xref: /freebsd/sys/dev/usb/wlan/if_ural.c (revision c697fb7f)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Copyright (c) 2006, 2008
8  *	Hans Petter Selasky <hselasky@FreeBSD.org>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 /*-
27  * Ralink Technology RT2500USB chipset driver
28  * http://www.ralinktech.com/
29  */
30 
31 #include "opt_wlan.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/mbuf.h>
39 #include <sys/kernel.h>
40 #include <sys/socket.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/bus.h>
45 #include <sys/endian.h>
46 #include <sys/kdb.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/if_ether.h>
62 #include <netinet/ip.h>
63 #endif
64 
65 #include <net80211/ieee80211_var.h>
66 #include <net80211/ieee80211_regdomain.h>
67 #include <net80211/ieee80211_radiotap.h>
68 #include <net80211/ieee80211_ratectl.h>
69 
70 #include <dev/usb/usb.h>
71 #include <dev/usb/usbdi.h>
72 #include "usbdevs.h"
73 
74 #define	USB_DEBUG_VAR ural_debug
75 #include <dev/usb/usb_debug.h>
76 
77 #include <dev/usb/wlan/if_uralreg.h>
78 #include <dev/usb/wlan/if_uralvar.h>
79 
80 #ifdef USB_DEBUG
81 static int ural_debug = 0;
82 
83 static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
84     "USB ural");
85 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RWTUN, &ural_debug, 0,
86     "Debug level");
87 #endif
88 
89 #define URAL_RSSI(rssi)					\
90 	((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?	\
91 	 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
92 
93 /* various supported device vendors/products */
94 static const STRUCT_USB_HOST_ID ural_devs[] = {
95 #define	URAL_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
96 	URAL_DEV(ASUS, WL167G),
97 	URAL_DEV(ASUS, RT2570),
98 	URAL_DEV(BELKIN, F5D7050),
99 	URAL_DEV(BELKIN, F5D7051),
100 	URAL_DEV(CISCOLINKSYS, HU200TS),
101 	URAL_DEV(CISCOLINKSYS, WUSB54G),
102 	URAL_DEV(CISCOLINKSYS, WUSB54GP),
103 	URAL_DEV(CONCEPTRONIC2, C54RU),
104 	URAL_DEV(DLINK, DWLG122),
105 	URAL_DEV(GIGABYTE, GN54G),
106 	URAL_DEV(GIGABYTE, GNWBKG),
107 	URAL_DEV(GUILLEMOT, HWGUSB254),
108 	URAL_DEV(MELCO, KG54),
109 	URAL_DEV(MELCO, KG54AI),
110 	URAL_DEV(MELCO, KG54YB),
111 	URAL_DEV(MELCO, NINWIFI),
112 	URAL_DEV(MSI, RT2570),
113 	URAL_DEV(MSI, RT2570_2),
114 	URAL_DEV(MSI, RT2570_3),
115 	URAL_DEV(NOVATECH, NV902),
116 	URAL_DEV(RALINK, RT2570),
117 	URAL_DEV(RALINK, RT2570_2),
118 	URAL_DEV(RALINK, RT2570_3),
119 	URAL_DEV(SIEMENS2, WL54G),
120 	URAL_DEV(SMC, 2862WG),
121 	URAL_DEV(SPHAIRON, UB801R),
122 	URAL_DEV(SURECOM, RT2570),
123 	URAL_DEV(VTECH, RT2570),
124 	URAL_DEV(ZINWELL, RT2570),
125 #undef URAL_DEV
126 };
127 
128 static usb_callback_t ural_bulk_read_callback;
129 static usb_callback_t ural_bulk_write_callback;
130 
131 static usb_error_t	ural_do_request(struct ural_softc *sc,
132 			    struct usb_device_request *req, void *data);
133 static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
134 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
135 			    int, const uint8_t [IEEE80211_ADDR_LEN],
136 			    const uint8_t [IEEE80211_ADDR_LEN]);
137 static void		ural_vap_delete(struct ieee80211vap *);
138 static void		ural_tx_free(struct ural_tx_data *, int);
139 static void		ural_setup_tx_list(struct ural_softc *);
140 static void		ural_unsetup_tx_list(struct ural_softc *);
141 static int		ural_newstate(struct ieee80211vap *,
142 			    enum ieee80211_state, int);
143 static void		ural_setup_tx_desc(struct ural_softc *,
144 			    struct ural_tx_desc *, uint32_t, int, int);
145 static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
146 			    struct ieee80211_node *);
147 static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
148 			    struct ieee80211_node *);
149 static int		ural_tx_data(struct ural_softc *, struct mbuf *,
150 			    struct ieee80211_node *);
151 static int		ural_transmit(struct ieee80211com *, struct mbuf *);
152 static void		ural_start(struct ural_softc *);
153 static void		ural_parent(struct ieee80211com *);
154 static void		ural_set_testmode(struct ural_softc *);
155 static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
156 			    int);
157 static uint16_t		ural_read(struct ural_softc *, uint16_t);
158 static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
159 			    int);
160 static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
161 static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
162 			    int) __unused;
163 static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
164 static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
165 static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
166 static void		ural_scan_start(struct ieee80211com *);
167 static void		ural_scan_end(struct ieee80211com *);
168 static void		ural_getradiocaps(struct ieee80211com *, int, int *,
169 			    struct ieee80211_channel[]);
170 static void		ural_set_channel(struct ieee80211com *);
171 static void		ural_set_chan(struct ural_softc *,
172 			    struct ieee80211_channel *);
173 static void		ural_disable_rf_tune(struct ural_softc *);
174 static void		ural_enable_tsf_sync(struct ural_softc *);
175 static void 		ural_enable_tsf(struct ural_softc *);
176 static void		ural_update_slot(struct ural_softc *);
177 static void		ural_set_txpreamble(struct ural_softc *);
178 static void		ural_set_basicrates(struct ural_softc *,
179 			    const struct ieee80211_channel *);
180 static void		ural_set_bssid(struct ural_softc *, const uint8_t *);
181 static void		ural_set_macaddr(struct ural_softc *, const uint8_t *);
182 static void		ural_update_promisc(struct ieee80211com *);
183 static void		ural_setpromisc(struct ural_softc *);
184 static const char	*ural_get_rf(int);
185 static void		ural_read_eeprom(struct ural_softc *);
186 static int		ural_bbp_init(struct ural_softc *);
187 static void		ural_set_txantenna(struct ural_softc *, int);
188 static void		ural_set_rxantenna(struct ural_softc *, int);
189 static void		ural_init(struct ural_softc *);
190 static void		ural_stop(struct ural_softc *);
191 static int		ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
192 			    const struct ieee80211_bpf_params *);
193 static void		ural_ratectl_start(struct ural_softc *,
194 			    struct ieee80211_node *);
195 static void		ural_ratectl_timeout(void *);
196 static void		ural_ratectl_task(void *, int);
197 static int		ural_pause(struct ural_softc *sc, int timeout);
198 
199 /*
200  * Default values for MAC registers; values taken from the reference driver.
201  */
202 static const struct {
203 	uint16_t	reg;
204 	uint16_t	val;
205 } ural_def_mac[] = {
206 	{ RAL_TXRX_CSR5,  0x8c8d },
207 	{ RAL_TXRX_CSR6,  0x8b8a },
208 	{ RAL_TXRX_CSR7,  0x8687 },
209 	{ RAL_TXRX_CSR8,  0x0085 },
210 	{ RAL_MAC_CSR13,  0x1111 },
211 	{ RAL_MAC_CSR14,  0x1e11 },
212 	{ RAL_TXRX_CSR21, 0xe78f },
213 	{ RAL_MAC_CSR9,   0xff1d },
214 	{ RAL_MAC_CSR11,  0x0002 },
215 	{ RAL_MAC_CSR22,  0x0053 },
216 	{ RAL_MAC_CSR15,  0x0000 },
217 	{ RAL_MAC_CSR8,   RAL_FRAME_SIZE },
218 	{ RAL_TXRX_CSR19, 0x0000 },
219 	{ RAL_TXRX_CSR18, 0x005a },
220 	{ RAL_PHY_CSR2,   0x0000 },
221 	{ RAL_TXRX_CSR0,  0x1ec0 },
222 	{ RAL_PHY_CSR4,   0x000f }
223 };
224 
225 /*
226  * Default values for BBP registers; values taken from the reference driver.
