir, lsr;
581 
582 	bas = &sc->sc_bas;
583 	uart_lock(sc->sc_hwmtx);
584 	iir = uart_getreg(bas, REG_IIR);
585 	if (iir & IIR_NOPEND) {
586 		uart_unlock(sc->sc_hwmtx);
587 		return (0);
588 	}
589 	ipend = 0;
590 	if (iir & IIR_RXRDY) {
591 		lsr = uart_getreg(bas, REG_LSR);
592 		if (lsr & LSR_OE)
593 			ipend |= SER_INT_OVERRUN;
594 		if (lsr & LSR_BI)
595 			ipend |= SER_INT_BREAK;
596 		if (lsr & LSR_RXRDY)
597 			ipend |= SER_INT_RXREADY;
598 	} else {
599 		if (iir & IIR_TXRDY)
600 			ipend |= SER_INT_TXIDLE;
601 		else
602 			ipend |= SER_INT_SIGCHG;
603 	}
604 	if (ipend == 0)
605 		ns8250_clrint(bas);
606 	uart_unlock(sc->sc_hwmtx);
607 	return (ipend);
608 }
609 
610 static int
611 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
612     int stopbits, int parity)
613 {
614 	struct uart_bas *bas;
615 	int error;
616 
617 	bas = &sc->sc_bas;
618 	uart_lock(sc->sc_hwmtx);
619 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
620 	uart_unlock(sc->sc_hwmtx);
621 	return (error);
622 }
623 
624 static int
625 ns8250_bus_probe(struct uart_softc *sc)
626 {
627 	struct ns8250_softc *ns8250;
628 	struct uart_bas *bas;
629 	int count, delay, error, limit;
630 	uint8_t lsr, mcr, ier;
631 
632 	ns8250 = (struct ns8250_softc *)sc;
633 	bas = &sc->sc_bas;
634 
635 	error = ns8250_probe(bas);
636 	if (error)
637 		return (error);
638 
639 	mcr = MCR_IE;
640 	if (sc->sc_sysdev == NULL) {
641 		/* By using ns8250_init() we also set DTR and RTS. */
642 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
643 	} else
644 		mcr |= MCR_DTR | MCR_RTS;
645 
646 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
647 	if (error)
648 		return (error);
649 
650 	/*
651 	 * Set loopback mode. This avoids having garbage on the wire and
652 	 * also allows us send and receive data. We set DTR and RTS to
653 	 * avoid the possibility that automatic flow-control prevents
654 	 * any data from being sent.
655 	 */
656 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
657 	uart_barrier(bas);
658 
659 	/*
660 	 * Enable FIFOs. And check that the UART has them. If not, we're
661 	 * done. Since this is the first time we enable the FIFOs, we reset
662 	 * them.
663 	 */
664 	uart_setreg(bas, REG_FCR, FCR_ENABLE);
665 	uart_barrier(bas);
666 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
667 		/*
668 		 * NS16450 or INS8250. We don't bother to differentiate
669 		 * between them. They're too old to be interesting.
670 		 */
671 		uart_setreg(bas, REG_MCR, mcr);
672 		uart_barrier(bas);
673 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
674 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
675 		return (0);
676 	}
677 
678 	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
679 	uart_barrier(bas);
680 
681 	count = 0;
682 	delay = ns8250_delay(bas);
683 
684 	/* We have FIFOs. Drain the transmitter and receiver. */
685 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
686 	if (error) {
687 		uart_setreg(bas, REG_MCR, mcr);
688 		uart_setreg(bas, REG_FCR, 0);
689 		uart_barrier(bas);
690 		goto describe;
691 	}
692 
693 	/*
694 	 * We should have a sufficiently clean "pipe" to determine the
695 	 * size of the FIFOs. We send as much characters as is reasonable
696 	 * and wait for the overflow bit in the LSR register to be
697 	 * asserted, counting the characters as we send them. Based on
698 	 * that count we know the FIFO size.
699 	 */
700 	do {
701 		uart_setreg(bas, REG_DATA, 0);
702 		uart_barrier(bas);
703 		count++;
704 
705 		limit = 30;
706 		lsr = 0;
707 		/*
708 		 * LSR bits are cleared upon read, so we must accumulate
709 		 * them to be able to test LSR_OE below.
