xref: /freebsd/sys/dev/usb/wlan/if_ural.c (revision 716fd348)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Copyright (c) 2006, 2008
8  *	Hans Petter Selasky <hselasky@FreeBSD.org>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 /*-
27  * Ralink Technology RT2500USB chipset driver
28  * http://www.ralinktech.com/
29  */
30 
31 #include "opt_wlan.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/mbuf.h>
39 #include <sys/kernel.h>
40 #include <sys/socket.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/bus.h>
45 #include <sys/endian.h>
46 #include <sys/kdb.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/if_ether.h>
62 #include <netinet/ip.h>
63 #endif
64 
65 #include <net80211/ieee80211_var.h>
66 #include <net80211/ieee80211_regdomain.h>
67 #include <net80211/ieee80211_radiotap.h>
68 #include <net80211/ieee80211_ratectl.h>
69 
70 #include <dev/usb/usb.h>
71 #include <dev/usb/usbdi.h>
72 #include "usbdevs.h"
73 
74 #define	USB_DEBUG_VAR ural_debug
75 #include <dev/usb/usb_debug.h>
76 
77 #include <dev/usb/wlan/if_uralreg.h>
78 #include <dev/usb/wlan/if_uralvar.h>
79 
80 #ifdef USB_DEBUG
81 static int ural_debug = 0;
82 
83 static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
84     "USB ural");
85 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RWTUN, &ural_debug, 0,
86     "Debug level");
87 #endif
88 
89 #define URAL_RSSI(rssi)					\
90 	((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?	\
91 	 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
92 
93 /* various supported device vendors/products */
94 static const STRUCT_USB_HOST_ID ural_devs[] = {
95 #define	URAL_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
96 	URAL_DEV(ASUS, WL167G),
97 	URAL_DEV(ASUS, RT2570),
98 	URAL_DEV(BELKIN, F5D7050),
99 	URAL_DEV(BELKIN, F5D7051),
100 	URAL_DEV(CISCOLINKSYS, HU200TS),
101 	URAL_DEV(CISCOLINKSYS, WUSB54G),
102 	URAL_DEV(CISCOLINKSYS, WUSB54GP),
103 	URAL_DEV(CONCEPTRONIC2, C54RU),
104 	URAL_DEV(DLINK, DWLG122),
105 	URAL_DEV(GIGABYTE, GN54G),
106 	URAL_DEV(GIGABYTE, GNWBKG),
107 	URAL_DEV(GUILLEMOT, HWGUSB254),
108 	URAL_DEV(MELCO, KG54),
109 	URAL_DEV(MELCO, KG54AI),
110 	URAL_DEV(MELCO, KG54YB),
111 	URAL_DEV(MELCO, NINWIFI),
112 	URAL_DEV(MSI, RT2570),
113 	URAL_DEV(MSI, RT2570_2),
114 	URAL_DEV(MSI, RT2570_3),
115 	URAL_DEV(NOVATECH, NV902),
116 	URAL_DEV(RALINK, RT2570),
117 	URAL_DEV(RALINK, RT2570_2),
118 	URAL_DEV(RALINK, RT2570_3),
119 	URAL_DEV(SIEMENS2, WL54G),
120 	URAL_DEV(SMC, 2862WG),
121 	URAL_DEV(SPHAIRON, UB801R),
122 	URAL_DEV(SURECOM, RT2570),
123 	URAL_DEV(VTECH, RT2570),
124 	URAL_DEV(ZINWELL, RT2570),
125 #undef URAL_DEV
126 };
127 
128 static usb_callback_t ural_bulk_read_callback;
129 static usb_callback_t ural_bulk_write_callback;
130 
131 static usb_error_t	ural_do_request(struct ural_softc *sc,
132 			    struct usb_device_request *req, void *data);
133 static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
134 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
135 			    int, const uint8_t [IEEE80211_ADDR_LEN],
136 			    const uint8_t [IEEE80211_ADDR_LEN]);
137 static void		ural_vap_delete(struct ieee80211vap *);
138 static void		ural_tx_free(struct ural_tx_data *, int);
139 static void		ural_setup_tx_list(struct ural_softc *);
140 static void		ural_unsetup_tx_list(struct ural_softc *);
141 static int		ural_newstate(struct ieee80211vap *,
142 			    enum ieee80211_state, int);
143 static void		ural_setup_tx_desc(struct ural_softc *,
144 			    struct ural_tx_desc *, uint32_t, int, int);
145 static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
146 			    struct ieee80211_node *);
147 static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
148 			    struct ieee80211_node *);
149 static int		ural_tx_data(struct ural_softc *, struct mbuf *,
150 			    struct ieee80211_node *);
151 static int		ural_transmit(struct ieee80211com *, struct mbuf *);
152 static void		ural_start(struct ural_softc *);
153 static void		ural_parent(struct ieee80211com *);
154 static void		ural_set_testmode(struct ural_softc *);
155 static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
156 			    int);
157 static uint16_t		ural_read(struct ural_softc *, uint16_t);
158 static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
159 			    int);
160 static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
161 static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
162 			    int) __unused;
163 static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
164 static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
165 static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
166 static void		ural_scan_start(struct ieee80211com *);
167 static void		ural_scan_end(struct ieee80211com *);
168 static void		ural_getradiocaps(struct ieee80211com *, int, int *,
169 			    struct ieee80211_channel[]);
170 static void		ural_set_channel(struct ieee80211com *);
171 static void		ural_set_chan(struct ural_softc *,
172 			    struct ieee80211_channel *);
173 static void		ural_disable_rf_tune(struct ural_softc *);
174 static void		ural_enable_tsf_sync(struct ural_softc *);
175 static void 		ural_enable_tsf(struct ural_softc *);
176 static void		ural_update_slot(struct ural_softc *);
177 static void		ural_set_txpreamble(struct ural_softc *);
178 static void		ural_set_basicrates(struct ural_softc *,
179 			    const struct ieee80211_channel *);
180 static void		ural_set_bssid(struct ural_softc *, const uint8_t *);
181 static void		ural_set_macaddr(struct ural_softc *, const uint8_t *);
182 static void		ural_update_promisc(struct ieee80211com *);
183 static void		ural_setpromisc(struct ural_softc *);
184 static const char	*ural_get_rf(int);
185 static void		ural_read_eeprom(struct ural_softc *);
186 static int		ural_bbp_init(struct ural_softc *);
187 static void		ural_set_txantenna(struct ural_softc *, int);
188 static void		ural_set_rxantenna(struct ural_softc *, int);
189 static void		ural_init(struct ural_softc *);
190 static void		ural_stop(struct ural_softc *);
191 static int		ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
192 			    const struct ieee80211_bpf_params *);
193 static void		ural_ratectl_start(struct ural_softc *,
194 			    struct ieee80211_node *);
195 static void		ural_ratectl_timeout(void *);
196 static void		ural_ratectl_task(void *, int);
197 static int		ural_pause(struct ural_softc *sc, int timeout);
198 
199 /*
200  * Default values for MAC registers; values taken from the reference driver.
201  */
202 static const struct {
203 	uint16_t	reg;
204 	uint16_t	val;
205 } ural_def_mac[] = {
206 	{ RAL_TXRX_CSR5,  0x8c8d },
207 	{ RAL_TXRX_CSR6,  0x8b8a },
208 	{ RAL_TXRX_CSR7,  0x8687 },
209 	{ RAL_TXRX_CSR8,  0x0085 },
210 	{ RAL_MAC_CSR13,  0x1111 },
211 	{ RAL_MAC_CSR14,  0x1e11 },
212 	{ RAL_TXRX_CSR21, 0xe78f },
213 	{ RAL_MAC_CSR9,   0xff1d },
214 	{ RAL_MAC_CSR11,  0x0002 },
215 	{ RAL_MAC_CSR22,  0x0053 },
216 	{ RAL_MAC_CSR15,  0x0000 },
217 	{ RAL_MAC_CSR8,   RAL_FRAME_SIZE },
218 	{ RAL_TXRX_CSR19, 0x0000 },
219 	{ RAL_TXRX_CSR18, 0x005a },
220 	{ RAL_PHY_CSR2,   0x0000 },
221 	{ RAL_TXRX_CSR0,  0x1ec0 },
222 	{ RAL_PHY_CSR4,   0x000f }
223 };
224 
225 /*
226  * Default values for BBP registers; values taken from the reference driver.