227  */
228 static const struct {
229 	uint8_t	reg;
230 	uint8_t	val;
231 } ural_def_bbp[] = {
232 	{  3, 0x02 },
233 	{  4, 0x19 },
234 	{ 14, 0x1c },
235 	{ 15, 0x30 },
236 	{ 16, 0xac },
237 	{ 17, 0x48 },
238 	{ 18, 0x18 },
239 	{ 19, 0xff },
240 	{ 20, 0x1e },
241 	{ 21, 0x08 },
242 	{ 22, 0x08 },
243 	{ 23, 0x08 },
244 	{ 24, 0x80 },
245 	{ 25, 0x50 },
246 	{ 26, 0x08 },
247 	{ 27, 0x23 },
248 	{ 30, 0x10 },
249 	{ 31, 0x2b },
250 	{ 32, 0xb9 },
251 	{ 34, 0x12 },
252 	{ 35, 0x50 },
253 	{ 39, 0xc4 },
254 	{ 40, 0x02 },
255 	{ 41, 0x60 },
256 	{ 53, 0x10 },
257 	{ 54, 0x18 },
258 	{ 56, 0x08 },
259 	{ 57, 0x10 },
260 	{ 58, 0x08 },
261 	{ 61, 0x60 },
262 	{ 62, 0x10 },
263 	{ 75, 0xff }
264 };
265 
266 /*
267  * Default values for RF register R2 indexed by channel numbers.
268  */
269 static const uint32_t ural_rf2522_r2[] = {
270 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
271 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
272 };
273 
274 static const uint32_t ural_rf2523_r2[] = {
275 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
276 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
277 };
278 
279 static const uint32_t ural_rf2524_r2[] = {
280 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
281 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
282 };
283 
284 static const uint32_t ural_rf2525_r2[] = {
285 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
286 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
287 };
288 
289 static const uint32_t ural_rf2525_hi_r2[] = {
290 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
291 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
292 };
293 
294 static const uint32_t ural_rf2525e_r2[] = {
295 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
296 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
297 };
298 
299 static const uint32_t ural_rf2526_hi_r2[] = {
300 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
301 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
302 };
303 
304 static const uint32_t ural_rf2526_r2[] = {
305 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
306 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
307 };
308 
309 /*
310  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
311  * values taken from the reference driver.
312  */
313 static const struct {
314 	uint8_t		chan;
315 	uint32_t	r1;
316 	uint32_t	r2;
317 	uint32_t	r4;
318 } ural_rf5222[] = {
319 	{   1, 0x08808, 0x0044d, 0x00282 },
320 	{   2, 0x08808, 0x0044e, 0x00282 },
321 	{   3, 0x08808, 0x0044f, 0x00282 },
322 	{   4, 0x08808, 0x00460, 0x00282 },
323 	{   5, 0x08808, 0x00461, 0x00282 },
324 	{   6, 0x08808, 0x00462, 0x00282 },
325 	{   7, 0x08808, 0x00463, 0x00282 },
326 	{   8, 0x08808, 0x00464, 0x00282 },
327 	{   9, 0x08808, 0x00465, 0x00282 },
328 	{  10, 0x08808, 0x00466, 0x00282 },
329 	{  11, 0x08808, 0x00467, 0x00282 },
330 	{  12, 0x08808, 0x00468, 0x00282 },
331 	{  13, 0x08808, 0x00469, 0x00282 },
332 	{  14, 0x08808, 0x0046b, 0x00286 },
333 
334 	{  36, 0x08804, 0x06225, 0x00287 },
335 	{  40, 0x08804, 0x06226, 0x00287 },
336 	{  44, 0x08804, 0x06227, 0x00287 },
337 	{  48, 0x08804, 0x06228, 0x00287 },
338 	{  52, 0x08804, 0x06229, 0x00287 },
339 	{  56, 0x08804, 0x0622a, 0x00287 },
340 	{  60, 0x08804, 0x0622b, 0x00287 },
341 	{  64, 0x08804, 0x0622c, 0x00287 },
342 
343 	{ 100, 0x08804, 0x02200, 0x00283 },
344 	{ 104, 0x08804, 0x02201, 0x00283 },
345 	{ 108, 0x08804, 0x02202, 0x00283 },
346 	{ 112, 0x08804, 0x02203, 0x00283 },
347 	{ 116, 0x08804, 0x02204, 0x00283 },
348 	{ 120, 0x08804, 0x02205, 0x00283 },
349 	{ 124, 0x08804, 0x02206, 0x00283 },
350 	{ 128, 0x08804, 0x02207, 0x00283 },
351 	{ 132, 0x08804, 0x02208, 0x00283 },
352 	{ 136, 0x08804, 0x02209, 0x00283 },
353 	{ 140, 0x08804, 0x0220a, 0x00283 },
354 
355 	{ 149, 0x08808, 0x02429, 0x00281 },
356 	{ 153, 0x08808, 0x0242b, 0x00281 },
357 	{ 157, 0x08808, 0x0242d, 0x00281 },
358 	{ 161, 0x08808, 0x0242f, 0x00281 }
359 };
360 
361 static const uint8_t ural_chan_5ghz[] =
362 	{ 36, 40, 44, 48, 52, 56, 60, 64,
363 	  100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
364 	  149, 153, 157, 161 };
365 
366 static const struct usb_config ural_config[URAL_N_TRANSFER] = {
367 	[URAL_BULK_WR] = {
368 		.type = UE_BULK,
369 		.endpoint = UE_ADDR_ANY,
370 		.direction = UE_DIR_OUT,
371 		.bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
372 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
373 		.callback = ural_bulk_write_callback,
374 		.timeout = 5000,	/* ms */
375 	},
376 	[URAL_BULK_RD] = {
377 		.type = UE_BULK,
378 		.endpoint = UE_ADDR_ANY,
379 		.direction = UE_DIR_IN,
380 		.bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
381 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
382 		.callback = ural_bulk_read_callback,
383 	},
384 };
385 
386 static device_probe_t ural_match;
387 static device_attach_t ural_attach;
388 static device_detach_t ural_detach;
389 
390 static device_method_t ural_methods[] = {
391 	/* Device interface */
392 	DEVMETHOD(device_probe,		ural_match),
393 	DEVMETHOD(device_attach,	ural_attach),
394 	DEVMETHOD(device_detach,	ural_detach),
395 	DEVMETHOD_END
396 };
397 
398 static driver_t ural_driver = {
399 	.name = "ural",
400 	.methods = ural_methods,
401 	.size = sizeof(struct ural_softc),
402 };
403 
404 static devclass_t ural_devclass;
405 
406 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0);
407 MODULE_DEPEND(ural, usb, 1, 1, 1);
408 MODULE_DEPEND(ural, wlan, 1, 1, 1);
409 MODULE_VERSION(ural, 1);
410 USB_PNP_HOST_INFO(ural_devs);
411 
412 static int
413 ural_match(device_t self)
414 {
415 	struct usb_attach_arg *uaa = device_get_ivars(self);
416 
417 	if (uaa->usb_mode != USB_MODE_HOST)
418 		return (ENXIO);
419 	if (uaa->info.bConfigIndex != 0)
420 		return (ENXIO);
421 	if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
422 		return (ENXIO);
423 
424 	return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
425 }
426 
427 static int
428 ural_attach(device_t self)
429 {
430 	struct usb_attach_arg *uaa = device_get_ivars(self);
431 	struct ural_softc *sc = device_get_softc(self);
432 	struct ieee80211com *ic = &sc->sc_ic;
433 	uint8_t iface_index;
434 	int error;
435 
436 	device_set_usb_desc(self);
437 	sc->sc_udev = uaa->device;
438 	sc->sc_dev = self;
439 
440 	mtx_init(&sc->sc_mtx, device_get_nameunit(self),
441 	    MTX_NETWORK_LOCK, MTX_DEF);
442 	mbufq_init(&sc->sc_snd, ifqmaxlen);
443 
444 	iface_index = RAL_IFACE_INDEX;
445 	error = usbd_transfer_setup(uaa->device,
446 	    &iface_index, sc->sc_xfer, ural_config,
447 	    URAL_N_TRANSFER, sc, &sc->sc_mtx);
448 	if (error) {
449 		device_printf(self, "could not allocate USB transfers, "
450 		    "err=%s\n", usbd_errstr(error));
451 		goto detach;
452 	}
453 
454 	RAL_LOCK(sc);
455 	/* retrieve RT2570 rev. no */
456 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
457 
458 	/* retrieve MAC address and various other things from EEPROM */
459 	ural_read_eeprom(sc);
460 	RAL_UNLOCK(sc);
461 
462 	device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
463 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
464 
465 	ic->ic_softc = sc;
466 	ic->ic_name = device_get_nameunit(self);
467 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
468 
469 	/* set device capabilities */
470 	ic->ic_caps =
471 	      IEEE80211_C_STA		/* station mode supported */
472 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
473 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
474 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
475 	    | IEEE80211_C_TXPMGT	/* tx power management */
476 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
477 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
478 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
479 	    | IEEE80211_C_WPA		/* 802.11i */
480 	    ;
481 
482 	ural_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
483 	    ic->ic_channels);
484 
485 	ieee80211_ifattach(ic);
486 	ic->ic_update_promisc = ural_update_promisc;
487 	ic->ic_raw_xmit = ural_raw_xmit;
488 	ic->ic_scan_start = ural_scan_start;
489 	ic->ic_scan_end = ural_scan_end;
490 	ic->ic_getradiocaps = ural_getradiocaps;
491 	ic->ic_set_channel = ural_set_channel;
492 	ic->ic_parent = ural_parent;
493 	ic->ic_transmit = ural_transmit;
494 	ic->ic_vap_create = ural_vap_create;
495 	ic->ic_vap_delete = ural_vap_delete;
496 
497 	ieee80211_radiotap_attach(ic,
498 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
499 		RAL_TX_RADIOTAP_PRESENT,
500 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
501 		RAL_RX_RADIOTAP_PRESENT);
502 
