xref: /freebsd/sys/dev/vge/if_vge.c (revision e28a4053)
1 /*-
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #ifdef HAVE_KERNEL_OPTION_HEADERS
84 #include "opt_device_polling.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/module.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 #include <net/if_vlan_var.h>
105 
106 #include <net/bpf.h>
107 
108 #include <machine/bus.h>
109 #include <machine/resource.h>
110 #include <sys/bus.h>
111 #include <sys/rman.h>
112 
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115 
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 
119 MODULE_DEPEND(vge, pci, 1, 1, 1);
120 MODULE_DEPEND(vge, ether, 1, 1, 1);
121 MODULE_DEPEND(vge, miibus, 1, 1, 1);
122 
123 /* "device miibus" required.  See GENERIC if you get errors here. */
124 #include "miibus_if.h"
125 
126 #include <dev/vge/if_vgereg.h>
127 #include <dev/vge/if_vgevar.h>
128 
129 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130 
131 /* Tunables */
132 static int msi_disable = 0;
133 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
134 
135 /*
136  * The SQE error counter of MIB seems to report bogus value.
137  * Vendor's workaround does not seem to work on PCIe based
138  * controllers. Disable it until we find better workaround.
139  */
140 #undef VGE_ENABLE_SQEERR
141 
142 /*
143  * Various supported device vendors/types and their names.
144  */
145 static struct vge_type vge_devs[] = {
146 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
147 		"VIA Networking Velocity Gigabit Ethernet" },
148 	{ 0, 0, NULL }
149 };
150 
151 static int	vge_attach(device_t);
152 static int	vge_detach(device_t);
153 static int	vge_probe(device_t);
154 static int	vge_resume(device_t);
155 static int	vge_shutdown(device_t);
156 static int	vge_suspend(device_t);
157 
158 static void	vge_cam_clear(struct vge_softc *);
159 static int	vge_cam_set(struct vge_softc *, uint8_t *);
160 static void	vge_clrwol(struct vge_softc *);
161 static void	vge_discard_rxbuf(struct vge_softc *, int);
162 static int	vge_dma_alloc(struct vge_softc *);
163 static void	vge_dma_free(struct vge_softc *);
164 static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
165 #ifdef VGE_EEPROM
166 static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
167 #endif
168 static int	vge_encap(struct vge_softc *, struct mbuf **);
169 #ifndef __NO_STRICT_ALIGNMENT
170 static __inline void
171 		vge_fixup_rx(struct mbuf *);
172 #endif
173 static void	vge_freebufs(struct vge_softc *);
174 static void	vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
175 static int	vge_ifmedia_upd(struct ifnet *);
176 static void	vge_init(void *);
177 static void	vge_init_locked(struct vge_softc *);
178 static void	vge_intr(void *);
179 static void	vge_intr_holdoff(struct vge_softc *);
180 static int	vge_ioctl(struct ifnet *, u_long, caddr_t);
181 static void	vge_link_statchg(void *);
182 static int	vge_miibus_readreg(device_t, int, int);
183 static void	vge_miibus_statchg(device_t);
184 static int	vge_miibus_writereg(device_t, int, int, int);
185 static void	vge_miipoll_start(struct vge_softc *);
186 static void	vge_miipoll_stop(struct vge_softc *);
187 static int	vge_newbuf(struct vge_softc *, int);
188 static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
189 static void	vge_reset(struct vge_softc *);
190 static int	vge_rx_list_init(struct vge_softc *);
191 static int	vge_rxeof(struct vge_softc *, int);
192 static void	vge_rxfilter(struct vge_softc *);
193 static void	vge_setvlan(struct vge_softc *);
194 static void	vge_setwol(struct vge_softc *);
195 static void	vge_start(struct ifnet *);
196 static void	vge_start_locked(struct ifnet *);
197 static void	vge_stats_clear(struct vge_softc *);
198 static void	vge_stats_update(struct vge_softc *);
199 static void	vge_stop(struct vge_softc *);
200 static void	vge_sysctl_node(struct vge_softc *);
201 static int	vge_tx_list_init(struct vge_softc *);
202 static void	vge_txeof(struct vge_softc *);
203 static void	vge_watchdog(void *);
204 
205 static device_method_t vge_methods[] = {
206 	/* Device interface */
207 	DEVMETHOD(device_probe,		vge_probe),
208 	DEVMETHOD(device_attach,	vge_attach),
209 	DEVMETHOD(device_detach,	vge_detach),
210 	DEVMETHOD(device_suspend,	vge_suspend),
211 	DEVMETHOD(device_resume,	vge_resume),
212 	DEVMETHOD(device_shutdown,	vge_shutdown),
213 
214 	/* bus interface */
215 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
216 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
217 
218 	/* MII interface */
219 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
220 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
221 	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
222 
223 	{ 0, 0 }
224 };
225 
226 static driver_t vge_driver = {
227 	"vge",
228 	vge_methods,
229 	sizeof(struct vge_softc)
230 };
231 
232 static devclass_t vge_devclass;
233 
234 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
235 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
236 
237 #ifdef VGE_EEPROM
238 /*
239  * Read a word of data stored in the EEPROM at address 'addr.'
240  */
241 static void
242 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
243 {
244 	int i;
245 	uint16_t word = 0;
246 
247 	/*
248 	 * Enter EEPROM embedded programming mode. In order to
249 	 * access the EEPROM at all, we first have to set the
250 	 * EELOAD bit in the CHIPCFG2 register.
251 	 */
252 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
253 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
254 
255 	/* Select the address of the word we want to read */
256 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
257 
258 	/* Issue read command */
259 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
260 
261 	/* Wait for the done bit to be set. */
262 	for (i = 0; i < VGE_TIMEOUT; i++) {
263 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
264 			break;
265 	}
266 
267 	if (i == VGE_TIMEOUT) {
268 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
269 		*dest = 0;
270 		return;
271 	}
272 
273 	/* Read the result */
274 	word = CSR_READ_2(sc, VGE_EERDDAT);
275 
276 	/* Turn off EEPROM access mode. */
277 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
278 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
279 
280 	*dest = word;
281 }
282 #endif
283 
284 /*
285  * Read a sequence of words from the EEPROM.
286  */
287 static void
288 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
289 {
290 	int i;
291 #ifdef VGE_EEPROM
292 	uint16_t word = 0, *ptr;
293 
294 	for (i = 0; i < cnt; i++) {
295 		vge_eeprom_getword(sc, off + i, &word);
296 		ptr = (uint16_t *)(dest + (i * 2));
297 		if (swap)
298 			*ptr = ntohs(word);
299 		else
300 			*ptr = word;
301 	}
302 #else
303 	for (i = 0; i < ETHER_ADDR_LEN; i++)
304 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
305 #endif
306 }
307 
308 static void
309 vge_miipoll_stop(struct vge_softc *sc)
310 {
311 	int i;
312 
313 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
314 
315 	for (i = 0; i < VGE_TIMEOUT; i++) {
316 		DELAY(1);
317 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
318 			break;
319 	}
320 
321 	if (i == VGE_TIMEOUT)
322 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
323 }
324 
325 static void
326 vge_miipoll_start(struct vge_softc *sc)
327 {
328 	int i;
329 
330 	/* First, make sure we're idle. */
331 
332 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
333 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
334 
335 	for (i = 0; i < VGE_TIMEOUT; i++) {
336 		DELAY(1);
337 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
338 			break;
339 	}
340 
341 	if (i == VGE_TIMEOUT) {
342 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
343 		return;
344 	}
345 
346 	/* Now enable auto poll mode. */
347 
348 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
349 
350 	/* And make sure it started. */
351 
352 	for (i = 0; i < VGE_TIMEOUT; i++) {
353 		DELAY(1);
354 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
355 			break;
356 	}
357 
358 	if (i == VGE_TIMEOUT)
359 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
360 }
361 
362 static int
363 vge_miibus_readreg(device_t dev, int phy, int reg)
364 {
365 	struct vge_softc *sc;
366 	int i;
367 	uint16_t rval = 0;
368 
369 	sc = device_get_softc(dev);
370 
371 	vge_miipoll_stop(sc);
372 
373 	/* Specify the register we want to read. */
374 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
375 
376 	/* Issue read command. */
377 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
378 
379 	/* Wait for the read command bit to self-clear. */
380 	for (i = 0; i < VGE_TIMEOUT; i++) {
381 		DELAY(1);
382 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
383 			break;
384 	}
385 
386 	if (i == VGE_TIMEOUT)
387 		device_printf(sc->vge_dev, "MII read timed out\n");
388 	else
389 		rval = CSR_READ_2(sc, VGE_MIIDATA);
390 
391 	vge_miipoll_start(sc);
392 
393 	return (rval);
394 }
395 
396 static int
397 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
398 {
399 	struct vge_softc *sc;
400 	int i, rval = 0;
401 
402 	sc = device_get_softc(dev);
403 
404 	vge_miipoll_stop(sc);
405 
406 	/* Specify the register we want to write. */
407 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
408 
409 	/* Specify the data we want to write. */
410 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
411 
412 	/* Issue write command. */
413 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
414 
415 	/* Wait for the write command bit to self-clear. */
416 	for (i = 0; i < VGE_TIMEOUT; i++) {
417 		DELAY(1);
418 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
419 			break;
420 	}
421 
422 	if (i == VGE_TIMEOUT) {
423 		device_printf(sc->vge_dev, "MII write timed out\n");
424 		rval = EIO;
425 	}
426 
427 	vge_miipoll_start(sc);
428 
429 	return (rval);
430 }
431 
432 static void
433 vge_cam_clear(struct vge_softc *sc)
434 {
435 	int i;
436 
437 	/*
438 	 * Turn off all the mask bits. This tells the chip
439 	 * that none of the entries in the CAM filter are valid.
440 	 * desired entries will be enabled as we fill the filter in.
