xref: /freebsd/sys/dev/vge/if_vge.c (revision d6b92ffa)
1 /*-
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #ifdef HAVE_KERNEL_OPTION_HEADERS
84 #include "opt_device_polling.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/module.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_var.h>
103 #include <net/if_media.h>
104 #include <net/if_types.h>
105 #include <net/if_vlan_var.h>
106 
107 #include <net/bpf.h>
108 
109 #include <machine/bus.h>
110 #include <machine/resource.h>
111 #include <sys/bus.h>
112 #include <sys/rman.h>
113 
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 
117 #include <dev/pci/pcireg.h>
118 #include <dev/pci/pcivar.h>
119 
120 MODULE_DEPEND(vge, pci, 1, 1, 1);
121 MODULE_DEPEND(vge, ether, 1, 1, 1);
122 MODULE_DEPEND(vge, miibus, 1, 1, 1);
123 
124 /* "device miibus" required.  See GENERIC if you get errors here. */
125 #include "miibus_if.h"
126 
127 #include <dev/vge/if_vgereg.h>
128 #include <dev/vge/if_vgevar.h>
129 
130 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
131 
132 /* Tunables */
133 static int msi_disable = 0;
134 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
135 
136 /*
137  * The SQE error counter of MIB seems to report bogus value.
138  * Vendor's workaround does not seem to work on PCIe based
139  * controllers. Disable it until we find better workaround.
140  */
141 #undef VGE_ENABLE_SQEERR
142 
143 /*
144  * Various supported device vendors/types and their names.
145  */
146 static struct vge_type vge_devs[] = {
147 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
148 		"VIA Networking Velocity Gigabit Ethernet" },
149 	{ 0, 0, NULL }
150 };
151 
152 static int	vge_attach(device_t);
153 static int	vge_detach(device_t);
154 static int	vge_probe(device_t);
155 static int	vge_resume(device_t);
156 static int	vge_shutdown(device_t);
157 static int	vge_suspend(device_t);
158 
159 static void	vge_cam_clear(struct vge_softc *);
160 static int	vge_cam_set(struct vge_softc *, uint8_t *);
161 static void	vge_clrwol(struct vge_softc *);
162 static void	vge_discard_rxbuf(struct vge_softc *, int);
163 static int	vge_dma_alloc(struct vge_softc *);
164 static void	vge_dma_free(struct vge_softc *);
165 static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
166 #ifdef VGE_EEPROM
167 static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
168 #endif
169 static int	vge_encap(struct vge_softc *, struct mbuf **);
170 #ifndef __NO_STRICT_ALIGNMENT
171 static __inline void
172 		vge_fixup_rx(struct mbuf *);
173 #endif
174 static void	vge_freebufs(struct vge_softc *);
175 static void	vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176 static int	vge_ifmedia_upd(struct ifnet *);
177 static int	vge_ifmedia_upd_locked(struct vge_softc *);
178 static void	vge_init(void *);
179 static void	vge_init_locked(struct vge_softc *);
180 static void	vge_intr(void *);
181 static void	vge_intr_holdoff(struct vge_softc *);
182 static int	vge_ioctl(struct ifnet *, u_long, caddr_t);
183 static void	vge_link_statchg(void *);
184 static int	vge_miibus_readreg(device_t, int, int);
185 static int	vge_miibus_writereg(device_t, int, int, int);
186 static void	vge_miipoll_start(struct vge_softc *);
187 static void	vge_miipoll_stop(struct vge_softc *);
188 static int	vge_newbuf(struct vge_softc *, int);
189 static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
190 static void	vge_reset(struct vge_softc *);
191 static int	vge_rx_list_init(struct vge_softc *);
192 static int	vge_rxeof(struct vge_softc *, int);
193 static void	vge_rxfilter(struct vge_softc *);
194 static void	vge_setmedia(struct vge_softc *);
195 static void	vge_setvlan(struct vge_softc *);
196 static void	vge_setwol(struct vge_softc *);
197 static void	vge_start(struct ifnet *);
198 static void	vge_start_locked(struct ifnet *);
199 static void	vge_stats_clear(struct vge_softc *);
200 static void	vge_stats_update(struct vge_softc *);
201 static void	vge_stop(struct vge_softc *);
202 static void	vge_sysctl_node(struct vge_softc *);
203 static int	vge_tx_list_init(struct vge_softc *);
204 static void	vge_txeof(struct vge_softc *);
205 static void	vge_watchdog(void *);
206 
207 static device_method_t vge_methods[] = {
208 	/* Device interface */
209 	DEVMETHOD(device_probe,		vge_probe),
210 	DEVMETHOD(device_attach,	vge_attach),
211 	DEVMETHOD(device_detach,	vge_detach),
212 	DEVMETHOD(device_suspend,	vge_suspend),
213 	DEVMETHOD(device_resume,	vge_resume),
214 	DEVMETHOD(device_shutdown,	vge_shutdown),
215 
216 	/* MII interface */
217 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
218 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
219 
220 	DEVMETHOD_END
221 };
222 
223 static driver_t vge_driver = {
224 	"vge",
225 	vge_methods,
226 	sizeof(struct vge_softc)
227 };
228 
229 static devclass_t vge_devclass;
230 
231 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
232 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
233 
234 #ifdef VGE_EEPROM
235 /*
236  * Read a word of data stored in the EEPROM at address 'addr.'
237  */
238 static void
239 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
240 {
241 	int i;
242 	uint16_t word = 0;
243 
244 	/*
245 	 * Enter EEPROM embedded programming mode. In order to
246 	 * access the EEPROM at all, we first have to set the
247 	 * EELOAD bit in the CHIPCFG2 register.
248 	 */
249 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
250 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
251 
252 	/* Select the address of the word we want to read */
253 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
254 
255 	/* Issue read command */
256 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
257 
258 	/* Wait for the done bit to be set. */
259 	for (i = 0; i < VGE_TIMEOUT; i++) {
260 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
261 			break;
262 	}
263 
264 	if (i == VGE_TIMEOUT) {
265 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
266 		*dest = 0;
267 		return;
268 	}
269 
270 	/* Read the result */
271 	word = CSR_READ_2(sc, VGE_EERDDAT);
272 
273 	/* Turn off EEPROM access mode. */
274 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
275 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
276 
277 	*dest = word;
278 }
279 #endif
280 
281 /*
282  * Read a sequence of words from the EEPROM.
283  */
284 static void
285 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
286 {
287 	int i;
288 #ifdef VGE_EEPROM
289 	uint16_t word = 0, *ptr;
290 
291 	for (i = 0; i < cnt; i++) {
292 		vge_eeprom_getword(sc, off + i, &word);
293 		ptr = (uint16_t *)(dest + (i * 2));
294 		if (swap)
295 			*ptr = ntohs(word);
296 		else
297 			*ptr = word;
298 	}
299 #else
300 	for (i = 0; i < ETHER_ADDR_LEN; i++)
301 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
302 #endif
303 }
304 
305 static void
306 vge_miipoll_stop(struct vge_softc *sc)
307 {
308 	int i;
309 
310 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
311 
312 	for (i = 0; i < VGE_TIMEOUT; i++) {
313 		DELAY(1);
314 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
315 			break;
316 	}
317 
318 	if (i == VGE_TIMEOUT)
319 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
320 }
321 
322 static void
323 vge_miipoll_start(struct vge_softc *sc)
324 {
325 	int i;
326 
327 	/* First, make sure we're idle. */
328 
329 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
330 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
331 
332 	for (i = 0; i < VGE_TIMEOUT; i++) {
333 		DELAY(1);
334 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
335 			break;
336 	}
337 
338 	if (i == VGE_TIMEOUT) {
339 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
340 		return;
341 	}
342 
343 	/* Now enable auto poll mode. */
344 
345 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
346 
347 	/* And make sure it started. */
348 
349 	for (i = 0; i < VGE_TIMEOUT; i++) {
350 		DELAY(1);
351 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
352 			break;
353 	}
354 
355 	if (i == VGE_TIMEOUT)
356 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
357 }
358 
359 static int
360 vge_miibus_readreg(device_t dev, int phy, int reg)
361 {
362 	struct vge_softc *sc;
363 	int i;
364 	uint16_t rval = 0;
365 
366 	sc = device_get_softc(dev);
367 
368 	vge_miipoll_stop(sc);
369 
370 	/* Specify the register we want to read. */
371 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
372 
373 	/* Issue read command. */
374 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
375 
376 	/* Wait for the read command bit to self-clear. */
377 	for (i = 0; i < VGE_TIMEOUT; i++) {
378 		DELAY(1);
379 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
380 			break;
381 	}
382 
383 	if (i == VGE_TIMEOUT)
384 		device_printf(sc->vge_dev, "MII read timed out\n");
385 	else
386 		rval = CSR_READ_2(sc, VGE_MIIDATA);
387 
388 	vge_miipoll_start(sc);
389 
390 	return (rval);
391 }
392 
393 static int
394 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
395 {
396 	struct vge_softc *sc;
397 	int i, rval = 0;
398 
399 	sc = device_get_softc(dev);
400 
401 	vge_miipoll_stop(sc);
402 
403 	/* Specify the register we want to write. */
404 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
405 
406 	/* Specify the data we want to write. */
407 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
408 
409 	/* Issue write command. */
410 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
411 
412 	/* Wait for the write command bit to self-clear. */
413 	for (i = 0; i < VGE_TIMEOUT; i++) {
414 		DELAY(1);
415 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
416 			break;
417 	}
418 
419 	if (i == VGE_TIMEOUT) {
420 		device_printf(sc->vge_dev, "MII write timed out\n");
421 		rval = EIO;
422 	}
423 
424 	vge_miipoll_start(sc);
425 
426 	return (rval);
427 }
428 
429 static void
430 vge_cam_clear(struct vge_softc *sc)
431 {
432 	int i;
433 
434 	/*
435 	 * Turn off all the mask bits. This tells the chip
436 	 * that none of the entries in the CAM filter are valid.
437 	 * desired entries will be enabled as we fill the filter in.
