xref: /freebsd/sys/dev/vte/if_vte.c (revision 3494f7c0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/endian.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/rman.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 
61 #include <dev/mii/mii.h>
62 #include <dev/mii/miivar.h>
63 
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 #include <machine/bus.h>
68 
69 #include <dev/vte/if_vtereg.h>
70 #include <dev/vte/if_vtevar.h>
71 
72 /* "device miibus" required.  See GENERIC if you get errors here. */
73 #include "miibus_if.h"
74 
75 MODULE_DEPEND(vte, pci, 1, 1, 1);
76 MODULE_DEPEND(vte, ether, 1, 1, 1);
77 MODULE_DEPEND(vte, miibus, 1, 1, 1);
78 
79 /* Tunables. */
80 static int tx_deep_copy = 1;
81 TUNABLE_INT("hw.vte.tx_deep_copy", &tx_deep_copy);
82 
83 /*
84  * Devices supported by this driver.
85  */
86 static const struct vte_ident vte_ident_table[] = {
87 	{ VENDORID_RDC, DEVICEID_RDC_R6040, "RDC R6040 FastEthernet"},
88 	{ 0, 0, NULL}
89 };
90 
91 static int	vte_attach(device_t);
92 static int	vte_detach(device_t);
93 static int	vte_dma_alloc(struct vte_softc *);
94 static void	vte_dma_free(struct vte_softc *);
95 static void	vte_dmamap_cb(void *, bus_dma_segment_t *, int, int);
96 static struct vte_txdesc *
97 		vte_encap(struct vte_softc *, struct mbuf **);
98 static const struct vte_ident *
99 		vte_find_ident(device_t);
100 #ifndef __NO_STRICT_ALIGNMENT
101 static struct mbuf *
102 		vte_fixup_rx(if_t, struct mbuf *);
103 #endif
104 static void	vte_get_macaddr(struct vte_softc *);
105 static void	vte_init(void *);
106 static void	vte_init_locked(struct vte_softc *);
107 static int	vte_init_rx_ring(struct vte_softc *);
108 static int	vte_init_tx_ring(struct vte_softc *);
109 static void	vte_intr(void *);
110 static int	vte_ioctl(if_t, u_long, caddr_t);
111 static uint64_t	vte_get_counter(if_t, ift_counter);
112 static void	vte_mac_config(struct vte_softc *);
113 static int	vte_miibus_readreg(device_t, int, int);
114 static void	vte_miibus_statchg(device_t);
115 static int	vte_miibus_writereg(device_t, int, int, int);
116 static int	vte_mediachange(if_t);
117 static int	vte_mediachange_locked(if_t);
118 static void	vte_mediastatus(if_t, struct ifmediareq *);
119 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
120 static int	vte_probe(device_t);
121 static void	vte_reset(struct vte_softc *);
122 static int	vte_resume(device_t);
123 static void	vte_rxeof(struct vte_softc *);
124 static void	vte_rxfilter(struct vte_softc *);
125 static int	vte_shutdown(device_t);
126 static void	vte_start(if_t);
127 static void	vte_start_locked(struct vte_softc *);
128 static void	vte_start_mac(struct vte_softc *);
129 static void	vte_stats_clear(struct vte_softc *);
130 static void	vte_stats_update(struct vte_softc *);
131 static void	vte_stop(struct vte_softc *);
132 static void	vte_stop_mac(struct vte_softc *);
133 static int	vte_suspend(device_t);
134 static void	vte_sysctl_node(struct vte_softc *);
135 static void	vte_tick(void *);
136 static void	vte_txeof(struct vte_softc *);
137 static void	vte_watchdog(struct vte_softc *);
138 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
139 static int	sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS);
140 
141 static device_method_t vte_methods[] = {
142 	/* Device interface. */
143 	DEVMETHOD(device_probe,		vte_probe),
144 	DEVMETHOD(device_attach,	vte_attach),
145 	DEVMETHOD(device_detach,	vte_detach),
146 	DEVMETHOD(device_shutdown,	vte_shutdown),
147 	DEVMETHOD(device_suspend,	vte_suspend),
148 	DEVMETHOD(device_resume,	vte_resume),
149 
150 	/* MII interface. */
151 	DEVMETHOD(miibus_readreg,	vte_miibus_readreg),
152 	DEVMETHOD(miibus_writereg,	vte_miibus_writereg),
153 	DEVMETHOD(miibus_statchg,	vte_miibus_statchg),
154 
155 	DEVMETHOD_END
156 };
157 
158 static driver_t vte_driver = {
159 	"vte",
160 	vte_methods,
161 	sizeof(struct vte_softc)
162 };
163 
164 DRIVER_MODULE(vte, pci, vte_driver, 0, 0);
165 DRIVER_MODULE(miibus, vte, miibus_driver, 0, 0);
166 
167 static int
168 vte_miibus_readreg(device_t dev, int phy, int reg)
169 {
170 	struct vte_softc *sc;
171 	int i;
172 
173 	sc = device_get_softc(dev);
174 
175 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
176 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
177 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
178 		DELAY(5);
179 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
180 			break;
181 	}
182 
183 	if (i == 0) {
184 		device_printf(sc->vte_dev, "phy read timeout : %d\n", reg);
185 		return (0);
186 	}
187 
188 	return (CSR_READ_2(sc, VTE_MMRD));
189 }
190 
191 static int
192 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
193 {
194 	struct vte_softc *sc;
195 	int i;
196 
197 	sc = device_get_softc(dev);
198 
199 	CSR_WRITE_2(sc, VTE_MMWD, val);
200 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
201 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
202 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
203 		DELAY(5);
204 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
205 			break;
206 	}
207 
208 	if (i == 0)
209 		device_printf(sc->vte_dev, "phy write timeout : %d\n", reg);
210 
211 	return (0);
212 }
213 
214 static void
215 vte_miibus_statchg(device_t dev)
216 {
217 	struct vte_softc *sc;
218 	struct mii_data *mii;
219 	if_t ifp;
220 	uint16_t val;
221 
222 	sc = device_get_softc(dev);
223 
224 	mii = device_get_softc(sc->vte_miibus);
225 	ifp = sc->vte_ifp;
226 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
227 		return;
228 
229 	sc->vte_flags &= ~VTE_FLAG_LINK;
230 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
231 	    (IFM_ACTIVE | IFM_AVALID)) {
232 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
233 		case IFM_10_T:
234 		case IFM_100_TX:
235 			sc->vte_flags |= VTE_FLAG_LINK;
236 			break;
237 		default:
238 			break;
239 		}
240 	}
241 
242 	/* Stop RX/TX MACs. */
243 	vte_stop_mac(sc);
244 	/* Program MACs with resolved duplex and flow control. */