441 	 */
442 
443 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
444 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
445 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
446 	for (i = 0; i < 8; i++)
447 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
448 
449 	/* Clear the VLAN filter too. */
450 
451 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
452 	for (i = 0; i < 8; i++)
453 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
454 
455 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
456 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
457 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
458 
459 	sc->vge_camidx = 0;
460 }
461 
462 static int
463 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
464 {
465 	int i, error = 0;
466 
467 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
468 		return (ENOSPC);
469 
470 	/* Select the CAM data page. */
471 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
472 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
473 
474 	/* Set the filter entry we want to update and enable writing. */
475 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
476 
477 	/* Write the address to the CAM registers */
478 	for (i = 0; i < ETHER_ADDR_LEN; i++)
479 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
480 
481 	/* Issue a write command. */
482 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
483 
484 	/* Wake for it to clear. */
485 	for (i = 0; i < VGE_TIMEOUT; i++) {
486 		DELAY(1);
487 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
488 			break;
489 	}
490 
491 	if (i == VGE_TIMEOUT) {
492 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
493 		error = EIO;
494 		goto fail;
495 	}
496 
497 	/* Select the CAM mask page. */
498 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
499 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
500 
501 	/* Set the mask bit that enables this filter. */
502 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
503 	    1<<(sc->vge_camidx & 7));
504 
505 	sc->vge_camidx++;
506 
507 fail:
508 	/* Turn off access to CAM. */
509 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
510 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
511 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
512 
513 	return (error);
514 }
515 
516 static void
517 vge_setvlan(struct vge_softc *sc)
518 {
519 	struct ifnet *ifp;
520 	uint8_t cfg;
521 
522 	VGE_LOCK_ASSERT(sc);
523 
524 	ifp = sc->vge_ifp;
525 	cfg = CSR_READ_1(sc, VGE_RXCFG);
526 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
527 		cfg |= VGE_VTAG_OPT2;
528 	else
529 		cfg &= ~VGE_VTAG_OPT2;
530 	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
531 }
532 
533 /*
534  * Program the multicast filter. We use the 64-entry CAM filter
535  * for perfect filtering. If there's more than 64 multicast addresses,
536  * we use the hash filter instead.
537  */
538 static void
539 vge_rxfilter(struct vge_softc *sc)
540 {
541 	struct ifnet *ifp;
542 	struct ifmultiaddr *ifma;
543 	uint32_t h, hashes[2];
544 	uint8_t rxcfg;
545 	int error = 0;
546 
547 	VGE_LOCK_ASSERT(sc);
548 
549 	/* First, zot all the multicast entries. */
550 	hashes[0] = 0;
551 	hashes[1] = 0;
552 
553 	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
554 	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
555 	    VGE_RXCTL_RX_PROMISC);
556 	/*
557 	 * Always allow VLAN oversized frames and frames for
558 	 * this host.
559 	 */
560 	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
561 
562 	ifp = sc->vge_ifp;
563 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
564 		rxcfg |= VGE_RXCTL_RX_BCAST;
565 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
566 		if ((ifp->if_flags & IFF_PROMISC) != 0)
567 			rxcfg |= VGE_RXCTL_RX_PROMISC;
568 		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
569 			hashes[0] = 0xFFFFFFFF;
570 			hashes[1] = 0xFFFFFFFF;
571 		}
572 		goto done;
573 	}
574 
575 	vge_cam_clear(sc);
576 	/* Now program new ones */
577 	if_maddr_rlock(ifp);
578 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
579 		if (ifma->ifma_addr->sa_family != AF_LINK)
580 			continue;
581 		error = vge_cam_set(sc,
582 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
583 		if (error)
584 			break;
585 	}
586 
587 	/* If there were too many addresses, use the hash filter. */
588 	if (error) {
589 		vge_cam_clear(sc);
590 
591 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
592 			if (ifma->ifma_addr->sa_family != AF_LINK)
593 				continue;
594 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
595 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
596 			if (h < 32)
597 				hashes[0] |= (1 << h);
598 			else
599 				hashes[1] |= (1 << (h - 32));
600 		}
601 	}
602 	if_maddr_runlock(ifp);
603 
604 done:
605 	if (hashes[0] != 0 || hashes[1] != 0)
606 		rxcfg |= VGE_RXCTL_RX_MCAST;
607 	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
608 	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
609 	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
610 }
611 
612 static void
613 vge_reset(struct vge_softc *sc)
614 {
615 	int i;
616 
617 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
618 
619 	for (i = 0; i < VGE_TIMEOUT; i++) {
620 		DELAY(5);
621 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
622 			break;
623 	}
624 
625 	if (i == VGE_TIMEOUT) {
626 		device_printf(sc->vge_dev, "soft reset timed out\n");
627 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
628 		DELAY(2000);
629 	}
630 
631 	DELAY(5000);
632 }
633 
634 /*
635  * Probe for a VIA gigabit chip. Check the PCI vendor and device
636  * IDs against our list and return a device name if we find a match.
637  */
638 static int
639 vge_probe(device_t dev)
640 {
641 	struct vge_type	*t;
642 
643 	t = vge_devs;
644 
645 	while (t->vge_name != NULL) {
646 		if ((pci_get_vendor(dev) == t->vge_vid) &&
647 		    (pci_get_device(dev) == t->vge_did)) {
648 			device_set_desc(dev, t->vge_name);
649 			return (BUS_PROBE_DEFAULT);
650 		}
651 		t++;
652 	}
653 
654 	return (ENXIO);
655 }
656 
657 /*
658  * Map a single buffer address.
659  */
660 
661 struct vge_dmamap_arg {
662 	bus_addr_t	vge_busaddr;
663 };
664 
665 static void
666 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
667 {
668 	struct vge_dmamap_arg *ctx;
669 
670 	if (error != 0)
671 		return;
672 
673 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
674 
675 	ctx = (struct vge_dmamap_arg *)arg;
676 	ctx->vge_busaddr = segs[0].ds_addr;
677 }
678 
679 static int
680 vge_dma_alloc(struct vge_softc *sc)
681 {
682 	struct vge_dmamap_arg ctx;
683 	struct vge_txdesc *txd;
684 	struct vge_rxdesc *rxd;
685 	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
686 	int error, i;
687 
688 	lowaddr = BUS_SPACE_MAXADDR;
689 
690 again:
691 	/* Create parent ring tag. */
692 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
693 	    1, 0,			/* algnmnt, boundary */
694 	    lowaddr,			/* lowaddr */
695 	    BUS_SPACE_MAXADDR,		/* highaddr */
696 	    NULL, NULL,			/* filter, filterarg */
697 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
698 	    0,				/* nsegments */
699 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
700 	    0,				/* flags */
701 	    NULL, NULL,			/* lockfunc, lockarg */
702 	    &sc->vge_cdata.vge_ring_tag);
703 	if (error != 0) {
704 		device_printf(sc->vge_dev,
705 		    "could not create parent DMA tag.\n");
706 		goto fail;
707 	}
708 
709 	/* Create tag for Tx ring. */
710 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
711 	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
712 	    BUS_SPACE_MAXADDR,		/* lowaddr */
713 	    BUS_SPACE_MAXADDR,		/* highaddr */
714 	    NULL, NULL,			/* filter, filterarg */
715 	    VGE_TX_LIST_SZ,		/* maxsize */
716 	    1,				/* nsegments */
717 	    VGE_TX_LIST_SZ,		/* maxsegsize */
718 	    0,				/* flags */
719 	    NULL, NULL,			/* lockfunc, lockarg */
720 	    &sc->vge_cdata.vge_tx_ring_tag);
721 	if (error != 0) {
722 		device_printf(sc->vge_dev,
723 		    "could not allocate Tx ring DMA tag.\n");
724 		goto fail;
725 	}
726 
727 	/* Create tag for Rx ring. */
728 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
729 	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
730 	    BUS_SPACE_MAXADDR,		/* lowaddr */
731 	    BUS_SPACE_MAXADDR,		/* highaddr */
732 	    NULL, NULL,			/* filter, filterarg */
733 	    VGE_RX_LIST_SZ,		/* maxsize */
734 	    1,				/* nsegments */
735 	    VGE_RX_LIST_SZ,		/* maxsegsize */
736 	    0,				/* flags */
737 	    NULL, NULL,			/* lockfunc, lockarg */
738 	    &sc->vge_cdata.vge_rx_ring_tag);
739 	if (error != 0) {
740 		device_printf(sc->vge_dev,
741 		    "could not allocate Rx ring DMA tag.\n");
742 		goto fail;
743 	}
744 
745 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
746 	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
747 	    (void **)&sc->vge_rdata.vge_tx_ring,
748 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
749 	    &sc->vge_cdata.vge_tx_ring_map);
750 	if (error != 0) {
751 		device_printf(sc->vge_dev,
752 		    "could not allocate DMA'able memory for Tx ring.\n");
753 		goto fail;
754 	}
755 
756 	ctx.vge_busaddr = 0;
757 	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
758 	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
759 	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
760 	if (error != 0 || ctx.vge_busaddr == 0) {
761 		device_printf(sc->vge_dev,
762 		    "could not load DMA'able memory for Tx ring.\n");
763 		goto fail;
764 	}
765 	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
766 
767 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
768 	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
769 	    (void **)&sc->vge_rdata.vge_rx_ring,
770 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
771 	    &sc->vge_cdata.vge_rx_ring_map);
772 	if (error != 0) {
773 		device_printf(sc->vge_dev,
774 		    "could not allocate DMA'able memory for Rx ring.\n");
775 		goto fail;
776 	}
777 
778 	ctx.vge_busaddr = 0;
779 	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
780 	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
781 	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
782 	if (error != 0 || ctx.vge_busaddr == 0) {
783 		device_printf(sc->vge_dev,
784 		    "could not load DMA'able memory for Rx ring.\n");
785 		goto fail;
786 	}
787 	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
788 
789 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
790 	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
791 	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
792 	if ((VGE_ADDR_HI(tx_ring_end) !=
793 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
794 	    (VGE_ADDR_HI(rx_ring_end) !=