227  */
228 static const struct {
229 	uint8_t	reg;
230 	uint8_t	val;
231 } ural_def_bbp[] = {
232 	{  3, 0x02 },
233 	{  4, 0x19 },
234 	{ 14, 0x1c },
235 	{ 15, 0x30 },
236 	{ 16, 0xac },
237 	{ 17, 0x48 },
238 	{ 18, 0x18 },
239 	{ 19, 0xff },
240 	{ 20, 0x1e },
241 	{ 21, 0x08 },
242 	{ 22, 0x08 },
243 	{ 23, 0x08 },
244 	{ 24, 0x80 },
245 	{ 25, 0x50 },
246 	{ 26, 0x08 },
247 	{ 27, 0x23 },
248 	{ 30, 0x10 },
249 	{ 31, 0x2b },
250 	{ 32, 0xb9 },
251 	{ 34, 0x12 },
252 	{ 35, 0x50 },
253 	{ 39, 0xc4 },
254 	{ 40, 0x02 },
255 	{ 41, 0x60 },
256 	{ 53, 0x10 },
257 	{ 54, 0x18 },
258 	{ 56, 0x08 },
259 	{ 57, 0x10 },
260 	{ 58, 0x08 },
261 	{ 61, 0x60 },
262 	{ 62, 0x10 },
263 	{ 75, 0xff }
264 };
265 
266 /*
267  * Default values for RF register R2 indexed by channel numbers.
268  */
269 static const uint32_t ural_rf2522_r2[] = {
270 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
271 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
272 };
273 
274 static const uint32_t ural_rf2523_r2[] = {
275 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
276 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
277 };
278 
279 static const uint32_t ural_rf2524_r2[] = {
280 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
281 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
282 };
283 
284 static const uint32_t ural_rf2525_r2[] = {
285 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
286 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
287 };
288 
289 static const uint32_t ural_rf2525_hi_r2[] = {
290 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
291 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
292 };
293 
294 static const uint32_t ural_rf2525e_r2[] = {
295 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
296 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
297 };
298 
299 static const uint32_t ural_rf2526_hi_r2[] = {
300 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
301 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
302 };
303 
304 static const uint32_t ural_rf2526_r2[] = {
305 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
306 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
307 };
308 
309 /*
310  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
311  * values taken from the reference driver.
312  */
313 static const struct {
314 	uint8_t		chan;
315 	uint32_t	r1;
316 	uint32_t	r2;
317 	uint32_t	r4;
318 } ural_rf5222[] = {
319 	{   1, 0x08808, 0x0044d, 0x00282 },
320 	{   2, 0x08808, 0x0044e, 0x00282 },
321 	{   3, 0x08808, 0x0044f, 0x00282 },
322 	{   4, 0x08808, 0x00460, 0x00282 },
323 	{   5, 0x08808, 0x00461, 0x00282 },
324 	{   6, 0x08808, 0x00462, 0x00282 },
325 	{   7, 0x08808, 0x00463, 0x00282 },
326 	{   8, 0x08808, 0x00464, 0x00282 },
327 	{   9, 0x08808, 0x00465, 0x00282 },
328 	{  10, 0x08808, 0x00466, 0x00282 },
329 	{  11, 0x08808, 0x00467, 0x00282 },
330 	{  12, 0x08808, 0x00468, 0x00282 },
331 	{  13, 0x08808, 0x00469, 0x00282 },
332 	{  14, 0x08808, 0x0046b, 0x00286 },
333 
334 	{  36, 0x08804, 0x06225, 0x00287 },
335 	{  40, 0x08804, 0x06226, 0x00287 },
336 	{  44, 0x08804, 0x06227, 0x00287 },
337 	{  48, 0x08804, 0x06228, 0x00287 },
338 	{  52, 0x08804, 0x06229, 0x00287 },
339 	{  56, 0x08804, 0x0622a, 0x00287 },
340 	{  60, 0x08804, 0x0622b, 0x00287 },
341 	{  64, 0x08804, 0x0622c, 0x00287 },
342 
343 	{ 100, 0x08804, 0x02200, 0x00283 },
344 	{ 104, 0x08804, 0x02201, 0x00283 },
345 	{ 108, 0x08804, 0x02202, 0x00283 },
346 	{ 112, 0x08804, 0x02203, 0x00283 },
347 	{ 116, 0x08804, 0x02204, 0x00283 },
348 	{ 120, 0x08804, 0x02205, 0x00283 },
349 	{ 124, 0x08804, 0x02206, 0x00283 },
350 	{ 128, 0x08804, 0x02207, 0x00283 },
351 	{ 132, 0x08804, 0x02208, 0x00283 },
352 	{ 136, 0x08804, 0x02209, 0x00283 },
353 	{ 140, 0x08804, 0x0220a, 0x00283 },
354 
355 	{ 149, 0x08808, 0x02429, 0x00281 },
356 	{ 153, 0x08808, 0x0242b, 0x00281 },
357 	{ 157, 0x08808, 0x0242d, 0x00281 },
358 	{ 161, 0x08808, 0x0242f, 0x00281 }
359 };
360 
361 static const uint8_t ural_chan_5ghz[] =
362 	{ 36, 40, 44, 48, 52, 56, 60, 64,
363 	  100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
364 	  149, 153, 157, 161 };
365 
366 static const struct usb_config ural_config[URAL_N_TRANSFER] = {
367 	[URAL_BULK_WR] = {
368 		.type = UE_BULK,
369 		.endpoint = UE_ADDR_ANY,
370 		.direction = UE_DIR_OUT,
371 		.bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
372 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
373 		.callback = ural_bulk_write_callback,
374 		.timeout = 5000,	/* ms */
375 	},
376 	[URAL_BULK_RD] = {
377 		.type = UE_BULK,
378 		.endpoint = UE_ADDR_ANY,
379 		.direction = UE_DIR_IN,
380 		.bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
381 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
382 		.callback = ural_bulk_read_callback,
383 	},
384 };
385 
386 static device_probe_t ural_match;
387 static device_attach_t ural_attach;
388 static device_detach_t ural_detach;
389 
390 static device_method_t ural_methods[] = {
391 	/* Device interface */
392 	DEVMETHOD(device_probe,		ural_match),
393 	DEVMETHOD(device_attach,	ural_attach),
394 	DEVMETHOD(device_detach,	ural_detach),
395 	DEVMETHOD_END
396 };
397 
398 static driver_t ural_driver = {
399 	.name = "ural",
400 	.methods = ural_methods,
401 	.size = sizeof(struct ural_softc),
402 };
403 
404 DRIVER_MODULE(ural, uhub, ural_driver, NULL, NULL);
405 MODULE_DEPEND(ural, usb, 1, 1, 1);
406 MODULE_DEPEND(ural, wlan, 1, 1, 1);
407 MODULE_VERSION(ural, 1);
408 USB_PNP_HOST_INFO(ural_devs);
409 
410 static int
411 ural_match(device_t self)
412 {
413 	struct usb_attach_arg *uaa = device_get_ivars(self);
414 
415 	if (uaa->usb_mode != USB_MODE_HOST)
416 		return (ENXIO);
417 	if (uaa->info.bConfigIndex != 0)
418 		return (ENXIO);
419 	if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
420 		return (ENXIO);
421 
422 	return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
423 }
424 
425 static int
426 ural_attach(device_t self)
427 {
428 	struct usb_attach_arg *uaa = device_get_ivars(self);
429 	struct ural_softc *sc = device_get_softc(self);
430 	struct ieee80211com *ic = &sc->sc_ic;
431 	uint8_t iface_index;
432 	int error;
433 
434 	device_set_usb_desc(self);
435 	sc->sc_udev = uaa->device;
436 	sc->sc_dev = self;
437 
438 	mtx_init(&sc->sc_mtx, device_get_nameunit(self),
439 	    MTX_NETWORK_LOCK, MTX_DEF);
440 	mbufq_init(&sc->sc_snd, ifqmaxlen);
441 
442 	iface_index = RAL_IFACE_INDEX;
443 	error = usbd_transfer_setup(uaa->device,
444 	    &iface_index, sc->sc_xfer, ural_config,
445 	    URAL_N_TRANSFER, sc, &sc->sc_mtx);
446 	if (error) {
447 		device_printf(self, "could not allocate USB transfers, "
448 		    "err=%s\n", usbd_errstr(error));
449 		goto detach;
450 	}
451 
452 	RAL_LOCK(sc);
453 	/* retrieve RT2570 rev. no */
454 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
455 
456 	/* retrieve MAC address and various other things from EEPROM */
457 	ural_read_eeprom(sc);
458 	RAL_UNLOCK(sc);
459 
460 	device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
461 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
462 
463 	ic->ic_softc = sc;
464 	ic->ic_name = device_get_nameunit(self);
465 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
466 
467 	/* set device capabilities */
468 	ic->ic_caps =
469 	      IEEE80211_C_STA		/* station mode supported */
470 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
471 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
472 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
473 	    | IEEE80211_C_TXPMGT	/* tx power management */
474 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
475 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
476 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
477 	    | IEEE80211_C_WPA		/* 802.11i */
478 	    ;
479 
480 	ural_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
481 	    ic->ic_channels);
482 
483 	ieee80211_ifattach(ic);
484 	ic->ic_update_promisc = ural_update_promisc;
485 	ic->ic_raw_xmit = ural_raw_xmit;
486 	ic->ic_scan_start = ural_scan_start;
487 	ic->ic_scan_end = ural_scan_end;
488 	ic->ic_getradiocaps = ural_getradiocaps;
489 	ic->ic_set_channel = ural_set_channel;
490 	ic->ic_parent = ural_parent;
491 	ic->ic_transmit = ural_transmit;
492 	ic->ic_vap_create = ural_vap_create;
493 	ic->ic_vap_delete = ural_vap_delete;
494 
495 	ieee80211_radiotap_attach(ic,
496 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
497 		RAL_TX_RADIOTAP_PRESENT,
498 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
499 		RAL_RX_RADIOTAP_PRESENT);
500 
501 	if (bootverbose)
502 		ieee80211_announce(ic);