438 	 */
439 
440 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
441 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
442 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
443 	for (i = 0; i < 8; i++)
444 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
445 
446 	/* Clear the VLAN filter too. */
447 
448 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
449 	for (i = 0; i < 8; i++)
450 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
451 
452 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
453 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
454 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
455 
456 	sc->vge_camidx = 0;
457 }
458 
459 static int
460 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
461 {
462 	int i, error = 0;
463 
464 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
465 		return (ENOSPC);
466 
467 	/* Select the CAM data page. */
468 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
469 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
470 
471 	/* Set the filter entry we want to update and enable writing. */
472 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
473 
474 	/* Write the address to the CAM registers */
475 	for (i = 0; i < ETHER_ADDR_LEN; i++)
476 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
477 
478 	/* Issue a write command. */
479 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
480 
481 	/* Wake for it to clear. */
482 	for (i = 0; i < VGE_TIMEOUT; i++) {
483 		DELAY(1);
484 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
485 			break;
486 	}
487 
488 	if (i == VGE_TIMEOUT) {
489 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
490 		error = EIO;
491 		goto fail;
492 	}
493 
494 	/* Select the CAM mask page. */
495 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
496 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
497 
498 	/* Set the mask bit that enables this filter. */
499 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
500 	    1<<(sc->vge_camidx & 7));
501 
502 	sc->vge_camidx++;
503 
504 fail:
505 	/* Turn off access to CAM. */
506 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
507 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
508 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
509 
510 	return (error);
511 }
512 
513 static void
514 vge_setvlan(struct vge_softc *sc)
515 {
516 	struct ifnet *ifp;
517 	uint8_t cfg;
518 
519 	VGE_LOCK_ASSERT(sc);
520 
521 	ifp = sc->vge_ifp;
522 	cfg = CSR_READ_1(sc, VGE_RXCFG);
523 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
524 		cfg |= VGE_VTAG_OPT2;
525 	else
526 		cfg &= ~VGE_VTAG_OPT2;
527 	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
528 }
529 
530 /*
531  * Program the multicast filter. We use the 64-entry CAM filter
532  * for perfect filtering. If there's more than 64 multicast addresses,
533  * we use the hash filter instead.
534  */
535 static void
536 vge_rxfilter(struct vge_softc *sc)
537 {
538 	struct ifnet *ifp;
539 	struct ifmultiaddr *ifma;
540 	uint32_t h, hashes[2];
541 	uint8_t rxcfg;
542 	int error = 0;
543 
544 	VGE_LOCK_ASSERT(sc);
545 
546 	/* First, zot all the multicast entries. */
547 	hashes[0] = 0;
548 	hashes[1] = 0;
549 
550 	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
551 	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
552 	    VGE_RXCTL_RX_PROMISC);
553 	/*
554 	 * Always allow VLAN oversized frames and frames for
555 	 * this host.
556 	 */
557 	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
558 
559 	ifp = sc->vge_ifp;
560 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
561 		rxcfg |= VGE_RXCTL_RX_BCAST;
562 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
563 		if ((ifp->if_flags & IFF_PROMISC) != 0)
564 			rxcfg |= VGE_RXCTL_RX_PROMISC;
565 		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
566 			hashes[0] = 0xFFFFFFFF;
567 			hashes[1] = 0xFFFFFFFF;
568 		}
569 		goto done;
570 	}
571 
572 	vge_cam_clear(sc);
573 	/* Now program new ones */
574 	if_maddr_rlock(ifp);
575 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
576 		if (ifma->ifma_addr->sa_family != AF_LINK)
577 			continue;
578 		error = vge_cam_set(sc,
579 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
580 		if (error)
581 			break;
582 	}
583 
584 	/* If there were too many addresses, use the hash filter. */
585 	if (error) {
586 		vge_cam_clear(sc);
587 
588 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
589 			if (ifma->ifma_addr->sa_family != AF_LINK)
590 				continue;
591 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
592 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
593 			if (h < 32)
594 				hashes[0] |= (1 << h);
595 			else
596 				hashes[1] |= (1 << (h - 32));
597 		}
598 	}
599 	if_maddr_runlock(ifp);
600 
601 done:
602 	if (hashes[0] != 0 || hashes[1] != 0)
603 		rxcfg |= VGE_RXCTL_RX_MCAST;
604 	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
605 	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
606 	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
607 }
608 
609 static void
610 vge_reset(struct vge_softc *sc)
611 {
612 	int i;
613 
614 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
615 
616 	for (i = 0; i < VGE_TIMEOUT; i++) {
617 		DELAY(5);
618 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
619 			break;
620 	}
621 
622 	if (i == VGE_TIMEOUT) {
623 		device_printf(sc->vge_dev, "soft reset timed out\n");
624 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
625 		DELAY(2000);
626 	}
627 
628 	DELAY(5000);
629 }
630 
631 /*
632  * Probe for a VIA gigabit chip. Check the PCI vendor and device
633  * IDs against our list and return a device name if we find a match.
634  */
635 static int
636 vge_probe(device_t dev)
637 {
638 	struct vge_type	*t;
639 
640 	t = vge_devs;
641 
642 	while (t->vge_name != NULL) {
643 		if ((pci_get_vendor(dev) == t->vge_vid) &&
644 		    (pci_get_device(dev) == t->vge_did)) {
645 			device_set_desc(dev, t->vge_name);
646 			return (BUS_PROBE_DEFAULT);
647 		}
648 		t++;
649 	}
650 
651 	return (ENXIO);
652 }
653 
654 /*
655  * Map a single buffer address.
656  */
657 
658 struct vge_dmamap_arg {
659 	bus_addr_t	vge_busaddr;
660 };
661 
662 static void
663 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
664 {
665 	struct vge_dmamap_arg *ctx;
666 
667 	if (error != 0)
668 		return;
669 
670 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
671 
672 	ctx = (struct vge_dmamap_arg *)arg;
673 	ctx->vge_busaddr = segs[0].ds_addr;
674 }
675 
676 static int
677 vge_dma_alloc(struct vge_softc *sc)
678 {
679 	struct vge_dmamap_arg ctx;
680 	struct vge_txdesc *txd;
681 	struct vge_rxdesc *rxd;
682 	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
683 	int error, i;
684 
685 	/*
686 	 * It seems old PCI controllers do not support DAC.  DAC
687 	 * configuration can be enabled by accessing VGE_CHIPCFG3
688 	 * register but honor EEPROM configuration instead of
689 	 * blindly overriding DAC configuration.  PCIe based
690 	 * controllers are supposed to support 64bit DMA so enable
691 	 * 64bit DMA on these controllers.
692 	 */
693 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
694 		lowaddr = BUS_SPACE_MAXADDR;
695 	else
696 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
697 
698 again:
699 	/* Create parent ring tag. */
700 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
701 	    1, 0,			/* algnmnt, boundary */
702 	    lowaddr,			/* lowaddr */
703 	    BUS_SPACE_MAXADDR,		/* highaddr */
704 	    NULL, NULL,			/* filter, filterarg */
705 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
706 	    0,				/* nsegments */
707 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
708 	    0,				/* flags */
709 	    NULL, NULL,			/* lockfunc, lockarg */
710 	    &sc->vge_cdata.vge_ring_tag);
711 	if (error != 0) {
712 		device_printf(sc->vge_dev,
713 		    "could not create parent DMA tag.\n");
714 		goto fail;
715 	}
716 
717 	/* Create tag for Tx ring. */
718 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
719 	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
720 	    BUS_SPACE_MAXADDR,		/* lowaddr */
721 	    BUS_SPACE_MAXADDR,		/* highaddr */
722 	    NULL, NULL,			/* filter, filterarg */
723 	    VGE_TX_LIST_SZ,		/* maxsize */
724 	    1,				/* nsegments */
725 	    VGE_TX_LIST_SZ,		/* maxsegsize */
726 	    0,				/* flags */
727 	    NULL, NULL,			/* lockfunc, lockarg */
728 	    &sc->vge_cdata.vge_tx_ring_tag);
729 	if (error != 0) {
730 		device_printf(sc->vge_dev,
731 		    "could not allocate Tx ring DMA tag.\n");
732 		goto fail;
733 	}
734 
735 	/* Create tag for Rx ring. */
736 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
737 	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
738 	    BUS_SPACE_MAXADDR,		/* lowaddr */
739 	    BUS_SPACE_MAXADDR,		/* highaddr */
740 	    NULL, NULL,			/* filter, filterarg */
741 	    VGE_RX_LIST_SZ,		/* maxsize */
742 	    1,				/* nsegments */
743 	    VGE_RX_LIST_SZ,		/* maxsegsize */
744 	    0,				/* flags */
745 	    NULL, NULL,			/* lockfunc, lockarg */
746 	    &sc->vge_cdata.vge_rx_ring_tag);
747 	if (error != 0) {
748 		device_printf(sc->vge_dev,
749 		    "could not allocate Rx ring DMA tag.\n");
750 		goto fail;
751 	}
752 
753 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
754 	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
755 	    (void **)&sc->vge_rdata.vge_tx_ring,
756 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
757 	    &sc->vge_cdata.vge_tx_ring_map);
758 	if (error != 0) {
759 		device_printf(sc->vge_dev,
760 		    "could not allocate DMA'able memory for Tx ring.\n");
761 		goto fail;
762 	}
763 
764 	ctx.vge_busaddr = 0;
765 	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
766 	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
767 	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
768 	if (error != 0 || ctx.vge_busaddr == 0) {
769 		device_printf(sc->vge_dev,
770 		    "could not load DMA'able memory for Tx ring.\n");
771 		goto fail;
772 	}
773 	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
774 
775 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
776 	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
777 	    (void **)&sc->vge_rdata.vge_rx_ring,
778 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
779 	    &sc->vge_cdata.vge_rx_ring_map);
780 	if (error != 0) {
781 		device_printf(sc->vge_dev,
782 		    "could not allocate DMA'able memory for Rx ring.\n");
783 		goto fail;
784 	}
785 
786 	ctx.vge_busaddr = 0;
787 	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
788 	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
789 	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
790 	if (error != 0 || ctx.vge_busaddr == 0) {
791 		device_printf(sc->vge_dev,
792 		    "could not load DMA'able memory for Rx ring.\n");
793 		goto fail;
794 	}
795 	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
796 
797 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
798 	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