795 	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
796 	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
797 		device_printf(sc->vge_dev, "4GB boundary crossed, "
798 		    "switching to 32bit DMA address mode.\n");
799 		vge_dma_free(sc);
800 		/* Limit DMA address space to 32bit and try again. */
801 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
802 		goto again;
803 	}
804 
805 	/* Create parent buffer tag. */
806 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
807 	    1, 0,			/* algnmnt, boundary */
808 	    VGE_BUF_DMA_MAXADDR,	/* lowaddr */
809 	    BUS_SPACE_MAXADDR,		/* highaddr */
810 	    NULL, NULL,			/* filter, filterarg */
811 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
812 	    0,				/* nsegments */
813 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
814 	    0,				/* flags */
815 	    NULL, NULL,			/* lockfunc, lockarg */
816 	    &sc->vge_cdata.vge_buffer_tag);
817 	if (error != 0) {
818 		device_printf(sc->vge_dev,
819 		    "could not create parent buffer DMA tag.\n");
820 		goto fail;
821 	}
822 
823 	/* Create tag for Tx buffers. */
824 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
825 	    1, 0,			/* algnmnt, boundary */
826 	    BUS_SPACE_MAXADDR,		/* lowaddr */
827 	    BUS_SPACE_MAXADDR,		/* highaddr */
828 	    NULL, NULL,			/* filter, filterarg */
829 	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
830 	    VGE_MAXTXSEGS,		/* nsegments */
831 	    MCLBYTES,			/* maxsegsize */
832 	    0,				/* flags */
833 	    NULL, NULL,			/* lockfunc, lockarg */
834 	    &sc->vge_cdata.vge_tx_tag);
835 	if (error != 0) {
836 		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
837 		goto fail;
838 	}
839 
840 	/* Create tag for Rx buffers. */
841 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
842 	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
843 	    BUS_SPACE_MAXADDR,		/* lowaddr */
844 	    BUS_SPACE_MAXADDR,		/* highaddr */
845 	    NULL, NULL,			/* filter, filterarg */
846 	    MCLBYTES,			/* maxsize */
847 	    1,				/* nsegments */
848 	    MCLBYTES,			/* maxsegsize */
849 	    0,				/* flags */
850 	    NULL, NULL,			/* lockfunc, lockarg */
851 	    &sc->vge_cdata.vge_rx_tag);
852 	if (error != 0) {
853 		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
854 		goto fail;
855 	}
856 
857 	/* Create DMA maps for Tx buffers. */
858 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
859 		txd = &sc->vge_cdata.vge_txdesc[i];
860 		txd->tx_m = NULL;
861 		txd->tx_dmamap = NULL;
862 		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
863 		    &txd->tx_dmamap);
864 		if (error != 0) {
865 			device_printf(sc->vge_dev,
866 			    "could not create Tx dmamap.\n");
867 			goto fail;
868 		}
869 	}
870 	/* Create DMA maps for Rx buffers. */
871 	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
872 	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
873 		device_printf(sc->vge_dev,
874 		    "could not create spare Rx dmamap.\n");
875 		goto fail;
876 	}
877 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
878 		rxd = &sc->vge_cdata.vge_rxdesc[i];
879 		rxd->rx_m = NULL;
880 		rxd->rx_dmamap = NULL;
881 		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
882 		    &rxd->rx_dmamap);
883 		if (error != 0) {
884 			device_printf(sc->vge_dev,
885 			    "could not create Rx dmamap.\n");
886 			goto fail;
887 		}
888 	}
889 
890 fail:
891 	return (error);
892 }
893 
894 static void
895 vge_dma_free(struct vge_softc *sc)
896 {
897 	struct vge_txdesc *txd;
898 	struct vge_rxdesc *rxd;
899 	int i;
900 
901 	/* Tx ring. */
902 	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
903 		if (sc->vge_cdata.vge_tx_ring_map)
904 			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
905 			    sc->vge_cdata.vge_tx_ring_map);
906 		if (sc->vge_cdata.vge_tx_ring_map &&
907 		    sc->vge_rdata.vge_tx_ring)
908 			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
909 			    sc->vge_rdata.vge_tx_ring,
910 			    sc->vge_cdata.vge_tx_ring_map);
911 		sc->vge_rdata.vge_tx_ring = NULL;
912 		sc->vge_cdata.vge_tx_ring_map = NULL;
913 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
914 		sc->vge_cdata.vge_tx_ring_tag = NULL;
915 	}
916 	/* Rx ring. */
917 	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
918 		if (sc->vge_cdata.vge_rx_ring_map)
919 			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
920 			    sc->vge_cdata.vge_rx_ring_map);
921 		if (sc->vge_cdata.vge_rx_ring_map &&
922 		    sc->vge_rdata.vge_rx_ring)
923 			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
924 			    sc->vge_rdata.vge_rx_ring,
925 			    sc->vge_cdata.vge_rx_ring_map);
926 		sc->vge_rdata.vge_rx_ring = NULL;
927 		sc->vge_cdata.vge_rx_ring_map = NULL;
928 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
929 		sc->vge_cdata.vge_rx_ring_tag = NULL;
930 	}
931 	/* Tx buffers. */
932 	if (sc->vge_cdata.vge_tx_tag != NULL) {
933 		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
934 			txd = &sc->vge_cdata.vge_txdesc[i];
935 			if (txd->tx_dmamap != NULL) {
936 				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
937 				    txd->tx_dmamap);
938 				txd->tx_dmamap = NULL;
939 			}
940 		}
941 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
942 		sc->vge_cdata.vge_tx_tag = NULL;
943 	}
944 	/* Rx buffers. */
945 	if (sc->vge_cdata.vge_rx_tag != NULL) {
946 		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
947 			rxd = &sc->vge_cdata.vge_rxdesc[i];
948 			if (rxd->rx_dmamap != NULL) {
949 				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
950 				    rxd->rx_dmamap);
951 				rxd->rx_dmamap = NULL;
952 			}
953 		}
954 		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
955 			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
956 			    sc->vge_cdata.vge_rx_sparemap);
957 			sc->vge_cdata.vge_rx_sparemap = NULL;
958 		}
959 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
960 		sc->vge_cdata.vge_rx_tag = NULL;
961 	}
962 
963 	if (sc->vge_cdata.vge_buffer_tag != NULL) {
964 		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
965 		sc->vge_cdata.vge_buffer_tag = NULL;
966 	}
967 	if (sc->vge_cdata.vge_ring_tag != NULL) {
968 		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
969 		sc->vge_cdata.vge_ring_tag = NULL;
970 	}
971 }
972 
973 /*
974  * Attach the interface. Allocate softc structures, do ifmedia
975  * setup and ethernet/BPF attach.
976  */
977 static int
978 vge_attach(device_t dev)
979 {
980 	u_char eaddr[ETHER_ADDR_LEN];
981 	struct vge_softc *sc;
982 	struct ifnet *ifp;
983 	int error = 0, cap, i, msic, rid;
984 
985 	sc = device_get_softc(dev);
986 	sc->vge_dev = dev;
987 
988 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
989 	    MTX_DEF);
990 	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
991 
992 	/*
993 	 * Map control/status registers.
994 	 */
995 	pci_enable_busmaster(dev);
996 
997 	rid = PCIR_BAR(1);
998 	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
999 	    RF_ACTIVE);
1000 
1001 	if (sc->vge_res == NULL) {
1002 		device_printf(dev, "couldn't map ports/memory\n");
1003 		error = ENXIO;
1004 		goto fail;
1005 	}
1006 
1007 	if (pci_find_extcap(dev, PCIY_EXPRESS, &cap) == 0) {
1008 		sc->vge_flags |= VGE_FLAG_PCIE;
1009 		sc->vge_expcap = cap;
1010 	} else
1011 		sc->vge_flags |= VGE_FLAG_JUMBO;
1012 	if (pci_find_extcap(dev, PCIY_PMG, &cap) == 0) {
1013 		sc->vge_flags |= VGE_FLAG_PMCAP;
1014 		sc->vge_pmcap = cap;
1015 	}
1016 	rid = 0;
1017 	msic = pci_msi_count(dev);
1018 	if (msi_disable == 0 && msic > 0) {
1019 		msic = 1;
1020 		if (pci_alloc_msi(dev, &msic) == 0) {
1021 			if (msic == 1) {
1022 				sc->vge_flags |= VGE_FLAG_MSI;
1023 				device_printf(dev, "Using %d MSI message\n",
1024 				    msic);
1025 				rid = 1;
1026 			} else
1027 				pci_release_msi(dev);
1028 		}
1029 	}
1030 
1031 	/* Allocate interrupt */
1032 	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1033 	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1034 	if (sc->vge_irq == NULL) {
1035 		device_printf(dev, "couldn't map interrupt\n");
1036 		error = ENXIO;
1037 		goto fail;
1038 	}
1039 
1040 	/* Reset the adapter. */
1041 	vge_reset(sc);
1042 	/* Reload EEPROM. */
1043 	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1044 	for (i = 0; i < VGE_TIMEOUT; i++) {
1045 		DELAY(5);
1046 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1047 			break;
1048 	}
1049 	if (i == VGE_TIMEOUT)
1050 		device_printf(dev, "EEPROM reload timed out\n");
1051 	/*
1052 	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1053 	 * MAC will receive magic packet which in turn confuses
1054 	 * controller.
1055 	 */
1056 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1057 
1058 	/*
1059 	 * Get station address from the EEPROM.
1060 	 */
1061 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1062 	/*
1063 	 * Save configured PHY address.
1064 	 * It seems the PHY address of PCIe controllers just
1065 	 * reflects media jump strapping status so we assume the
1066 	 * internal PHY address of PCIe controller is at 1.
1067 	 */
1068 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1069 		sc->vge_phyaddr = 1;
1070 	else
1071 		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1072 		    VGE_MIICFG_PHYADDR;
1073 	/* Clear WOL and take hardware from powerdown. */
1074 	vge_clrwol(sc);
1075 	vge_sysctl_node(sc);
1076 	error = vge_dma_alloc(sc);
1077 	if (error)
1078 		goto fail;
1079 
1080 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1081 	if (ifp == NULL) {
1082 		device_printf(dev, "can not if_alloc()\n");
1083 		error = ENOSPC;
1084 		goto fail;
1085 	}
1086 
1087 	/* Do MII setup */
1088 	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1089 	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1090 	    0);
1091 	if (error != 0) {
1092 		device_printf(dev, "attaching PHYs failed\n");
1093 		goto fail;
1094 	}
1095 
1096 	ifp->if_softc = sc;
1097 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1098 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1099 	ifp->if_ioctl = vge_ioctl;
1100 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1101 	ifp->if_start = vge_start;
1102 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1103 	ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1104 	    IFCAP_VLAN_HWTAGGING;
1105 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1106 		ifp->if_capabilities |= IFCAP_WOL;
1107 	ifp->if_capenable = ifp->if_capabilities;
1108 #ifdef DEVICE_POLLING
1109 	ifp->if_capabilities |= IFCAP_POLLING;
1110 #endif
1111 	ifp->if_init = vge_init;
1112 	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1113 	ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1114 	IFQ_SET_READY(&ifp->if_snd);
1115 
1116 	/*
1117 	 * Call MI attach routine.