503 
504 	return (0);
505 
506 detach:
507 	ural_detach(self);
508 	return (ENXIO);			/* failure */
509 }
510 
511 static int
512 ural_detach(device_t self)
513 {
514 	struct ural_softc *sc = device_get_softc(self);
515 	struct ieee80211com *ic = &sc->sc_ic;
516 
517 	/* prevent further ioctls */
518 	RAL_LOCK(sc);
519 	sc->sc_detached = 1;
520 	RAL_UNLOCK(sc);
521 
522 	/* stop all USB transfers */
523 	usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
524 
525 	/* free TX list, if any */
526 	RAL_LOCK(sc);
527 	ural_unsetup_tx_list(sc);
528 	RAL_UNLOCK(sc);
529 
530 	if (ic->ic_softc == sc)
531 		ieee80211_ifdetach(ic);
532 	mbufq_drain(&sc->sc_snd);
533 	mtx_destroy(&sc->sc_mtx);
534 
535 	return (0);
536 }
537 
538 static usb_error_t
539 ural_do_request(struct ural_softc *sc,
540     struct usb_device_request *req, void *data)
541 {
542 	usb_error_t err;
543 	int ntries = 10;
544 
545 	while (ntries--) {
546 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
547 		    req, data, 0, NULL, 250 /* ms */);
548 		if (err == 0)
549 			break;
550 
551 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
552 		    usbd_errstr(err));
553 		if (ural_pause(sc, hz / 100))
554 			break;
555 	}
556 	return (err);
557 }
558 
559 static struct ieee80211vap *
560 ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
561     enum ieee80211_opmode opmode, int flags,
562     const uint8_t bssid[IEEE80211_ADDR_LEN],
563     const uint8_t mac[IEEE80211_ADDR_LEN])
564 {
565 	struct ural_softc *sc = ic->ic_softc;
566 	struct ural_vap *uvp;
567 	struct ieee80211vap *vap;
568 
569 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
570 		return NULL;
571 	uvp = malloc(sizeof(struct ural_vap), M_80211_VAP, M_WAITOK | M_ZERO);
572 	vap = &uvp->vap;
573 	/* enable s/w bmiss handling for sta mode */
574 
575 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
576 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
577 		/* out of memory */
578 		free(uvp, M_80211_VAP);
579 		return (NULL);
580 	}
581 
582 	/* override state transition machine */
583 	uvp->newstate = vap->iv_newstate;
584 	vap->iv_newstate = ural_newstate;
585 
586 	usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0);
587 	TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp);
588 	ieee80211_ratectl_init(vap);
589 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
590 
591 	/* complete setup */
592 	ieee80211_vap_attach(vap, ieee80211_media_change,
593 	    ieee80211_media_status, mac);
594 	ic->ic_opmode = opmode;
595 	return vap;
596 }
597 
598 static void
599 ural_vap_delete(struct ieee80211vap *vap)
600 {
601 	struct ural_vap *uvp = URAL_VAP(vap);
602 	struct ieee80211com *ic = vap->iv_ic;
603 
604 	usb_callout_drain(&uvp->ratectl_ch);
605 	ieee80211_draintask(ic, &uvp->ratectl_task);
606 	ieee80211_ratectl_deinit(vap);
607 	ieee80211_vap_detach(vap);
608 	free(uvp, M_80211_VAP);
609 }
610 
611 static void
612 ural_tx_free(struct ural_tx_data *data, int txerr)
613 {
614 	struct ural_softc *sc = data->sc;
615 
616 	if (data->m != NULL) {
617 		ieee80211_tx_complete(data->ni, data->m, txerr);
618 		data->m = NULL;
619 		data->ni = NULL;
620 	}
621 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
622 	sc->tx_nfree++;
623 }
624 
625 static void
626 ural_setup_tx_list(struct ural_softc *sc)
627 {
628 	struct ural_tx_data *data;
629 	int i;
630 
631 	sc->tx_nfree = 0;
632 	STAILQ_INIT(&sc->tx_q);
633 	STAILQ_INIT(&sc->tx_free);
634 
635 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
636 		data = &sc->tx_data[i];
637 
638 		data->sc = sc;
639 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
640 		sc->tx_nfree++;
641 	}
642 }
643 
644 static void
645 ural_unsetup_tx_list(struct ural_softc *sc)
646 {
647 	struct ural_tx_data *data;
648 	int i;
649 
650 	/* make sure any subsequent use of the queues will fail */
651 	sc->tx_nfree = 0;
652 	STAILQ_INIT(&sc->tx_q);
653 	STAILQ_INIT(&sc->tx_free);
654 
655 	/* free up all node references and mbufs */
656 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
657 		data = &sc->tx_data[i];
658 
659 		if (data->m != NULL) {
660 			m_freem(data->m);
661 			data->m = NULL;
662 		}
663 		if (data->ni != NULL) {
664 			ieee80211_free_node(data->ni);
665 			data->ni = NULL;
666 		}
667 	}
668 }
669 
670 static int
671 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
672 {
673 	struct ural_vap *uvp = URAL_VAP(vap);
674 	struct ieee80211com *ic = vap->iv_ic;
675 	struct ural_softc *sc = ic->ic_softc;
676 	const struct ieee80211_txparam *tp;
677 	struct ieee80211_node *ni;
678 	struct mbuf *m;
679 
680 	DPRINTF("%s -> %s\n",
681 		ieee80211_state_name[vap->iv_state],
682 		ieee80211_state_name[nstate]);
683 
684 	IEEE80211_UNLOCK(ic);
685 	RAL_LOCK(sc);
686 	usb_callout_stop(&uvp->ratectl_ch);
687 
688 	switch (nstate) {
689 	case IEEE80211_S_INIT:
690 		if (vap->iv_state == IEEE80211_S_RUN) {
691 			/* abort TSF synchronization */
692 			ural_write(sc, RAL_TXRX_CSR19, 0);
693 
694 			/* force tx led to stop blinking */
695 			ural_write(sc, RAL_MAC_CSR20, 0);
696 		}
697 		break;
698 
699 	case IEEE80211_S_RUN:
700 		ni = ieee80211_ref_node(vap->iv_bss);
701 
702 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
703 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
704 				goto fail;
705 
706 			ural_update_slot(sc);
707 			ural_set_txpreamble(sc);
708 			ural_set_basicrates(sc, ic->ic_bsschan);
709 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
710 			ural_set_bssid(sc, sc->sc_bssid);
711 		}
712 
713 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
714 		    vap->iv_opmode == IEEE80211_M_IBSS) {
715 			m = ieee80211_beacon_alloc(ni);
716 			if (m == NULL) {
717 				device_printf(sc->sc_dev,
718 				    "could not allocate beacon\n");
719 				goto fail;
720 			}
721 			ieee80211_ref_node(ni);
722 			if (ural_tx_bcn(sc, m, ni) != 0) {
723 				device_printf(sc->sc_dev,
724 				    "could not send beacon\n");
725 				goto fail;
726 			}
727 		}
728 
729 		/* make tx led blink on tx (controlled by ASIC) */
730 		ural_write(sc, RAL_MAC_CSR20, 1);
731 
732 		if (vap->iv_opmode != IEEE80211_M_MONITOR)
733 			ural_enable_tsf_sync(sc);
734 		else
735 			ural_enable_tsf(sc);
736 
737 		/* enable automatic rate adaptation */
738 		/* XXX should use ic_bsschan but not valid until after newstate call below */
739 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
740 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
741 			ural_ratectl_start(sc, ni);
742 		ieee80211_free_node(ni);
743 		break;
744 
745 	default:
746 		break;
747 	}
748 	RAL_UNLOCK(sc);
749 	IEEE80211_LOCK(ic);
750 	return (uvp->newstate(vap, nstate, arg));
751 
752 fail:
753 	RAL_UNLOCK(sc);
754 	IEEE80211_LOCK(ic);
755 	ieee80211_free_node(ni);
756 	return (-1);
757 }
758 
759 static void
760 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
761 {
762 	struct ural_softc *sc = usbd_xfer_softc(xfer);
763 	struct ieee80211vap *vap;
764 	struct ural_tx_data *data;
765 	struct mbuf *m;
766 	struct usb_page_cache *pc;
767 	int len;
768 
769 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
770 
771 	switch (USB_GET_STATE(xfer)) {
772 	case USB_ST_TRANSFERRED:
773 		DPRINTFN(11, "transfer complete, %d bytes\n", len);
774 
775 		/* free resources */
776 		data = usbd_xfer_get_priv(xfer);
777 		ural_tx_free(data, 0);
778 		usbd_xfer_set_priv(xfer, NULL);
779 
780 		/* FALLTHROUGH */
781 	case USB_ST_SETUP:
782 tr_setup:
783 		data = STAILQ_FIRST(&sc->tx_q);
784 		if (data) {
785 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
786 			m = data->m;
787 
788 			if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
789 				DPRINTFN(0, "data overflow, %u bytes\n",
790 				    m->m_pkthdr.len);
791 				m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
792 			}
793 			pc = usbd_xfer_get_frame(xfer, 0);
794 			usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
795 			usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
796 			    m->m_pkthdr.len);
797 
798 			vap = data->ni->ni_vap;
799 			if (ieee80211_radiotap_active_vap(vap)) {
800 				struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
801 
802 				tap->wt_flags = 0;
803 				tap->wt_rate = data->rate;
804 				tap->wt_antenna = sc->tx_ant;
805 
806 				ieee80211_radiotap_tx(vap, m);
807 			}
808 
809 			/* xfer length needs to be a multiple of two! */
810 			len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
811 			if ((len % 64) == 0)
812 				len += 2;
813 
814 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
815 			    m->m_pkthdr.len, len);
816 
817 			usbd_xfer_set_frame_len(xfer, 0, len);