799 	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
800 	if ((VGE_ADDR_HI(tx_ring_end) !=
801 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
802 	    (VGE_ADDR_HI(rx_ring_end) !=
803 	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
804 	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
805 		device_printf(sc->vge_dev, "4GB boundary crossed, "
806 		    "switching to 32bit DMA address mode.\n");
807 		vge_dma_free(sc);
808 		/* Limit DMA address space to 32bit and try again. */
809 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
810 		goto again;
811 	}
812 
813 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
814 		lowaddr = VGE_BUF_DMA_MAXADDR;
815 	else
816 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
817 	/* Create parent buffer tag. */
818 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
819 	    1, 0,			/* algnmnt, boundary */
820 	    lowaddr,			/* lowaddr */
821 	    BUS_SPACE_MAXADDR,		/* highaddr */
822 	    NULL, NULL,			/* filter, filterarg */
823 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
824 	    0,				/* nsegments */
825 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
826 	    0,				/* flags */
827 	    NULL, NULL,			/* lockfunc, lockarg */
828 	    &sc->vge_cdata.vge_buffer_tag);
829 	if (error != 0) {
830 		device_printf(sc->vge_dev,
831 		    "could not create parent buffer DMA tag.\n");
832 		goto fail;
833 	}
834 
835 	/* Create tag for Tx buffers. */
836 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
837 	    1, 0,			/* algnmnt, boundary */
838 	    BUS_SPACE_MAXADDR,		/* lowaddr */
839 	    BUS_SPACE_MAXADDR,		/* highaddr */
840 	    NULL, NULL,			/* filter, filterarg */
841 	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
842 	    VGE_MAXTXSEGS,		/* nsegments */
843 	    MCLBYTES,			/* maxsegsize */
844 	    0,				/* flags */
845 	    NULL, NULL,			/* lockfunc, lockarg */
846 	    &sc->vge_cdata.vge_tx_tag);
847 	if (error != 0) {
848 		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
849 		goto fail;
850 	}
851 
852 	/* Create tag for Rx buffers. */
853 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
854 	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
855 	    BUS_SPACE_MAXADDR,		/* lowaddr */
856 	    BUS_SPACE_MAXADDR,		/* highaddr */
857 	    NULL, NULL,			/* filter, filterarg */
858 	    MCLBYTES,			/* maxsize */
859 	    1,				/* nsegments */
860 	    MCLBYTES,			/* maxsegsize */
861 	    0,				/* flags */
862 	    NULL, NULL,			/* lockfunc, lockarg */
863 	    &sc->vge_cdata.vge_rx_tag);
864 	if (error != 0) {
865 		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
866 		goto fail;
867 	}
868 
869 	/* Create DMA maps for Tx buffers. */
870 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
871 		txd = &sc->vge_cdata.vge_txdesc[i];
872 		txd->tx_m = NULL;
873 		txd->tx_dmamap = NULL;
874 		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
875 		    &txd->tx_dmamap);
876 		if (error != 0) {
877 			device_printf(sc->vge_dev,
878 			    "could not create Tx dmamap.\n");
879 			goto fail;
880 		}
881 	}
882 	/* Create DMA maps for Rx buffers. */
883 	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
884 	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
885 		device_printf(sc->vge_dev,
886 		    "could not create spare Rx dmamap.\n");
887 		goto fail;
888 	}
889 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
890 		rxd = &sc->vge_cdata.vge_rxdesc[i];
891 		rxd->rx_m = NULL;
892 		rxd->rx_dmamap = NULL;
893 		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
894 		    &rxd->rx_dmamap);
895 		if (error != 0) {
896 			device_printf(sc->vge_dev,
897 			    "could not create Rx dmamap.\n");
898 			goto fail;
899 		}
900 	}
901 
902 fail:
903 	return (error);
904 }
905 
906 static void
907 vge_dma_free(struct vge_softc *sc)
908 {
909 	struct vge_txdesc *txd;
910 	struct vge_rxdesc *rxd;
911 	int i;
912 
913 	/* Tx ring. */
914 	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
915 		if (sc->vge_rdata.vge_tx_ring_paddr)
916 			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
917 			    sc->vge_cdata.vge_tx_ring_map);
918 		if (sc->vge_rdata.vge_tx_ring)
919 			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
920 			    sc->vge_rdata.vge_tx_ring,
921 			    sc->vge_cdata.vge_tx_ring_map);
922 		sc->vge_rdata.vge_tx_ring = NULL;
923 		sc->vge_rdata.vge_tx_ring_paddr = 0;
924 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
925 		sc->vge_cdata.vge_tx_ring_tag = NULL;
926 	}
927 	/* Rx ring. */
928 	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
929 		if (sc->vge_rdata.vge_rx_ring_paddr)
930 			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
931 			    sc->vge_cdata.vge_rx_ring_map);
932 		if (sc->vge_rdata.vge_rx_ring)
933 			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
934 			    sc->vge_rdata.vge_rx_ring,
935 			    sc->vge_cdata.vge_rx_ring_map);
936 		sc->vge_rdata.vge_rx_ring = NULL;
937 		sc->vge_rdata.vge_rx_ring_paddr = 0;
938 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
939 		sc->vge_cdata.vge_rx_ring_tag = NULL;
940 	}
941 	/* Tx buffers. */
942 	if (sc->vge_cdata.vge_tx_tag != NULL) {
943 		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
944 			txd = &sc->vge_cdata.vge_txdesc[i];
945 			if (txd->tx_dmamap != NULL) {
946 				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
947 				    txd->tx_dmamap);
948 				txd->tx_dmamap = NULL;
949 			}
950 		}
951 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
952 		sc->vge_cdata.vge_tx_tag = NULL;
953 	}
954 	/* Rx buffers. */
955 	if (sc->vge_cdata.vge_rx_tag != NULL) {
956 		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
957 			rxd = &sc->vge_cdata.vge_rxdesc[i];
958 			if (rxd->rx_dmamap != NULL) {
959 				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
960 				    rxd->rx_dmamap);
961 				rxd->rx_dmamap = NULL;
962 			}
963 		}
964 		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
965 			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
966 			    sc->vge_cdata.vge_rx_sparemap);
967 			sc->vge_cdata.vge_rx_sparemap = NULL;
968 		}
969 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
970 		sc->vge_cdata.vge_rx_tag = NULL;
971 	}
972 
973 	if (sc->vge_cdata.vge_buffer_tag != NULL) {
974 		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
975 		sc->vge_cdata.vge_buffer_tag = NULL;
976 	}
977 	if (sc->vge_cdata.vge_ring_tag != NULL) {
978 		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
979 		sc->vge_cdata.vge_ring_tag = NULL;
980 	}
981 }
982 
983 /*
984  * Attach the interface. Allocate softc structures, do ifmedia
985  * setup and ethernet/BPF attach.
986  */
987 static int
988 vge_attach(device_t dev)
989 {
990 	u_char eaddr[ETHER_ADDR_LEN];
991 	struct vge_softc *sc;
992 	struct ifnet *ifp;
993 	int error = 0, cap, i, msic, rid;
994 
995 	sc = device_get_softc(dev);
996 	sc->vge_dev = dev;
997 
998 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
999 	    MTX_DEF);
1000 	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1001 
1002 	/*
1003 	 * Map control/status registers.
1004 	 */
1005 	pci_enable_busmaster(dev);
1006 
1007 	rid = PCIR_BAR(1);
1008 	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1009 	    RF_ACTIVE);
1010 
1011 	if (sc->vge_res == NULL) {
1012 		device_printf(dev, "couldn't map ports/memory\n");
1013 		error = ENXIO;
1014 		goto fail;
1015 	}
1016 
1017 	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1018 		sc->vge_flags |= VGE_FLAG_PCIE;
1019 		sc->vge_expcap = cap;
1020 	} else
1021 		sc->vge_flags |= VGE_FLAG_JUMBO;
1022 	if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1023 		sc->vge_flags |= VGE_FLAG_PMCAP;
1024 		sc->vge_pmcap = cap;
1025 	}
1026 	rid = 0;
1027 	msic = pci_msi_count(dev);
1028 	if (msi_disable == 0 && msic > 0) {
1029 		msic = 1;
1030 		if (pci_alloc_msi(dev, &msic) == 0) {
1031 			if (msic == 1) {
1032 				sc->vge_flags |= VGE_FLAG_MSI;
1033 				device_printf(dev, "Using %d MSI message\n",
1034 				    msic);
1035 				rid = 1;
1036 			} else
1037 				pci_release_msi(dev);
1038 		}
1039 	}
1040 
1041 	/* Allocate interrupt */
1042 	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1043 	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1044 	if (sc->vge_irq == NULL) {
1045 		device_printf(dev, "couldn't map interrupt\n");
1046 		error = ENXIO;
1047 		goto fail;
1048 	}
1049 
1050 	/* Reset the adapter. */
1051 	vge_reset(sc);
1052 	/* Reload EEPROM. */
1053 	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1054 	for (i = 0; i < VGE_TIMEOUT; i++) {
1055 		DELAY(5);
1056 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1057 			break;
1058 	}
1059 	if (i == VGE_TIMEOUT)
1060 		device_printf(dev, "EEPROM reload timed out\n");
1061 	/*
1062 	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1063 	 * MAC will receive magic packet which in turn confuses
1064 	 * controller.
1065 	 */
1066 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1067 
1068 	/*
1069 	 * Get station address from the EEPROM.
1070 	 */
1071 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1072 	/*
1073 	 * Save configured PHY address.
1074 	 * It seems the PHY address of PCIe controllers just
1075 	 * reflects media jump strapping status so we assume the
1076 	 * internal PHY address of PCIe controller is at 1.
1077 	 */
1078 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1079 		sc->vge_phyaddr = 1;
1080 	else
1081 		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1082 		    VGE_MIICFG_PHYADDR;
1083 	/* Clear WOL and take hardware from powerdown. */
1084 	vge_clrwol(sc);
1085 	vge_sysctl_node(sc);
1086 	error = vge_dma_alloc(sc);
1087 	if (error)
1088 		goto fail;
1089 
1090 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1091 	if (ifp == NULL) {
1092 		device_printf(dev, "can not if_alloc()\n");
1093 		error = ENOSPC;
1094 		goto fail;
1095 	}
1096 
1097 	vge_miipoll_start(sc);
1098 	/* Do MII setup */
1099 	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1100 	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1101 	    MIIF_DOPAUSE);
1102 	if (error != 0) {
1103 		device_printf(dev, "attaching PHYs failed\n");
1104 		goto fail;
1105 	}
1106 
1107 	ifp->if_softc = sc;
1108 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1109 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1110 	ifp->if_ioctl = vge_ioctl;
1111 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1112 	ifp->if_start = vge_start;
1113 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1114 	ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1115 	    IFCAP_VLAN_HWTAGGING;
1116 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1117 		ifp->if_capabilities |= IFCAP_WOL;
1118 	ifp->if_capenable = ifp->if_capabilities;
1119 #ifdef DEVICE_POLLING
1120 	ifp->if_capabilities |= IFCAP_POLLING;
1121 #endif
1122 	ifp->if_init = vge_init;
1123 	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1124 	ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1125 	IFQ_SET_READY(&ifp->if_snd);
1126 
1127 	/*
1128 	 * Call MI attach routine.