245 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
246 		/*
247 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
248 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
249 		 */
250 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
251 			val = 18 << VTE_IM_TIMER_SHIFT;
252 		else
253 			val = 1 << VTE_IM_TIMER_SHIFT;
254 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
255 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
256 		CSR_WRITE_2(sc, VTE_MRICR, val);
257 
258 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
259 			val = 18 << VTE_IM_TIMER_SHIFT;
260 		else
261 			val = 1 << VTE_IM_TIMER_SHIFT;
262 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
263 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
264 		CSR_WRITE_2(sc, VTE_MTICR, val);
265 
266 		vte_mac_config(sc);
267 		vte_start_mac(sc);
268 	}
269 }
270 
271 static void
272 vte_mediastatus(if_t ifp, struct ifmediareq *ifmr)
273 {
274 	struct vte_softc *sc;
275 	struct mii_data *mii;
276 
277 	sc = if_getsoftc(ifp);
278 	VTE_LOCK(sc);
279 	if ((if_getflags(ifp) & IFF_UP) == 0) {
280 		VTE_UNLOCK(sc);
281 		return;
282 	}
283 	mii = device_get_softc(sc->vte_miibus);
284 
285 	mii_pollstat(mii);
286 	ifmr->ifm_status = mii->mii_media_status;
287 	ifmr->ifm_active = mii->mii_media_active;
288 	VTE_UNLOCK(sc);
289 }
290 
291 static int
292 vte_mediachange(if_t ifp)
293 {
294 	struct vte_softc *sc;
295 	int error;
296 
297 	sc = if_getsoftc(ifp);
298 	VTE_LOCK(sc);
299 	error = vte_mediachange_locked(ifp);
300 	VTE_UNLOCK(sc);
301 	return (error);
302 }
303 
304 static int
305 vte_mediachange_locked(if_t ifp)
306 {
307 	struct vte_softc *sc;
308 	struct mii_data *mii;
309 	struct mii_softc *miisc;
310 	int error;
311 
312 	sc = if_getsoftc(ifp);
313 	mii = device_get_softc(sc->vte_miibus);
314 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
315 		PHY_RESET(miisc);
316 	error = mii_mediachg(mii);
317 
318 	return (error);
319 }
320 
321 static const struct vte_ident *
322 vte_find_ident(device_t dev)
323 {
324 	const struct vte_ident *ident;
325 	uint16_t vendor, devid;
326 
327 	vendor = pci_get_vendor(dev);
328 	devid = pci_get_device(dev);
329 	for (ident = vte_ident_table; ident->name != NULL; ident++) {
330 		if (vendor == ident->vendorid && devid == ident->deviceid)
331 			return (ident);
332 	}
333 
334 	return (NULL);
335 }
336 
337 static int
338 vte_probe(device_t dev)
339 {
340 	const struct vte_ident *ident;
341 
342 	ident = vte_find_ident(dev);
343 	if (ident != NULL) {
344 		device_set_desc(dev, ident->name);
345 		return (BUS_PROBE_DEFAULT);
346 	}
347 
348 	return (ENXIO);
349 }
350 
351 static void
352 vte_get_macaddr(struct vte_softc *sc)
353 {
354 	uint16_t mid;
355 
356 	/*
357 	 * It seems there is no way to reload station address and
358 	 * it is supposed to be set by BIOS.
359 	 */
360 	mid = CSR_READ_2(sc, VTE_MID0L);
361 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
362 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
363 	mid = CSR_READ_2(sc, VTE_MID0M);
364 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
365 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
366 	mid = CSR_READ_2(sc, VTE_MID0H);
367 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
368 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
369 }
370 
371 static int
372 vte_attach(device_t dev)
373 {
374 	struct vte_softc *sc;
375 	if_t ifp;
376 	uint16_t macid;
377 	int error, rid;
378 
379 	error = 0;
380 	sc = device_get_softc(dev);
381 	sc->vte_dev = dev;
382 
383 	mtx_init(&sc->vte_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
384 	    MTX_DEF);
385 	callout_init_mtx(&sc->vte_tick_ch, &sc->vte_mtx, 0);
386 	sc->vte_ident = vte_find_ident(dev);
387 
388 	/* Map the device. */
389 	pci_enable_busmaster(dev);
390 	sc->vte_res_id = PCIR_BAR(1);
391 	sc->vte_res_type = SYS_RES_MEMORY;
392 	sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
393 	    &sc->vte_res_id, RF_ACTIVE);
394 	if (sc->vte_res == NULL) {
395 		sc->vte_res_id = PCIR_BAR(0);
396 		sc->vte_res_type = SYS_RES_IOPORT;
397 		sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
398 		    &sc->vte_res_id, RF_ACTIVE);
399 		if (sc->vte_res == NULL) {
400 			device_printf(dev, "cannot map memory/ports.\n");
401 			mtx_destroy(&sc->vte_mtx);
402 			return (ENXIO);
403 		}
404 	}
405 	if (bootverbose) {
406 		device_printf(dev, "using %s space register mapping\n",
407 		    sc->vte_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
408 		device_printf(dev, "MAC Identifier : 0x%04x\n",
409 		    CSR_READ_2(sc, VTE_MACID));
410 		macid = CSR_READ_2(sc, VTE_MACID_REV);
411 		device_printf(dev, "MAC Id. 0x%02x, Rev. 0x%02x\n",
412 		    (macid & VTE_MACID_MASK) >> VTE_MACID_SHIFT,
413 		    (macid & VTE_MACID_REV_MASK) >> VTE_MACID_REV_SHIFT);
414 	}
415 
416 	rid = 0;
417 	sc->vte_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
418 	    RF_SHAREABLE | RF_ACTIVE);
419 	if (sc->vte_irq == NULL) {
420 		device_printf(dev, "cannot allocate IRQ resources.\n");
421 		error = ENXIO;
422 		goto fail;
423 	}
424 
425 	/* Reset the ethernet controller. */
426 	vte_reset(sc);
427 
428 	if ((error = vte_dma_alloc(sc)) != 0)
429 		goto fail;
430 
431 	/* Create device sysctl node. */
432 	vte_sysctl_node(sc);
433 
434 	/* Load station address. */
435 	vte_get_macaddr(sc);
436 
437 	ifp = sc->vte_ifp = if_alloc(IFT_ETHER);
438 	if (ifp == NULL) {
439 		device_printf(dev, "cannot allocate ifnet structure.\n");
440 		error = ENXIO;
441 		goto fail;
442 	}
443 
444 	if_setsoftc(ifp, sc);
445 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
446 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
447 	if_setioctlfn(ifp, vte_ioctl);
448 	if_setstartfn(ifp, vte_start);
449 	if_setinitfn(ifp, vte_init);
450 	if_setgetcounterfn(ifp, vte_get_counter);
451 	if_setsendqlen(ifp, VTE_TX_RING_CNT - 1);
452 	if_setsendqready(ifp);
453 
454 	/*
455 	 * Set up MII bus.