818 			usbd_xfer_set_priv(xfer, data);
819 
820 			usbd_transfer_submit(xfer);
821 		}
822 		ural_start(sc);
823 		break;
824 
825 	default:			/* Error */
826 		DPRINTFN(11, "transfer error, %s\n",
827 		    usbd_errstr(error));
828 
829 		data = usbd_xfer_get_priv(xfer);
830 		if (data != NULL) {
831 			ural_tx_free(data, error);
832 			usbd_xfer_set_priv(xfer, NULL);
833 		}
834 
835 		if (error == USB_ERR_STALLED) {
836 			/* try to clear stall first */
837 			usbd_xfer_set_stall(xfer);
838 			goto tr_setup;
839 		}
840 		if (error == USB_ERR_TIMEOUT)
841 			device_printf(sc->sc_dev, "device timeout\n");
842 		break;
843 	}
844 }
845 
846 static void
847 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
848 {
849 	struct ural_softc *sc = usbd_xfer_softc(xfer);
850 	struct ieee80211com *ic = &sc->sc_ic;
851 	struct ieee80211_node *ni;
852 	struct epoch_tracker et;
853 	struct mbuf *m = NULL;
854 	struct usb_page_cache *pc;
855 	uint32_t flags;
856 	int8_t rssi = 0, nf = 0;
857 	int len;
858 
859 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
860 
861 	switch (USB_GET_STATE(xfer)) {
862 	case USB_ST_TRANSFERRED:
863 
864 		DPRINTFN(15, "rx done, actlen=%d\n", len);
865 
866 		if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
867 			DPRINTF("%s: xfer too short %d\n",
868 			    device_get_nameunit(sc->sc_dev), len);
869 			counter_u64_add(ic->ic_ierrors, 1);
870 			goto tr_setup;
871 		}
872 
873 		len -= RAL_RX_DESC_SIZE;
874 		/* rx descriptor is located at the end */
875 		pc = usbd_xfer_get_frame(xfer, 0);
876 		usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
877 
878 		rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
879 		nf = RAL_NOISE_FLOOR;
880 		flags = le32toh(sc->sc_rx_desc.flags);
881 		if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
882 			/*
883 		         * This should not happen since we did not
884 		         * request to receive those frames when we
885 		         * filled RAL_TXRX_CSR2:
886 		         */
887 			DPRINTFN(5, "PHY or CRC error\n");
888 			counter_u64_add(ic->ic_ierrors, 1);
889 			goto tr_setup;
890 		}
891 
892 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
893 		if (m == NULL) {
894 			DPRINTF("could not allocate mbuf\n");
895 			counter_u64_add(ic->ic_ierrors, 1);
896 			goto tr_setup;
897 		}
898 		usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
899 
900 		/* finalize mbuf */
901 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
902 
903 		if (ieee80211_radiotap_active(ic)) {
904 			struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
905 
906 			/* XXX set once */
907 			tap->wr_flags = 0;
908 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
909 			    (flags & RAL_RX_OFDM) ?
910 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
911 			tap->wr_antenna = sc->rx_ant;
912 			tap->wr_antsignal = nf + rssi;
913 			tap->wr_antnoise = nf;
914 		}
915 		/* Strip trailing 802.11 MAC FCS. */
916 		m_adj(m, -IEEE80211_CRC_LEN);
917 
918 		/* FALLTHROUGH */
919 	case USB_ST_SETUP:
920 tr_setup:
921 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
922 		usbd_transfer_submit(xfer);
923 
924 		/*
925 		 * At the end of a USB callback it is always safe to unlock
926 		 * the private mutex of a device! That is why we do the
927 		 * "ieee80211_input" here, and not some lines up!
928 		 */
929 		RAL_UNLOCK(sc);
930 		if (m) {
931 			ni = ieee80211_find_rxnode(ic,
932 			    mtod(m, struct ieee80211_frame_min *));
933 			NET_EPOCH_ENTER(et);
934 			if (ni != NULL) {
935 				(void) ieee80211_input(ni, m, rssi, nf);
936 				ieee80211_free_node(ni);
937 			} else
938 				(void) ieee80211_input_all(ic, m, rssi, nf);
939 			NET_EPOCH_EXIT(et);
940 		}
941 		RAL_LOCK(sc);
942 		ural_start(sc);
943 		return;
944 
945 	default:			/* Error */
946 		if (error != USB_ERR_CANCELLED) {
947 			/* try to clear stall first */
948 			usbd_xfer_set_stall(xfer);
949 			goto tr_setup;
950 		}
951 		return;
952 	}
953 }
954 
955 static uint8_t
956 ural_plcp_signal(int rate)
957 {
958 	switch (rate) {
959 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
960 	case 12:	return 0xb;
961 	case 18:	return 0xf;
962 	case 24:	return 0xa;
963 	case 36:	return 0xe;
964 	case 48:	return 0x9;
965 	case 72:	return 0xd;
966 	case 96:	return 0x8;
967 	case 108:	return 0xc;
968 
969 	/* CCK rates (NB: not IEEE std, device-specific) */
970 	case 2:		return 0x0;
971 	case 4:		return 0x1;
972 	case 11:	return 0x2;
973 	case 22:	return 0x3;
974 	}
975 	return 0xff;		/* XXX unsupported/unknown rate */
976 }
977 
978 static void
979 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
980     uint32_t flags, int len, int rate)
981 {
982 	struct ieee80211com *ic = &sc->sc_ic;
983 	uint16_t plcp_length;
984 	int remainder;
985 
986 	desc->flags = htole32(flags);
987 	desc->flags |= htole32(RAL_TX_NEWSEQ);
988 	desc->flags |= htole32(len << 16);
989 
990 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
991 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
992 
993 	/* setup PLCP fields */
994 	desc->plcp_signal  = ural_plcp_signal(rate);
995 	desc->plcp_service = 4;
996 
997 	len += IEEE80211_CRC_LEN;
998 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
999 		desc->flags |= htole32(RAL_TX_OFDM);
1000 
1001 		plcp_length = len & 0xfff;
1002 		desc->plcp_length_hi = plcp_length >> 6;
1003 		desc->plcp_length_lo = plcp_length & 0x3f;
1004 	} else {
1005 		if (rate == 0)
1006 			rate = 2;	/* avoid division by zero */
1007 		plcp_length = howmany(16 * len, rate);
1008 		if (rate == 22) {
1009 			remainder = (16 * len) % 22;
1010 			if (remainder != 0 && remainder < 7)
1011 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1012 		}
1013 		desc->plcp_length_hi = plcp_length >> 8;
1014 		desc->plcp_length_lo = plcp_length & 0xff;
1015 
1016 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1017 			desc->plcp_signal |= 0x08;
1018 	}
1019 
1020 	desc->iv = 0;
1021 	desc->eiv = 0;
1022 }
1023 
1024 #define RAL_TX_TIMEOUT	5000
1025 
1026 static int
1027 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1028 {
1029 	struct ieee80211vap *vap = ni->ni_vap;
1030 	struct ieee80211com *ic = ni->ni_ic;
1031 	const struct ieee80211_txparam *tp;
1032 	struct ural_tx_data *data;
1033 
1034 	if (sc->tx_nfree == 0) {
1035 		m_freem(m0);
1036 		ieee80211_free_node(ni);
1037 		return (EIO);
1038 	}
1039 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1040 		m_freem(m0);
1041 		ieee80211_free_node(ni);
1042 		return (ENXIO);
1043 	}
1044 	data = STAILQ_FIRST(&sc->tx_free);
1045 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1046 	sc->tx_nfree--;
1047 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1048 
1049 	data->m = m0;
1050 	data->ni = ni;
1051 	data->rate = tp->mgmtrate;
1052 
1053 	ural_setup_tx_desc(sc, &data->desc,
1054 	    RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1055 	    tp->mgmtrate);
1056 
1057 	DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1058 	    m0->m_pkthdr.len, tp->mgmtrate);
1059 
1060 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1061 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1062 
1063 	return (0);
1064 }
1065 
1066 static int
1067 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1068 {
1069 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1070 	struct ieee80211com *ic = ni->ni_ic;
1071 	struct ural_tx_data *data;
1072 	struct ieee80211_frame *wh;
1073 	struct ieee80211_key *k;
1074 	uint32_t flags;
1075 	uint16_t dur;
1076 
1077 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1078 
1079 	data = STAILQ_FIRST(&sc->tx_free);
1080 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1081 	sc->tx_nfree--;
1082 
1083 	wh = mtod(m0, struct ieee80211_frame *);
1084 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1085 		k = ieee80211_crypto_encap(ni, m0);
1086 		if (k == NULL) {
1087 			m_freem(m0);
1088 			return ENOBUFS;
1089 		}
1090 		wh = mtod(m0, struct ieee80211_frame *);
1091 	}
1092 
1093 	data->m = m0;
1094 	data->ni = ni;
1095 	data->rate = tp->mgmtrate;
1096 
1097 	flags = 0;
1098 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1099 		flags |= RAL_TX_ACK;
1100 
1101 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1102 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1103 		USETW(wh->i_dur, dur);
1104 
1105 		/* tell hardware to add timestamp for probe responses */
1106 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1107 		    IEEE80211_FC0_TYPE_MGT &&
1108 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1109 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1110 			flags |= RAL_TX_TIMESTAMP;