1129 	 */
1130 	ether_ifattach(ifp, eaddr);
1131 
1132 	/* Tell the upper layer(s) we support long frames. */
1133 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1134 
1135 	/* Hook interrupt last to avoid having to lock softc */
1136 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1137 	    NULL, vge_intr, sc, &sc->vge_intrhand);
1138 
1139 	if (error) {
1140 		device_printf(dev, "couldn't set up irq\n");
1141 		ether_ifdetach(ifp);
1142 		goto fail;
1143 	}
1144 
1145 fail:
1146 	if (error)
1147 		vge_detach(dev);
1148 
1149 	return (error);
1150 }
1151 
1152 /*
1153  * Shutdown hardware and free up resources. This can be called any
1154  * time after the mutex has been initialized. It is called in both
1155  * the error case in attach and the normal detach case so it needs
1156  * to be careful about only freeing resources that have actually been
1157  * allocated.
1158  */
1159 static int
1160 vge_detach(device_t dev)
1161 {
1162 	struct vge_softc *sc;
1163 	struct ifnet *ifp;
1164 
1165 	sc = device_get_softc(dev);
1166 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1167 	ifp = sc->vge_ifp;
1168 
1169 #ifdef DEVICE_POLLING
1170 	if (ifp->if_capenable & IFCAP_POLLING)
1171 		ether_poll_deregister(ifp);
1172 #endif
1173 
1174 	/* These should only be active if attach succeeded */
1175 	if (device_is_attached(dev)) {
1176 		ether_ifdetach(ifp);
1177 		VGE_LOCK(sc);
1178 		vge_stop(sc);
1179 		VGE_UNLOCK(sc);
1180 		callout_drain(&sc->vge_watchdog);
1181 	}
1182 	if (sc->vge_miibus)
1183 		device_delete_child(dev, sc->vge_miibus);
1184 	bus_generic_detach(dev);
1185 
1186 	if (sc->vge_intrhand)
1187 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1188 	if (sc->vge_irq)
1189 		bus_release_resource(dev, SYS_RES_IRQ,
1190 		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1191 	if (sc->vge_flags & VGE_FLAG_MSI)
1192 		pci_release_msi(dev);
1193 	if (sc->vge_res)
1194 		bus_release_resource(dev, SYS_RES_MEMORY,
1195 		    PCIR_BAR(1), sc->vge_res);
1196 	if (ifp)
1197 		if_free(ifp);
1198 
1199 	vge_dma_free(sc);
1200 	mtx_destroy(&sc->vge_mtx);
1201 
1202 	return (0);
1203 }
1204 
1205 static void
1206 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1207 {
1208 	struct vge_rxdesc *rxd;
1209 	int i;
1210 
1211 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1212 	rxd->rx_desc->vge_sts = 0;
1213 	rxd->rx_desc->vge_ctl = 0;
1214 
1215 	/*
1216 	 * Note: the manual fails to document the fact that for
1217 	 * proper opration, the driver needs to replentish the RX
1218 	 * DMA ring 4 descriptors at a time (rather than one at a
1219 	 * time, like most chips). We can allocate the new buffers
1220 	 * but we should not set the OWN bits until we're ready
1221 	 * to hand back 4 of them in one shot.
1222 	 */
1223 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1224 		for (i = VGE_RXCHUNK; i > 0; i--) {
1225 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1226 			rxd = rxd->rxd_prev;
1227 		}
1228 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1229 	}
1230 }
1231 
1232 static int
1233 vge_newbuf(struct vge_softc *sc, int prod)
1234 {
1235 	struct vge_rxdesc *rxd;
1236 	struct mbuf *m;
1237 	bus_dma_segment_t segs[1];
1238 	bus_dmamap_t map;
1239 	int i, nsegs;
1240 
1241 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1242 	if (m == NULL)
1243 		return (ENOBUFS);
1244 	/*
1245 	 * This is part of an evil trick to deal with strict-alignment
1246 	 * architectures. The VIA chip requires RX buffers to be aligned
1247 	 * on 32-bit boundaries, but that will hose strict-alignment
1248 	 * architectures. To get around this, we leave some empty space
1249 	 * at the start of each buffer and for non-strict-alignment hosts,
1250 	 * we copy the buffer back two bytes to achieve word alignment.
1251 	 * This is slightly more efficient than allocating a new buffer,
1252 	 * copying the contents, and discarding the old buffer.
1253 	 */
1254 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1255 	m_adj(m, VGE_RX_BUF_ALIGN);
1256 
1257 	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1258 	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1259 		m_freem(m);
1260 		return (ENOBUFS);
1261 	}
1262 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1263 
1264 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1265 	if (rxd->rx_m != NULL) {
1266 		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1267 		    BUS_DMASYNC_POSTREAD);
1268 		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1269 	}
1270 	map = rxd->rx_dmamap;
1271 	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1272 	sc->vge_cdata.vge_rx_sparemap = map;
1273 	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1274 	    BUS_DMASYNC_PREREAD);
1275 	rxd->rx_m = m;
1276 
1277 	rxd->rx_desc->vge_sts = 0;
1278 	rxd->rx_desc->vge_ctl = 0;
1279 	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1280 	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1281 	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1282 
1283 	/*
1284 	 * Note: the manual fails to document the fact that for
1285 	 * proper operation, the driver needs to replenish the RX
1286 	 * DMA ring 4 descriptors at a time (rather than one at a
1287 	 * time, like most chips). We can allocate the new buffers
1288 	 * but we should not set the OWN bits until we're ready
1289 	 * to hand back 4 of them in one shot.
1290 	 */
1291 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1292 		for (i = VGE_RXCHUNK; i > 0; i--) {
1293 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1294 			rxd = rxd->rxd_prev;
1295 		}
1296 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1297 	}
1298 
1299 	return (0);
1300 }
1301 
1302 static int
1303 vge_tx_list_init(struct vge_softc *sc)
1304 {
1305 	struct vge_ring_data *rd;
1306 	struct vge_txdesc *txd;
1307 	int i;
1308 
1309 	VGE_LOCK_ASSERT(sc);
1310 
1311 	sc->vge_cdata.vge_tx_prodidx = 0;
1312 	sc->vge_cdata.vge_tx_considx = 0;
1313 	sc->vge_cdata.vge_tx_cnt = 0;
1314 
1315 	rd = &sc->vge_rdata;
1316 	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1317 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1318 		txd = &sc->vge_cdata.vge_txdesc[i];
1319 		txd->tx_m = NULL;
1320 		txd->tx_desc = &rd->vge_tx_ring[i];
1321 	}
1322 
1323 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1324 	    sc->vge_cdata.vge_tx_ring_map,
1325 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1326 
1327 	return (0);
1328 }
1329 
1330 static int
1331 vge_rx_list_init(struct vge_softc *sc)
1332 {
1333 	struct vge_ring_data *rd;
1334 	struct vge_rxdesc *rxd;
1335 	int i;
1336 
1337 	VGE_LOCK_ASSERT(sc);
1338 
1339 	sc->vge_cdata.vge_rx_prodidx = 0;
1340 	sc->vge_cdata.vge_head = NULL;
1341 	sc->vge_cdata.vge_tail = NULL;
1342 	sc->vge_cdata.vge_rx_commit = 0;
1343 
1344 	rd = &sc->vge_rdata;
1345 	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1346 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1347 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1348 		rxd->rx_m = NULL;
1349 		rxd->rx_desc = &rd->vge_rx_ring[i];
1350 		if (i == 0)
1351 			rxd->rxd_prev =
1352 			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1353 		else
1354 			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1355 		if (vge_newbuf(sc, i) != 0)
1356 			return (ENOBUFS);
1357 	}
1358 
1359 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1360 	    sc->vge_cdata.vge_rx_ring_map,
1361 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1362 
1363 	sc->vge_cdata.vge_rx_commit = 0;
1364 
1365 	return (0);
1366 }
1367 
1368 static void
1369 vge_freebufs(struct vge_softc *sc)
1370 {
1371 	struct vge_txdesc *txd;
1372 	struct vge_rxdesc *rxd;
1373 	struct ifnet *ifp;
1374 	int i;
1375 
1376 	VGE_LOCK_ASSERT(sc);
1377 
1378 	ifp = sc->vge_ifp;
1379 	/*
1380 	 * Free RX and TX mbufs still in the queues.
1381 	 */
1382 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1383 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1384 		if (rxd->rx_m != NULL) {
1385 			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1386 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1387 			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1388 			    rxd->rx_dmamap);
1389 			m_freem(rxd->rx_m);
1390 			rxd->rx_m = NULL;
1391 		}
1392 	}
1393 
1394 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1395 		txd = &sc->vge_cdata.vge_txdesc[i];
1396 		if (txd->tx_m != NULL) {
1397 			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1398 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1399 			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1400 			    txd->tx_dmamap);
1401 			m_freem(txd->tx_m);
1402 			txd->tx_m = NULL;
1403 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1404 		}
1405 	}
1406 }
1407 
1408 #ifndef	__NO_STRICT_ALIGNMENT
1409 static __inline void
1410 vge_fixup_rx(struct mbuf *m)
1411 {
1412 	int i;
1413 	uint16_t *src, *dst;
1414 
1415 	src = mtod(m, uint16_t *);
1416 	dst = src - 1;
1417 
1418 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1419 		*dst++ = *src++;
1420 
1421 	m->m_data -= ETHER_ALIGN;
1422 }
1423 #endif
1424 
1425 /*
1426  * RX handler. We support the reception of jumbo frames that have
1427  * been fragmented across multiple 2K mbuf cluster buffers.
1428  */
1429 static int
1430 vge_rxeof(struct vge_softc *sc, int count)
1431 {
1432 	struct mbuf *m;
1433 	struct ifnet *ifp;
1434 	int prod, prog, total_len;
1435 	struct vge_rxdesc *rxd;
1436 	struct vge_rx_desc *cur_rx;
1437 	uint32_t rxstat, rxctl;
1438 
1439 	VGE_LOCK_ASSERT(sc);
1440 
1441 	ifp = sc->vge_ifp;
1442 
1443 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1444 	    sc->vge_cdata.vge_rx_ring_map,
1445 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1446 
1447 	prod = sc->vge_cdata.vge_rx_prodidx;
1448 	for (prog = 0; count > 0 &&
1449 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1450 	    VGE_RX_DESC_INC(prod)) {
1451 		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1452 		rxstat = le32toh(cur_rx->vge_sts);
1453 		if ((rxstat & VGE_RDSTS_OWN) != 0)
1454 			break;
1455 		count--;
1456 		prog++;
1457 		rxctl = le32toh(cur_rx->vge_ctl);
1458 		total_len = VGE_RXBYTES(rxstat);
1459 		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1460 		m = rxd->rx_m;
1461 
1462 		/*
1463 		 * If the 'start of frame' bit is set, this indicates
1464 		 * either the first fragment in a multi-fragment receive,
1465 		 * or an intermediate fragment. Either way, we want to
1466 		 * accumulate the buffers.