456 	 * BIOS would have initialized VTE_MPSCCR to catch PHY
457 	 * status changes so driver may be able to extract
458 	 * configured PHY address.  Since it's common to see BIOS
459 	 * fails to initialize the register(including the sample
460 	 * board I have), let mii(4) probe it.  This is more
461 	 * reliable than relying on BIOS's initialization.
462 	 *
463 	 * Advertising flow control capability to mii(4) was
464 	 * intentionally disabled due to severe problems in TX
465 	 * pause frame generation.  See vte_rxeof() for more
466 	 * details.
467 	 */
468 	error = mii_attach(dev, &sc->vte_miibus, ifp, vte_mediachange,
469 	    vte_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
470 	if (error != 0) {
471 		device_printf(dev, "attaching PHYs failed\n");
472 		goto fail;
473 	}
474 
475 	ether_ifattach(ifp, sc->vte_eaddr);
476 
477 	/* VLAN capability setup. */
478 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
479 	if_setcapenable(ifp, if_getcapabilities(ifp));
480 	/* Tell the upper layer we support VLAN over-sized frames. */
481 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
482 
483 	error = bus_setup_intr(dev, sc->vte_irq, INTR_TYPE_NET | INTR_MPSAFE,
484 	    NULL, vte_intr, sc, &sc->vte_intrhand);
485 	if (error != 0) {
486 		device_printf(dev, "could not set up interrupt handler.\n");
487 		ether_ifdetach(ifp);
488 		goto fail;
489 	}
490 
491 fail:
492 	if (error != 0)
493 		vte_detach(dev);
494 
495 	return (error);
496 }
497 
498 static int
499 vte_detach(device_t dev)
500 {
501 	struct vte_softc *sc;
502 	if_t ifp;
503 
504 	sc = device_get_softc(dev);
505 
506 	ifp = sc->vte_ifp;
507 	if (device_is_attached(dev)) {
508 		VTE_LOCK(sc);
509 		vte_stop(sc);
510 		VTE_UNLOCK(sc);
511 		callout_drain(&sc->vte_tick_ch);
512 		ether_ifdetach(ifp);
513 	}
514 
515 	if (sc->vte_miibus != NULL) {
516 		device_delete_child(dev, sc->vte_miibus);
517 		sc->vte_miibus = NULL;
518 	}
519 	bus_generic_detach(dev);
520 
521 	if (sc->vte_intrhand != NULL) {
522 		bus_teardown_intr(dev, sc->vte_irq, sc->vte_intrhand);
523 		sc->vte_intrhand = NULL;
524 	}
525 	if (sc->vte_irq != NULL) {
526 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vte_irq);
527 		sc->vte_irq = NULL;
528 	}
529 	if (sc->vte_res != NULL) {
530 		bus_release_resource(dev, sc->vte_res_type, sc->vte_res_id,
531 		    sc->vte_res);
532 		sc->vte_res = NULL;
533 	}
534 	if (ifp != NULL) {
535 		if_free(ifp);
536 		sc->vte_ifp = NULL;
537 	}
538 	vte_dma_free(sc);
539 	mtx_destroy(&sc->vte_mtx);
540 
541 	return (0);
542 }
543 
544 #define	VTE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
545 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
546 
547 static void
548 vte_sysctl_node(struct vte_softc *sc)
549 {
550 	struct sysctl_ctx_list *ctx;
551 	struct sysctl_oid_list *child, *parent;
552 	struct sysctl_oid *tree;
553 	struct vte_hw_stats *stats;
554 	int error;
555 
556 	stats = &sc->vte_stats;
557 	ctx = device_get_sysctl_ctx(sc->vte_dev);
558 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vte_dev));
559 
560 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
561 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
562 	    &sc->vte_int_rx_mod, 0, sysctl_hw_vte_int_mod, "I",
563 	    "vte RX interrupt moderation");
564 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
565 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
566 	    &sc->vte_int_tx_mod, 0, sysctl_hw_vte_int_mod, "I",
567 	    "vte TX interrupt moderation");
568 	/* Pull in device tunables. */
569 	sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
570 	error = resource_int_value(device_get_name(sc->vte_dev),
571 	    device_get_unit(sc->vte_dev), "int_rx_mod", &sc->vte_int_rx_mod);
572 	if (error == 0) {
573 		if (sc->vte_int_rx_mod < VTE_IM_BUNDLE_MIN ||
574 		    sc->vte_int_rx_mod > VTE_IM_BUNDLE_MAX) {
575 			device_printf(sc->vte_dev, "int_rx_mod value out of "
576 			    "range; using default: %d\n",
577 			    VTE_IM_RX_BUNDLE_DEFAULT);
578 			sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
579 		}
580 	}
581 
582 	sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
583 	error = resource_int_value(device_get_name(sc->vte_dev),
584 	    device_get_unit(sc->vte_dev), "int_tx_mod", &sc->vte_int_tx_mod);
585 	if (error == 0) {
586 		if (sc->vte_int_tx_mod < VTE_IM_BUNDLE_MIN ||
587 		    sc->vte_int_tx_mod > VTE_IM_BUNDLE_MAX) {
588 			device_printf(sc->vte_dev, "int_tx_mod value out of "
589 			    "range; using default: %d\n",
590 			    VTE_IM_TX_BUNDLE_DEFAULT);
591 			sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
592 		}
593 	}
594 
595 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
596 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "VTE statistics");
597 	parent = SYSCTL_CHILDREN(tree);
598 
599 	/* RX statistics. */
600 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
601 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX MAC statistics");
602 	child = SYSCTL_CHILDREN(tree);
603 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
604 	    &stats->rx_frames, "Good frames");
605 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
606 	    &stats->rx_bcast_frames, "Good broadcast frames");
607 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
608 	    &stats->rx_mcast_frames, "Good multicast frames");
609 	VTE_SYSCTL_STAT_ADD32(ctx, child, "runt",
610 	    &stats->rx_runts, "Too short frames");
611 	VTE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
612 	    &stats->rx_crcerrs, "CRC errors");
613 	VTE_SYSCTL_STAT_ADD32(ctx, child, "long_frames",
614 	    &stats->rx_long_frames,