1111 	}
1112 
1113 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1114 
1115 	DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1116 	    m0->m_pkthdr.len, tp->mgmtrate);
1117 
1118 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1119 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1120 
1121 	return 0;
1122 }
1123 
1124 static int
1125 ural_sendprot(struct ural_softc *sc,
1126     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1127 {
1128 	struct ieee80211com *ic = ni->ni_ic;
1129 	struct ural_tx_data *data;
1130 	struct mbuf *mprot;
1131 	int protrate, flags;
1132 
1133 	mprot = ieee80211_alloc_prot(ni, m, rate, prot);
1134 	if (mprot == NULL) {
1135 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
1136 		device_printf(sc->sc_dev,
1137 		    "could not allocate mbuf for protection mode %d\n", prot);
1138 		return ENOBUFS;
1139 	}
1140 
1141 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1142 	flags = RAL_TX_RETRY(7);
1143 	if (prot == IEEE80211_PROT_RTSCTS)
1144 		flags |= RAL_TX_ACK;
1145 
1146 	data = STAILQ_FIRST(&sc->tx_free);
1147 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1148 	sc->tx_nfree--;
1149 
1150 	data->m = mprot;
1151 	data->ni = ieee80211_ref_node(ni);
1152 	data->rate = protrate;
1153 	ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1154 
1155 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1156 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1157 
1158 	return 0;
1159 }
1160 
1161 static int
1162 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1163     const struct ieee80211_bpf_params *params)
1164 {
1165 	struct ieee80211com *ic = ni->ni_ic;
1166 	struct ural_tx_data *data;
1167 	uint32_t flags;
1168 	int error;
1169 	int rate;
1170 
1171 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1172 	KASSERT(params != NULL, ("no raw xmit params"));
1173 
1174 	rate = params->ibp_rate0;
1175 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1176 		m_freem(m0);
1177 		return EINVAL;
1178 	}
1179 	flags = 0;
1180 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1181 		flags |= RAL_TX_ACK;
1182 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1183 		error = ural_sendprot(sc, m0, ni,
1184 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1185 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1186 		    rate);
1187 		if (error || sc->tx_nfree == 0) {
1188 			m_freem(m0);
1189 			return ENOBUFS;
1190 		}
1191 		flags |= RAL_TX_IFS_SIFS;
1192 	}
1193 
1194 	data = STAILQ_FIRST(&sc->tx_free);
1195 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1196 	sc->tx_nfree--;
1197 
1198 	data->m = m0;
1199 	data->ni = ni;
1200 	data->rate = rate;
1201 
1202 	/* XXX need to setup descriptor ourself */
1203 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1204 
1205 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1206 	    m0->m_pkthdr.len, rate);
1207 
1208 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1209 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1210 
1211 	return 0;
1212 }
1213 
1214 static int
1215 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1216 {
1217 	struct ieee80211vap *vap = ni->ni_vap;
1218 	struct ieee80211com *ic = ni->ni_ic;
1219 	struct ural_tx_data *data;
1220 	struct ieee80211_frame *wh;
1221 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1222 	struct ieee80211_key *k;
1223 	uint32_t flags = 0;
1224 	uint16_t dur;
1225 	int error, rate;
1226 
1227 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1228 
1229 	wh = mtod(m0, struct ieee80211_frame *);
1230 
1231 	if (m0->m_flags & M_EAPOL)
1232 		rate = tp->mgmtrate;
1233 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1234 		rate = tp->mcastrate;
1235 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1236 		rate = tp->ucastrate;
1237 	else {
1238 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1239 		rate = ni->ni_txrate;
1240 	}
1241 
1242 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1243 		k = ieee80211_crypto_encap(ni, m0);
1244 		if (k == NULL) {
1245 			m_freem(m0);
1246 			return ENOBUFS;
1247 		}
1248 		/* packet header may have moved, reset our local pointer */
1249 		wh = mtod(m0, struct ieee80211_frame *);
1250 	}
1251 
1252 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1253 		int prot = IEEE80211_PROT_NONE;
1254 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1255 			prot = IEEE80211_PROT_RTSCTS;
1256 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1257 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1258 			prot = ic->ic_protmode;
1259 		if (prot != IEEE80211_PROT_NONE) {
1260 			error = ural_sendprot(sc, m0, ni, prot, rate);
1261 			if (error || sc->tx_nfree == 0) {
1262 				m_freem(m0);
1263 				return ENOBUFS;
1264 			}
1265 			flags |= RAL_TX_IFS_SIFS;
1266 		}
1267 	}
1268 
1269 	data = STAILQ_FIRST(&sc->tx_free);
1270 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1271 	sc->tx_nfree--;
1272 
1273 	data->m = m0;
1274 	data->ni = ni;
1275 	data->rate = rate;
1276 
1277 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1278 		flags |= RAL_TX_ACK;
1279 		flags |= RAL_TX_RETRY(7);
1280 
1281 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1282 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1283 		USETW(wh->i_dur, dur);
1284 	}
1285 
1286 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1287 
1288 	DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1289 	    m0->m_pkthdr.len, rate);
1290 
1291 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1292 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1293 
1294 	return 0;
1295 }
1296 
1297 static int
1298 ural_transmit(struct ieee80211com *ic, struct mbuf *m)
1299 {
1300 	struct ural_softc *sc = ic->ic_softc;
1301 	int error;
1302 
1303 	RAL_LOCK(sc);
1304 	if (!sc->sc_running) {
1305 		RAL_UNLOCK(sc);
1306 		return (ENXIO);
1307 	}
1308 	error = mbufq_enqueue(&sc->sc_snd, m);
1309 	if (error) {
1310 		RAL_UNLOCK(sc);
1311 		return (error);
1312 	}
1313 	ural_start(sc);
1314 	RAL_UNLOCK(sc);
1315 
1316 	return (0);
1317 }
1318 
1319 static void
1320 ural_start(struct ural_softc *sc)
1321 {
1322 	struct ieee80211_node *ni;
1323 	struct mbuf *m;
1324 
1325 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1326 
1327 	if (sc->sc_running == 0)
1328 		return;
1329 
1330 	while (sc->tx_nfree >= RAL_TX_MINFREE &&
1331 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1332 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1333 		if (ural_tx_data(sc, m, ni) != 0) {
1334 			if_inc_counter(ni->ni_vap->iv_ifp,
1335 			     IFCOUNTER_OERRORS, 1);
1336 			ieee80211_free_node(ni);
1337 			break;
1338 		}
1339 	}
1340 }
1341 
1342 static void
1343 ural_parent(struct ieee80211com *ic)
1344 {
1345 	struct ural_softc *sc = ic->ic_softc;
1346 	int startall = 0;
1347 
1348 	RAL_LOCK(sc);
1349 	if (sc->sc_detached) {
1350 		RAL_UNLOCK(sc);
1351 		return;
1352 	}
1353 	if (ic->ic_nrunning > 0) {
1354 		if (sc->sc_running == 0) {
1355 			ural_init(sc);
1356 			startall = 1;
1357 		} else
1358 			ural_setpromisc(sc);
1359 	} else if (sc->sc_running)
1360 		ural_stop(sc);
1361 	RAL_UNLOCK(sc);
1362 	if (startall)
1363 		ieee80211_start_all(ic);
1364 }
1365 
1366 static void
1367 ural_set_testmode(struct ural_softc *sc)
1368 {
1369 	struct usb_device_request req;
1370 	usb_error_t error;
1371 
1372 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1373 	req.bRequest = RAL_VENDOR_REQUEST;
1374 	USETW(req.wValue, 4);
1375 	USETW(req.wIndex, 1);
1376 	USETW(req.wLength, 0);
1377 
1378 	error = ural_do_request(sc, &req, NULL);
1379 	if (error != 0) {
1380 		device_printf(sc->sc_dev, "could not set test mode: %s\n",
1381 		    usbd_errstr(error));
1382 	}
1383 }
1384 
1385 static void
1386 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1387 {
1388 	struct usb_device_request req;
1389 	usb_error_t error;
1390 
1391 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1392 	req.bRequest = RAL_READ_EEPROM;
1393 	USETW(req.wValue, 0);
1394 	USETW(req.wIndex, addr);
1395 	USETW(req.wLength, len);
1396 
1397 	error = ural_do_request(sc, &req, buf);
1398 	if (error != 0) {
1399 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1400 		    usbd_errstr(error));
1401 	}
1402 }
1403 
1404 static uint16_t
1405 ural_read(struct ural_softc *sc, uint16_t reg)
1406 {
1407 	struct usb_device_request req;
1408 	usb_error_t error;
1409 	uint16_t val;
1410 
1411 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1412 	req.bRequest = RAL_READ_MAC;
1413 	USETW(req.wValue, 0);
1414 	USETW(req.wIndex, reg);
1415 	USETW(req.wLength, sizeof (uint16_t));
1416 