710 		 */
711 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
712 		    --limit)
713 			DELAY(delay);
714 		if (limit == 0) {
715 			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
716 			uart_setreg(bas, REG_IER, ier);
717 			uart_setreg(bas, REG_MCR, mcr);
718 			uart_setreg(bas, REG_FCR, 0);
719 			uart_barrier(bas);
720 			count = 0;
721 			goto describe;
722 		}
723 	} while ((lsr & LSR_OE) == 0 && count < 130);
724 	count--;
725 
726 	uart_setreg(bas, REG_MCR, mcr);
727 
728 	/* Reset FIFOs. */
729 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
730 
731  describe:
732 	if (count >= 14 && count <= 16) {
733 		sc->sc_rxfifosz = 16;
734 		device_set_desc(sc->sc_dev, "16550 or compatible");
735 	} else if (count >= 28 && count <= 32) {
736 		sc->sc_rxfifosz = 32;
737 		device_set_desc(sc->sc_dev, "16650 or compatible");
738 	} else if (count >= 56 && count <= 64) {
739 		sc->sc_rxfifosz = 64;
740 		device_set_desc(sc->sc_dev, "16750 or compatible");
741 	} else if (count >= 112 && count <= 128) {
742 		sc->sc_rxfifosz = 128;
743 		device_set_desc(sc->sc_dev, "16950 or compatible");
744 	} else {
745 		sc->sc_rxfifosz = 16;
746 		device_set_desc(sc->sc_dev,
747 		    "Non-standard ns8250 class UART with FIFOs");
748 	}
749 
750 	/*
751 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
752 	 * Tx trigger. Also, we assume that all data has been sent when the
753 	 * interrupt happens.
754 	 */
755 	sc->sc_txfifosz = 16;
756 
757 #if 0
758 	/*
759 	 * XXX there are some issues related to hardware flow control and
760 	 * it's likely that uart(4) is the cause. This basicly needs more
761 	 * investigation, but we avoid using for hardware flow control
762 	 * until then.
763 	 */
764 	/* 16650s or higher have automatic flow control. */
765 	if (sc->sc_rxfifosz > 16) {
766 		sc->sc_hwiflow = 1;
767 		sc->sc_hwoflow = 1;
768 	}
769 #endif
770 
771 	return (0);
772 }
773 
774 static int
775 ns8250_bus_receive(struct uart_softc *sc)
776 {
777 	struct uart_bas *bas;
778 	int xc;
779 	uint8_t lsr;
780 
781 	bas = &sc->sc_bas;
782 	uart_lock(sc->sc_hwmtx);
783 	lsr = uart_getreg(bas, REG_LSR);
784 	while (lsr & LSR_RXRDY) {
785 		if (uart_rx_full(sc)) {
786 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
787 			break;
788 		}
789 		xc = uart_getreg(bas, REG_DATA);
790 		if (lsr & LSR_FE)
791 			xc |= UART_STAT_FRAMERR;
792 		if (lsr & LSR_PE)
793 			xc |= UART_STAT_PARERR;
794 		uart_rx_put(sc, xc);
795 		lsr = uart_getreg(bas, REG_LSR);
796 	}
797 	/* Discard everything left in the Rx FIFO. */
798 	while (lsr & LSR_RXRDY) {
799 		(void)uart_getreg(bas, REG_DATA);
800 		uart_barrier(bas);
801 		lsr = uart_getreg(bas, REG_LSR);
802 	}
803 	uart_unlock(sc->sc_hwmtx);
804  	return (0);
805 }
806 
807 static int
808 ns8250_bus_setsig(struct uart_softc *sc, int sig)
809 {
810 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
811 	struct uart_bas *bas;
812 	uint32_t new, old;
813 
814 	bas = &sc->sc_bas;
815 	do {
816 		old = sc->sc_hwsig;
817 		new = old;
818 		if (sig & SER_DDTR) {
819 			SIGCHG(sig & SER_DTR, new, SER_DTR,
820 			    SER_DDTR);
821 		}
822 		if (sig & SER_DRTS) {
823 			SIGCHG(sig & SER_RTS, new, SER_RTS,
824 			    SER_DRTS);
825 		}
826 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
827 	uart_lock(sc->sc_hwmtx);
828 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
829 	if (new & SER_DTR)
830 		ns8250->mcr |= MCR_DTR;
831 	if (new & SER_RTS)
832 		ns8250->mcr |= MCR_RTS;
833 	uart_setreg(bas, REG_MCR, ns8250->mcr);
834 	uart_barrier(bas);
835 	uart_unlock(sc->sc_hwmtx);
836 	return (0);
837 }
838 
839 static int
840 ns8250_bus_transmit(struct uart_softc *sc)
841 {
842 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
843 	struct uart_bas *bas;
844 	int i;
845 
846 	bas = &sc->sc_bas;
847 	uart_lock(sc->sc_hwmtx);
848 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
849 		;
850 	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
851 	uart_barrier(bas);
852 	for (i = 0; i < sc->sc_txdatasz; i++) {
853 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
854 		uart_barrier(bas);
855 	}
856 	sc->sc_txbusy = 1;
857 	uart_unlock(sc->sc_hwmtx);
858 	return (0);
859 }
860