1118 	 */
1119 	ether_ifattach(ifp, eaddr);
1120 
1121 	/* Tell the upper layer(s) we support long frames. */
1122 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1123 
1124 	/* Hook interrupt last to avoid having to lock softc */
1125 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1126 	    NULL, vge_intr, sc, &sc->vge_intrhand);
1127 
1128 	if (error) {
1129 		device_printf(dev, "couldn't set up irq\n");
1130 		ether_ifdetach(ifp);
1131 		goto fail;
1132 	}
1133 
1134 fail:
1135 	if (error)
1136 		vge_detach(dev);
1137 
1138 	return (error);
1139 }
1140 
1141 /*
1142  * Shutdown hardware and free up resources. This can be called any
1143  * time after the mutex has been initialized. It is called in both
1144  * the error case in attach and the normal detach case so it needs
1145  * to be careful about only freeing resources that have actually been
1146  * allocated.
1147  */
1148 static int
1149 vge_detach(device_t dev)
1150 {
1151 	struct vge_softc *sc;
1152 	struct ifnet *ifp;
1153 
1154 	sc = device_get_softc(dev);
1155 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1156 	ifp = sc->vge_ifp;
1157 
1158 #ifdef DEVICE_POLLING
1159 	if (ifp->if_capenable & IFCAP_POLLING)
1160 		ether_poll_deregister(ifp);
1161 #endif
1162 
1163 	/* These should only be active if attach succeeded */
1164 	if (device_is_attached(dev)) {
1165 		ether_ifdetach(ifp);
1166 		VGE_LOCK(sc);
1167 		vge_stop(sc);
1168 		VGE_UNLOCK(sc);
1169 		callout_drain(&sc->vge_watchdog);
1170 	}
1171 	if (sc->vge_miibus)
1172 		device_delete_child(dev, sc->vge_miibus);
1173 	bus_generic_detach(dev);
1174 
1175 	if (sc->vge_intrhand)
1176 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1177 	if (sc->vge_irq)
1178 		bus_release_resource(dev, SYS_RES_IRQ,
1179 		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1180 	if (sc->vge_flags & VGE_FLAG_MSI)
1181 		pci_release_msi(dev);
1182 	if (sc->vge_res)
1183 		bus_release_resource(dev, SYS_RES_MEMORY,
1184 		    PCIR_BAR(1), sc->vge_res);
1185 	if (ifp)
1186 		if_free(ifp);
1187 
1188 	vge_dma_free(sc);
1189 	mtx_destroy(&sc->vge_mtx);
1190 
1191 	return (0);
1192 }
1193 
1194 static void
1195 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1196 {
1197 	struct vge_rxdesc *rxd;
1198 	int i;
1199 
1200 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1201 	rxd->rx_desc->vge_sts = 0;
1202 	rxd->rx_desc->vge_ctl = 0;
1203 
1204 	/*
1205 	 * Note: the manual fails to document the fact that for
1206 	 * proper opration, the driver needs to replentish the RX
1207 	 * DMA ring 4 descriptors at a time (rather than one at a
1208 	 * time, like most chips). We can allocate the new buffers
1209 	 * but we should not set the OWN bits until we're ready
1210 	 * to hand back 4 of them in one shot.
1211 	 */
1212 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1213 		for (i = VGE_RXCHUNK; i > 0; i--) {
1214 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1215 			rxd = rxd->rxd_prev;
1216 		}
1217 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1218 	}
1219 }
1220 
1221 static int
1222 vge_newbuf(struct vge_softc *sc, int prod)
1223 {
1224 	struct vge_rxdesc *rxd;
1225 	struct mbuf *m;
1226 	bus_dma_segment_t segs[1];
1227 	bus_dmamap_t map;
1228 	int i, nsegs;
1229 
1230 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1231 	if (m == NULL)
1232 		return (ENOBUFS);
1233 	/*
1234 	 * This is part of an evil trick to deal with strict-alignment
1235 	 * architectures. The VIA chip requires RX buffers to be aligned
1236 	 * on 32-bit boundaries, but that will hose strict-alignment
1237 	 * architectures. To get around this, we leave some empty space
1238 	 * at the start of each buffer and for non-strict-alignment hosts,
1239 	 * we copy the buffer back two bytes to achieve word alignment.
1240 	 * This is slightly more efficient than allocating a new buffer,
1241 	 * copying the contents, and discarding the old buffer.
1242 	 */
1243 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1244 	m_adj(m, VGE_RX_BUF_ALIGN);
1245 
1246 	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1247 	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1248 		m_freem(m);
1249 		return (ENOBUFS);
1250 	}
1251 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1252 
1253 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1254 	if (rxd->rx_m != NULL) {
1255 		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1256 		    BUS_DMASYNC_POSTREAD);
1257 		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1258 	}
1259 	map = rxd->rx_dmamap;
1260 	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1261 	sc->vge_cdata.vge_rx_sparemap = map;
1262 	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1263 	    BUS_DMASYNC_PREREAD);
1264 	rxd->rx_m = m;
1265 
1266 	rxd->rx_desc->vge_sts = 0;
1267 	rxd->rx_desc->vge_ctl = 0;
1268 	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1269 	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1270 	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1271 
1272 	/*
1273 	 * Note: the manual fails to document the fact that for
1274 	 * proper operation, the driver needs to replenish the RX
1275 	 * DMA ring 4 descriptors at a time (rather than one at a
1276 	 * time, like most chips). We can allocate the new buffers
1277 	 * but we should not set the OWN bits until we're ready
1278 	 * to hand back 4 of them in one shot.
1279 	 */
1280 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1281 		for (i = VGE_RXCHUNK; i > 0; i--) {
1282 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1283 			rxd = rxd->rxd_prev;
1284 		}
1285 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1286 	}
1287 
1288 	return (0);
1289 }
1290 
1291 static int
1292 vge_tx_list_init(struct vge_softc *sc)
1293 {
1294 	struct vge_ring_data *rd;
1295 	struct vge_txdesc *txd;
1296 	int i;
1297 
1298 	VGE_LOCK_ASSERT(sc);
1299 
1300 	sc->vge_cdata.vge_tx_prodidx = 0;
1301 	sc->vge_cdata.vge_tx_considx = 0;
1302 	sc->vge_cdata.vge_tx_cnt = 0;
1303 
1304 	rd = &sc->vge_rdata;
1305 	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1306 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1307 		txd = &sc->vge_cdata.vge_txdesc[i];
1308 		txd->tx_m = NULL;
1309 		txd->tx_desc = &rd->vge_tx_ring[i];
1310 	}
1311 
1312 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1313 	    sc->vge_cdata.vge_tx_ring_map,
1314 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1315 
1316 	return (0);
1317 }
1318 
1319 static int
1320 vge_rx_list_init(struct vge_softc *sc)
1321 {
1322 	struct vge_ring_data *rd;
1323 	struct vge_rxdesc *rxd;
1324 	int i;
1325 
1326 	VGE_LOCK_ASSERT(sc);
1327 
1328 	sc->vge_cdata.vge_rx_prodidx = 0;
1329 	sc->vge_cdata.vge_head = NULL;
1330 	sc->vge_cdata.vge_tail = NULL;
1331 	sc->vge_cdata.vge_rx_commit = 0;
1332 
1333 	rd = &sc->vge_rdata;
1334 	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1335 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1336 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1337 		rxd->rx_m = NULL;
1338 		rxd->rx_desc = &rd->vge_rx_ring[i];
1339 		if (i == 0)
1340 			rxd->rxd_prev =
1341 			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1342 		else
1343 			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1344 		if (vge_newbuf(sc, i) != 0)
1345 			return (ENOBUFS);
1346 	}
1347 
1348 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1349 	    sc->vge_cdata.vge_rx_ring_map,
1350 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1351 
1352 	sc->vge_cdata.vge_rx_commit = 0;
1353 
1354 	return (0);
1355 }
1356 
1357 static void
1358 vge_freebufs(struct vge_softc *sc)
1359 {
1360 	struct vge_txdesc *txd;
1361 	struct vge_rxdesc *rxd;
1362 	struct ifnet *ifp;
1363 	int i;
1364 
1365 	VGE_LOCK_ASSERT(sc);
1366 
1367 	ifp = sc->vge_ifp;
1368 	/*
1369 	 * Free RX and TX mbufs still in the queues.
1370 	 */
1371 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1372 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1373 		if (rxd->rx_m != NULL) {
1374 			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1375 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1376 			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1377 			    rxd->rx_dmamap);
1378 			m_freem(rxd->rx_m);
1379 			rxd->rx_m = NULL;
1380 		}
1381 	}
1382 
1383 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1384 		txd = &sc->vge_cdata.vge_txdesc[i];
1385 		if (txd->tx_m != NULL) {
1386 			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1387 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1388 			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1389 			    txd->tx_dmamap);
1390 			m_freem(txd->tx_m);
1391 			txd->tx_m = NULL;
1392 			ifp->if_oerrors++;
1393 		}
1394 	}
1395 }
1396 
1397 #ifndef	__NO_STRICT_ALIGNMENT
1398 static __inline void
1399 vge_fixup_rx(struct mbuf *m)
1400 {
1401 	int i;
1402 	uint16_t *src, *dst;
1403 
1404 	src = mtod(m, uint16_t *);
1405 	dst = src - 1;
1406 
1407 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1408 		*dst++ = *src++;
1409 
1410 	m->m_data -= ETHER_ALIGN;
1411 }
1412 #endif
1413 
1414 /*
1415  * RX handler. We support the reception of jumbo frames that have
1416  * been fragmented across multiple 2K mbuf cluster buffers.
1417  */
1418 static int
1419 vge_rxeof(struct vge_softc *sc, int count)
1420 {
1421 	struct mbuf *m;
1422 	struct ifnet *ifp;
1423 	int prod, prog, total_len;
1424 	struct vge_rxdesc *rxd;
1425 	struct vge_rx_desc *cur_rx;
1426 	uint32_t rxstat, rxctl;
1427 
1428 	VGE_LOCK_ASSERT(sc);
1429 
1430 	ifp = sc->vge_ifp;
1431 
1432 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1433 	    sc->vge_cdata.vge_rx_ring_map,
1434 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1435 
1436 	prod = sc->vge_cdata.vge_rx_prodidx;
1437 	for (prog = 0; count > 0 &&
1438 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1439 	    VGE_RX_DESC_INC(prod)) {
1440 		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1441 		rxstat = le32toh(cur_rx->vge_sts);
1442 		if ((rxstat & VGE_RDSTS_OWN) != 0)
1443 			break;
1444 		count--;
1445 		prog++;
1446 		rxctl = le32toh(cur_rx->vge_ctl);
1447 		total_len = VGE_RXBYTES(rxstat);
1448 		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1449 		m = rxd->rx_m;
1450 
1451 		/*
1452 		 * If the 'start of frame' bit is set, this indicates
1453 		 * either the first fragment in a multi-fragment receive,
1454 		 * or an intermediate fragment. Either way, we want to
1455 		 * accumulate the buffers.