1467 		 */
1468 		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1469 			if (vge_newbuf(sc, prod) != 0) {
1470 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1471 				VGE_CHAIN_RESET(sc);
1472 				vge_discard_rxbuf(sc, prod);
1473 				continue;
1474 			}
1475 			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1476 			if (sc->vge_cdata.vge_head == NULL) {
1477 				sc->vge_cdata.vge_head = m;
1478 				sc->vge_cdata.vge_tail = m;
1479 			} else {
1480 				m->m_flags &= ~M_PKTHDR;
1481 				sc->vge_cdata.vge_tail->m_next = m;
1482 				sc->vge_cdata.vge_tail = m;
1483 			}
1484 			continue;
1485 		}
1486 
1487 		/*
1488 		 * Bad/error frames will have the RXOK bit cleared.
1489 		 * However, there's one error case we want to allow:
1490 		 * if a VLAN tagged frame arrives and the chip can't
1491 		 * match it against the CAM filter, it considers this
1492 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1493 		 * We don't want to drop the frame though: our VLAN
1494 		 * filtering is done in software.
1495 		 * We also want to receive bad-checksummed frames and
1496 		 * and frames with bad-length.
1497 		 */
1498 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1499 		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1500 		    VGE_RDSTS_CSUMERR)) == 0) {
1501 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1502 			/*
1503 			 * If this is part of a multi-fragment packet,
1504 			 * discard all the pieces.
1505 			 */
1506 			VGE_CHAIN_RESET(sc);
1507 			vge_discard_rxbuf(sc, prod);
1508 			continue;
1509 		}
1510 
1511 		if (vge_newbuf(sc, prod) != 0) {
1512 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1513 			VGE_CHAIN_RESET(sc);
1514 			vge_discard_rxbuf(sc, prod);
1515 			continue;
1516 		}
1517 
1518 		/* Chain received mbufs. */
1519 		if (sc->vge_cdata.vge_head != NULL) {
1520 			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1521 			/*
1522 			 * Special case: if there's 4 bytes or less
1523 			 * in this buffer, the mbuf can be discarded:
1524 			 * the last 4 bytes is the CRC, which we don't
1525 			 * care about anyway.
1526 			 */
1527 			if (m->m_len <= ETHER_CRC_LEN) {
1528 				sc->vge_cdata.vge_tail->m_len -=
1529 				    (ETHER_CRC_LEN - m->m_len);
1530 				m_freem(m);
1531 			} else {
1532 				m->m_len -= ETHER_CRC_LEN;
1533 				m->m_flags &= ~M_PKTHDR;
1534 				sc->vge_cdata.vge_tail->m_next = m;
1535 			}
1536 			m = sc->vge_cdata.vge_head;
1537 			m->m_flags |= M_PKTHDR;
1538 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1539 		} else {
1540 			m->m_flags |= M_PKTHDR;
1541 			m->m_pkthdr.len = m->m_len =
1542 			    (total_len - ETHER_CRC_LEN);
1543 		}
1544 
1545 #ifndef	__NO_STRICT_ALIGNMENT
1546 		vge_fixup_rx(m);
1547 #endif
1548 		m->m_pkthdr.rcvif = ifp;
1549 
1550 		/* Do RX checksumming if enabled */
1551 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1552 		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1553 			/* Check IP header checksum */
1554 			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1555 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1556 			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1557 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1558 
1559 			/* Check TCP/UDP checksum */
1560 			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1561 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1562 				m->m_pkthdr.csum_flags |=
1563 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1564 				m->m_pkthdr.csum_data = 0xffff;
1565 			}
1566 		}
1567 
1568 		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1569 			/*
1570 			 * The 32-bit rxctl register is stored in little-endian.
1571 			 * However, the 16-bit vlan tag is stored in big-endian,
1572 			 * so we have to byte swap it.
1573 			 */
1574 			m->m_pkthdr.ether_vtag =
1575 			    bswap16(rxctl & VGE_RDCTL_VLANID);
1576 			m->m_flags |= M_VLANTAG;
1577 		}
1578 
1579 		VGE_UNLOCK(sc);
1580 		(*ifp->if_input)(ifp, m);
1581 		VGE_LOCK(sc);
1582 		sc->vge_cdata.vge_head = NULL;
1583 		sc->vge_cdata.vge_tail = NULL;
1584 	}
1585 
1586 	if (prog > 0) {
1587 		sc->vge_cdata.vge_rx_prodidx = prod;
1588 		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1589 		    sc->vge_cdata.vge_rx_ring_map,
1590 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1591 		/* Update residue counter. */
1592 		if (sc->vge_cdata.vge_rx_commit != 0) {
1593 			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1594 			    sc->vge_cdata.vge_rx_commit);
1595 			sc->vge_cdata.vge_rx_commit = 0;
1596 		}
1597 	}
1598 	return (prog);
1599 }
1600 
1601 static void
1602 vge_txeof(struct vge_softc *sc)
1603 {
1604 	struct ifnet *ifp;
1605 	struct vge_tx_desc *cur_tx;
1606 	struct vge_txdesc *txd;
1607 	uint32_t txstat;
1608 	int cons, prod;
1609 
1610 	VGE_LOCK_ASSERT(sc);
1611 
1612 	ifp = sc->vge_ifp;
1613 
1614 	if (sc->vge_cdata.vge_tx_cnt == 0)
1615 		return;
1616 
1617 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1618 	    sc->vge_cdata.vge_tx_ring_map,
1619 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1620 
1621 	/*
1622 	 * Go through our tx list and free mbufs for those
1623 	 * frames that have been transmitted.
1624 	 */
1625 	cons = sc->vge_cdata.vge_tx_considx;
1626 	prod = sc->vge_cdata.vge_tx_prodidx;
1627 	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1628 		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1629 		txstat = le32toh(cur_tx->vge_sts);
1630 		if ((txstat & VGE_TDSTS_OWN) != 0)
1631 			break;
1632 		sc->vge_cdata.vge_tx_cnt--;
1633 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1634 
1635 		txd = &sc->vge_cdata.vge_txdesc[cons];
1636 		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1637 		    BUS_DMASYNC_POSTWRITE);
1638 		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1639 
1640 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1641 		    __func__));
1642 		m_freem(txd->tx_m);
1643 		txd->tx_m = NULL;
1644 		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1645 	}
1646 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1647 	    sc->vge_cdata.vge_tx_ring_map,
1648 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1649 	sc->vge_cdata.vge_tx_considx = cons;
1650 	if (sc->vge_cdata.vge_tx_cnt == 0)
1651 		sc->vge_timer = 0;
1652 }
1653 
1654 static void
1655 vge_link_statchg(void *xsc)
1656 {
1657 	struct vge_softc *sc;
1658 	struct ifnet *ifp;
1659 	uint8_t physts;
1660 
1661 	sc = xsc;
1662 	ifp = sc->vge_ifp;
1663 	VGE_LOCK_ASSERT(sc);
1664 
1665 	physts = CSR_READ_1(sc, VGE_PHYSTS0);
1666 	if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1667 		if ((physts & VGE_PHYSTS_LINK) == 0) {
1668 			sc->vge_flags &= ~VGE_FLAG_LINK;
1669 			if_link_state_change(sc->vge_ifp,
1670 			    LINK_STATE_DOWN);
1671 		} else {
1672 			sc->vge_flags |= VGE_FLAG_LINK;
1673 			if_link_state_change(sc->vge_ifp,
1674 			    LINK_STATE_UP);
1675 			CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1676 			    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1677 			if ((physts & VGE_PHYSTS_FDX) != 0) {
1678 				if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1679 					CSR_WRITE_1(sc, VGE_CRS2,
1680 					    VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1681 				if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1682 					CSR_WRITE_1(sc, VGE_CRS2,
1683 					    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1684 			}
1685 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1686 				vge_start_locked(ifp);
1687 		}
1688 	}
1689 	/*
1690 	 * Restart MII auto-polling because link state change interrupt
1691 	 * will disable it.
1692 	 */
1693 	vge_miipoll_start(sc);
1694 }
1695 
1696 #ifdef DEVICE_POLLING
1697 static int
1698 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1699 {
1700 	struct vge_softc *sc = ifp->if_softc;
1701 	int rx_npkts = 0;
1702 
1703 	VGE_LOCK(sc);
1704 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1705 		goto done;
1706 
1707 	rx_npkts = vge_rxeof(sc, count);
1708 	vge_txeof(sc);
1709 
1710 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1711 		vge_start_locked(ifp);
1712 
1713 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1714 		uint32_t       status;
1715 		status = CSR_READ_4(sc, VGE_ISR);
1716 		if (status == 0xFFFFFFFF)
1717 			goto done;
1718 		if (status)
1719 			CSR_WRITE_4(sc, VGE_ISR, status);
1720 
1721 		/*
1722 		 * XXX check behaviour on receiver stalls.
1723 		 */
1724 
1725 		if (status & VGE_ISR_TXDMA_STALL ||
1726 		    status & VGE_ISR_RXDMA_STALL) {
1727 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1728 			vge_init_locked(sc);
1729 		}
1730 
1731 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1732 			vge_rxeof(sc, count);
1733 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1734 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1735 		}
1736 	}
1737 done:
1738 	VGE_UNLOCK(sc);
1739 	return (rx_npkts);
1740 }
1741 #endif /* DEVICE_POLLING */
1742 
1743 static void
1744 vge_intr(void *arg)
1745 {
1746 	struct vge_softc *sc;
1747 	struct ifnet *ifp;
1748 	uint32_t status;
1749 
1750 	sc = arg;
1751 	VGE_LOCK(sc);
1752 
1753 	ifp = sc->vge_ifp;
1754 	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1755 	    (ifp->if_flags & IFF_UP) == 0) {
1756 		VGE_UNLOCK(sc);
1757 		return;
1758 	}
1759 
1760 #ifdef DEVICE_POLLING
1761 	if  (ifp->if_capenable & IFCAP_POLLING) {
1762 		status = CSR_READ_4(sc, VGE_ISR);
1763 		CSR_WRITE_4(sc, VGE_ISR, status);
1764 		if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1765 			vge_link_statchg(sc);
1766 		VGE_UNLOCK(sc);
1767 		return;
1768 	}
1769 #endif
1770 
1771 	/* Disable interrupts */
1772 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1773 	status = CSR_READ_4(sc, VGE_ISR);
1774 	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1775 	/* If the card has gone away the read returns 0xffff. */
1776 	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1777 		goto done;
1778 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1779 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1780 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1781 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1782 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1783 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1784 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1785 		}
1786 
1787 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1788 			vge_txeof(sc);
1789 
1790 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1791 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1792 			vge_init_locked(sc);
1793 		}
1794 
1795 		if (status & VGE_ISR_LINKSTS)
1796 			vge_link_statchg(sc);
1797 	}
1798 done:
1799 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1800 		/* Re-enable interrupts */
1801 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1802 
1803 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1804 			vge_start_locked(ifp);
1805 	}
1806 	VGE_UNLOCK(sc);
1807 }
1808 
1809 static int
1810 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1811 {
1812 	struct vge_txdesc *txd;
1813 	struct vge_tx_frag *frag;
1814 	struct mbuf *m;
1815 	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1816 	int error, i, nsegs, padlen;
1817 	uint32_t cflags;
1818 
1819 	VGE_LOCK_ASSERT(sc);
1820 
1821 	M_ASSERTPKTHDR((*m_head));
1822 
1823 	/* Argh. This chip does not autopad short frames. */
1824 	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1825 		m = *m_head;
1826 		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1827 		if (M_WRITABLE(m) == 0) {
1828 			/* Get a writable copy. */
1829 			m = m_dup(*m_head, M_NOWAIT);
1830 			m_freem(*m_head);
1831 			if (m == NULL) {
1832 				*m_head = NULL;
1833 				return (ENOBUFS);
1834 			}
1835 			*m_head = m;
1836 		}
1837 		if (M_TRAILINGSPACE(m) < padlen) {
1838 			m = m_defrag(m, M_NOWAIT);
1839 			if (m == NULL) {
1840 				m_freem(*m_head);
1841 				*m_head = NULL;
1842 				return (ENOBUFS);
1843 			}
1844 		}
1845 		/*
1846 		 * Manually pad short frames, and zero the pad space
1847 		 * to avoid leaking data.