503 	if (bootverbose)
504 		ieee80211_announce(ic);
505 
506 	return (0);
507 
508 detach:
509 	ural_detach(self);
510 	return (ENXIO);			/* failure */
511 }
512 
513 static int
514 ural_detach(device_t self)
515 {
516 	struct ural_softc *sc = device_get_softc(self);
517 	struct ieee80211com *ic = &sc->sc_ic;
518 
519 	/* prevent further ioctls */
520 	RAL_LOCK(sc);
521 	sc->sc_detached = 1;
522 	RAL_UNLOCK(sc);
523 
524 	/* stop all USB transfers */
525 	usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
526 
527 	/* free TX list, if any */
528 	RAL_LOCK(sc);
529 	ural_unsetup_tx_list(sc);
530 	RAL_UNLOCK(sc);
531 
532 	if (ic->ic_softc == sc)
533 		ieee80211_ifdetach(ic);
534 	mbufq_drain(&sc->sc_snd);
535 	mtx_destroy(&sc->sc_mtx);
536 
537 	return (0);
538 }
539 
540 static usb_error_t
541 ural_do_request(struct ural_softc *sc,
542     struct usb_device_request *req, void *data)
543 {
544 	usb_error_t err;
545 	int ntries = 10;
546 
547 	while (ntries--) {
548 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
549 		    req, data, 0, NULL, 250 /* ms */);
550 		if (err == 0)
551 			break;
552 
553 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
554 		    usbd_errstr(err));
555 		if (ural_pause(sc, hz / 100))
556 			break;
557 	}
558 	return (err);
559 }
560 
561 static struct ieee80211vap *
562 ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
563     enum ieee80211_opmode opmode, int flags,
564     const uint8_t bssid[IEEE80211_ADDR_LEN],
565     const uint8_t mac[IEEE80211_ADDR_LEN])
566 {
567 	struct ural_softc *sc = ic->ic_softc;
568 	struct ural_vap *uvp;
569 	struct ieee80211vap *vap;
570 
571 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
572 		return NULL;
573 	uvp = malloc(sizeof(struct ural_vap), M_80211_VAP, M_WAITOK | M_ZERO);
574 	vap = &uvp->vap;
575 	/* enable s/w bmiss handling for sta mode */
576 
577 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
578 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
579 		/* out of memory */
580 		free(uvp, M_80211_VAP);
581 		return (NULL);
582 	}
583 
584 	/* override state transition machine */
585 	uvp->newstate = vap->iv_newstate;
586 	vap->iv_newstate = ural_newstate;
587 
588 	usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0);
589 	TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp);
590 	ieee80211_ratectl_init(vap);
591 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
592 
593 	/* complete setup */
594 	ieee80211_vap_attach(vap, ieee80211_media_change,
595 	    ieee80211_media_status, mac);
596 	ic->ic_opmode = opmode;
597 	return vap;
598 }
599 
600 static void
601 ural_vap_delete(struct ieee80211vap *vap)
602 {
603 	struct ural_vap *uvp = URAL_VAP(vap);
604 	struct ieee80211com *ic = vap->iv_ic;
605 
606 	usb_callout_drain(&uvp->ratectl_ch);
607 	ieee80211_draintask(ic, &uvp->ratectl_task);
608 	ieee80211_ratectl_deinit(vap);
609 	ieee80211_vap_detach(vap);
610 	free(uvp, M_80211_VAP);
611 }
612 
613 static void
614 ural_tx_free(struct ural_tx_data *data, int txerr)
615 {
616 	struct ural_softc *sc = data->sc;
617 
618 	if (data->m != NULL) {
619 		ieee80211_tx_complete(data->ni, data->m, txerr);
620 		data->m = NULL;
621 		data->ni = NULL;
622 	}
623 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
624 	sc->tx_nfree++;
625 }
626 
627 static void
628 ural_setup_tx_list(struct ural_softc *sc)
629 {
630 	struct ural_tx_data *data;
631 	int i;
632 
633 	sc->tx_nfree = 0;
634 	STAILQ_INIT(&sc->tx_q);
635 	STAILQ_INIT(&sc->tx_free);
636 
637 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
638 		data = &sc->tx_data[i];
639 
640 		data->sc = sc;
641 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
642 		sc->tx_nfree++;
643 	}
644 }
645 
646 static void
647 ural_unsetup_tx_list(struct ural_softc *sc)
648 {
649 	struct ural_tx_data *data;
650 	int i;
651 
652 	/* make sure any subsequent use of the queues will fail */
653 	sc->tx_nfree = 0;
654 	STAILQ_INIT(&sc->tx_q);
655 	STAILQ_INIT(&sc->tx_free);
656 
657 	/* free up all node references and mbufs */
658 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
659 		data = &sc->tx_data[i];
660 
661 		if (data->m != NULL) {
662 			m_freem(data->m);
663 			data->m = NULL;
664 		}
665 		if (data->ni != NULL) {
666 			ieee80211_free_node(data->ni);
667 			data->ni = NULL;
668 		}
669 	}
670 }
671 
672 static int
673 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
674 {
675 	struct ural_vap *uvp = URAL_VAP(vap);
676 	struct ieee80211com *ic = vap->iv_ic;
677 	struct ural_softc *sc = ic->ic_softc;
678 	const struct ieee80211_txparam *tp;
679 	struct ieee80211_node *ni;
680 	struct mbuf *m;
681 
682 	DPRINTF("%s -> %s\n",
683 		ieee80211_state_name[vap->iv_state],
684 		ieee80211_state_name[nstate]);
685 
686 	IEEE80211_UNLOCK(ic);
687 	RAL_LOCK(sc);
688 	usb_callout_stop(&uvp->ratectl_ch);
689 
690 	switch (nstate) {
691 	case IEEE80211_S_INIT:
692 		if (vap->iv_state == IEEE80211_S_RUN) {
693 			/* abort TSF synchronization */
694 			ural_write(sc, RAL_TXRX_CSR19, 0);
695 
696 			/* force tx led to stop blinking */
697 			ural_write(sc, RAL_MAC_CSR20, 0);
698 		}
699 		break;
700 
701 	case IEEE80211_S_RUN:
702 		ni = ieee80211_ref_node(vap->iv_bss);
703 
704 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
705 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
706 				goto fail;
707 
708 			ural_update_slot(sc);
709 			ural_set_txpreamble(sc);
710 			ural_set_basicrates(sc, ic->ic_bsschan);
711 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
712 			ural_set_bssid(sc, sc->sc_bssid);
713 		}
714 
715 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
716 		    vap->iv_opmode == IEEE80211_M_IBSS) {
717 			m = ieee80211_beacon_alloc(ni);
718 			if (m == NULL) {
719 				device_printf(sc->sc_dev,
720 				    "could not allocate beacon\n");
721 				goto fail;
722 			}
723 			ieee80211_ref_node(ni);
724 			if (ural_tx_bcn(sc, m, ni) != 0) {
725 				device_printf(sc->sc_dev,
726 				    "could not send beacon\n");
727 				goto fail;
728 			}
729 		}
730 
731 		/* make tx led blink on tx (controlled by ASIC) */
732 		ural_write(sc, RAL_MAC_CSR20, 1);
733 
734 		if (vap->iv_opmode != IEEE80211_M_MONITOR)
735 			ural_enable_tsf_sync(sc);
736 		else
737 			ural_enable_tsf(sc);
738 
739 		/* enable automatic rate adaptation */
740 		/* XXX should use ic_bsschan but not valid until after newstate call below */
741 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
742 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
743 			ural_ratectl_start(sc, ni);
744 		ieee80211_free_node(ni);
745 		break;
746 
747 	default:
748 		break;
749 	}
750 	RAL_UNLOCK(sc);
751 	IEEE80211_LOCK(ic);
752 	return (uvp->newstate(vap, nstate, arg));
753 
754 fail:
755 	RAL_UNLOCK(sc);
756 	IEEE80211_LOCK(ic);
757 	ieee80211_free_node(ni);
758 	return (-1);
759 }
760 
761 
762 static void
763 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
764 {
765 	struct ural_softc *sc = usbd_xfer_softc(xfer);
766 	struct ieee80211vap *vap;
767 	struct ural_tx_data *data;
768 	struct mbuf *m;
769 	struct usb_page_cache *pc;
770 	int len;
771 
772 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
773 
774 	switch (USB_GET_STATE(xfer)) {
775 	case USB_ST_TRANSFERRED:
776 		DPRINTFN(11, "transfer complete, %d bytes\n", len);
777 
778 		/* free resources */
779 		data = usbd_xfer_get_priv(xfer);
780 		ural_tx_free(data, 0);
781 		usbd_xfer_set_priv(xfer, NULL);
782 
783 		/* FALLTHROUGH */
784 	case USB_ST_SETUP:
785 tr_setup:
786 		data = STAILQ_FIRST(&sc->tx_q);
787 		if (data) {
788 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
789 			m = data->m;
790 
791 			if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
792 				DPRINTFN(0, "data overflow, %u bytes\n",
793 				    m->m_pkthdr.len);
794 				m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
795 			}
796 			pc = usbd_xfer_get_frame(xfer, 0);
797 			usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
798 			usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
799 			    m->m_pkthdr.len);
800 
801 			vap = data->ni->ni_vap;
802 			if (ieee80211_radiotap_active_vap(vap)) {
803 				struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
804 
805 				tap->wt_flags = 0;
806 				tap->wt_rate = data->rate;
807 				tap->wt_antenna = sc->tx_ant;
808 
809 				ieee80211_radiotap_tx(vap, m);
810 			}
811 
812 			/* xfer length needs to be a multiple of two! */
813 			len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
814 			if ((len % 64) == 0)
815 				len += 2;
816 
817 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
818 			    m->m_pkthdr.len, len);
819 