1456 		 */
1457 		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1458 			if (vge_newbuf(sc, prod) != 0) {
1459 				ifp->if_iqdrops++;
1460 				VGE_CHAIN_RESET(sc);
1461 				vge_discard_rxbuf(sc, prod);
1462 				continue;
1463 			}
1464 			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1465 			if (sc->vge_cdata.vge_head == NULL) {
1466 				sc->vge_cdata.vge_head = m;
1467 				sc->vge_cdata.vge_tail = m;
1468 			} else {
1469 				m->m_flags &= ~M_PKTHDR;
1470 				sc->vge_cdata.vge_tail->m_next = m;
1471 				sc->vge_cdata.vge_tail = m;
1472 			}
1473 			continue;
1474 		}
1475 
1476 		/*
1477 		 * Bad/error frames will have the RXOK bit cleared.
1478 		 * However, there's one error case we want to allow:
1479 		 * if a VLAN tagged frame arrives and the chip can't
1480 		 * match it against the CAM filter, it considers this
1481 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1482 		 * We don't want to drop the frame though: our VLAN
1483 		 * filtering is done in software.
1484 		 * We also want to receive bad-checksummed frames and
1485 		 * and frames with bad-length.
1486 		 */
1487 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1488 		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1489 		    VGE_RDSTS_CSUMERR)) == 0) {
1490 			ifp->if_ierrors++;
1491 			/*
1492 			 * If this is part of a multi-fragment packet,
1493 			 * discard all the pieces.
1494 			 */
1495 			VGE_CHAIN_RESET(sc);
1496 			vge_discard_rxbuf(sc, prod);
1497 			continue;
1498 		}
1499 
1500 		if (vge_newbuf(sc, prod) != 0) {
1501 			ifp->if_iqdrops++;
1502 			VGE_CHAIN_RESET(sc);
1503 			vge_discard_rxbuf(sc, prod);
1504 			continue;
1505 		}
1506 
1507 		/* Chain received mbufs. */
1508 		if (sc->vge_cdata.vge_head != NULL) {
1509 			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1510 			/*
1511 			 * Special case: if there's 4 bytes or less
1512 			 * in this buffer, the mbuf can be discarded:
1513 			 * the last 4 bytes is the CRC, which we don't
1514 			 * care about anyway.
1515 			 */
1516 			if (m->m_len <= ETHER_CRC_LEN) {
1517 				sc->vge_cdata.vge_tail->m_len -=
1518 				    (ETHER_CRC_LEN - m->m_len);
1519 				m_freem(m);
1520 			} else {
1521 				m->m_len -= ETHER_CRC_LEN;
1522 				m->m_flags &= ~M_PKTHDR;
1523 				sc->vge_cdata.vge_tail->m_next = m;
1524 			}
1525 			m = sc->vge_cdata.vge_head;
1526 			m->m_flags |= M_PKTHDR;
1527 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1528 		} else {
1529 			m->m_flags |= M_PKTHDR;
1530 			m->m_pkthdr.len = m->m_len =
1531 			    (total_len - ETHER_CRC_LEN);
1532 		}
1533 
1534 #ifndef	__NO_STRICT_ALIGNMENT
1535 		vge_fixup_rx(m);
1536 #endif
1537 		m->m_pkthdr.rcvif = ifp;
1538 
1539 		/* Do RX checksumming if enabled */
1540 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1541 		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1542 			/* Check IP header checksum */
1543 			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1544 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1545 			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1546 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1547 
1548 			/* Check TCP/UDP checksum */
1549 			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1550 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1551 				m->m_pkthdr.csum_flags |=
1552 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1553 				m->m_pkthdr.csum_data = 0xffff;
1554 			}
1555 		}
1556 
1557 		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1558 			/*
1559 			 * The 32-bit rxctl register is stored in little-endian.
1560 			 * However, the 16-bit vlan tag is stored in big-endian,
1561 			 * so we have to byte swap it.
1562 			 */
1563 			m->m_pkthdr.ether_vtag =
1564 			    bswap16(rxctl & VGE_RDCTL_VLANID);
1565 			m->m_flags |= M_VLANTAG;
1566 		}
1567 
1568 		VGE_UNLOCK(sc);
1569 		(*ifp->if_input)(ifp, m);
1570 		VGE_LOCK(sc);
1571 		sc->vge_cdata.vge_head = NULL;
1572 		sc->vge_cdata.vge_tail = NULL;
1573 	}
1574 
1575 	if (prog > 0) {
1576 		sc->vge_cdata.vge_rx_prodidx = prod;
1577 		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1578 		    sc->vge_cdata.vge_rx_ring_map,
1579 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1580 		/* Update residue counter. */
1581 		if (sc->vge_cdata.vge_rx_commit != 0) {
1582 			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1583 			    sc->vge_cdata.vge_rx_commit);
1584 			sc->vge_cdata.vge_rx_commit = 0;
1585 		}
1586 	}
1587 	return (prog);
1588 }
1589 
1590 static void
1591 vge_txeof(struct vge_softc *sc)
1592 {
1593 	struct ifnet *ifp;
1594 	struct vge_tx_desc *cur_tx;
1595 	struct vge_txdesc *txd;
1596 	uint32_t txstat;
1597 	int cons, prod;
1598 
1599 	VGE_LOCK_ASSERT(sc);
1600 
1601 	ifp = sc->vge_ifp;
1602 
1603 	if (sc->vge_cdata.vge_tx_cnt == 0)
1604 		return;
1605 
1606 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1607 	    sc->vge_cdata.vge_tx_ring_map,
1608 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1609 
1610 	/*
1611 	 * Go through our tx list and free mbufs for those
1612 	 * frames that have been transmitted.
1613 	 */
1614 	cons = sc->vge_cdata.vge_tx_considx;
1615 	prod = sc->vge_cdata.vge_tx_prodidx;
1616 	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1617 		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1618 		txstat = le32toh(cur_tx->vge_sts);
1619 		if ((txstat & VGE_TDSTS_OWN) != 0)
1620 			break;
1621 		sc->vge_cdata.vge_tx_cnt--;
1622 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1623 
1624 		txd = &sc->vge_cdata.vge_txdesc[cons];
1625 		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1626 		    BUS_DMASYNC_POSTWRITE);
1627 		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1628 
1629 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1630 		    __func__));
1631 		m_freem(txd->tx_m);
1632 		txd->tx_m = NULL;
1633 		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1634 	}
1635 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1636 	    sc->vge_cdata.vge_tx_ring_map,
1637 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1638 	sc->vge_cdata.vge_tx_considx = cons;
1639 	if (sc->vge_cdata.vge_tx_cnt == 0)
1640 		sc->vge_timer = 0;
1641 }
1642 
1643 static void
1644 vge_link_statchg(void *xsc)
1645 {
1646 	struct vge_softc *sc;
1647 	struct ifnet *ifp;
1648 	struct mii_data *mii;
1649 
1650 	sc = xsc;
1651 	ifp = sc->vge_ifp;
1652 	VGE_LOCK_ASSERT(sc);
1653 	mii = device_get_softc(sc->vge_miibus);
1654 
1655 	mii_pollstat(mii);
1656 	if ((sc->vge_flags & VGE_FLAG_LINK) != 0) {
1657 		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1658 			sc->vge_flags &= ~VGE_FLAG_LINK;
1659 			if_link_state_change(sc->vge_ifp,
1660 			    LINK_STATE_DOWN);
1661 		}
1662 	} else {
1663 		if (mii->mii_media_status & IFM_ACTIVE &&
1664 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1665 			sc->vge_flags |= VGE_FLAG_LINK;
1666 			if_link_state_change(sc->vge_ifp,
1667 			    LINK_STATE_UP);
1668 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1669 				vge_start_locked(ifp);
1670 		}
1671 	}
1672 }
1673 
1674 #ifdef DEVICE_POLLING
1675 static int
1676 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1677 {
1678 	struct vge_softc *sc = ifp->if_softc;
1679 	int rx_npkts = 0;
1680 
1681 	VGE_LOCK(sc);
1682 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1683 		goto done;
1684 
1685 	rx_npkts = vge_rxeof(sc, count);
1686 	vge_txeof(sc);
1687 
1688 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1689 		vge_start_locked(ifp);
1690 
1691 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1692 		uint32_t       status;
1693 		status = CSR_READ_4(sc, VGE_ISR);
1694 		if (status == 0xFFFFFFFF)
1695 			goto done;
1696 		if (status)
1697 			CSR_WRITE_4(sc, VGE_ISR, status);
1698 
1699 		/*
1700 		 * XXX check behaviour on receiver stalls.
1701 		 */
1702 
1703 		if (status & VGE_ISR_TXDMA_STALL ||
1704 		    status & VGE_ISR_RXDMA_STALL) {
1705 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1706 			vge_init_locked(sc);
1707 		}
1708 
1709 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1710 			vge_rxeof(sc, count);
1711 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1712 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1713 		}
1714 	}
1715 done:
1716 	VGE_UNLOCK(sc);
1717 	return (rx_npkts);
1718 }
1719 #endif /* DEVICE_POLLING */
1720 
1721 static void
1722 vge_intr(void *arg)
1723 {
1724 	struct vge_softc *sc;
1725 	struct ifnet *ifp;
1726 	uint32_t status;
1727 
1728 	sc = arg;
1729 	VGE_LOCK(sc);
1730 
1731 	ifp = sc->vge_ifp;
1732 	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1733 	    (ifp->if_flags & IFF_UP) == 0) {
1734 		VGE_UNLOCK(sc);
1735 		return;
1736 	}
1737 
1738 #ifdef DEVICE_POLLING
1739 	if  (ifp->if_capenable & IFCAP_POLLING) {
1740 		VGE_UNLOCK(sc);
1741 		return;
1742 	}
1743 #endif
1744 
1745 	/* Disable interrupts */
1746 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1747 	status = CSR_READ_4(sc, VGE_ISR);
1748 	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1749 	/* If the card has gone away the read returns 0xffff. */
1750 	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1751 		goto done;
1752 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1753 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1754 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1755 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1756 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1757 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1758 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1759 		}
1760 
1761 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1762 			vge_txeof(sc);
1763 
1764 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1765 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1766 			vge_init_locked(sc);
1767 		}
1768 
1769 		if (status & VGE_ISR_LINKSTS)
1770 			vge_link_statchg(sc);
1771 	}
1772 done:
1773 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1774 		/* Re-enable interrupts */
1775 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1776 
1777 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1778 			vge_start_locked(ifp);
1779 	}
1780 	VGE_UNLOCK(sc);
1781 }
1782 
1783 static int
1784 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1785 {
1786 	struct vge_txdesc *txd;
1787 	struct vge_tx_frag *frag;
1788 	struct mbuf *m;
1789 	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1790 	int error, i, nsegs, padlen;
1791 	uint32_t cflags;
1792 
1793 	VGE_LOCK_ASSERT(sc);
1794 
1795 	M_ASSERTPKTHDR((*m_head));
1796 
1797 	/* Argh. This chip does not autopad short frames. */
1798 	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1799 		m = *m_head;
1800 		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1801 		if (M_WRITABLE(m) == 0) {
1802 			/* Get a writable copy. */
1803 			m = m_dup(*m_head, M_DONTWAIT);
1804 			m_freem(*m_head);
1805 			if (m == NULL) {
1806 				*m_head = NULL;
1807 				return (ENOBUFS);
1808 			}
1809 			*m_head = m;
1810 		}
1811 		if (M_TRAILINGSPACE(m) < padlen) {
1812 			m = m_defrag(m, M_DONTWAIT);
1813 			if (m == NULL) {
1814 				m_freem(*m_head);
1815 				*m_head = NULL;
1816 				return (ENOBUFS);
1817 			}
1818 		}
1819 		/*
1820 		 * Manually pad short frames, and zero the pad space
1821 		 * to avoid leaking data.