615 	    "Frames that have longer length than maximum packet length");
616 	VTE_SYSCTL_STAT_ADD32(ctx, child, "fifo_full",
617 	    &stats->rx_fifo_full, "FIFO full");
618 	VTE_SYSCTL_STAT_ADD32(ctx, child, "desc_unavail",
619 	    &stats->rx_desc_unavail, "Descriptor unavailable frames");
620 	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
621 	    &stats->rx_pause_frames, "Pause control frames");
622 
623 	/* TX statistics. */
624 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
625 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX MAC statistics");
626 	child = SYSCTL_CHILDREN(tree);
627 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
628 	    &stats->tx_frames, "Good frames");
629 	VTE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
630 	    &stats->tx_underruns, "FIFO underruns");
631 	VTE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
632 	    &stats->tx_late_colls, "Late collisions");
633 	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
634 	    &stats->tx_pause_frames, "Pause control frames");
635 }
636 
637 #undef VTE_SYSCTL_STAT_ADD32
638 
639 struct vte_dmamap_arg {
640 	bus_addr_t	vte_busaddr;
641 };
642 
643 static void
644 vte_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
645 {
646 	struct vte_dmamap_arg *ctx;
647 
648 	if (error != 0)
649 		return;
650 
651 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
652 
653 	ctx = (struct vte_dmamap_arg *)arg;
654 	ctx->vte_busaddr = segs[0].ds_addr;
655 }
656 
657 static int
658 vte_dma_alloc(struct vte_softc *sc)
659 {
660 	struct vte_txdesc *txd;
661 	struct vte_rxdesc *rxd;
662 	struct vte_dmamap_arg ctx;
663 	int error, i;
664 
665 	/* Create parent DMA tag. */
666 	error = bus_dma_tag_create(
667 	    bus_get_dma_tag(sc->vte_dev), /* parent */
668 	    1, 0,			/* alignment, boundary */
669 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
670 	    BUS_SPACE_MAXADDR,		/* highaddr */
671 	    NULL, NULL,			/* filter, filterarg */
672 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
673 	    0,				/* nsegments */
674 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
675 	    0,				/* flags */
676 	    NULL, NULL,			/* lockfunc, lockarg */
677 	    &sc->vte_cdata.vte_parent_tag);
678 	if (error != 0) {
679 		device_printf(sc->vte_dev,
680 		    "could not create parent DMA tag.\n");
681 		goto fail;
682 	}
683 
684 	/* Create DMA tag for TX descriptor ring. */
685 	error = bus_dma_tag_create(
686 	    sc->vte_cdata.vte_parent_tag, /* parent */
687 	    VTE_TX_RING_ALIGN, 0,	/* alignment, boundary */
688 	    BUS_SPACE_MAXADDR,		/* lowaddr */
689 	    BUS_SPACE_MAXADDR,		/* highaddr */
690 	    NULL, NULL,			/* filter, filterarg */
691 	    VTE_TX_RING_SZ,		/* maxsize */
692 	    1,				/* nsegments */
693 	    VTE_TX_RING_SZ,		/* maxsegsize */
694 	    0,				/* flags */
695 	    NULL, NULL,			/* lockfunc, lockarg */
696 	    &sc->vte_cdata.vte_tx_ring_tag);
697 	if (error != 0) {
698 		device_printf(sc->vte_dev,
699 		    "could not create TX ring DMA tag.\n");
700 		goto fail;
701 	}
702 
703 	/* Create DMA tag for RX free descriptor ring. */
704 	error = bus_dma_tag_create(
705 	    sc->vte_cdata.vte_parent_tag, /* parent */
706 	    VTE_RX_RING_ALIGN, 0,	/* alignment, boundary */
707 	    BUS_SPACE_MAXADDR,		/* lowaddr */
708 	    BUS_SPACE_MAXADDR,		/* highaddr */
709 	    NULL, NULL,			/* filter, filterarg */
710 	    VTE_RX_RING_SZ,		/* maxsize */
711 	    1,				/* nsegments */
712 	    VTE_RX_RING_SZ,		/* maxsegsize */
713 	    0,				/* flags */
714 	    NULL, NULL,			/* lockfunc, lockarg */
715 	    &sc->vte_cdata.vte_rx_ring_tag);
716 	if (error != 0) {
717 		device_printf(sc->vte_dev,
718 		    "could not create RX ring DMA tag.\n");
719 		goto fail;
720 	}
721 
722 	/* Allocate DMA'able memory and load the DMA map for TX ring. */
723 	error = bus_dmamem_alloc(sc->vte_cdata.vte_tx_ring_tag,
724 	    (void **)&sc->vte_cdata.vte_tx_ring,
725 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
726 	    &sc->vte_cdata.vte_tx_ring_map);
727 	if (error != 0) {
728 		device_printf(sc->vte_dev,
729 		    "could not allocate DMA'able memory for TX ring.\n");
730 		goto fail;
731 	}
732 	ctx.vte_busaddr = 0;
733 	error = bus_dmamap_load(sc->vte_cdata.vte_tx_ring_tag,
734 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
735 	    VTE_TX_RING_SZ, vte_dmamap_cb, &ctx, 0);
736 	if (error != 0 || ctx.vte_busaddr == 0) {
737 		device_printf(sc->vte_dev,
738 		    "could not load DMA'able memory for TX ring.\n");
739 		goto fail;
740 	}
741 	sc->vte_cdata.vte_tx_ring_paddr = ctx.vte_busaddr;
742 
743 	/* Allocate DMA'able memory and load the DMA map for RX ring. */
744 	error = bus_dmamem_alloc(sc->vte_cdata.vte_rx_ring_tag,
745 	    (void **)&sc->vte_cdata.vte_rx_ring,
746 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
747 	    &sc->vte_cdata.vte_rx_ring_map);
748 	if (error != 0) {
749 		device_printf(sc->vte_dev,
750 		    "could not allocate DMA'able memory for RX ring.\n");
751 		goto fail;
752 	}
753 	ctx.vte_busaddr = 0;
754 	error = bus_dmamap_load(sc->vte_cdata.vte_rx_ring_tag,
755 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
756 	    VTE_RX_RING_SZ, vte_dmamap_cb, &ctx, 0);
757 	if (error != 0 || ctx.vte_busaddr == 0) {
758 		device_printf(sc->vte_dev,
759 		    "could not load DMA'able memory for RX ring.\n");
760 		goto fail;
761 	}
762 	sc->vte_cdata.vte_rx_ring_paddr = ctx.vte_busaddr;
763 
764 	/* Create TX buffer parent tag. */
765 	error = bus_dma_tag_create(
766 	    bus_get_dma_tag(sc->vte_dev), /* parent */
767 	    1, 0,			/* alignment, boundary */
768 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