820 			usbd_xfer_set_frame_len(xfer, 0, len);
821 			usbd_xfer_set_priv(xfer, data);
822 
823 			usbd_transfer_submit(xfer);
824 		}
825 		ural_start(sc);
826 		break;
827 
828 	default:			/* Error */
829 		DPRINTFN(11, "transfer error, %s\n",
830 		    usbd_errstr(error));
831 
832 		data = usbd_xfer_get_priv(xfer);
833 		if (data != NULL) {
834 			ural_tx_free(data, error);
835 			usbd_xfer_set_priv(xfer, NULL);
836 		}
837 
838 		if (error == USB_ERR_STALLED) {
839 			/* try to clear stall first */
840 			usbd_xfer_set_stall(xfer);
841 			goto tr_setup;
842 		}
843 		if (error == USB_ERR_TIMEOUT)
844 			device_printf(sc->sc_dev, "device timeout\n");
845 		break;
846 	}
847 }
848 
849 static void
850 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
851 {
852 	struct ural_softc *sc = usbd_xfer_softc(xfer);
853 	struct ieee80211com *ic = &sc->sc_ic;
854 	struct ieee80211_node *ni;
855 	struct epoch_tracker et;
856 	struct mbuf *m = NULL;
857 	struct usb_page_cache *pc;
858 	uint32_t flags;
859 	int8_t rssi = 0, nf = 0;
860 	int len;
861 
862 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
863 
864 	switch (USB_GET_STATE(xfer)) {
865 	case USB_ST_TRANSFERRED:
866 
867 		DPRINTFN(15, "rx done, actlen=%d\n", len);
868 
869 		if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
870 			DPRINTF("%s: xfer too short %d\n",
871 			    device_get_nameunit(sc->sc_dev), len);
872 			counter_u64_add(ic->ic_ierrors, 1);
873 			goto tr_setup;
874 		}
875 
876 		len -= RAL_RX_DESC_SIZE;
877 		/* rx descriptor is located at the end */
878 		pc = usbd_xfer_get_frame(xfer, 0);
879 		usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
880 
881 		rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
882 		nf = RAL_NOISE_FLOOR;
883 		flags = le32toh(sc->sc_rx_desc.flags);
884 		if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
885 			/*
886 		         * This should not happen since we did not
887 		         * request to receive those frames when we
888 		         * filled RAL_TXRX_CSR2:
889 		         */
890 			DPRINTFN(5, "PHY or CRC error\n");
891 			counter_u64_add(ic->ic_ierrors, 1);
892 			goto tr_setup;
893 		}
894 
895 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
896 		if (m == NULL) {
897 			DPRINTF("could not allocate mbuf\n");
898 			counter_u64_add(ic->ic_ierrors, 1);
899 			goto tr_setup;
900 		}
901 		usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
902 
903 		/* finalize mbuf */
904 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
905 
906 		if (ieee80211_radiotap_active(ic)) {
907 			struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
908 
909 			/* XXX set once */
910 			tap->wr_flags = 0;
911 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
912 			    (flags & RAL_RX_OFDM) ?
913 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
914 			tap->wr_antenna = sc->rx_ant;
915 			tap->wr_antsignal = nf + rssi;
916 			tap->wr_antnoise = nf;
917 		}
918 		/* Strip trailing 802.11 MAC FCS. */
919 		m_adj(m, -IEEE80211_CRC_LEN);
920 
921 		/* FALLTHROUGH */
922 	case USB_ST_SETUP:
923 tr_setup:
924 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
925 		usbd_transfer_submit(xfer);
926 
927 		/*
928 		 * At the end of a USB callback it is always safe to unlock
929 		 * the private mutex of a device! That is why we do the
930 		 * "ieee80211_input" here, and not some lines up!
931 		 */
932 		RAL_UNLOCK(sc);
933 		if (m) {
934 			ni = ieee80211_find_rxnode(ic,
935 			    mtod(m, struct ieee80211_frame_min *));
936 			NET_EPOCH_ENTER(et);
937 			if (ni != NULL) {
938 				(void) ieee80211_input(ni, m, rssi, nf);
939 				ieee80211_free_node(ni);
940 			} else
941 				(void) ieee80211_input_all(ic, m, rssi, nf);
942 			NET_EPOCH_EXIT(et);
943 		}
944 		RAL_LOCK(sc);
945 		ural_start(sc);
946 		return;
947 
948 	default:			/* Error */
949 		if (error != USB_ERR_CANCELLED) {
950 			/* try to clear stall first */
951 			usbd_xfer_set_stall(xfer);
952 			goto tr_setup;
953 		}
954 		return;
955 	}
956 }
957 
958 static uint8_t
959 ural_plcp_signal(int rate)
960 {
961 	switch (rate) {
962 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
963 	case 12:	return 0xb;
964 	case 18:	return 0xf;
965 	case 24:	return 0xa;
966 	case 36:	return 0xe;
967 	case 48:	return 0x9;
968 	case 72:	return 0xd;
969 	case 96:	return 0x8;
970 	case 108:	return 0xc;
971 
972 	/* CCK rates (NB: not IEEE std, device-specific) */
973 	case 2:		return 0x0;
974 	case 4:		return 0x1;
975 	case 11:	return 0x2;
976 	case 22:	return 0x3;
977 	}
978 	return 0xff;		/* XXX unsupported/unknown rate */
979 }
980 
981 static void
982 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
983     uint32_t flags, int len, int rate)
984 {
985 	struct ieee80211com *ic = &sc->sc_ic;
986 	uint16_t plcp_length;
987 	int remainder;
988 
989 	desc->flags = htole32(flags);
990 	desc->flags |= htole32(RAL_TX_NEWSEQ);
991 	desc->flags |= htole32(len << 16);
992 
993 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
994 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
995 
996 	/* setup PLCP fields */
997 	desc->plcp_signal  = ural_plcp_signal(rate);
998 	desc->plcp_service = 4;
999 
1000 	len += IEEE80211_CRC_LEN;
1001 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1002 		desc->flags |= htole32(RAL_TX_OFDM);
1003 
1004 		plcp_length = len & 0xfff;
1005 		desc->plcp_length_hi = plcp_length >> 6;
1006 		desc->plcp_length_lo = plcp_length & 0x3f;
1007 	} else {
1008 		if (rate == 0)
1009 			rate = 2;	/* avoid division by zero */
1010 		plcp_length = howmany(16 * len, rate);
1011 		if (rate == 22) {
1012 			remainder = (16 * len) % 22;
1013 			if (remainder != 0 && remainder < 7)
1014 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1015 		}
1016 		desc->plcp_length_hi = plcp_length >> 8;
1017 		desc->plcp_length_lo = plcp_length & 0xff;
1018 
1019 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1020 			desc->plcp_signal |= 0x08;
1021 	}
1022 
1023 	desc->iv = 0;
1024 	desc->eiv = 0;
1025 }
1026 
1027 #define RAL_TX_TIMEOUT	5000
1028 
1029 static int
1030 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1031 {
1032 	struct ieee80211vap *vap = ni->ni_vap;
1033 	struct ieee80211com *ic = ni->ni_ic;
1034 	const struct ieee80211_txparam *tp;
1035 	struct ural_tx_data *data;
1036 
1037 	if (sc->tx_nfree == 0) {
1038 		m_freem(m0);
1039 		ieee80211_free_node(ni);
1040 		return (EIO);
1041 	}
1042 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1043 		m_freem(m0);
1044 		ieee80211_free_node(ni);
1045 		return (ENXIO);
1046 	}
1047 	data = STAILQ_FIRST(&sc->tx_free);
1048 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1049 	sc->tx_nfree--;
1050 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1051 
1052 	data->m = m0;
1053 	data->ni = ni;
1054 	data->rate = tp->mgmtrate;
1055 
1056 	ural_setup_tx_desc(sc, &data->desc,
1057 	    RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1058 	    tp->mgmtrate);
1059 
1060 	DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1061 	    m0->m_pkthdr.len, tp->mgmtrate);
1062 
1063 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1064 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1065 
1066 	return (0);
1067 }
1068 
1069 static int
1070 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1071 {
1072 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1073 	struct ieee80211com *ic = ni->ni_ic;
1074 	struct ural_tx_data *data;
1075 	struct ieee80211_frame *wh;
1076 	struct ieee80211_key *k;
1077 	uint32_t flags;
1078 	uint16_t dur;
1079 
1080 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1081 
1082 	data = STAILQ_FIRST(&sc->tx_free);
1083 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1084 	sc->tx_nfree--;
1085 
1086 	wh = mtod(m0, struct ieee80211_frame *);
1087 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1088 		k = ieee80211_crypto_encap(ni, m0);
1089 		if (k == NULL) {
1090 			m_freem(m0);
1091 			return ENOBUFS;
1092 		}
1093 		wh = mtod(m0, struct ieee80211_frame *);
1094 	}
1095 
1096 	data->m = m0;
1097 	data->ni = ni;
1098 	data->rate = tp->mgmtrate;
1099 
1100 	flags = 0;
1101 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1102 		flags |= RAL_TX_ACK;
1103 
1104 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1105 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1106 		USETW(wh->i_dur, dur);
1107 
1108 		/* tell hardware to add timestamp for probe responses */
1109 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1110 		    IEEE80211_FC0_TYPE_MGT &&
1111 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1112 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1113 			flags |= RAL_TX_TIMESTAMP;