1822 		 */
1823 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1824 		m->m_pkthdr.len += padlen;
1825 		m->m_len = m->m_pkthdr.len;
1826 		*m_head = m;
1827 	}
1828 
1829 	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1830 
1831 	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1832 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1833 	if (error == EFBIG) {
1834 		m = m_collapse(*m_head, M_DONTWAIT, VGE_MAXTXSEGS);
1835 		if (m == NULL) {
1836 			m_freem(*m_head);
1837 			*m_head = NULL;
1838 			return (ENOMEM);
1839 		}
1840 		*m_head = m;
1841 		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1842 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1843 		if (error != 0) {
1844 			m_freem(*m_head);
1845 			*m_head = NULL;
1846 			return (error);
1847 		}
1848 	} else if (error != 0)
1849 		return (error);
1850 	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1851 	    BUS_DMASYNC_PREWRITE);
1852 
1853 	m = *m_head;
1854 	cflags = 0;
1855 
1856 	/* Configure checksum offload. */
1857 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1858 		cflags |= VGE_TDCTL_IPCSUM;
1859 	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1860 		cflags |= VGE_TDCTL_TCPCSUM;
1861 	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1862 		cflags |= VGE_TDCTL_UDPCSUM;
1863 
1864 	/* Configure VLAN. */
1865 	if ((m->m_flags & M_VLANTAG) != 0)
1866 		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1867 	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1868 	/*
1869 	 * XXX
1870 	 * Velocity family seems to support TSO but no information
1871 	 * for MSS configuration is available. Also the number of
1872 	 * fragments supported by a descriptor is too small to hold
1873 	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1874 	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1875 	 * longer chain of buffers but no additional information is
1876 	 * available.
1877 	 *
1878 	 * When telling the chip how many segments there are, we
1879 	 * must use nsegs + 1 instead of just nsegs. Darned if I
1880 	 * know why. This also means we can't use the last fragment
1881 	 * field of Tx descriptor.
1882 	 */
1883 	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1884 	    VGE_TD_LS_NORM);
1885 	for (i = 0; i < nsegs; i++) {
1886 		frag = &txd->tx_desc->vge_frag[i];
1887 		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1888 		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1889 		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1890 	}
1891 
1892 	sc->vge_cdata.vge_tx_cnt++;
1893 	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1894 
1895 	/*
1896 	 * Finally request interrupt and give the first descriptor
1897 	 * ownership to hardware.
1898 	 */
1899 	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1900 	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1901 	txd->tx_m = m;
1902 
1903 	return (0);
1904 }
1905 
1906 /*
1907  * Main transmit routine.
1908  */
1909 
1910 static void
1911 vge_start(struct ifnet *ifp)
1912 {
1913 	struct vge_softc *sc;
1914 
1915 	sc = ifp->if_softc;
1916 	VGE_LOCK(sc);
1917 	vge_start_locked(ifp);
1918 	VGE_UNLOCK(sc);
1919 }
1920 
1921 
1922 static void
1923 vge_start_locked(struct ifnet *ifp)
1924 {
1925 	struct vge_softc *sc;
1926 	struct vge_txdesc *txd;
1927 	struct mbuf *m_head;
1928 	int enq, idx;
1929 
1930 	sc = ifp->if_softc;
1931 
1932 	VGE_LOCK_ASSERT(sc);
1933 
1934 	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1935 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1936 	    IFF_DRV_RUNNING)
1937 		return;
1938 
1939 	idx = sc->vge_cdata.vge_tx_prodidx;
1940 	VGE_TX_DESC_DEC(idx);
1941 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1942 	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1943 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1944 		if (m_head == NULL)
1945 			break;
1946 		/*
1947 		 * Pack the data into the transmit ring. If we
1948 		 * don't have room, set the OACTIVE flag and wait
1949 		 * for the NIC to drain the ring.
1950 		 */
1951 		if (vge_encap(sc, &m_head)) {
1952 			if (m_head == NULL)
1953 				break;
1954 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1955 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1956 			break;
1957 		}
1958 
1959 		txd = &sc->vge_cdata.vge_txdesc[idx];
1960 		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1961 		VGE_TX_DESC_INC(idx);
1962 
1963 		enq++;
1964 		/*
1965 		 * If there's a BPF listener, bounce a copy of this frame
1966 		 * to him.
1967 		 */
1968 		ETHER_BPF_MTAP(ifp, m_head);
1969 	}
1970 
1971 	if (enq > 0) {
1972 		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1973 		    sc->vge_cdata.vge_tx_ring_map,
1974 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1975 		/* Issue a transmit command. */
1976 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1977 		/*
1978 		 * Set a timeout in case the chip goes out to lunch.
1979 		 */
1980 		sc->vge_timer = 5;
1981 	}
1982 }
1983 
1984 static void
1985 vge_init(void *xsc)
1986 {
1987 	struct vge_softc *sc = xsc;
1988 
1989 	VGE_LOCK(sc);
1990 	vge_init_locked(sc);
1991 	VGE_UNLOCK(sc);
1992 }
1993 
1994 static void
1995 vge_init_locked(struct vge_softc *sc)
1996 {
1997 	struct ifnet *ifp = sc->vge_ifp;
1998 	struct mii_data *mii;
1999 	int error, i;
2000 
2001 	VGE_LOCK_ASSERT(sc);
2002 	mii = device_get_softc(sc->vge_miibus);
2003 
2004 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2005 		return;
2006 
2007 	/*
2008 	 * Cancel pending I/O and free all RX/TX buffers.
2009 	 */
2010 	vge_stop(sc);
2011 	vge_reset(sc);
2012 
2013 	/*
2014 	 * Initialize the RX and TX descriptors and mbufs.
2015 	 */
2016 
2017 	error = vge_rx_list_init(sc);
2018 	if (error != 0) {
2019                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2020                 return;
2021 	}
2022 	vge_tx_list_init(sc);
2023 	/* Clear MAC statistics. */
2024 	vge_stats_clear(sc);
2025 	/* Set our station address */
2026 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2027 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2028 
2029 	/*
2030 	 * Set receive FIFO threshold. Also allow transmission and
2031 	 * reception of VLAN tagged frames.
2032 	 */
2033 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2034 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2035 
2036 	/* Set DMA burst length */
2037 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2038 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2039 
2040 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2041 
2042 	/* Set collision backoff algorithm */
2043 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2044 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2045 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2046 
2047 	/* Disable LPSEL field in priority resolution */
2048 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2049 
2050 	/*
2051 	 * Load the addresses of the DMA queues into the chip.
2052 	 * Note that we only use one transmit queue.
2053 	 */
2054 
2055 	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2056 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2057 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2058 	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2059 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2060 
2061 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2062 	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2063 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2064 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2065 
2066 	/* Configure interrupt moderation. */
2067 	vge_intr_holdoff(sc);
2068 
2069 	/* Enable and wake up the RX descriptor queue */
2070 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2071 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2072 
2073 	/* Enable the TX descriptor queue */
2074 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2075 
2076 	/* Init the cam filter. */
2077 	vge_cam_clear(sc);
2078 
2079 	/* Set up receiver filter. */
2080 	vge_rxfilter(sc);
2081 	vge_setvlan(sc);
2082 
2083 	/* Enable flow control */
2084 
2085 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2086 
2087 	/* Enable jumbo frame reception (if desired) */
2088 
2089 	/* Start the MAC. */
2090 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2091 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2092 	CSR_WRITE_1(sc, VGE_CRS0,
2093 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2094 
2095 #ifdef DEVICE_POLLING
2096 	/*
2097 	 * Disable interrupts if we are polling.
2098 	 */
2099 	if (ifp->if_capenable & IFCAP_POLLING) {
2100 		CSR_WRITE_4(sc, VGE_IMR, 0);
2101 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2102 	} else	/* otherwise ... */
2103 #endif
2104 	{
2105 	/*
2106 	 * Enable interrupts.
2107 	 */
2108 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2109 		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2110 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2111 	}
2112 
2113 	sc->vge_flags &= ~VGE_FLAG_LINK;
2114 	mii_mediachg(mii);
2115 
2116 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2117 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2118 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2119 }
2120 
2121 /*
2122  * Set media options.
2123  */
2124 static int
2125 vge_ifmedia_upd(struct ifnet *ifp)
2126 {
2127 	struct vge_softc *sc;
2128 	struct mii_data *mii;
2129 	int error;
2130 
2131 	sc = ifp->if_softc;
2132 	VGE_LOCK(sc);
2133 	mii = device_get_softc(sc->vge_miibus);
2134 	error = mii_mediachg(mii);
2135 	VGE_UNLOCK(sc);
2136 
2137 	return (error);
2138 }
2139 
2140 /*
2141  * Report current media status.