769 	    BUS_SPACE_MAXADDR,		/* highaddr */
770 	    NULL, NULL,			/* filter, filterarg */
771 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
772 	    0,				/* nsegments */
773 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
774 	    0,				/* flags */
775 	    NULL, NULL,			/* lockfunc, lockarg */
776 	    &sc->vte_cdata.vte_buffer_tag);
777 	if (error != 0) {
778 		device_printf(sc->vte_dev,
779 		    "could not create parent buffer DMA tag.\n");
780 		goto fail;
781 	}
782 
783 	/* Create DMA tag for TX buffers. */
784 	error = bus_dma_tag_create(
785 	    sc->vte_cdata.vte_buffer_tag, /* parent */
786 	    1, 0,			/* alignment, boundary */
787 	    BUS_SPACE_MAXADDR,		/* lowaddr */
788 	    BUS_SPACE_MAXADDR,		/* highaddr */
789 	    NULL, NULL,			/* filter, filterarg */
790 	    MCLBYTES,			/* maxsize */
791 	    1,				/* nsegments */
792 	    MCLBYTES,			/* maxsegsize */
793 	    0,				/* flags */
794 	    NULL, NULL,			/* lockfunc, lockarg */
795 	    &sc->vte_cdata.vte_tx_tag);
796 	if (error != 0) {
797 		device_printf(sc->vte_dev, "could not create TX DMA tag.\n");
798 		goto fail;
799 	}
800 
801 	/* Create DMA tag for RX buffers. */
802 	error = bus_dma_tag_create(
803 	    sc->vte_cdata.vte_buffer_tag, /* parent */
804 	    VTE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
805 	    BUS_SPACE_MAXADDR,		/* lowaddr */
806 	    BUS_SPACE_MAXADDR,		/* highaddr */
807 	    NULL, NULL,			/* filter, filterarg */
808 	    MCLBYTES,			/* maxsize */
809 	    1,				/* nsegments */
810 	    MCLBYTES,			/* maxsegsize */
811 	    0,				/* flags */
812 	    NULL, NULL,			/* lockfunc, lockarg */
813 	    &sc->vte_cdata.vte_rx_tag);
814 	if (error != 0) {
815 		device_printf(sc->vte_dev, "could not create RX DMA tag.\n");
816 		goto fail;
817 	}
818 	/* Create DMA maps for TX buffers. */
819 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
820 		txd = &sc->vte_cdata.vte_txdesc[i];
821 		txd->tx_m = NULL;
822 		txd->tx_dmamap = NULL;
823 		error = bus_dmamap_create(sc->vte_cdata.vte_tx_tag, 0,
824 		    &txd->tx_dmamap);
825 		if (error != 0) {
826 			device_printf(sc->vte_dev,
827 			    "could not create TX dmamap.\n");
828 			goto fail;
829 		}
830 	}
831 	/* Create DMA maps for RX buffers. */
832 	if ((error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
833 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
834 		device_printf(sc->vte_dev,
835 		    "could not create spare RX dmamap.\n");
836 		goto fail;
837 	}
838 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
839 		rxd = &sc->vte_cdata.vte_rxdesc[i];
840 		rxd->rx_m = NULL;
841 		rxd->rx_dmamap = NULL;
842 		error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
843 		    &rxd->rx_dmamap);
844 		if (error != 0) {
845 			device_printf(sc->vte_dev,
846 			    "could not create RX dmamap.\n");
847 			goto fail;
848 		}
849 	}
850 
851 fail:
852 	return (error);
853 }
854 
855 static void
856 vte_dma_free(struct vte_softc *sc)
857 {
858 	struct vte_txdesc *txd;
859 	struct vte_rxdesc *rxd;
860 	int i;
861 
862 	/* TX buffers. */
863 	if (sc->vte_cdata.vte_tx_tag != NULL) {
864 		for (i = 0; i < VTE_TX_RING_CNT; i++) {
865 			txd = &sc->vte_cdata.vte_txdesc[i];
866 			if (txd->tx_dmamap != NULL) {
867 				bus_dmamap_destroy(sc->vte_cdata.vte_tx_tag,
868 				    txd->tx_dmamap);
869 				txd->tx_dmamap = NULL;
870 			}
871 		}
872 		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_tag);
873 		sc->vte_cdata.vte_tx_tag = NULL;
874 	}
875 	/* RX buffers */
876 	if (sc->vte_cdata.vte_rx_tag != NULL) {
877 		for (i = 0; i < VTE_RX_RING_CNT; i++) {
878 			rxd = &sc->vte_cdata.vte_rxdesc[i];
879 			if (rxd->rx_dmamap != NULL) {
880 				bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
881 				    rxd->rx_dmamap);
882 				rxd->rx_dmamap = NULL;
883 			}
884 		}
885 		if (sc->vte_cdata.vte_rx_sparemap != NULL) {
886 			bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
887 			    sc->vte_cdata.vte_rx_sparemap);
888 			sc->vte_cdata.vte_rx_sparemap = NULL;
889 		}
890 		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_tag);
891 		sc->vte_cdata.vte_rx_tag = NULL;
892 	}
893 	/* TX descriptor ring. */
894 	if (sc->vte_cdata.vte_tx_ring_tag != NULL) {
895 		if (sc->vte_cdata.vte_tx_ring_paddr != 0)
896 			bus_dmamap_unload(sc->vte_cdata.vte_tx_ring_tag,
897 			    sc->vte_cdata.vte_tx_ring_map);
898 		if (sc->vte_cdata.vte_tx_ring != NULL)
899 			bus_dmamem_free(sc->vte_cdata.vte_tx_ring_tag,
900 			    sc->vte_cdata.vte_tx_ring,
901 			    sc->vte_cdata.vte_tx_ring_map);
902 		sc->vte_cdata.vte_tx_ring = NULL;
903 		sc->vte_cdata.vte_tx_ring_paddr = 0;
904 		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_ring_tag);
905 		sc->vte_cdata.vte_tx_ring_tag = NULL;
906 	}
907 	/* RX ring. */
908 	if (sc->vte_cdata.vte_rx_ring_tag != NULL) {
909 		if (sc->vte_cdata.vte_rx_ring_paddr != 0)
910 			bus_dmamap_unload(sc->vte_cdata.vte_rx_ring_tag,
911 			    sc->vte_cdata.vte_rx_ring_map);
912 		if (sc->vte_cdata.vte_rx_ring != NULL)
913 			bus_dmamem_free(sc->vte_cdata.vte_rx_ring_tag,
914 			    sc->vte_cdata.vte_rx_ring,
915 			    sc->vte_cdata.vte_rx_ring_map);
916 		sc->vte_cdata.vte_rx_ring = NULL;
917 		sc->vte_cdata.vte_rx_ring_paddr = 0;
918 		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_ring_tag);
919 		sc->vte_cdata.vte_rx_ring_tag = NULL;
920 	}
921 	if (sc->vte_cdata.vte_buffer_tag != NULL) {
922 		bus_dma_tag_destroy(sc->vte_cdata.vte_buffer_tag);
923 		sc->vte_cdata.vte_buffer_tag = NULL;
924 	}
925 	if (sc->vte_cdata.vte_parent_tag != NULL) {
926 		bus_dma_tag_destroy(sc->vte_cdata.vte_parent_tag);
927 		sc->vte_cdata.vte_parent_tag = NULL;
928 	}