1114 	}
1115 
1116 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1117 
1118 	DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1119 	    m0->m_pkthdr.len, tp->mgmtrate);
1120 
1121 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1122 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1123 
1124 	return 0;
1125 }
1126 
1127 static int
1128 ural_sendprot(struct ural_softc *sc,
1129     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1130 {
1131 	struct ieee80211com *ic = ni->ni_ic;
1132 	struct ural_tx_data *data;
1133 	struct mbuf *mprot;
1134 	int protrate, flags;
1135 
1136 	mprot = ieee80211_alloc_prot(ni, m, rate, prot);
1137 	if (mprot == NULL) {
1138 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
1139 		device_printf(sc->sc_dev,
1140 		    "could not allocate mbuf for protection mode %d\n", prot);
1141 		return ENOBUFS;
1142 	}
1143 
1144 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1145 	flags = RAL_TX_RETRY(7);
1146 	if (prot == IEEE80211_PROT_RTSCTS)
1147 		flags |= RAL_TX_ACK;
1148 
1149 	data = STAILQ_FIRST(&sc->tx_free);
1150 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1151 	sc->tx_nfree--;
1152 
1153 	data->m = mprot;
1154 	data->ni = ieee80211_ref_node(ni);
1155 	data->rate = protrate;
1156 	ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1157 
1158 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1159 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1160 
1161 	return 0;
1162 }
1163 
1164 static int
1165 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1166     const struct ieee80211_bpf_params *params)
1167 {
1168 	struct ieee80211com *ic = ni->ni_ic;
1169 	struct ural_tx_data *data;
1170 	uint32_t flags;
1171 	int error;
1172 	int rate;
1173 
1174 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1175 	KASSERT(params != NULL, ("no raw xmit params"));
1176 
1177 	rate = params->ibp_rate0;
1178 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1179 		m_freem(m0);
1180 		return EINVAL;
1181 	}
1182 	flags = 0;
1183 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1184 		flags |= RAL_TX_ACK;
1185 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1186 		error = ural_sendprot(sc, m0, ni,
1187 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1188 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1189 		    rate);
1190 		if (error || sc->tx_nfree == 0) {
1191 			m_freem(m0);
1192 			return ENOBUFS;
1193 		}
1194 		flags |= RAL_TX_IFS_SIFS;
1195 	}
1196 
1197 	data = STAILQ_FIRST(&sc->tx_free);
1198 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1199 	sc->tx_nfree--;
1200 
1201 	data->m = m0;
1202 	data->ni = ni;
1203 	data->rate = rate;
1204 
1205 	/* XXX need to setup descriptor ourself */
1206 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1207 
1208 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1209 	    m0->m_pkthdr.len, rate);
1210 
1211 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1212 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1213 
1214 	return 0;
1215 }
1216 
1217 static int
1218 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1219 {
1220 	struct ieee80211vap *vap = ni->ni_vap;
1221 	struct ieee80211com *ic = ni->ni_ic;
1222 	struct ural_tx_data *data;
1223 	struct ieee80211_frame *wh;
1224 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1225 	struct ieee80211_key *k;
1226 	uint32_t flags = 0;
1227 	uint16_t dur;
1228 	int error, rate;
1229 
1230 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1231 
1232 	wh = mtod(m0, struct ieee80211_frame *);
1233 
1234 	if (m0->m_flags & M_EAPOL)
1235 		rate = tp->mgmtrate;
1236 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1237 		rate = tp->mcastrate;
1238 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1239 		rate = tp->ucastrate;
1240 	else {
1241 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1242 		rate = ni->ni_txrate;
1243 	}
1244 
1245 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1246 		k = ieee80211_crypto_encap(ni, m0);
1247 		if (k == NULL) {
1248 			m_freem(m0);
1249 			return ENOBUFS;
1250 		}
1251 		/* packet header may have moved, reset our local pointer */
1252 		wh = mtod(m0, struct ieee80211_frame *);
1253 	}
1254 
1255 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1256 		int prot = IEEE80211_PROT_NONE;
1257 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1258 			prot = IEEE80211_PROT_RTSCTS;
1259 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1260 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1261 			prot = ic->ic_protmode;
1262 		if (prot != IEEE80211_PROT_NONE) {
1263 			error = ural_sendprot(sc, m0, ni, prot, rate);
1264 			if (error || sc->tx_nfree == 0) {
1265 				m_freem(m0);
1266 				return ENOBUFS;
1267 			}
1268 			flags |= RAL_TX_IFS_SIFS;
1269 		}
1270 	}
1271 
1272 	data = STAILQ_FIRST(&sc->tx_free);
1273 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1274 	sc->tx_nfree--;
1275 
1276 	data->m = m0;
1277 	data->ni = ni;
1278 	data->rate = rate;
1279 
1280 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1281 		flags |= RAL_TX_ACK;
1282 		flags |= RAL_TX_RETRY(7);
1283 
1284 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1285 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1286 		USETW(wh->i_dur, dur);
1287 	}
1288 
1289 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1290 
1291 	DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1292 	    m0->m_pkthdr.len, rate);
1293 
1294 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1295 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1296 
1297 	return 0;
1298 }
1299 
1300 static int
1301 ural_transmit(struct ieee80211com *ic, struct mbuf *m)
1302 {
1303 	struct ural_softc *sc = ic->ic_softc;
1304 	int error;
1305 
1306 	RAL_LOCK(sc);
1307 	if (!sc->sc_running) {
1308 		RAL_UNLOCK(sc);
1309 		return (ENXIO);
1310 	}
1311 	error = mbufq_enqueue(&sc->sc_snd, m);
1312 	if (error) {
1313 		RAL_UNLOCK(sc);
1314 		return (error);
1315 	}
1316 	ural_start(sc);
1317 	RAL_UNLOCK(sc);
1318 
1319 	return (0);
1320 }
1321 
1322 static void
1323 ural_start(struct ural_softc *sc)
1324 {
1325 	struct ieee80211_node *ni;
1326 	struct mbuf *m;
1327 
1328 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1329 
1330 	if (sc->sc_running == 0)
1331 		return;
1332 
1333 	while (sc->tx_nfree >= RAL_TX_MINFREE &&
1334 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1335 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1336 		if (ural_tx_data(sc, m, ni) != 0) {
1337 			if_inc_counter(ni->ni_vap->iv_ifp,
1338 			     IFCOUNTER_OERRORS, 1);
1339 			ieee80211_free_node(ni);
1340 			break;
1341 		}
1342 	}
1343 }
1344 
1345 static void
1346 ural_parent(struct ieee80211com *ic)
1347 {
1348 	struct ural_softc *sc = ic->ic_softc;
1349 	int startall = 0;
1350 
1351 	RAL_LOCK(sc);
1352 	if (sc->sc_detached) {
1353 		RAL_UNLOCK(sc);
1354 		return;
1355 	}
1356 	if (ic->ic_nrunning > 0) {
1357 		if (sc->sc_running == 0) {
1358 			ural_init(sc);
1359 			startall = 1;
1360 		} else
1361 			ural_setpromisc(sc);
1362 	} else if (sc->sc_running)
1363 		ural_stop(sc);
1364 	RAL_UNLOCK(sc);
1365 	if (startall)
1366 		ieee80211_start_all(ic);
1367 }
1368 
1369 static void
1370 ural_set_testmode(struct ural_softc *sc)
1371 {
1372 	struct usb_device_request req;
1373 	usb_error_t error;
1374 
1375 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1376 	req.bRequest = RAL_VENDOR_REQUEST;
1377 	USETW(req.wValue, 4);
1378 	USETW(req.wIndex, 1);
1379 	USETW(req.wLength, 0);
1380 
1381 	error = ural_do_request(sc, &req, NULL);
1382 	if (error != 0) {
1383 		device_printf(sc->sc_dev, "could not set test mode: %s\n",
1384 		    usbd_errstr(error));
1385 	}
1386 }
1387 
1388 static void
1389 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1390 {
1391 	struct usb_device_request req;
1392 	usb_error_t error;
1393 
1394 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1395 	req.bRequest = RAL_READ_EEPROM;
1396 	USETW(req.wValue, 0);
1397 	USETW(req.wIndex, addr);
1398 	USETW(req.wLength, len);
1399 
1400 	error = ural_do_request(sc, &req, buf);
1401 	if (error != 0) {
1402 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1403 		    usbd_errstr(error));
1404 	}
1405 }
1406 
1407 static uint16_t
1408 ural_read(struct ural_softc *sc, uint16_t reg)
1409 {
1410 	struct usb_device_request req;
1411 	usb_error_t error;
1412 	uint16_t val;
1413 
1414 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1415 	req.bRequest = RAL_READ_MAC;
1416 	USETW(req.wValue, 0);
1417 	USETW(req.wIndex, reg);
1418 	USETW(req.wLength, sizeof (uint16_t));