2142  */
2143 static void
2144 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2145 {
2146 	struct vge_softc *sc;
2147 	struct mii_data *mii;
2148 
2149 	sc = ifp->if_softc;
2150 	mii = device_get_softc(sc->vge_miibus);
2151 
2152 	VGE_LOCK(sc);
2153 	if ((ifp->if_flags & IFF_UP) == 0) {
2154 		VGE_UNLOCK(sc);
2155 		return;
2156 	}
2157 	mii_pollstat(mii);
2158 	VGE_UNLOCK(sc);
2159 	ifmr->ifm_active = mii->mii_media_active;
2160 	ifmr->ifm_status = mii->mii_media_status;
2161 }
2162 
2163 static void
2164 vge_miibus_statchg(device_t dev)
2165 {
2166 	struct vge_softc *sc;
2167 	struct mii_data *mii;
2168 	struct ifmedia_entry *ife;
2169 
2170 	sc = device_get_softc(dev);
2171 	mii = device_get_softc(sc->vge_miibus);
2172 	ife = mii->mii_media.ifm_cur;
2173 
2174 	/*
2175 	 * If the user manually selects a media mode, we need to turn
2176 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2177 	 * user happens to choose a full duplex mode, we also need to
2178 	 * set the 'force full duplex' bit. This applies only to
2179 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2180 	 * mode is disabled, and in 1000baseT mode, full duplex is
2181 	 * always implied, so we turn on the forced mode bit but leave
2182 	 * the FDX bit cleared.
2183 	 */
2184 
2185 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2186 	case IFM_AUTO:
2187 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2188 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2189 		break;
2190 	case IFM_1000_T:
2191 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2192 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2193 		break;
2194 	case IFM_100_TX:
2195 	case IFM_10_T:
2196 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2197 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2198 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2199 		} else {
2200 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2201 		}
2202 		break;
2203 	default:
2204 		device_printf(dev, "unknown media type: %x\n",
2205 		    IFM_SUBTYPE(ife->ifm_media));
2206 		break;
2207 	}
2208 }
2209 
2210 static int
2211 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2212 {
2213 	struct vge_softc *sc = ifp->if_softc;
2214 	struct ifreq *ifr = (struct ifreq *) data;
2215 	struct mii_data *mii;
2216 	int error = 0, mask;
2217 
2218 	switch (command) {
2219 	case SIOCSIFMTU:
2220 		VGE_LOCK(sc);
2221 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2222 			error = EINVAL;
2223 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2224 			if (ifr->ifr_mtu > ETHERMTU &&
2225 			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2226 				error = EINVAL;
2227 			else
2228 				ifp->if_mtu = ifr->ifr_mtu;
2229 		}
2230 		VGE_UNLOCK(sc);
2231 		break;
2232 	case SIOCSIFFLAGS:
2233 		VGE_LOCK(sc);
2234 		if ((ifp->if_flags & IFF_UP) != 0) {
2235 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2236 			    ((ifp->if_flags ^ sc->vge_if_flags) &
2237 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2238 				vge_rxfilter(sc);
2239 			else
2240 				vge_init_locked(sc);
2241 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2242 			vge_stop(sc);
2243 		sc->vge_if_flags = ifp->if_flags;
2244 		VGE_UNLOCK(sc);
2245 		break;
2246 	case SIOCADDMULTI:
2247 	case SIOCDELMULTI:
2248 		VGE_LOCK(sc);
2249 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2250 			vge_rxfilter(sc);
2251 		VGE_UNLOCK(sc);
2252 		break;
2253 	case SIOCGIFMEDIA:
2254 	case SIOCSIFMEDIA:
2255 		mii = device_get_softc(sc->vge_miibus);
2256 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2257 		break;
2258 	case SIOCSIFCAP:
2259 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2260 #ifdef DEVICE_POLLING
2261 		if (mask & IFCAP_POLLING) {
2262 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2263 				error = ether_poll_register(vge_poll, ifp);
2264 				if (error)
2265 					return (error);
2266 				VGE_LOCK(sc);
2267 					/* Disable interrupts */
2268 				CSR_WRITE_4(sc, VGE_IMR, 0);
2269 				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2270 				ifp->if_capenable |= IFCAP_POLLING;
2271 				VGE_UNLOCK(sc);
2272 			} else {
2273 				error = ether_poll_deregister(ifp);
2274 				/* Enable interrupts. */
2275 				VGE_LOCK(sc);
2276 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2277 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2278 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2279 				ifp->if_capenable &= ~IFCAP_POLLING;
2280 				VGE_UNLOCK(sc);
2281 			}
2282 		}
2283 #endif /* DEVICE_POLLING */
2284 		VGE_LOCK(sc);
2285 		if ((mask & IFCAP_TXCSUM) != 0 &&
2286 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2287 			ifp->if_capenable ^= IFCAP_TXCSUM;
2288 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2289 				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2290 			else
2291 				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2292 		}
2293 		if ((mask & IFCAP_RXCSUM) != 0 &&
2294 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2295 			ifp->if_capenable ^= IFCAP_RXCSUM;
2296 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2297 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2298 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2299 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2300 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2301 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2302 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2303 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2304 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2305 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2306 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2307 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2308 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2309 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2310 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2311 			vge_setvlan(sc);
2312 		}
2313 		VGE_UNLOCK(sc);
2314 		VLAN_CAPABILITIES(ifp);
2315 		break;
2316 	default:
2317 		error = ether_ioctl(ifp, command, data);
2318 		break;
2319 	}
2320 
2321 	return (error);
2322 }
2323 
2324 static void
2325 vge_watchdog(void *arg)
2326 {
2327 	struct vge_softc *sc;
2328 	struct ifnet *ifp;
2329 
2330 	sc = arg;
2331 	VGE_LOCK_ASSERT(sc);
2332 	vge_stats_update(sc);
2333 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2334 	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2335 		return;
2336 
2337 	ifp = sc->vge_ifp;
2338 	if_printf(ifp, "watchdog timeout\n");
2339 	ifp->if_oerrors++;
2340 
2341 	vge_txeof(sc);
2342 	vge_rxeof(sc, VGE_RX_DESC_CNT);
2343 
2344 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2345 	vge_init_locked(sc);
2346 }
2347 
2348 /*
2349  * Stop the adapter and free any mbufs allocated to the
2350  * RX and TX lists.
2351  */
2352 static void
2353 vge_stop(struct vge_softc *sc)
2354 {
2355 	struct ifnet *ifp;
2356 
2357 	VGE_LOCK_ASSERT(sc);
2358 	ifp = sc->vge_ifp;
2359 	sc->vge_timer = 0;
2360 	callout_stop(&sc->vge_watchdog);
2361 
2362 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2363 
2364 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2365 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2366 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2367 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2368 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2369 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2370 
2371 	vge_stats_update(sc);
2372 	VGE_CHAIN_RESET(sc);
2373 	vge_txeof(sc);
2374 	vge_freebufs(sc);
2375 }
2376 
2377 /*
2378  * Device suspend routine.  Stop the interface and save some PCI
2379  * settings in case the BIOS doesn't restore them properly on
2380  * resume.
2381  */
2382 static int
2383 vge_suspend(device_t dev)
2384 {
2385 	struct vge_softc *sc;
2386 
2387 	sc = device_get_softc(dev);
2388 
2389 	VGE_LOCK(sc);
2390 	vge_stop(sc);
2391 	vge_setwol(sc);
2392 	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2393 	VGE_UNLOCK(sc);
2394 
2395 	return (0);
2396 }
2397 
2398 /*
2399  * Device resume routine.  Restore some PCI settings in case the BIOS
2400  * doesn't, re-enable busmastering, and restart the interface if
2401  * appropriate.
2402  */
2403 static int
2404 vge_resume(device_t dev)
2405 {
2406 	struct vge_softc *sc;
2407 	struct ifnet *ifp;
2408 	uint16_t pmstat;
2409 
2410 	sc = device_get_softc(dev);
2411 	VGE_LOCK(sc);
2412 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2413 		/* Disable PME and clear PME status. */
2414 		pmstat = pci_read_config(sc->vge_dev,
2415 		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2416 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2417 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2418 			pci_write_config(sc->vge_dev,
2419 			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2420 		}
2421 	}
2422 	vge_clrwol(sc);
2423 	/* Restart MII auto-polling. */
2424 	vge_miipoll_start(sc);
2425 	ifp = sc->vge_ifp;
2426 	/* Reinitialize interface if necessary. */
2427 	if ((ifp->if_flags & IFF_UP) != 0) {
2428 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2429 		vge_init_locked(sc);
2430 	}
2431 	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2432 	VGE_UNLOCK(sc);
2433 
2434 	return (0);
2435 }
2436 
2437 /*
2438  * Stop all chip I/O so that the kernel's probe routines don't
2439  * get confused by errant DMAs when rebooting.