1417 	error = ural_do_request(sc, &req, &val);
1418 	if (error != 0) {
1419 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1420 		    usbd_errstr(error));
1421 		return 0;
1422 	}
1423 
1424 	return le16toh(val);
1425 }
1426 
1427 static void
1428 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1429 {
1430 	struct usb_device_request req;
1431 	usb_error_t error;
1432 
1433 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1434 	req.bRequest = RAL_READ_MULTI_MAC;
1435 	USETW(req.wValue, 0);
1436 	USETW(req.wIndex, reg);
1437 	USETW(req.wLength, len);
1438 
1439 	error = ural_do_request(sc, &req, buf);
1440 	if (error != 0) {
1441 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1442 		    usbd_errstr(error));
1443 	}
1444 }
1445 
1446 static void
1447 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1448 {
1449 	struct usb_device_request req;
1450 	usb_error_t error;
1451 
1452 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1453 	req.bRequest = RAL_WRITE_MAC;
1454 	USETW(req.wValue, val);
1455 	USETW(req.wIndex, reg);
1456 	USETW(req.wLength, 0);
1457 
1458 	error = ural_do_request(sc, &req, NULL);
1459 	if (error != 0) {
1460 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1461 		    usbd_errstr(error));
1462 	}
1463 }
1464 
1465 static void
1466 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1467 {
1468 	struct usb_device_request req;
1469 	usb_error_t error;
1470 
1471 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1472 	req.bRequest = RAL_WRITE_MULTI_MAC;
1473 	USETW(req.wValue, 0);
1474 	USETW(req.wIndex, reg);
1475 	USETW(req.wLength, len);
1476 
1477 	error = ural_do_request(sc, &req, buf);
1478 	if (error != 0) {
1479 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1480 		    usbd_errstr(error));
1481 	}
1482 }
1483 
1484 static void
1485 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1486 {
1487 	uint16_t tmp;
1488 	int ntries;
1489 
1490 	for (ntries = 0; ntries < 100; ntries++) {
1491 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1492 			break;
1493 		if (ural_pause(sc, hz / 100))
1494 			break;
1495 	}
1496 	if (ntries == 100) {
1497 		device_printf(sc->sc_dev, "could not write to BBP\n");
1498 		return;
1499 	}
1500 
1501 	tmp = reg << 8 | val;
1502 	ural_write(sc, RAL_PHY_CSR7, tmp);
1503 }
1504 
1505 static uint8_t
1506 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1507 {
1508 	uint16_t val;
1509 	int ntries;
1510 
1511 	val = RAL_BBP_WRITE | reg << 8;
1512 	ural_write(sc, RAL_PHY_CSR7, val);
1513 
1514 	for (ntries = 0; ntries < 100; ntries++) {
1515 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1516 			break;
1517 		if (ural_pause(sc, hz / 100))
1518 			break;
1519 	}
1520 	if (ntries == 100) {
1521 		device_printf(sc->sc_dev, "could not read BBP\n");
1522 		return 0;
1523 	}
1524 
1525 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1526 }
1527 
1528 static void
1529 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1530 {
1531 	uint32_t tmp;
1532 	int ntries;
1533 
1534 	for (ntries = 0; ntries < 100; ntries++) {
1535 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1536 			break;
1537 		if (ural_pause(sc, hz / 100))
1538 			break;
1539 	}
1540 	if (ntries == 100) {
1541 		device_printf(sc->sc_dev, "could not write to RF\n");
1542 		return;
1543 	}
1544 
1545 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1546 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1547 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1548 
1549 	/* remember last written value in sc */
1550 	sc->rf_regs[reg] = val;
1551 
1552 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1553 }
1554 
1555 static void
1556 ural_scan_start(struct ieee80211com *ic)
1557 {
1558 	struct ural_softc *sc = ic->ic_softc;
1559 
1560 	RAL_LOCK(sc);
1561 	ural_write(sc, RAL_TXRX_CSR19, 0);
1562 	ural_set_bssid(sc, ieee80211broadcastaddr);
1563 	RAL_UNLOCK(sc);
1564 }
1565 
1566 static void
1567 ural_scan_end(struct ieee80211com *ic)
1568 {
1569 	struct ural_softc *sc = ic->ic_softc;
1570 
1571 	RAL_LOCK(sc);
1572 	ural_enable_tsf_sync(sc);
1573 	ural_set_bssid(sc, sc->sc_bssid);
1574 	RAL_UNLOCK(sc);
1575 
1576 }
1577 
1578 static void
1579 ural_getradiocaps(struct ieee80211com *ic,
1580     int maxchans, int *nchans, struct ieee80211_channel chans[])
1581 {
1582 	struct ural_softc *sc = ic->ic_softc;
1583 	uint8_t bands[IEEE80211_MODE_BYTES];
1584 
1585 	memset(bands, 0, sizeof(bands));
1586 	setbit(bands, IEEE80211_MODE_11B);
1587 	setbit(bands, IEEE80211_MODE_11G);
1588 	ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
1589 
1590 	if (sc->rf_rev == RAL_RF_5222) {
1591 		setbit(bands, IEEE80211_MODE_11A);
1592 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
1593 		    ural_chan_5ghz, nitems(ural_chan_5ghz), bands, 0);
1594 	}
1595 }
1596 
1597 static void
1598 ural_set_channel(struct ieee80211com *ic)
1599 {
1600 	struct ural_softc *sc = ic->ic_softc;
1601 
1602 	RAL_LOCK(sc);
1603 	ural_set_chan(sc, ic->ic_curchan);
1604 	RAL_UNLOCK(sc);
1605 }
1606 
1607 static void
1608 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1609 {
1610 	struct ieee80211com *ic = &sc->sc_ic;
1611 	uint8_t power, tmp;
1612 	int i, chan;
1613 
1614 	chan = ieee80211_chan2ieee(ic, c);
1615 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1616 		return;
1617 
1618 	if (IEEE80211_IS_CHAN_2GHZ(c))
1619 		power = min(sc->txpow[chan - 1], 31);
1620 	else
1621 		power = 31;
1622 
1623 	/* adjust txpower using ifconfig settings */
1624 	power -= (100 - ic->ic_txpowlimit) / 8;
1625 
1626 	DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1627 
1628 	switch (sc->rf_rev) {
1629 	case RAL_RF_2522:
1630 		ural_rf_write(sc, RAL_RF1, 0x00814);
1631 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1632 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1633 		break;
1634 
1635 	case RAL_RF_2523:
1636 		ural_rf_write(sc, RAL_RF1, 0x08804);
1637 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1638 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1639 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1640 		break;
1641 
1642 	case RAL_RF_2524:
1643 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1644 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1645 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1646 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1647 		break;
1648 
1649 	case RAL_RF_2525:
1650 		ural_rf_write(sc, RAL_RF1, 0x08808);
1651 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1652 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1653 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1654 
1655 		ural_rf_write(sc, RAL_RF1, 0x08808);
1656 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1657 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1658 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1659 		break;
1660 
1661 	case RAL_RF_2525E:
1662 		ural_rf_write(sc, RAL_RF1, 0x08808);
1663 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1664 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1665 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1666 		break;
1667 
1668 	case RAL_RF_2526:
1669 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1670 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1671 		ural_rf_write(sc, RAL_RF1, 0x08804);
1672 
1673 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1674 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1675 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1676 		break;
1677 
1678 	/* dual-band RF */
1679 	case RAL_RF_5222:
1680 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1681 
1682 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1683 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1684 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1685 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1686 		break;
1687 	}
1688 
1689 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1690 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1691 		/* set Japan filter bit for channel 14 */
1692 		tmp = ural_bbp_read(sc, 70);
1693 
1694 		tmp &= ~RAL_JAPAN_FILTER;
1695 		if (chan == 14)
1696 			tmp |= RAL_JAPAN_FILTER;
1697 
1698 		ural_bbp_write(sc, 70, tmp);
1699 
1700 		/* clear CRC errors */
1701 		ural_read(sc, RAL_STA_CSR0);
1702 
1703 		ural_pause(sc, hz / 100);
1704 		ural_disable_rf_tune(sc);
1705 	}
1706 
1707 	/* XXX doesn't belong here */
1708 	/* update basic rate set */
1709 	ural_set_basicrates(sc, c);
1710 
1711 	/* give the hardware some time to do the switchover */
1712 	ural_pause(sc, hz / 100);
1713 }
1714 
1715 /*
1716  * Disable RF auto-tuning.