1419 
1420 	error = ural_do_request(sc, &req, &val);
1421 	if (error != 0) {
1422 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1423 		    usbd_errstr(error));
1424 		return 0;
1425 	}
1426 
1427 	return le16toh(val);
1428 }
1429 
1430 static void
1431 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1432 {
1433 	struct usb_device_request req;
1434 	usb_error_t error;
1435 
1436 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1437 	req.bRequest = RAL_READ_MULTI_MAC;
1438 	USETW(req.wValue, 0);
1439 	USETW(req.wIndex, reg);
1440 	USETW(req.wLength, len);
1441 
1442 	error = ural_do_request(sc, &req, buf);
1443 	if (error != 0) {
1444 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1445 		    usbd_errstr(error));
1446 	}
1447 }
1448 
1449 static void
1450 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1451 {
1452 	struct usb_device_request req;
1453 	usb_error_t error;
1454 
1455 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1456 	req.bRequest = RAL_WRITE_MAC;
1457 	USETW(req.wValue, val);
1458 	USETW(req.wIndex, reg);
1459 	USETW(req.wLength, 0);
1460 
1461 	error = ural_do_request(sc, &req, NULL);
1462 	if (error != 0) {
1463 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1464 		    usbd_errstr(error));
1465 	}
1466 }
1467 
1468 static void
1469 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1470 {
1471 	struct usb_device_request req;
1472 	usb_error_t error;
1473 
1474 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1475 	req.bRequest = RAL_WRITE_MULTI_MAC;
1476 	USETW(req.wValue, 0);
1477 	USETW(req.wIndex, reg);
1478 	USETW(req.wLength, len);
1479 
1480 	error = ural_do_request(sc, &req, buf);
1481 	if (error != 0) {
1482 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1483 		    usbd_errstr(error));
1484 	}
1485 }
1486 
1487 static void
1488 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1489 {
1490 	uint16_t tmp;
1491 	int ntries;
1492 
1493 	for (ntries = 0; ntries < 100; ntries++) {
1494 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1495 			break;
1496 		if (ural_pause(sc, hz / 100))
1497 			break;
1498 	}
1499 	if (ntries == 100) {
1500 		device_printf(sc->sc_dev, "could not write to BBP\n");
1501 		return;
1502 	}
1503 
1504 	tmp = reg << 8 | val;
1505 	ural_write(sc, RAL_PHY_CSR7, tmp);
1506 }
1507 
1508 static uint8_t
1509 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1510 {
1511 	uint16_t val;
1512 	int ntries;
1513 
1514 	val = RAL_BBP_WRITE | reg << 8;
1515 	ural_write(sc, RAL_PHY_CSR7, val);
1516 
1517 	for (ntries = 0; ntries < 100; ntries++) {
1518 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1519 			break;
1520 		if (ural_pause(sc, hz / 100))
1521 			break;
1522 	}
1523 	if (ntries == 100) {
1524 		device_printf(sc->sc_dev, "could not read BBP\n");
1525 		return 0;
1526 	}
1527 
1528 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1529 }
1530 
1531 static void
1532 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1533 {
1534 	uint32_t tmp;
1535 	int ntries;
1536 
1537 	for (ntries = 0; ntries < 100; ntries++) {
1538 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1539 			break;
1540 		if (ural_pause(sc, hz / 100))
1541 			break;
1542 	}
1543 	if (ntries == 100) {
1544 		device_printf(sc->sc_dev, "could not write to RF\n");
1545 		return;
1546 	}
1547 
1548 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1549 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1550 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1551 
1552 	/* remember last written value in sc */
1553 	sc->rf_regs[reg] = val;
1554 
1555 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1556 }
1557 
1558 static void
1559 ural_scan_start(struct ieee80211com *ic)
1560 {
1561 	struct ural_softc *sc = ic->ic_softc;
1562 
1563 	RAL_LOCK(sc);
1564 	ural_write(sc, RAL_TXRX_CSR19, 0);
1565 	ural_set_bssid(sc, ieee80211broadcastaddr);
1566 	RAL_UNLOCK(sc);
1567 }
1568 
1569 static void
1570 ural_scan_end(struct ieee80211com *ic)
1571 {
1572 	struct ural_softc *sc = ic->ic_softc;
1573 
1574 	RAL_LOCK(sc);
1575 	ural_enable_tsf_sync(sc);
1576 	ural_set_bssid(sc, sc->sc_bssid);
1577 	RAL_UNLOCK(sc);
1578 
1579 }
1580 
1581 static void
1582 ural_getradiocaps(struct ieee80211com *ic,
1583     int maxchans, int *nchans, struct ieee80211_channel chans[])
1584 {
1585 	struct ural_softc *sc = ic->ic_softc;
1586 	uint8_t bands[IEEE80211_MODE_BYTES];
1587 
1588 	memset(bands, 0, sizeof(bands));
1589 	setbit(bands, IEEE80211_MODE_11B);
1590 	setbit(bands, IEEE80211_MODE_11G);
1591 	ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
1592 
1593 	if (sc->rf_rev == RAL_RF_5222) {
1594 		setbit(bands, IEEE80211_MODE_11A);
1595 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
1596 		    ural_chan_5ghz, nitems(ural_chan_5ghz), bands, 0);
1597 	}
1598 }
1599 
1600 static void
1601 ural_set_channel(struct ieee80211com *ic)
1602 {
1603 	struct ural_softc *sc = ic->ic_softc;
1604 
1605 	RAL_LOCK(sc);
1606 	ural_set_chan(sc, ic->ic_curchan);
1607 	RAL_UNLOCK(sc);
1608 }
1609 
1610 static void
1611 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1612 {
1613 	struct ieee80211com *ic = &sc->sc_ic;
1614 	uint8_t power, tmp;
1615 	int i, chan;
1616 
1617 	chan = ieee80211_chan2ieee(ic, c);
1618 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1619 		return;
1620 
1621 	if (IEEE80211_IS_CHAN_2GHZ(c))
1622 		power = min(sc->txpow[chan - 1], 31);
1623 	else
1624 		power = 31;
1625 
1626 	/* adjust txpower using ifconfig settings */
1627 	power -= (100 - ic->ic_txpowlimit) / 8;
1628 
1629 	DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1630 
1631 	switch (sc->rf_rev) {
1632 	case RAL_RF_2522:
1633 		ural_rf_write(sc, RAL_RF1, 0x00814);
1634 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1635 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1636 		break;
1637 
1638 	case RAL_RF_2523:
1639 		ural_rf_write(sc, RAL_RF1, 0x08804);
1640 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1641 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1642 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1643 		break;
1644 
1645 	case RAL_RF_2524:
1646 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1647 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1648 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1649 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1650 		break;
1651 
1652 	case RAL_RF_2525:
1653 		ural_rf_write(sc, RAL_RF1, 0x08808);
1654 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1655 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1656 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1657 
1658 		ural_rf_write(sc, RAL_RF1, 0x08808);
1659 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1660 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1661 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1662 		break;
1663 
1664 	case RAL_RF_2525E:
1665 		ural_rf_write(sc, RAL_RF1, 0x08808);
1666 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1667 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1668 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1669 		break;
1670 
1671 	case RAL_RF_2526:
1672 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1673 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1674 		ural_rf_write(sc, RAL_RF1, 0x08804);
1675 
1676 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1677 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1678 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1679 		break;
1680 
1681 	/* dual-band RF */
1682 	case RAL_RF_5222:
1683 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1684 
1685 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1686 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1687 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1688 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1689 		break;
1690 	}
1691 
1692 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1693 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1694 		/* set Japan filter bit for channel 14 */
1695 		tmp = ural_bbp_read(sc, 70);
1696 
1697 		tmp &= ~RAL_JAPAN_FILTER;
1698 		if (chan == 14)
1699 			tmp |= RAL_JAPAN_FILTER;
1700 
1701 		ural_bbp_write(sc, 70, tmp);
1702 
1703 		/* clear CRC errors */
1704 		ural_read(sc, RAL_STA_CSR0);
1705 
1706 		ural_pause(sc, hz / 100);
1707 		ural_disable_rf_tune(sc);
1708 	}
1709 
1710 	/* XXX doesn't belong here */
1711 	/* update basic rate set */
1712 	ural_set_basicrates(sc, c);
1713 
1714 	/* give the hardware some time to do the switchover */
1715 	ural_pause(sc, hz / 100);
1716 }
1717 
1718 /*
1719  * Disable RF auto-tuning.