929 }
930 
931 static int
932 vte_shutdown(device_t dev)
933 {
934 
935 	return (vte_suspend(dev));
936 }
937 
938 static int
939 vte_suspend(device_t dev)
940 {
941 	struct vte_softc *sc;
942 	if_t ifp;
943 
944 	sc = device_get_softc(dev);
945 
946 	VTE_LOCK(sc);
947 	ifp = sc->vte_ifp;
948 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
949 		vte_stop(sc);
950 	VTE_UNLOCK(sc);
951 
952 	return (0);
953 }
954 
955 static int
956 vte_resume(device_t dev)
957 {
958 	struct vte_softc *sc;
959 	if_t ifp;
960 
961 	sc = device_get_softc(dev);
962 
963 	VTE_LOCK(sc);
964 	ifp = sc->vte_ifp;
965 	if ((if_getflags(ifp) & IFF_UP) != 0) {
966 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
967 		vte_init_locked(sc);
968 	}
969 	VTE_UNLOCK(sc);
970 
971 	return (0);
972 }
973 
974 static struct vte_txdesc *
975 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
976 {
977 	struct vte_txdesc *txd;
978 	struct mbuf *m, *n;
979 	bus_dma_segment_t txsegs[1];
980 	int copy, error, nsegs, padlen;
981 
982 	VTE_LOCK_ASSERT(sc);
983 
984 	M_ASSERTPKTHDR((*m_head));
985 
986 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
987 	m = *m_head;
988 	/*
989 	 * Controller doesn't auto-pad, so we have to make sure pad
990 	 * short frames out to the minimum frame length.
991 	 */
992 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
993 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
994 	else
995 		padlen = 0;
996 
997 	/*
998 	 * Controller does not support multi-fragmented TX buffers.
999 	 * Controller spends most of its TX processing time in
1000 	 * de-fragmenting TX buffers.  Either faster CPU or more
1001 	 * advanced controller DMA engine is required to speed up
1002 	 * TX path processing.
1003 	 * To mitigate the de-fragmenting issue, perform deep copy
1004 	 * from fragmented mbuf chains to a pre-allocated mbuf
1005 	 * cluster with extra cost of kernel memory.  For frames
1006 	 * that is composed of single TX buffer, the deep copy is
1007 	 * bypassed.
1008 	 */
1009 	if (tx_deep_copy != 0) {
1010 		copy = 0;
1011 		if (m->m_next != NULL)
1012 			copy++;
1013 		if (padlen > 0 && (M_WRITABLE(m) == 0 ||
1014 		    padlen > M_TRAILINGSPACE(m)))
1015 			copy++;
1016 		if (copy != 0) {
1017 			/* Avoid expensive m_defrag(9) and do deep copy. */
1018 			n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
1019 			m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
1020 			n->m_pkthdr.len = m->m_pkthdr.len;
1021 			n->m_len = m->m_pkthdr.len;
1022 			m = n;
1023 			txd->tx_flags |= VTE_TXMBUF;
1024 		}
1025 
1026 		if (padlen > 0) {
1027 			/* Zero out the bytes in the pad area. */
1028 			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1029 			m->m_pkthdr.len += padlen;
1030 			m->m_len = m->m_pkthdr.len;
1031 		}
1032 	} else {
1033 		if (M_WRITABLE(m) == 0) {
1034 			if (m->m_next != NULL || padlen > 0) {
1035 				/* Get a writable copy. */
1036 				m = m_dup(*m_head, M_NOWAIT);
1037 				/* Release original mbuf chains. */
1038 				m_freem(*m_head);
1039 				if (m == NULL) {
1040 					*m_head = NULL;
1041 					return (NULL);
1042 				}
1043 				*m_head = m;
1044 			}
1045 		}
1046 
1047 		if (m->m_next != NULL) {
1048 			m = m_defrag(*m_head, M_NOWAIT);
1049 			if (m == NULL) {
1050 				m_freem(*m_head);
1051 				*m_head = NULL;
1052 				return (NULL);
1053 			}
1054 			*m_head = m;
1055 		}
1056 
1057 		if (padlen > 0) {
1058 			if (M_TRAILINGSPACE(m) < padlen) {
1059 				m = m_defrag(*m_head, M_NOWAIT);
1060 				if (m == NULL) {
1061 					m_freem(*m_head);
1062 					*m_head = NULL;
1063 					return (NULL);
1064 				}
1065 				*m_head = m;
1066 			}
1067 			/* Zero out the bytes in the pad area. */
1068 			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1069 			m->m_pkthdr.len += padlen;
1070 			m->m_len = m->m_pkthdr.len;
1071 		}
1072 	}
1073 
1074 	error = bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_tx_tag,
1075 	    txd->tx_dmamap, m, txsegs, &nsegs, 0);
1076 	if (error != 0) {
1077 		txd->tx_flags &= ~VTE_TXMBUF;
1078 		return (NULL);
1079 	}
1080 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1081 	bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1082 	    BUS_DMASYNC_PREWRITE);
1083 
1084 	txd->tx_desc->dtlen = htole16(VTE_TX_LEN(txsegs[0].ds_len));
1085 	txd->tx_desc->dtbp = htole32(txsegs[0].ds_addr);
1086 	sc->vte_cdata.vte_tx_cnt++;
1087 	/* Update producer index. */
1088 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
1089 
1090 	/* Finally hand over ownership to controller. */
1091 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
1092 	txd->tx_m = m;
1093 
1094 	return (txd);
1095 }
1096 
1097 static void
1098 vte_start(if_t ifp)
1099 {
1100 	struct vte_softc *sc;
1101 
1102 	sc = if_getsoftc(ifp);
1103 	VTE_LOCK(sc);
1104 	vte_start_locked(sc);
1105 	VTE_UNLOCK(sc);
1106 }
1107 
1108 static void
1109 vte_start_locked(struct vte_softc *sc)
1110 {
1111 	if_t ifp;
1112 	struct vte_txdesc *txd;
1113 	struct mbuf *m_head;
1114 	int enq;
1115 
1116 	ifp = sc->vte_ifp;
1117 
1118 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1119 	    IFF_DRV_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
1120 		return;
1121 
1122 	for (enq = 0; !if_sendq_empty(ifp); ) {
1123 		/* Reserve one free TX descriptor. */
1124 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
1125 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1126 			break;
1127 		}
1128 		m_head = if_dequeue(ifp);
1129 		if (m_head == NULL)
1130 			break;
1131 		/*
1132 		 * Pack the data into the transmit ring. If we
1133 		 * don't have room, set the OACTIVE flag and wait
1134 		 * for the NIC to drain the ring.