2440  */
2441 static int
2442 vge_shutdown(device_t dev)
2443 {
2444 
2445 	return (vge_suspend(dev));
2446 }
2447 
2448 #define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2449 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2450 
2451 static void
2452 vge_sysctl_node(struct vge_softc *sc)
2453 {
2454 	struct sysctl_ctx_list *ctx;
2455 	struct sysctl_oid_list *child, *parent;
2456 	struct sysctl_oid *tree;
2457 	struct vge_hw_stats *stats;
2458 
2459 	stats = &sc->vge_stats;
2460 	ctx = device_get_sysctl_ctx(sc->vge_dev);
2461 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2462 
2463 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2464 	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2465 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2466 	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2467 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2468 	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2469 
2470 	/* Pull in device tunables. */
2471 	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2472 	resource_int_value(device_get_name(sc->vge_dev),
2473 	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2474 	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2475 	resource_int_value(device_get_name(sc->vge_dev),
2476 	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2477 	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2478 	resource_int_value(device_get_name(sc->vge_dev),
2479 	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2480 
2481 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2482 	    NULL, "VGE statistics");
2483 	parent = SYSCTL_CHILDREN(tree);
2484 
2485 	/* Rx statistics. */
2486 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2487 	    NULL, "RX MAC statistics");
2488 	child = SYSCTL_CHILDREN(tree);
2489 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2490 	    &stats->rx_frames, "frames");
2491 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2492 	    &stats->rx_good_frames, "Good frames");
2493 	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2494 	    &stats->rx_fifo_oflows, "FIFO overflows");
2495 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2496 	    &stats->rx_runts, "Too short frames");
2497 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2498 	    &stats->rx_runts_errs, "Too short frames with errors");
2499 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2500 	    &stats->rx_pkts_64, "64 bytes frames");
2501 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2502 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2503 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2504 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2505 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2506 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2507 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2508 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2509 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2510 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2511 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2512 	    &stats->rx_pkts_1519_max, "1519 to max frames");
2513 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2514 	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2515 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2516 	    &stats->rx_jumbos, "Jumbo frames");
2517 	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2518 	    &stats->rx_crcerrs, "CRC errors");
2519 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2520 	    &stats->rx_pause_frames, "CRC errors");
2521 	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2522 	    &stats->rx_alignerrs, "Alignment errors");
2523 	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2524 	    &stats->rx_nobufs, "Frames with no buffer event");
2525 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2526 	    &stats->rx_symerrs, "Frames with symbol errors");
2527 	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2528 	    &stats->rx_lenerrs, "Frames with length mismatched");
2529 
2530 	/* Tx statistics. */
2531 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2532 	    NULL, "TX MAC statistics");
2533 	child = SYSCTL_CHILDREN(tree);
2534 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2535 	    &stats->tx_good_frames, "Good frames");
2536 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2537 	    &stats->tx_pkts_64, "64 bytes frames");
2538 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2539 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2540 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2541 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2542 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2543 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2544 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2545 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2546 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2547 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2548 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2549 	    &stats->tx_jumbos, "Jumbo frames");
2550 	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2551 	    &stats->tx_colls, "Collisions");
2552 	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2553 	    &stats->tx_latecolls, "Late collisions");
2554 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2555 	    &stats->tx_pause, "Pause frames");
2556 #ifdef VGE_ENABLE_SQEERR
2557 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2558 	    &stats->tx_sqeerrs, "SQE errors");
2559 #endif
2560 	/* Clear MAC statistics. */
2561 	vge_stats_clear(sc);
2562 }
2563 
2564 #undef	VGE_SYSCTL_STAT_ADD32
2565 
2566 static void
2567 vge_stats_clear(struct vge_softc *sc)
2568 {
2569 	int i;
2570 
2571 	CSR_WRITE_1(sc, VGE_MIBCSR,
2572 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2573 	CSR_WRITE_1(sc, VGE_MIBCSR,
2574 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2575 	for (i = VGE_TIMEOUT; i > 0; i--) {
2576 		DELAY(1);
2577 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2578 			break;
2579 	}
2580 	if (i == 0)
2581 		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2582 	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2583 	    ~VGE_MIBCSR_FREEZE);
2584 }
2585 
2586 static void
2587 vge_stats_update(struct vge_softc *sc)
2588 {
2589 	struct vge_hw_stats *stats;
2590 	struct ifnet *ifp;
2591 	uint32_t mib[VGE_MIB_CNT], val;
2592 	int i;
2593 
2594 	VGE_LOCK_ASSERT(sc);
2595 
2596 	stats = &sc->vge_stats;
2597 	ifp = sc->vge_ifp;
2598 
2599 	CSR_WRITE_1(sc, VGE_MIBCSR,
2600 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2601 	for (i = VGE_TIMEOUT; i > 0; i--) {
2602 		DELAY(1);
2603 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2604 			break;
2605 	}
2606 	if (i == 0) {
2607 		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2608 		vge_stats_clear(sc);
2609 		return;
2610 	}
2611 
2612 	bzero(mib, sizeof(mib));
2613 reset_idx:
2614 	/* Set MIB read index to 0. */
2615 	CSR_WRITE_1(sc, VGE_MIBCSR,
2616 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2617 	for (i = 0; i < VGE_MIB_CNT; i++) {
2618 		val = CSR_READ_4(sc, VGE_MIBDATA);
2619 		if (i != VGE_MIB_DATA_IDX(val)) {
2620 			/* Reading interrupted. */
2621 			goto reset_idx;
2622 		}
2623 		mib[i] = val & VGE_MIB_DATA_MASK;
2624 	}
2625 
2626 	/* Rx stats. */
2627 	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2628 	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2629 	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2630 	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2631 	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2632 	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2633 	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2634 	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2635 	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2636 	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2637 	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2638 	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2639 	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2640 	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2641 	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2642 	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2643 	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2644 	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2645 	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2646 	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2647 
2648 	/* Tx stats. */
2649 	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2650 	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2651 	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2652 	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2653 	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2654 	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2655 	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2656 	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2657 	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2658 	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2659 #ifdef VGE_ENABLE_SQEERR
2660 	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2661 #endif
2662 	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2663 
2664 	/* Update counters in ifnet. */
2665 	ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES];
2666 
2667 	ifp->if_collisions += mib[VGE_MIB_TX_COLLS] +
2668 	    mib[VGE_MIB_TX_LATECOLLS];
2669 
2670 	ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] +
2671 	    mib[VGE_MIB_TX_LATECOLLS];
2672 
2673 	ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES];
2674 
2675 	ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2676 	    mib[VGE_MIB_RX_RUNTS] +
2677 	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2678 	    mib[VGE_MIB_RX_CRCERRS] +
2679 	    mib[VGE_MIB_RX_ALIGNERRS] +
2680 	    mib[VGE_MIB_RX_NOBUFS] +
2681 	    mib[VGE_MIB_RX_SYMERRS] +
2682 	    mib[VGE_MIB_RX_LENERRS];
2683 }
2684 
2685 static void
2686 vge_intr_holdoff(struct vge_softc *sc)
2687 {
2688 	uint8_t intctl;
2689 
2690 	VGE_LOCK_ASSERT(sc);
2691 
2692 	/*
2693 	 * Set Tx interrupt supression threshold.
2694 	 * It's possible to use single-shot timer in VGE_CRS1 register
2695 	 * in Tx path such that driver can remove most of Tx completion
2696 	 * interrupts. However this requires additional access to
2697 	 * VGE_CRS1 register to reload the timer in addintion to
2698 	 * activating Tx kick command. Another downside is we don't know
2699 	 * what single-shot timer value should be used in advance so
2700 	 * reclaiming transmitted mbufs could be delayed a lot which in
2701 	 * turn slows down Tx operation.
2702 	 */
2703 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2704 	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2705 
2706 	/* Set Rx interrupt suppresion threshold. */
2707 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2708 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2709 
2710 	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2711 	intctl &= ~VGE_INTCTL_SC_RELOAD;
2712 	intctl |= VGE_INTCTL_HC_RELOAD;
2713 	if (sc->vge_tx_coal_pkt <= 0)
2714 		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2715 	else
2716 		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2717 	if (sc->vge_rx_coal_pkt <= 0)
2718 		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2719 	else
2720 		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2721 	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2722 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2723 	if (sc->vge_int_holdoff > 0) {
2724 		/* Set interrupt holdoff timer. */
2725 		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2726 		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2727 		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2728 		/* Enable holdoff timer. */
2729 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2730 	}
2731 }
2732 
2733 static void
2734 vge_setlinkspeed(struct vge_softc *sc)
2735 {
2736 	struct mii_data *mii;
2737 	int aneg, i;
2738 
2739 	VGE_LOCK_ASSERT(sc);
2740 
2741 	mii = device_get_softc(sc->vge_miibus);
2742 	mii_pollstat(mii);
2743 	aneg = 0;
2744 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2745 	    (IFM_ACTIVE | IFM_AVALID)) {
2746 		switch IFM_SUBTYPE(mii->mii_media_active) {
2747 		case IFM_10_T:
2748 		case IFM_100_TX:
2749 			return;
2750 		case IFM_1000_T:
2751 			aneg++;
2752 		default:
2753 			break;
2754 		}
2755 	}
2756 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2757 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2758 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2759 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2760 	    BMCR_AUTOEN | BMCR_STARTNEG);
2761 	DELAY(1000);
2762 	if (aneg != 0) {
2763 		/* Poll link state until vge(4) get a 10/100 link. */
2764 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2765 			mii_pollstat(mii);
2766 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2767 			    == (IFM_ACTIVE | IFM_AVALID)) {
2768 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2769 				case IFM_10_T:
2770 				case IFM_100_TX:
2771 					return;
2772 				default:
2773 					break;
2774 				}
2775 			}
2776 			VGE_UNLOCK(sc);
2777 			pause("vgelnk", hz);
2778 			VGE_LOCK(sc);
2779 		}
2780 		if (i == MII_ANEGTICKS_GIGE)
2781 			device_printf(sc->vge_dev, "establishing link failed, "
2782 			    "WOL may not work!");
2783 	}
2784 	/*
2785 	 * No link, force MAC to have 100Mbps, full-duplex link.
2786 	 * This is the last resort and may/may not work.
2787 	 */
2788 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2789 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2790 }
2791 
2792 static void
2793 vge_setwol(struct vge_softc *sc)
2794 {
2795 	struct ifnet *ifp;
2796 	uint16_t pmstat;
2797 	uint8_t val;
2798 
2799 	VGE_LOCK_ASSERT(sc);
2800 
2801 	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2802 		/* No PME capability, PHY power down. */
2803 		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2804 		    BMCR_PDOWN);
2805 		vge_miipoll_stop(sc);
2806 		return;
2807 	}
2808 
2809 	ifp = sc->vge_ifp;
2810 
2811 	/* Clear WOL on pattern match. */
2812 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2813 	/* Disable WOL on magic/unicast packet. */
2814 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2815 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2816 	    VGE_WOLCFG_PMEOVR);
2817 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2818 		vge_setlinkspeed(sc);
2819 		val = 0;
2820 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2821 			val |= VGE_WOLCR1_UCAST;
2822 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2823 			val |= VGE_WOLCR1_MAGIC;
2824 		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2825 		val = 0;
2826 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2827 			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2828 		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2829 		/* Disable MII auto-polling. */
2830 		vge_miipoll_stop(sc);
2831 	}
2832 	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2833 	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2834 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2835 
2836 	/* Clear WOL status on pattern match. */
2837 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2838 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2839 
2840 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2841 	val |= VGE_STICKHW_SWPTAG;
2842 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2843 	/* Put hardware into sleep. */
2844 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2845 	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2846 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2847 	/* Request PME if WOL is requested. */
2848 	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2849 	    PCIR_POWER_STATUS, 2);
2850 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2851 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2852 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2853 	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2854 	    pmstat, 2);
2855 }
2856 
2857 static void
2858 vge_clrwol(struct vge_softc *sc)
2859 {
2860 	uint8_t val;
2861 
2862 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2863 	val &= ~VGE_STICKHW_SWPTAG;
2864 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2865 	/* Disable WOL and clear power state indicator. */
2866 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2867 	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2868 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2869 
2870 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2871 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2872 
2873 	/* Clear WOL on pattern match. */
2874 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2875 	/* Disable WOL on magic/unicast packet. */
2876 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2877 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2878 	    VGE_WOLCFG_PMEOVR);
2879 	/* Clear WOL status on pattern match. */
2880 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2881 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2882 }
2883