1720  */
1721 static void
1722 ural_disable_rf_tune(struct ural_softc *sc)
1723 {
1724 	uint32_t tmp;
1725 
1726 	if (sc->rf_rev != RAL_RF_2523) {
1727 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1728 		ural_rf_write(sc, RAL_RF1, tmp);
1729 	}
1730 
1731 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1732 	ural_rf_write(sc, RAL_RF3, tmp);
1733 
1734 	DPRINTFN(2, "disabling RF autotune\n");
1735 }
1736 
1737 /*
1738  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1739  * synchronization.
1740  */
1741 static void
1742 ural_enable_tsf_sync(struct ural_softc *sc)
1743 {
1744 	struct ieee80211com *ic = &sc->sc_ic;
1745 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1746 	uint16_t logcwmin, preload, tmp;
1747 
1748 	/* first, disable TSF synchronization */
1749 	ural_write(sc, RAL_TXRX_CSR19, 0);
1750 
1751 	tmp = (16 * vap->iv_bss->ni_intval) << 4;
1752 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1753 
1754 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1755 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1756 	tmp = logcwmin << 12 | preload;
1757 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1758 
1759 	/* finally, enable TSF synchronization */
1760 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1761 	if (ic->ic_opmode == IEEE80211_M_STA)
1762 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1763 	else
1764 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1765 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1766 
1767 	DPRINTF("enabling TSF synchronization\n");
1768 }
1769 
1770 static void
1771 ural_enable_tsf(struct ural_softc *sc)
1772 {
1773 	/* first, disable TSF synchronization */
1774 	ural_write(sc, RAL_TXRX_CSR19, 0);
1775 	ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1776 }
1777 
1778 #define RAL_RXTX_TURNAROUND	5	/* us */
1779 static void
1780 ural_update_slot(struct ural_softc *sc)
1781 {
1782 	struct ieee80211com *ic = &sc->sc_ic;
1783 	uint16_t slottime, sifs, eifs;
1784 
1785 	slottime = IEEE80211_GET_SLOTTIME(ic);
1786 
1787 	/*
1788 	 * These settings may sound a bit inconsistent but this is what the
1789 	 * reference driver does.
1790 	 */
1791 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1792 		sifs = 16 - RAL_RXTX_TURNAROUND;
1793 		eifs = 364;
1794 	} else {
1795 		sifs = 10 - RAL_RXTX_TURNAROUND;
1796 		eifs = 64;
1797 	}
1798 
1799 	ural_write(sc, RAL_MAC_CSR10, slottime);
1800 	ural_write(sc, RAL_MAC_CSR11, sifs);
1801 	ural_write(sc, RAL_MAC_CSR12, eifs);
1802 }
1803 
1804 static void
1805 ural_set_txpreamble(struct ural_softc *sc)
1806 {
1807 	struct ieee80211com *ic = &sc->sc_ic;
1808 	uint16_t tmp;
1809 
1810 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1811 
1812 	tmp &= ~RAL_SHORT_PREAMBLE;
1813 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1814 		tmp |= RAL_SHORT_PREAMBLE;
1815 
1816 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1817 }
1818 
1819 static void
1820 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1821 {
1822 	/* XXX wrong, take from rate set */
1823 	/* update basic rate set */
1824 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1825 		/* 11a basic rates: 6, 12, 24Mbps */
1826 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1827 	} else if (IEEE80211_IS_CHAN_ANYG(c)) {
1828 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1829 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1830 	} else {
1831 		/* 11b basic rates: 1, 2Mbps */
1832 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1833 	}
1834 }
1835 
1836 static void
1837 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1838 {
1839 	uint16_t tmp;
1840 
1841 	tmp = bssid[0] | bssid[1] << 8;
1842 	ural_write(sc, RAL_MAC_CSR5, tmp);
1843 
1844 	tmp = bssid[2] | bssid[3] << 8;
1845 	ural_write(sc, RAL_MAC_CSR6, tmp);
1846 
1847 	tmp = bssid[4] | bssid[5] << 8;
1848 	ural_write(sc, RAL_MAC_CSR7, tmp);
1849 
1850 	DPRINTF("setting BSSID to %6D\n", bssid, ":");
1851 }
1852 
1853 static void
1854 ural_set_macaddr(struct ural_softc *sc, const uint8_t *addr)
1855 {
1856 	uint16_t tmp;
1857 
1858 	tmp = addr[0] | addr[1] << 8;
1859 	ural_write(sc, RAL_MAC_CSR2, tmp);
1860 
1861 	tmp = addr[2] | addr[3] << 8;
1862 	ural_write(sc, RAL_MAC_CSR3, tmp);
1863 
1864 	tmp = addr[4] | addr[5] << 8;
1865 	ural_write(sc, RAL_MAC_CSR4, tmp);
1866 
1867 	DPRINTF("setting MAC address to %6D\n", addr, ":");
1868 }
1869 
1870 static void
1871 ural_setpromisc(struct ural_softc *sc)
1872 {
1873 	uint32_t tmp;
1874 
1875 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1876 
1877 	tmp &= ~RAL_DROP_NOT_TO_ME;
1878 	if (sc->sc_ic.ic_promisc == 0)
1879 		tmp |= RAL_DROP_NOT_TO_ME;