1848 		 */
1849 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1850 		m->m_pkthdr.len += padlen;
1851 		m->m_len = m->m_pkthdr.len;
1852 		*m_head = m;
1853 	}
1854 
1855 	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1856 
1857 	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1858 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1859 	if (error == EFBIG) {
1860 		m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1861 		if (m == NULL) {
1862 			m_freem(*m_head);
1863 			*m_head = NULL;
1864 			return (ENOMEM);
1865 		}
1866 		*m_head = m;
1867 		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1868 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1869 		if (error != 0) {
1870 			m_freem(*m_head);
1871 			*m_head = NULL;
1872 			return (error);
1873 		}
1874 	} else if (error != 0)
1875 		return (error);
1876 	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1877 	    BUS_DMASYNC_PREWRITE);
1878 
1879 	m = *m_head;
1880 	cflags = 0;
1881 
1882 	/* Configure checksum offload. */
1883 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1884 		cflags |= VGE_TDCTL_IPCSUM;
1885 	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1886 		cflags |= VGE_TDCTL_TCPCSUM;
1887 	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1888 		cflags |= VGE_TDCTL_UDPCSUM;
1889 
1890 	/* Configure VLAN. */
1891 	if ((m->m_flags & M_VLANTAG) != 0)
1892 		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1893 	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1894 	/*
1895 	 * XXX
1896 	 * Velocity family seems to support TSO but no information
1897 	 * for MSS configuration is available. Also the number of
1898 	 * fragments supported by a descriptor is too small to hold
1899 	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1900 	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1901 	 * longer chain of buffers but no additional information is
1902 	 * available.
1903 	 *
1904 	 * When telling the chip how many segments there are, we
1905 	 * must use nsegs + 1 instead of just nsegs. Darned if I
1906 	 * know why. This also means we can't use the last fragment
1907 	 * field of Tx descriptor.
1908 	 */
1909 	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1910 	    VGE_TD_LS_NORM);
1911 	for (i = 0; i < nsegs; i++) {
1912 		frag = &txd->tx_desc->vge_frag[i];
1913 		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1914 		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1915 		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1916 	}
1917 
1918 	sc->vge_cdata.vge_tx_cnt++;
1919 	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1920 
1921 	/*
1922 	 * Finally request interrupt and give the first descriptor
1923 	 * ownership to hardware.
1924 	 */
1925 	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1926 	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1927 	txd->tx_m = m;
1928 
1929 	return (0);
1930 }
1931 
1932 /*
1933  * Main transmit routine.
1934  */
1935 
1936 static void
1937 vge_start(struct ifnet *ifp)
1938 {
1939 	struct vge_softc *sc;
1940 
1941 	sc = ifp->if_softc;
1942 	VGE_LOCK(sc);
1943 	vge_start_locked(ifp);
1944 	VGE_UNLOCK(sc);
1945 }
1946 
1947 
1948 static void
1949 vge_start_locked(struct ifnet *ifp)
1950 {
1951 	struct vge_softc *sc;
1952 	struct vge_txdesc *txd;
1953 	struct mbuf *m_head;
1954 	int enq, idx;
1955 
1956 	sc = ifp->if_softc;
1957 
1958 	VGE_LOCK_ASSERT(sc);
1959 
1960 	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1961 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1962 	    IFF_DRV_RUNNING)
1963 		return;
1964 
1965 	idx = sc->vge_cdata.vge_tx_prodidx;
1966 	VGE_TX_DESC_DEC(idx);
1967 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1968 	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1969 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1970 		if (m_head == NULL)
1971 			break;
1972 		/*
1973 		 * Pack the data into the transmit ring. If we
1974 		 * don't have room, set the OACTIVE flag and wait
1975 		 * for the NIC to drain the ring.
1976 		 */
1977 		if (vge_encap(sc, &m_head)) {
1978 			if (m_head == NULL)
1979 				break;
1980 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1981 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1982 			break;
1983 		}
1984 
1985 		txd = &sc->vge_cdata.vge_txdesc[idx];
1986 		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1987 		VGE_TX_DESC_INC(idx);
1988 
1989 		enq++;
1990 		/*
1991 		 * If there's a BPF listener, bounce a copy of this frame
1992 		 * to him.
1993 		 */
1994 		ETHER_BPF_MTAP(ifp, m_head);
1995 	}
1996 
1997 	if (enq > 0) {
1998 		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1999 		    sc->vge_cdata.vge_tx_ring_map,
2000 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2001 		/* Issue a transmit command. */
2002 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2003 		/*
2004 		 * Set a timeout in case the chip goes out to lunch.
2005 		 */
2006 		sc->vge_timer = 5;
2007 	}
2008 }
2009 
2010 static void
2011 vge_init(void *xsc)
2012 {
2013 	struct vge_softc *sc = xsc;
2014 
2015 	VGE_LOCK(sc);
2016 	vge_init_locked(sc);
2017 	VGE_UNLOCK(sc);
2018 }
2019 
2020 static void
2021 vge_init_locked(struct vge_softc *sc)
2022 {
2023 	struct ifnet *ifp = sc->vge_ifp;
2024 	int error, i;
2025 
2026 	VGE_LOCK_ASSERT(sc);
2027 
2028 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2029 		return;
2030 
2031 	/*
2032 	 * Cancel pending I/O and free all RX/TX buffers.
2033 	 */
2034 	vge_stop(sc);
2035 	vge_reset(sc);
2036 	vge_miipoll_start(sc);
2037 
2038 	/*
2039 	 * Initialize the RX and TX descriptors and mbufs.
2040 	 */
2041 
2042 	error = vge_rx_list_init(sc);
2043 	if (error != 0) {
2044                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2045                 return;
2046 	}
2047 	vge_tx_list_init(sc);
2048 	/* Clear MAC statistics. */
2049 	vge_stats_clear(sc);
2050 	/* Set our station address */
2051 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2052 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2053 
2054 	/*
2055 	 * Set receive FIFO threshold. Also allow transmission and
2056 	 * reception of VLAN tagged frames.
2057 	 */
2058 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2059 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2060 
2061 	/* Set DMA burst length */
2062 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2063 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2064 
2065 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2066 
2067 	/* Set collision backoff algorithm */
2068 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2069 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2070 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2071 
2072 	/* Disable LPSEL field in priority resolution */
2073 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2074 
2075 	/*
2076 	 * Load the addresses of the DMA queues into the chip.
2077 	 * Note that we only use one transmit queue.
2078 	 */
2079 
2080 	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2081 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2082 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2083 	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2084 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2085 
2086 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2087 	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2088 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2089 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2090 
2091 	/* Configure interrupt moderation. */
2092 	vge_intr_holdoff(sc);
2093 
2094 	/* Enable and wake up the RX descriptor queue */
2095 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2096 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2097 
2098 	/* Enable the TX descriptor queue */
2099 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2100 
2101 	/* Init the cam filter. */
2102 	vge_cam_clear(sc);
2103 
2104 	/* Set up receiver filter. */
2105 	vge_rxfilter(sc);
2106 	vge_setvlan(sc);
2107 
2108 	/* Initialize pause timer. */
2109 	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2110 	/*
2111 	 * Initialize flow control parameters.
2112 	 *  TX XON high threshold : 48
2113 	 *  TX pause low threshold : 24
2114 	 *  Disable hald-duplex flow control
2115 	 */
2116 	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2117 	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2118 
2119 	/* Enable jumbo frame reception (if desired) */
2120 
2121 	/* Start the MAC. */
2122 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2123 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2124 	CSR_WRITE_1(sc, VGE_CRS0,
2125 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2126 
2127 #ifdef DEVICE_POLLING
2128 	/*
2129 	 * Disable interrupts except link state change if we are polling.
2130 	 */
2131 	if (ifp->if_capenable & IFCAP_POLLING) {
2132 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2133 	} else	/* otherwise ... */
2134 #endif
2135 	{
2136 	/*
2137 	 * Enable interrupts.
2138 	 */
2139 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2140 	}
2141 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2142 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2143 
2144 	sc->vge_flags &= ~VGE_FLAG_LINK;
2145 	vge_ifmedia_upd_locked(sc);
2146 
2147 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2148 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2149 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2150 }
2151 
2152 /*
2153  * Set media options.
2154  */
2155 static int
2156 vge_ifmedia_upd(struct ifnet *ifp)
2157 {
2158 	struct vge_softc *sc;
2159 	int error;
2160 
2161 	sc = ifp->if_softc;
2162 	VGE_LOCK(sc);
2163 	error = vge_ifmedia_upd_locked(sc);
2164 	VGE_UNLOCK(sc);
2165 
2166 	return (error);
2167 }
2168 
2169 static int
2170 vge_ifmedia_upd_locked(struct vge_softc *sc)
2171 {
2172 	struct mii_data *mii;
2173 	struct mii_softc *miisc;
2174 	int error;
2175 
2176 	mii = device_get_softc(sc->vge_miibus);
2177 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2178 		PHY_RESET(miisc);
2179 	vge_setmedia(sc);
2180 	error = mii_mediachg(mii);
2181 
2182 	return (error);
2183 }
2184 
2185 /*
2186  * Report current media status.