1717  */
1718 static void
1719 ural_disable_rf_tune(struct ural_softc *sc)
1720 {
1721 	uint32_t tmp;
1722 
1723 	if (sc->rf_rev != RAL_RF_2523) {
1724 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1725 		ural_rf_write(sc, RAL_RF1, tmp);
1726 	}
1727 
1728 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1729 	ural_rf_write(sc, RAL_RF3, tmp);
1730 
1731 	DPRINTFN(2, "disabling RF autotune\n");
1732 }
1733 
1734 /*
1735  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1736  * synchronization.
1737  */
1738 static void
1739 ural_enable_tsf_sync(struct ural_softc *sc)
1740 {
1741 	struct ieee80211com *ic = &sc->sc_ic;
1742 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1743 	uint16_t logcwmin, preload, tmp;
1744 
1745 	/* first, disable TSF synchronization */
1746 	ural_write(sc, RAL_TXRX_CSR19, 0);
1747 
1748 	tmp = (16 * vap->iv_bss->ni_intval) << 4;
1749 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1750 
1751 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1752 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1753 	tmp = logcwmin << 12 | preload;
1754 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1755 
1756 	/* finally, enable TSF synchronization */
1757 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1758 	if (ic->ic_opmode == IEEE80211_M_STA)
1759 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1760 	else
1761 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1762 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1763 
1764 	DPRINTF("enabling TSF synchronization\n");
1765 }
1766 
1767 static void
1768 ural_enable_tsf(struct ural_softc *sc)
1769 {
1770 	/* first, disable TSF synchronization */
1771 	ural_write(sc, RAL_TXRX_CSR19, 0);
1772 	ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1773 }
1774 
1775 #define RAL_RXTX_TURNAROUND	5	/* us */
1776 static void
1777 ural_update_slot(struct ural_softc *sc)
1778 {
1779 	struct ieee80211com *ic = &sc->sc_ic;
1780 	uint16_t slottime, sifs, eifs;
1781 
1782 	slottime = IEEE80211_GET_SLOTTIME(ic);
1783 
1784 	/*
1785 	 * These settings may sound a bit inconsistent but this is what the
1786 	 * reference driver does.
1787 	 */
1788 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1789 		sifs = 16 - RAL_RXTX_TURNAROUND;
1790 		eifs = 364;
1791 	} else {
1792 		sifs = 10 - RAL_RXTX_TURNAROUND;
1793 		eifs = 64;
1794 	}
1795 
1796 	ural_write(sc, RAL_MAC_CSR10, slottime);
1797 	ural_write(sc, RAL_MAC_CSR11, sifs);
1798 	ural_write(sc, RAL_MAC_CSR12, eifs);
1799 }
1800 
1801 static void
1802 ural_set_txpreamble(struct ural_softc *sc)
1803 {
1804 	struct ieee80211com *ic = &sc->sc_ic;
1805 	uint16_t tmp;
1806 
1807 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1808 
1809 	tmp &= ~RAL_SHORT_PREAMBLE;
1810 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1811 		tmp |= RAL_SHORT_PREAMBLE;
1812 
1813 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1814 }
1815 
1816 static void
1817 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1818 {
1819 	/* XXX wrong, take from rate set */
1820 	/* update basic rate set */
1821 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1822 		/* 11a basic rates: 6, 12, 24Mbps */
1823 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1824 	} else if (IEEE80211_IS_CHAN_ANYG(c)) {
1825 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1826 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1827 	} else {
1828 		/* 11b basic rates: 1, 2Mbps */
1829 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1830 	}
1831 }
1832 
1833 static void
1834 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1835 {
1836 	uint16_t tmp;
1837 
1838 	tmp = bssid[0] | bssid[1] << 8;
1839 	ural_write(sc, RAL_MAC_CSR5, tmp);
1840 
1841 	tmp = bssid[2] | bssid[3] << 8;
1842 	ural_write(sc, RAL_MAC_CSR6, tmp);
1843 
1844 	tmp = bssid[4] | bssid[5] << 8;
1845 	ural_write(sc, RAL_MAC_CSR7, tmp);
1846 
1847 	DPRINTF("setting BSSID to %6D\n", bssid, ":");
1848 }
1849 
1850 static void
1851 ural_set_macaddr(struct ural_softc *sc, const uint8_t *addr)
1852 {
1853 	uint16_t tmp;
1854 
1855 	tmp = addr[0] | addr[1] << 8;
1856 	ural_write(sc, RAL_MAC_CSR2, tmp);
1857 
1858 	tmp = addr[2] | addr[3] << 8;
1859 	ural_write(sc, RAL_MAC_CSR3, tmp);
1860 
1861 	tmp = addr[4] | addr[5] << 8;
1862 	ural_write(sc, RAL_MAC_CSR4, tmp);
1863 
1864 	DPRINTF("setting MAC address to %6D\n", addr, ":");
1865 }
1866 
1867 static void
1868 ural_setpromisc(struct ural_softc *sc)
1869 {
1870 	uint32_t tmp;
1871 
1872 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1873 
1874 	tmp &= ~RAL_DROP_NOT_TO_ME;
1875 	if (sc->sc_ic.ic_promisc == 0)
1876 		tmp |= RAL_DROP_NOT_TO_ME;