1880 
1881 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1882 
1883 	DPRINTF("%s promiscuous mode\n", sc->sc_ic.ic_promisc ?
1884 	    "entering" : "leaving");
1885 }
1886 
1887 static void
1888 ural_update_promisc(struct ieee80211com *ic)
1889 {
1890 	struct ural_softc *sc = ic->ic_softc;
1891 
1892 	RAL_LOCK(sc);
1893 	if (sc->sc_running)
1894 		ural_setpromisc(sc);
1895 	RAL_UNLOCK(sc);
1896 }
1897 
1898 static const char *
1899 ural_get_rf(int rev)
1900 {
1901 	switch (rev) {
1902 	case RAL_RF_2522:	return "RT2522";
1903 	case RAL_RF_2523:	return "RT2523";
1904 	case RAL_RF_2524:	return "RT2524";
1905 	case RAL_RF_2525:	return "RT2525";
1906 	case RAL_RF_2525E:	return "RT2525e";
1907 	case RAL_RF_2526:	return "RT2526";
1908 	case RAL_RF_5222:	return "RT5222";
1909 	default:		return "unknown";
1910 	}
1911 }
1912 
1913 static void
1914 ural_read_eeprom(struct ural_softc *sc)
1915 {
1916 	struct ieee80211com *ic = &sc->sc_ic;
1917 	uint16_t val;
1918 
1919 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1920 	val = le16toh(val);
1921 	sc->rf_rev =   (val >> 11) & 0x7;
1922 	sc->hw_radio = (val >> 10) & 0x1;
1923 	sc->led_mode = (val >> 6)  & 0x7;
1924 	sc->rx_ant =   (val >> 4)  & 0x3;
1925 	sc->tx_ant =   (val >> 2)  & 0x3;
1926 	sc->nb_ant =   val & 0x3;
1927 
1928 	/* read MAC address */
1929 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_macaddr, 6);
1930 
1931 	/* read default values for BBP registers */
1932 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1933 
1934 	/* read Tx power for all b/g channels */
1935 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1936 }
1937 
1938 static int
1939 ural_bbp_init(struct ural_softc *sc)
1940 {
1941 	int i, ntries;
1942 
1943 	/* wait for BBP to be ready */
1944 	for (ntries = 0; ntries < 100; ntries++) {
1945 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1946 			break;
1947 		if (ural_pause(sc, hz / 100))
1948 			break;
1949 	}
1950 	if (ntries == 100) {
1951 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1952 		return EIO;
1953 	}
1954 
1955 	/* initialize BBP registers to default values */
1956 	for (i = 0; i < nitems(ural_def_bbp); i++)
1957 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1958 
1959 #if 0
1960 	/* initialize BBP registers to values stored in EEPROM */
1961 	for (i = 0; i < 16; i++) {
1962 		if (sc->bbp_prom[i].reg == 0xff)
1963 			continue;
1964 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1965 	}
1966 #endif
1967 
1968 	return 0;
1969 }
1970 
1971 static void
1972 ural_set_txantenna(struct ural_softc *sc, int antenna)
1973 {
1974 	uint16_t tmp;
1975 	uint8_t tx;
1976 
1977 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
1978 	if (antenna == 1)
1979 		tx |= RAL_BBP_ANTA;
1980 	else if (antenna == 2)
1981 		tx |= RAL_BBP_ANTB;
1982 	else
1983 		tx |= RAL_BBP_DIVERSITY;
1984 
1985 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
1986 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
1987 	    sc->rf_rev == RAL_RF_5222)
1988 		tx |= RAL_BBP_FLIPIQ;
1989 
1990 	ural_bbp_write(sc, RAL_BBP_TX, tx);
1991 
1992 	/* update values in PHY_CSR5 and PHY_CSR6 */
1993 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
1994 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
1995 
1996 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
1997 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
1998 }
1999 
2000 static void
2001 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2002 {
2003 	uint8_t rx;
2004 
2005 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2006 	if (antenna == 1)
2007 		rx |= RAL_BBP_ANTA;
2008 	else if (antenna == 2)
2009 		rx |= RAL_BBP_ANTB;
2010 	else
2011 		rx |= RAL_BBP_DIVERSITY;
2012 
2013 	/* need to force no I/Q flip for RF 2525e and 2526 */
2014 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2015 		rx &= ~RAL_BBP_FLIPIQ;
2016 
2017 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2018 }
2019 
2020 static void
2021 ural_init(struct ural_softc *sc)
2022 {
2023 	struct ieee80211com *ic = &sc->sc_ic;
2024 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2025 	uint16_t tmp;
2026 	int i, ntries;
2027 
2028 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2029 
2030 	ural_set_testmode(sc);
2031 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2032 
2033 	ural_stop(sc);
2034 
2035 	/* initialize MAC registers to default values */
2036 	for (i = 0; i < nitems(ural_def_mac); i++)
2037 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2038 
2039 	/* wait for BBP and RF to wake up (this can take a long time!) */
2040 	for (ntries = 0; ntries < 100; ntries++) {
2041 		tmp = ural_read(sc, RAL_MAC_CSR17);
2042 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2043 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2044 			break;
2045 		if (ural_pause(sc, hz / 100))
2046 			break;
2047 	}
2048 	if (ntries == 100) {
2049 		device_printf(sc->sc_dev,
2050 		    "timeout waiting for BBP/RF to wakeup\n");
2051 		goto fail;
2052 	}
2053 
2054 	/* we're ready! */
2055 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2056 
2057 	/* set basic rate set (will be updated later) */
2058 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2059 
2060 	if (ural_bbp_init(sc) != 0)
2061 		goto fail;
2062 
2063 	ural_set_chan(sc, ic->ic_curchan);
2064 
2065 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2066 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2067 
2068 	ural_set_txantenna(sc, sc->tx_ant);
2069 	ural_set_rxantenna(sc, sc->rx_ant);
2070 
2071 	ural_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2072 
2073 	/*
2074 	 * Allocate Tx and Rx xfer queues.
2075 	 */
2076 	ural_setup_tx_list(sc);
2077 
2078 	/* kick Rx */
2079 	tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2080 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2081 		tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2082 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2083 			tmp |= RAL_DROP_TODS;
2084 		if (ic->ic_promisc == 0)
2085 			tmp |= RAL_DROP_NOT_TO_ME;
2086 	}
2087 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2088 
2089 	sc->sc_running = 1;
2090 	usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2091 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2092 	return;
2093 
2094 fail:	ural_stop(sc);
2095 }
2096 
2097 static void
2098 ural_stop(struct ural_softc *sc)
2099 {
2100 
2101 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2102 
2103 	sc->sc_running = 0;
2104 
2105 	/*
2106 	 * Drain all the transfers, if not already drained:
2107 	 */
2108 	RAL_UNLOCK(sc);
2109 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2110 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2111 	RAL_LOCK(sc);
2112 
2113 	ural_unsetup_tx_list(sc);
2114 
2115 	/* disable Rx */
2116 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2117 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2118 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2119 	/* wait a little */
2120 	ural_pause(sc, hz / 10);
2121 	ural_write(sc, RAL_MAC_CSR1, 0);
2122 	/* wait a little */
2123 	ural_pause(sc, hz / 10);
2124 }
2125 
2126 static int
2127 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2128 	const struct ieee80211_bpf_params *params)
2129 {
2130 	struct ieee80211com *ic = ni->ni_ic;
2131 	struct ural_softc *sc = ic->ic_softc;
2132 
2133 	RAL_LOCK(sc);
2134 	/* prevent management frames from being sent if we're not ready */
2135 	if (!sc->sc_running) {
2136 		RAL_UNLOCK(sc);
2137 		m_freem(m);
2138 		return ENETDOWN;
2139 	}
2140 	if (sc->tx_nfree < RAL_TX_MINFREE) {
2141 		RAL_UNLOCK(sc);
2142 		m_freem(m);
2143 		return EIO;
2144 	}
2145 
2146 	if (params == NULL) {
2147 		/*
2148 		 * Legacy path; interpret frame contents to decide
2149 		 * precisely how to send the frame.
2150 		 */
2151 		if (ural_tx_mgt(sc, m, ni) != 0)
2152 			goto bad;
2153 	} else {
2154 		/*
2155 		 * Caller supplied explicit parameters to use in
2156 		 * sending the frame.
2157 		 */
2158 		if (ural_tx_raw(sc, m, ni, params) != 0)
2159 			goto bad;
2160 	}
2161 	RAL_UNLOCK(sc);
2162 	return 0;
2163 bad:
2164 	RAL_UNLOCK(sc);
2165 	return EIO;		/* XXX */
2166 }
2167 
2168 static void
2169 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni)
2170 {
2171 	struct ieee80211vap *vap = ni->ni_vap;
2172 	struct ural_vap *uvp = URAL_VAP(vap);
2173 
2174 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2175 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2176 
2177 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2178 }
2179 
2180 static void
2181 ural_ratectl_timeout(void *arg)
2182 {
2183 	struct ural_vap *uvp = arg;
2184 	struct ieee80211vap *vap = &uvp->vap;
2185 	struct ieee80211com *ic = vap->iv_ic;
2186 
2187 	ieee80211_runtask(ic, &uvp->ratectl_task);
2188 }
2189 
2190 static void
2191 ural_ratectl_task(void *arg, int pending)
2192 {
2193 	struct ural_vap *uvp = arg;
2194 	struct ieee80211vap *vap = &uvp->vap;
2195 	struct ural_softc *sc = vap->iv_ic->ic_softc;
2196 	struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs;
2197 	int fail;
2198 
2199 	RAL_LOCK(sc);
2200 	/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2201 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2202 
2203 	txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES;
2204 	txs->nsuccess = sc->sta[7] +	/* TX ok w/o retry */
2205 			sc->sta[8];	/* TX ok w/ retry */
2206 	fail = sc->sta[9];		/* TX retry-fail count */
2207 	txs->nframes = txs->nsuccess + fail;
2208 	/* XXX fail * maxretry */
2209 	txs->nretries = sc->sta[8] + fail;
2210 
2211 	ieee80211_ratectl_tx_update(vap, txs);
2212 
2213 	/* count TX retry-fail as Tx errors */
2214 	if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
2215 
2216 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2217 	RAL_UNLOCK(sc);
2218 }
2219 
2220 static int
2221 ural_pause(struct ural_softc *sc, int timeout)
2222 {
2223 
2224 	usb_pause_mtx(&sc->sc_mtx, timeout);
2225 	return (0);
2226 }
2227