2187  */
2188 static void
2189 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2190 {
2191 	struct vge_softc *sc;
2192 	struct mii_data *mii;
2193 
2194 	sc = ifp->if_softc;
2195 	mii = device_get_softc(sc->vge_miibus);
2196 
2197 	VGE_LOCK(sc);
2198 	if ((ifp->if_flags & IFF_UP) == 0) {
2199 		VGE_UNLOCK(sc);
2200 		return;
2201 	}
2202 	mii_pollstat(mii);
2203 	ifmr->ifm_active = mii->mii_media_active;
2204 	ifmr->ifm_status = mii->mii_media_status;
2205 	VGE_UNLOCK(sc);
2206 }
2207 
2208 static void
2209 vge_setmedia(struct vge_softc *sc)
2210 {
2211 	struct mii_data *mii;
2212 	struct ifmedia_entry *ife;
2213 
2214 	mii = device_get_softc(sc->vge_miibus);
2215 	ife = mii->mii_media.ifm_cur;
2216 
2217 	/*
2218 	 * If the user manually selects a media mode, we need to turn
2219 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2220 	 * user happens to choose a full duplex mode, we also need to
2221 	 * set the 'force full duplex' bit. This applies only to
2222 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2223 	 * mode is disabled, and in 1000baseT mode, full duplex is
2224 	 * always implied, so we turn on the forced mode bit but leave
2225 	 * the FDX bit cleared.
2226 	 */
2227 
2228 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2229 	case IFM_AUTO:
2230 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2231 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2232 		break;
2233 	case IFM_1000_T:
2234 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2235 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2236 		break;
2237 	case IFM_100_TX:
2238 	case IFM_10_T:
2239 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2240 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2241 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2242 		} else {
2243 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2244 		}
2245 		break;
2246 	default:
2247 		device_printf(sc->vge_dev, "unknown media type: %x\n",
2248 		    IFM_SUBTYPE(ife->ifm_media));
2249 		break;
2250 	}
2251 }
2252 
2253 static int
2254 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2255 {
2256 	struct vge_softc *sc = ifp->if_softc;
2257 	struct ifreq *ifr = (struct ifreq *) data;
2258 	struct mii_data *mii;
2259 	int error = 0, mask;
2260 
2261 	switch (command) {
2262 	case SIOCSIFMTU:
2263 		VGE_LOCK(sc);
2264 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2265 			error = EINVAL;
2266 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2267 			if (ifr->ifr_mtu > ETHERMTU &&
2268 			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2269 				error = EINVAL;
2270 			else
2271 				ifp->if_mtu = ifr->ifr_mtu;
2272 		}
2273 		VGE_UNLOCK(sc);
2274 		break;
2275 	case SIOCSIFFLAGS:
2276 		VGE_LOCK(sc);
2277 		if ((ifp->if_flags & IFF_UP) != 0) {
2278 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2279 			    ((ifp->if_flags ^ sc->vge_if_flags) &
2280 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2281 				vge_rxfilter(sc);
2282 			else
2283 				vge_init_locked(sc);
2284 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2285 			vge_stop(sc);
2286 		sc->vge_if_flags = ifp->if_flags;
2287 		VGE_UNLOCK(sc);
2288 		break;
2289 	case SIOCADDMULTI:
2290 	case SIOCDELMULTI:
2291 		VGE_LOCK(sc);
2292 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2293 			vge_rxfilter(sc);
2294 		VGE_UNLOCK(sc);
2295 		break;
2296 	case SIOCGIFMEDIA:
2297 	case SIOCSIFMEDIA:
2298 		mii = device_get_softc(sc->vge_miibus);
2299 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2300 		break;
2301 	case SIOCSIFCAP:
2302 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2303 #ifdef DEVICE_POLLING
2304 		if (mask & IFCAP_POLLING) {
2305 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2306 				error = ether_poll_register(vge_poll, ifp);
2307 				if (error)
2308 					return (error);
2309 				VGE_LOCK(sc);
2310 					/* Disable interrupts */
2311 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2312 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2313 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2314 				ifp->if_capenable |= IFCAP_POLLING;
2315 				VGE_UNLOCK(sc);
2316 			} else {
2317 				error = ether_poll_deregister(ifp);
2318 				/* Enable interrupts. */
2319 				VGE_LOCK(sc);
2320 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2321 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2322 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2323 				ifp->if_capenable &= ~IFCAP_POLLING;
2324 				VGE_UNLOCK(sc);
2325 			}
2326 		}
2327 #endif /* DEVICE_POLLING */
2328 		VGE_LOCK(sc);
2329 		if ((mask & IFCAP_TXCSUM) != 0 &&
2330 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2331 			ifp->if_capenable ^= IFCAP_TXCSUM;
2332 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2333 				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2334 			else
2335 				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2336 		}
2337 		if ((mask & IFCAP_RXCSUM) != 0 &&
2338 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2339 			ifp->if_capenable ^= IFCAP_RXCSUM;
2340 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2341 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2342 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2343 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2344 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2345 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2346 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2347 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2348 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2349 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2350 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2351 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2352 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2353 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2354 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2355 			vge_setvlan(sc);
2356 		}
2357 		VGE_UNLOCK(sc);
2358 		VLAN_CAPABILITIES(ifp);
2359 		break;
2360 	default:
2361 		error = ether_ioctl(ifp, command, data);
2362 		break;
2363 	}
2364 
2365 	return (error);
2366 }
2367 
2368 static void
2369 vge_watchdog(void *arg)
2370 {
2371 	struct vge_softc *sc;
2372 	struct ifnet *ifp;
2373 
2374 	sc = arg;
2375 	VGE_LOCK_ASSERT(sc);
2376 	vge_stats_update(sc);
2377 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2378 	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2379 		return;
2380 
2381 	ifp = sc->vge_ifp;
2382 	if_printf(ifp, "watchdog timeout\n");
2383 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2384 
2385 	vge_txeof(sc);
2386 	vge_rxeof(sc, VGE_RX_DESC_CNT);
2387 
2388 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2389 	vge_init_locked(sc);
2390 }
2391 
2392 /*
2393  * Stop the adapter and free any mbufs allocated to the
2394  * RX and TX lists.
2395  */
2396 static void
2397 vge_stop(struct vge_softc *sc)
2398 {
2399 	struct ifnet *ifp;
2400 
2401 	VGE_LOCK_ASSERT(sc);
2402 	ifp = sc->vge_ifp;
2403 	sc->vge_timer = 0;
2404 	callout_stop(&sc->vge_watchdog);
2405 
2406 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2407 
2408 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2409 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2410 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2411 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2412 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2413 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2414 
2415 	vge_stats_update(sc);
2416 	VGE_CHAIN_RESET(sc);
2417 	vge_txeof(sc);
2418 	vge_freebufs(sc);
2419 }
2420 
2421 /*
2422  * Device suspend routine.  Stop the interface and save some PCI
2423  * settings in case the BIOS doesn't restore them properly on
2424  * resume.
2425  */
2426 static int
2427 vge_suspend(device_t dev)
2428 {
2429 	struct vge_softc *sc;
2430 
2431 	sc = device_get_softc(dev);
2432 
2433 	VGE_LOCK(sc);
2434 	vge_stop(sc);
2435 	vge_setwol(sc);
2436 	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2437 	VGE_UNLOCK(sc);
2438 
2439 	return (0);
2440 }
2441 
2442 /*
2443  * Device resume routine.  Restore some PCI settings in case the BIOS
2444  * doesn't, re-enable busmastering, and restart the interface if
2445  * appropriate.
2446  */
2447 static int
2448 vge_resume(device_t dev)
2449 {
2450 	struct vge_softc *sc;
2451 	struct ifnet *ifp;
2452 	uint16_t pmstat;
2453 
2454 	sc = device_get_softc(dev);
2455 	VGE_LOCK(sc);
2456 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2457 		/* Disable PME and clear PME status. */
2458 		pmstat = pci_read_config(sc->vge_dev,
2459 		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2460 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2461 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2462 			pci_write_config(sc->vge_dev,
2463 			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2464 		}
2465 	}
2466 	vge_clrwol(sc);
2467 	/* Restart MII auto-polling. */
2468 	vge_miipoll_start(sc);
2469 	ifp = sc->vge_ifp;
2470 	/* Reinitialize interface if necessary. */
2471 	if ((ifp->if_flags & IFF_UP) != 0) {
2472 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2473 		vge_init_locked(sc);
2474 	}
2475 	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2476 	VGE_UNLOCK(sc);
2477 
2478 	return (0);
2479 }
2480 
2481 /*
2482  * Stop all chip I/O so that the kernel's probe routines don't
2483  * get confused by errant DMAs when rebooting.