1877 
1878 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1879 
1880 	DPRINTF("%s promiscuous mode\n", sc->sc_ic.ic_promisc ?
1881 	    "entering" : "leaving");
1882 }
1883 
1884 static void
1885 ural_update_promisc(struct ieee80211com *ic)
1886 {
1887 	struct ural_softc *sc = ic->ic_softc;
1888 
1889 	RAL_LOCK(sc);
1890 	if (sc->sc_running)
1891 		ural_setpromisc(sc);
1892 	RAL_UNLOCK(sc);
1893 }
1894 
1895 static const char *
1896 ural_get_rf(int rev)
1897 {
1898 	switch (rev) {
1899 	case RAL_RF_2522:	return "RT2522";
1900 	case RAL_RF_2523:	return "RT2523";
1901 	case RAL_RF_2524:	return "RT2524";
1902 	case RAL_RF_2525:	return "RT2525";
1903 	case RAL_RF_2525E:	return "RT2525e";
1904 	case RAL_RF_2526:	return "RT2526";
1905 	case RAL_RF_5222:	return "RT5222";
1906 	default:		return "unknown";
1907 	}
1908 }
1909 
1910 static void
1911 ural_read_eeprom(struct ural_softc *sc)
1912 {
1913 	struct ieee80211com *ic = &sc->sc_ic;
1914 	uint16_t val;
1915 
1916 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1917 	val = le16toh(val);
1918 	sc->rf_rev =   (val >> 11) & 0x7;
1919 	sc->hw_radio = (val >> 10) & 0x1;
1920 	sc->led_mode = (val >> 6)  & 0x7;
1921 	sc->rx_ant =   (val >> 4)  & 0x3;
1922 	sc->tx_ant =   (val >> 2)  & 0x3;
1923 	sc->nb_ant =   val & 0x3;
1924 
1925 	/* read MAC address */
1926 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_macaddr, 6);
1927 
1928 	/* read default values for BBP registers */
1929 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1930 
1931 	/* read Tx power for all b/g channels */
1932 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1933 }
1934 
1935 static int
1936 ural_bbp_init(struct ural_softc *sc)
1937 {
1938 	int i, ntries;
1939 
1940 	/* wait for BBP to be ready */
1941 	for (ntries = 0; ntries < 100; ntries++) {
1942 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1943 			break;
1944 		if (ural_pause(sc, hz / 100))
1945 			break;
1946 	}
1947 	if (ntries == 100) {
1948 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1949 		return EIO;
1950 	}
1951 
1952 	/* initialize BBP registers to default values */
1953 	for (i = 0; i < nitems(ural_def_bbp); i++)
1954 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1955 
1956 #if 0
1957 	/* initialize BBP registers to values stored in EEPROM */
1958 	for (i = 0; i < 16; i++) {
1959 		if (sc->bbp_prom[i].reg == 0xff)
1960 			continue;
1961 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1962 	}
1963 #endif
1964 
1965 	return 0;
1966 }
1967 
1968 static void
1969 ural_set_txantenna(struct ural_softc *sc, int antenna)
1970 {
1971 	uint16_t tmp;
1972 	uint8_t tx;
1973 
1974 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
1975 	if (antenna == 1)
1976 		tx |= RAL_BBP_ANTA;
1977 	else if (antenna == 2)
1978 		tx |= RAL_BBP_ANTB;
1979 	else
1980 		tx |= RAL_BBP_DIVERSITY;
1981 
1982 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
1983 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
1984 	    sc->rf_rev == RAL_RF_5222)
1985 		tx |= RAL_BBP_FLIPIQ;
1986 
1987 	ural_bbp_write(sc, RAL_BBP_TX, tx);
1988 
1989 	/* update values in PHY_CSR5 and PHY_CSR6 */
1990 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
1991 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
1992 
1993 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
1994 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
1995 }
1996 
1997 static void
1998 ural_set_rxantenna(struct ural_softc *sc, int antenna)
1999 {
2000 	uint8_t rx;
2001 
2002 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2003 	if (antenna == 1)
2004 		rx |= RAL_BBP_ANTA;
2005 	else if (antenna == 2)
2006 		rx |= RAL_BBP_ANTB;
2007 	else
2008 		rx |= RAL_BBP_DIVERSITY;
2009 
2010 	/* need to force no I/Q flip for RF 2525e and 2526 */
2011 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2012 		rx &= ~RAL_BBP_FLIPIQ;
2013 
2014 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2015 }
2016 
2017 static void
2018 ural_init(struct ural_softc *sc)
2019 {
2020 	struct ieee80211com *ic = &sc->sc_ic;
2021 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2022 	uint16_t tmp;
2023 	int i, ntries;
2024 
2025 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2026 
2027 	ural_set_testmode(sc);
2028 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2029 
2030 	ural_stop(sc);
2031 
2032 	/* initialize MAC registers to default values */
2033 	for (i = 0; i < nitems(ural_def_mac); i++)
2034 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2035 
2036 	/* wait for BBP and RF to wake up (this can take a long time!) */
2037 	for (ntries = 0; ntries < 100; ntries++) {
2038 		tmp = ural_read(sc, RAL_MAC_CSR17);
2039 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2040 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2041 			break;
2042 		if (ural_pause(sc, hz / 100))
2043 			break;
2044 	}
2045 	if (ntries == 100) {
2046 		device_printf(sc->sc_dev,
2047 		    "timeout waiting for BBP/RF to wakeup\n");
2048 		goto fail;
2049 	}
2050 
2051 	/* we're ready! */
2052 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2053 
2054 	/* set basic rate set (will be updated later) */
2055 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2056 
2057 	if (ural_bbp_init(sc) != 0)
2058 		goto fail;
2059 
2060 	ural_set_chan(sc, ic->ic_curchan);
2061 
2062 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2063 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2064 
2065 	ural_set_txantenna(sc, sc->tx_ant);
2066 	ural_set_rxantenna(sc, sc->rx_ant);
2067 
2068 	ural_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2069 
2070 	/*
2071 	 * Allocate Tx and Rx xfer queues.
2072 	 */
2073 	ural_setup_tx_list(sc);
2074 
2075 	/* kick Rx */
2076 	tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2077 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2078 		tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2079 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2080 			tmp |= RAL_DROP_TODS;
2081 		if (ic->ic_promisc == 0)
2082 			tmp |= RAL_DROP_NOT_TO_ME;
2083 	}
2084 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2085 
2086 	sc->sc_running = 1;
2087 	usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2088 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2089 	return;
2090 
2091 fail:	ural_stop(sc);
2092 }
2093 
2094 static void
2095 ural_stop(struct ural_softc *sc)
2096 {
2097 
2098 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2099 
2100 	sc->sc_running = 0;
2101 
2102 	/*
2103 	 * Drain all the transfers, if not already drained:
2104 	 */
2105 	RAL_UNLOCK(sc);
2106 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2107 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2108 	RAL_LOCK(sc);
2109 
2110 	ural_unsetup_tx_list(sc);
2111 
2112 	/* disable Rx */
2113 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2114 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2115 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2116 	/* wait a little */
2117 	ural_pause(sc, hz / 10);
2118 	ural_write(sc, RAL_MAC_CSR1, 0);
2119 	/* wait a little */
2120 	ural_pause(sc, hz / 10);
2121 }
2122 
2123 static int
2124 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2125 	const struct ieee80211_bpf_params *params)
2126 {
2127 	struct ieee80211com *ic = ni->ni_ic;
2128 	struct ural_softc *sc = ic->ic_softc;
2129 
2130 	RAL_LOCK(sc);
2131 	/* prevent management frames from being sent if we're not ready */
2132 	if (!sc->sc_running) {
2133 		RAL_UNLOCK(sc);
2134 		m_freem(m);
2135 		return ENETDOWN;
2136 	}
2137 	if (sc->tx_nfree < RAL_TX_MINFREE) {
2138 		RAL_UNLOCK(sc);
2139 		m_freem(m);
2140 		return EIO;
2141 	}
2142 
2143 	if (params == NULL) {
2144 		/*
2145 		 * Legacy path; interpret frame contents to decide
2146 		 * precisely how to send the frame.
2147 		 */
2148 		if (ural_tx_mgt(sc, m, ni) != 0)
2149 			goto bad;
2150 	} else {
2151 		/*
2152 		 * Caller supplied explicit parameters to use in
2153 		 * sending the frame.
2154 		 */
2155 		if (ural_tx_raw(sc, m, ni, params) != 0)
2156 			goto bad;
2157 	}
2158 	RAL_UNLOCK(sc);
2159 	return 0;
2160 bad:
2161 	RAL_UNLOCK(sc);
2162 	return EIO;		/* XXX */
2163 }
2164 
2165 static void
2166 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni)
2167 {
2168 	struct ieee80211vap *vap = ni->ni_vap;
2169 	struct ural_vap *uvp = URAL_VAP(vap);
2170 
2171 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2172 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2173 
2174 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2175 }
2176 
2177 static void
2178 ural_ratectl_timeout(void *arg)
2179 {
2180 	struct ural_vap *uvp = arg;
2181 	struct ieee80211vap *vap = &uvp->vap;
2182 	struct ieee80211com *ic = vap->iv_ic;
2183 
2184 	ieee80211_runtask(ic, &uvp->ratectl_task);
2185 }
2186 
2187 static void
2188 ural_ratectl_task(void *arg, int pending)
2189 {
2190 	struct ural_vap *uvp = arg;
2191 	struct ieee80211vap *vap = &uvp->vap;
2192 	struct ural_softc *sc = vap->iv_ic->ic_softc;
2193 	struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs;
2194 	int fail;
2195 
2196 	RAL_LOCK(sc);
2197 	/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2198 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2199 
2200 	txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES;
2201 	txs->nsuccess = sc->sta[7] +	/* TX ok w/o retry */
2202 			sc->sta[8];	/* TX ok w/ retry */
2203 	fail = sc->sta[9];		/* TX retry-fail count */
2204 	txs->nframes = txs->nsuccess + fail;
2205 	/* XXX fail * maxretry */
2206 	txs->nretries = sc->sta[8] + fail;
2207 
2208 	ieee80211_ratectl_tx_update(vap, txs);
2209 
2210 	/* count TX retry-fail as Tx errors */
2211 	if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
2212 
2213 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2214 	RAL_UNLOCK(sc);
2215 }
2216 
2217 static int
2218 ural_pause(struct ural_softc *sc, int timeout)
2219 {
2220 
2221 	usb_pause_mtx(&sc->sc_mtx, timeout);
2222 	return (0);
2223 }
2224