2484  */
2485 static int
2486 vge_shutdown(device_t dev)
2487 {
2488 
2489 	return (vge_suspend(dev));
2490 }
2491 
2492 #define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2493 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2494 
2495 static void
2496 vge_sysctl_node(struct vge_softc *sc)
2497 {
2498 	struct sysctl_ctx_list *ctx;
2499 	struct sysctl_oid_list *child, *parent;
2500 	struct sysctl_oid *tree;
2501 	struct vge_hw_stats *stats;
2502 
2503 	stats = &sc->vge_stats;
2504 	ctx = device_get_sysctl_ctx(sc->vge_dev);
2505 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2506 
2507 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2508 	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2509 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2510 	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2511 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2512 	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2513 
2514 	/* Pull in device tunables. */
2515 	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2516 	resource_int_value(device_get_name(sc->vge_dev),
2517 	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2518 	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2519 	resource_int_value(device_get_name(sc->vge_dev),
2520 	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2521 	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2522 	resource_int_value(device_get_name(sc->vge_dev),
2523 	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2524 
2525 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2526 	    NULL, "VGE statistics");
2527 	parent = SYSCTL_CHILDREN(tree);
2528 
2529 	/* Rx statistics. */
2530 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2531 	    NULL, "RX MAC statistics");
2532 	child = SYSCTL_CHILDREN(tree);
2533 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2534 	    &stats->rx_frames, "frames");
2535 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2536 	    &stats->rx_good_frames, "Good frames");
2537 	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2538 	    &stats->rx_fifo_oflows, "FIFO overflows");
2539 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2540 	    &stats->rx_runts, "Too short frames");
2541 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2542 	    &stats->rx_runts_errs, "Too short frames with errors");
2543 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2544 	    &stats->rx_pkts_64, "64 bytes frames");
2545 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2546 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2547 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2548 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2549 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2550 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2551 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2552 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2553 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2554 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2555 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2556 	    &stats->rx_pkts_1519_max, "1519 to max frames");
2557 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2558 	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2559 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2560 	    &stats->rx_jumbos, "Jumbo frames");
2561 	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2562 	    &stats->rx_crcerrs, "CRC errors");
2563 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2564 	    &stats->rx_pause_frames, "CRC errors");
2565 	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2566 	    &stats->rx_alignerrs, "Alignment errors");
2567 	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2568 	    &stats->rx_nobufs, "Frames with no buffer event");
2569 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2570 	    &stats->rx_symerrs, "Frames with symbol errors");
2571 	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2572 	    &stats->rx_lenerrs, "Frames with length mismatched");
2573 
2574 	/* Tx statistics. */
2575 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2576 	    NULL, "TX MAC statistics");
2577 	child = SYSCTL_CHILDREN(tree);
2578 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2579 	    &stats->tx_good_frames, "Good frames");
2580 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2581 	    &stats->tx_pkts_64, "64 bytes frames");
2582 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2583 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2584 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2585 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2586 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2587 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2588 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2589 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2590 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2591 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2592 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2593 	    &stats->tx_jumbos, "Jumbo frames");
2594 	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2595 	    &stats->tx_colls, "Collisions");
2596 	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2597 	    &stats->tx_latecolls, "Late collisions");
2598 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2599 	    &stats->tx_pause, "Pause frames");
2600 #ifdef VGE_ENABLE_SQEERR
2601 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2602 	    &stats->tx_sqeerrs, "SQE errors");
2603 #endif
2604 	/* Clear MAC statistics. */
2605 	vge_stats_clear(sc);
2606 }
2607 
2608 #undef	VGE_SYSCTL_STAT_ADD32
2609 
2610 static void
2611 vge_stats_clear(struct vge_softc *sc)
2612 {
2613 	int i;
2614 
2615 	CSR_WRITE_1(sc, VGE_MIBCSR,
2616 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2617 	CSR_WRITE_1(sc, VGE_MIBCSR,
2618 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2619 	for (i = VGE_TIMEOUT; i > 0; i--) {
2620 		DELAY(1);
2621 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2622 			break;
2623 	}
2624 	if (i == 0)
2625 		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2626 	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2627 	    ~VGE_MIBCSR_FREEZE);
2628 }
2629 
2630 static void
2631 vge_stats_update(struct vge_softc *sc)
2632 {
2633 	struct vge_hw_stats *stats;
2634 	struct ifnet *ifp;
2635 	uint32_t mib[VGE_MIB_CNT], val;
2636 	int i;
2637 
2638 	VGE_LOCK_ASSERT(sc);
2639 
2640 	stats = &sc->vge_stats;
2641 	ifp = sc->vge_ifp;
2642 
2643 	CSR_WRITE_1(sc, VGE_MIBCSR,
2644 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2645 	for (i = VGE_TIMEOUT; i > 0; i--) {
2646 		DELAY(1);
2647 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2648 			break;
2649 	}
2650 	if (i == 0) {
2651 		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2652 		vge_stats_clear(sc);
2653 		return;
2654 	}
2655 
2656 	bzero(mib, sizeof(mib));
2657 reset_idx:
2658 	/* Set MIB read index to 0. */
2659 	CSR_WRITE_1(sc, VGE_MIBCSR,
2660 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2661 	for (i = 0; i < VGE_MIB_CNT; i++) {
2662 		val = CSR_READ_4(sc, VGE_MIBDATA);
2663 		if (i != VGE_MIB_DATA_IDX(val)) {
2664 			/* Reading interrupted. */
2665 			goto reset_idx;
2666 		}
2667 		mib[i] = val & VGE_MIB_DATA_MASK;
2668 	}
2669 
2670 	/* Rx stats. */
2671 	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2672 	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2673 	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2674 	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2675 	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2676 	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2677 	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2678 	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2679 	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2680 	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2681 	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2682 	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2683 	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2684 	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2685 	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2686 	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2687 	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2688 	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2689 	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2690 	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2691 
2692 	/* Tx stats. */
2693 	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2694 	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2695 	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2696 	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2697 	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2698 	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2699 	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2700 	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2701 	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2702 	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2703 #ifdef VGE_ENABLE_SQEERR
2704 	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2705 #endif
2706 	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2707 
2708 	/* Update counters in ifnet. */
2709 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, mib[VGE_MIB_TX_GOOD_FRAMES]);
2710 
2711 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2712 	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2713 
2714 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
2715 	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2716 
2717 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, mib[VGE_MIB_RX_GOOD_FRAMES]);
2718 
2719 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2720 	    mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2721 	    mib[VGE_MIB_RX_RUNTS] +
2722 	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2723 	    mib[VGE_MIB_RX_CRCERRS] +
2724 	    mib[VGE_MIB_RX_ALIGNERRS] +
2725 	    mib[VGE_MIB_RX_NOBUFS] +
2726 	    mib[VGE_MIB_RX_SYMERRS] +
2727 	    mib[VGE_MIB_RX_LENERRS]);
2728 }
2729 
2730 static void
2731 vge_intr_holdoff(struct vge_softc *sc)
2732 {
2733 	uint8_t intctl;
2734 
2735 	VGE_LOCK_ASSERT(sc);
2736 
2737 	/*
2738 	 * Set Tx interrupt supression threshold.
2739 	 * It's possible to use single-shot timer in VGE_CRS1 register
2740 	 * in Tx path such that driver can remove most of Tx completion
2741 	 * interrupts. However this requires additional access to
2742 	 * VGE_CRS1 register to reload the timer in addintion to
2743 	 * activating Tx kick command. Another downside is we don't know
2744 	 * what single-shot timer value should be used in advance so
2745 	 * reclaiming transmitted mbufs could be delayed a lot which in
2746 	 * turn slows down Tx operation.
2747 	 */
2748 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2749 	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2750 
2751 	/* Set Rx interrupt suppresion threshold. */
2752 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2753 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2754 
2755 	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2756 	intctl &= ~VGE_INTCTL_SC_RELOAD;
2757 	intctl |= VGE_INTCTL_HC_RELOAD;
2758 	if (sc->vge_tx_coal_pkt <= 0)
2759 		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2760 	else
2761 		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2762 	if (sc->vge_rx_coal_pkt <= 0)
2763 		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2764 	else
2765 		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2766 	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2767 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2768 	if (sc->vge_int_holdoff > 0) {
2769 		/* Set interrupt holdoff timer. */
2770 		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2771 		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2772 		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2773 		/* Enable holdoff timer. */
2774 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2775 	}
2776 }
2777 
2778 static void
2779 vge_setlinkspeed(struct vge_softc *sc)
2780 {
2781 	struct mii_data *mii;
2782 	int aneg, i;
2783 
2784 	VGE_LOCK_ASSERT(sc);
2785 
2786 	mii = device_get_softc(sc->vge_miibus);
2787 	mii_pollstat(mii);
2788 	aneg = 0;
2789 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2790 	    (IFM_ACTIVE | IFM_AVALID)) {
2791 		switch IFM_SUBTYPE(mii->mii_media_active) {
2792 		case IFM_10_T:
2793 		case IFM_100_TX:
2794 			return;
2795 		case IFM_1000_T:
2796 			aneg++;
2797 		default:
2798 			break;
2799 		}
2800 	}
2801 	/* Clear forced MAC speed/duplex configuration. */
2802 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2803 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2804 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2805 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2806 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2807 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2808 	    BMCR_AUTOEN | BMCR_STARTNEG);
2809 	DELAY(1000);
2810 	if (aneg != 0) {
2811 		/* Poll link state until vge(4) get a 10/100 link. */
2812 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2813 			mii_pollstat(mii);
2814 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2815 			    == (IFM_ACTIVE | IFM_AVALID)) {
2816 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2817 				case IFM_10_T:
2818 				case IFM_100_TX:
2819 					return;
2820 				default:
2821 					break;
2822 				}
2823 			}
2824 			VGE_UNLOCK(sc);
2825 			pause("vgelnk", hz);
2826 			VGE_LOCK(sc);
2827 		}
2828 		if (i == MII_ANEGTICKS_GIGE)
2829 			device_printf(sc->vge_dev, "establishing link failed, "
2830 			    "WOL may not work!");
2831 	}
2832 	/*
2833 	 * No link, force MAC to have 100Mbps, full-duplex link.
2834 	 * This is the last resort and may/may not work.
2835 	 */
2836 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2837 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2838 }
2839 
2840 static void
2841 vge_setwol(struct vge_softc *sc)
2842 {
2843 	struct ifnet *ifp;
2844 	uint16_t pmstat;
2845 	uint8_t val;
2846 
2847 	VGE_LOCK_ASSERT(sc);
2848 
2849 	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2850 		/* No PME capability, PHY power down. */
2851 		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2852 		    BMCR_PDOWN);
2853 		vge_miipoll_stop(sc);
2854 		return;
2855 	}
2856 
2857 	ifp = sc->vge_ifp;
2858 
2859 	/* Clear WOL on pattern match. */
2860 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2861 	/* Disable WOL on magic/unicast packet. */
2862 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2863 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2864 	    VGE_WOLCFG_PMEOVR);
2865 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2866 		vge_setlinkspeed(sc);
2867 		val = 0;
2868 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2869 			val |= VGE_WOLCR1_UCAST;
2870 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2871 			val |= VGE_WOLCR1_MAGIC;
2872 		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2873 		val = 0;
2874 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2875 			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2876 		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2877 		/* Disable MII auto-polling. */
2878 		vge_miipoll_stop(sc);
2879 	}
2880 	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2881 	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2882 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2883 
2884 	/* Clear WOL status on pattern match. */
2885 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2886 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2887 
2888 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2889 	val |= VGE_STICKHW_SWPTAG;
2890 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2891 	/* Put hardware into sleep. */
2892 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2893 	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2894 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2895 	/* Request PME if WOL is requested. */
2896 	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2897 	    PCIR_POWER_STATUS, 2);
2898 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2899 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2900 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2901 	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2902 	    pmstat, 2);
2903 }
2904 
2905 static void
2906 vge_clrwol(struct vge_softc *sc)
2907 {
2908 	uint8_t val;
2909 
2910 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2911 	val &= ~VGE_STICKHW_SWPTAG;
2912 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2913 	/* Disable WOL and clear power state indicator. */
2914 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2915 	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2916 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2917 
2918 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2919 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2920 
2921 	/* Clear WOL on pattern match. */
2922 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2923 	/* Disable WOL on magic/unicast packet. */
2924 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2925 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2926 	    VGE_WOLCFG_PMEOVR);
2927 	/* Clear WOL status on pattern match. */
2928 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2929 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2930 }
2931