1135 		 */
1136 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
1137 			if (m_head != NULL)
1138 				if_sendq_prepend(ifp, m_head);
1139 			break;
1140 		}
1141 
1142 		enq++;
1143 		/*
1144 		 * If there's a BPF listener, bounce a copy of this frame
1145 		 * to him.
1146 		 */
1147 		ETHER_BPF_MTAP(ifp, m_head);
1148 		/* Free consumed TX frame. */
1149 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
1150 			m_freem(m_head);
1151 	}
1152 
1153 	if (enq > 0) {
1154 		bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1155 		    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1156 		    BUS_DMASYNC_PREWRITE);
1157 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
1158 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
1159 	}
1160 }
1161 
1162 static void
1163 vte_watchdog(struct vte_softc *sc)
1164 {
1165 	if_t ifp;
1166 
1167 	VTE_LOCK_ASSERT(sc);
1168 
1169 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
1170 		return;
1171 
1172 	ifp = sc->vte_ifp;
1173 	if_printf(sc->vte_ifp, "watchdog timeout -- resetting\n");
1174 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1175 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1176 	vte_init_locked(sc);
1177 	if (!if_sendq_empty(ifp))
1178 		vte_start_locked(sc);
1179 }
1180 
1181 static int
1182 vte_ioctl(if_t ifp, u_long cmd, caddr_t data)
1183 {
1184 	struct vte_softc *sc;
1185 	struct ifreq *ifr;
1186 	struct mii_data *mii;
1187 	int error;
1188 
1189 	sc = if_getsoftc(ifp);
1190 	ifr = (struct ifreq *)data;
1191 	error = 0;
1192 	switch (cmd) {
1193 	case SIOCSIFFLAGS:
1194 		VTE_LOCK(sc);
1195 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1196 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
1197 			    ((if_getflags(ifp) ^ sc->vte_if_flags) &
1198 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1199 				vte_rxfilter(sc);
1200 			else
1201 				vte_init_locked(sc);
1202 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1203 			vte_stop(sc);
1204 		sc->vte_if_flags = if_getflags(ifp);
1205 		VTE_UNLOCK(sc);
1206 		break;
1207 	case SIOCADDMULTI:
1208 	case SIOCDELMULTI:
1209 		VTE_LOCK(sc);
1210 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1211 			vte_rxfilter(sc);
1212 		VTE_UNLOCK(sc);
1213 		break;
1214 	case SIOCSIFMEDIA:
1215 	case SIOCGIFMEDIA:
1216 		mii = device_get_softc(sc->vte_miibus);
1217 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1218 		break;
1219 	default:
1220 		error = ether_ioctl(ifp, cmd, data);
1221 		break;
1222 	}
1223 
1224 	return (error);
1225 }
1226 
1227 static void
1228 vte_mac_config(struct vte_softc *sc)
1229 {
1230 	struct mii_data *mii;
1231 	uint16_t mcr;
1232 
1233 	VTE_LOCK_ASSERT(sc);
1234 
1235 	mii = device_get_softc(sc->vte_miibus);
1236 	mcr = CSR_READ_2(sc, VTE_MCR0);
1237 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
1238 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1239 		mcr |= MCR0_FULL_DUPLEX;
1240 #ifdef notyet
1241 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1242 			mcr |= MCR0_FC_ENB;
1243 		/*
1244 		 * The data sheet is not clear whether the controller
1245 		 * honors received pause frames or not.  The is no
1246 		 * separate control bit for RX pause frame so just
1247 		 * enable MCR0_FC_ENB bit.
1248 		 */
1249 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1250 			mcr |= MCR0_FC_ENB;
1251 #endif
1252 	}
1253 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
1254 }
1255 
1256 static void
1257 vte_stats_clear(struct vte_softc *sc)
1258 {
1259 
1260 	/* Reading counter registers clears its contents. */
1261 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
1262 	CSR_READ_2(sc, VTE_CNT_MECNT0);
1263 	CSR_READ_2(sc, VTE_CNT_MECNT1);
1264 	CSR_READ_2(sc, VTE_CNT_MECNT2);
1265 	CSR_READ_2(sc, VTE_CNT_MECNT3);
1266 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
1267 	CSR_READ_2(sc, VTE_CNT_MECNT4);
1268 	CSR_READ_2(sc, VTE_CNT_PAUSE);
1269 }
1270 
1271 static void
1272 vte_stats_update(struct vte_softc *sc)
1273 {
1274 	struct vte_hw_stats *stat;
1275 	uint16_t value;
1276 
1277 	VTE_LOCK_ASSERT(sc);
1278 
1279 	stat = &sc->vte_stats;
1280 
1281 	CSR_READ_2(sc, VTE_MECISR);
1282 	/* RX stats. */
1283 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
1284 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
1285 	stat->rx_bcast_frames += (value >> 8);
1286 	stat->rx_mcast_frames += (value & 0xFF);
1287 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
1288 	stat->rx_runts += (value >> 8);
1289 	stat->rx_crcerrs += (value & 0xFF);
1290 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
1291 	stat->rx_long_frames += (value & 0xFF);
1292 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
1293 	stat->rx_fifo_full += (value >> 8);
1294 	stat->rx_desc_unavail += (value & 0xFF);
1295 
1296 	/* TX stats. */
1297 	stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
1298 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
1299 	stat->tx_underruns += (value >> 8);
1300 	stat->tx_late_colls += (value & 0xFF);
1301 
1302 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
1303 	stat->tx_pause_frames += (value >> 8);
1304 	stat->rx_pause_frames += (value & 0xFF);
1305 }
1306 
1307 static uint64_t
1308 vte_get_counter(if_t ifp, ift_counter cnt)
1309 {
1310 	struct vte_softc *sc;
1311 	struct vte_hw_stats *stat;
1312 
1313 	sc = if_getsoftc(ifp);
1314 	stat = &sc->vte_stats;
1315 
1316 	switch (cnt) {
1317 	case IFCOUNTER_OPACKETS:
1318 		return (stat->tx_frames);
1319 	case IFCOUNTER_COLLISIONS:
1320 		return (stat->tx_late_colls);
1321 	case IFCOUNTER_OERRORS:
1322 		return (stat->tx_late_colls + stat->tx_underruns);
1323 	case IFCOUNTER_IPACKETS:
1324 		return (stat->rx_frames);
1325 	case IFCOUNTER_IERRORS:
1326 		return (stat->rx_crcerrs + stat->rx_runts +
1327 		    stat->rx_long_frames + stat->rx_fifo_full);
1328 	default:
1329 		return (if_get_counter_default(ifp, cnt));
1330 	}
1331 }
1332 
1333 static void
1334 vte_intr(void *arg)
1335 {
1336 	struct vte_softc *sc;
1337 	if_t ifp;
1338 	uint16_t status;
1339 	int n;
1340 
1341 	sc = (struct vte_softc *)arg;
1342 	VTE_LOCK(sc);
1343 
1344 	ifp = sc->vte_ifp;
1345 	/* Reading VTE_MISR acknowledges interrupts. */
1346 	status = CSR_READ_2(sc, VTE_MISR);
1347 	if ((status & VTE_INTRS) == 0) {
1348 		/* Not ours. */
1349 		VTE_UNLOCK(sc);
1350 		return;
1351 	}
1352 
1353 	/* Disable interrupts. */
1354 	CSR_WRITE_2(sc, VTE_MIER, 0);
1355 	for (n = 8; (status & VTE_INTRS) != 0;) {
1356 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1357 			break;
1358 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
1359 		    MISR_RX_FIFO_FULL)) != 0)
1360 			vte_rxeof(sc);
1361 		if ((status & MISR_TX_DONE) != 0)
1362 			vte_txeof(sc);
1363 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
1364 			vte_stats_update(sc);
1365 		if (!if_sendq_empty(ifp))
1366 			vte_start_locked(sc);
1367 		if (--n > 0)
1368 			status = CSR_READ_2(sc, VTE_MISR);
1369 		else
1370 			break;
1371 	}
1372 
1373 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1374 		/* Re-enable interrupts. */
1375 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1376 	}
1377 	VTE_UNLOCK(sc);
1378 }
1379 
1380 static void
1381 vte_txeof(struct vte_softc *sc)
1382 {
1383 	if_t ifp;
1384 	struct vte_txdesc *txd;
1385 	uint16_t status;
1386 	int cons, prog;
1387 
1388 	VTE_LOCK_ASSERT(sc);
1389 
1390 	ifp = sc->vte_ifp;
1391 
1392 	if (sc->vte_cdata.vte_tx_cnt == 0)
1393 		return;
1394 	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1395 	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_POSTREAD |
1396 	    BUS_DMASYNC_POSTWRITE);
1397 	cons = sc->vte_cdata.vte_tx_cons;
1398 	/*
1399 	 * Go through our TX list and free mbufs for those
1400 	 * frames which have been transmitted.
1401 	 */
1402 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1403 		txd = &sc->vte_cdata.vte_txdesc[cons];
1404 		status = le16toh(txd->tx_desc->dtst);
1405 		if ((status & VTE_DTST_TX_OWN) != 0)
1406 			break;
1407 		sc->vte_cdata.vte_tx_cnt--;
1408 		/* Reclaim transmitted mbufs. */
1409 		bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1410 		    BUS_DMASYNC_POSTWRITE);
1411 		bus_dmamap_unload(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap);
1412 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
1413 			m_freem(txd->tx_m);
1414 		txd->tx_flags &= ~VTE_TXMBUF;
1415 		txd->tx_m = NULL;
1416 		prog++;
1417 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1418 	}
1419 
1420 	if (prog > 0) {
1421 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1422 		sc->vte_cdata.vte_tx_cons = cons;
1423 		/*
1424 		 * Unarm watchdog timer only when there is no pending
1425 		 * frames in TX queue.
1426 		 */
1427 		if (sc->vte_cdata.vte_tx_cnt == 0)
1428 			sc->vte_watchdog_timer = 0;
1429 	}
1430 }
1431 
1432 static int
1433 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1434 {
1435 	struct mbuf *m;
1436 	bus_dma_segment_t segs[1];
1437 	bus_dmamap_t map;
1438 	int nsegs;
1439 
1440 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1441 	if (m == NULL)
1442 		return (ENOBUFS);
1443 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1444 	m_adj(m, sizeof(uint32_t));
1445 
1446 	if (bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_rx_tag,
1447 	    sc->vte_cdata.vte_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1448 		m_freem(m);
1449 		return (ENOBUFS);
1450 	}
1451 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1452 
1453 	if (rxd->rx_m != NULL) {
1454 		bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1455 		    BUS_DMASYNC_POSTREAD);
1456 		bus_dmamap_unload(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap);
1457 	}
1458 	map = rxd->rx_dmamap;
1459 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1460 	sc->vte_cdata.vte_rx_sparemap = map;
1461 	bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1462 	    BUS_DMASYNC_PREREAD);
1463 	rxd->rx_m = m;
1464 	rxd->rx_desc->drbp = htole32(segs[0].ds_addr);
1465 	rxd->rx_desc->drlen = htole16(VTE_RX_LEN(segs[0].ds_len));
1466 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1467 
1468 	return (0);
1469 }
1470 
1471 /*
1472  * It's not supposed to see this controller on strict-alignment
1473  * architectures but make it work for completeness.
1474  */
1475 #ifndef __NO_STRICT_ALIGNMENT
1476 static struct mbuf *
1477 vte_fixup_rx(if_t ifp, struct mbuf *m)
1478 {
1479         uint16_t *src, *dst;
1480         int i;
1481 
1482 	src = mtod(m, uint16_t *);
1483 	dst = src - 1;
1484 
1485 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1486 		*dst++ = *src++;
1487 	m->m_data -= ETHER_ALIGN;
1488 	return (m);
1489 }
1490 #endif
1491 
1492 static void
1493 vte_rxeof(struct vte_softc *sc)
1494 {
1495 	if_t ifp;
1496 	struct vte_rxdesc *rxd;
1497 	struct mbuf *m;
1498 	uint16_t status, total_len;
1499 	int cons, prog;
1500 
1501 	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1502 	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_POSTREAD |
1503 	    BUS_DMASYNC_POSTWRITE);
1504 	cons = sc->vte_cdata.vte_rx_cons;
1505 	ifp = sc->vte_ifp;
1506 	for (prog = 0; (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0; prog++,
1507 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1508 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
1509 		status = le16toh(rxd->rx_desc->drst);
1510 		if ((status & VTE_DRST_RX_OWN) != 0)
1511 			break;
1512 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1513 		m = rxd->rx_m;
1514 		if ((status & VTE_DRST_RX_OK) == 0) {
1515 			/* Discard errored frame. */
1516 			rxd->rx_desc->drlen =
1517 			    htole16(MCLBYTES - sizeof(uint32_t));
1518 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1519 			continue;
1520 		}
1521 		if (vte_newbuf(sc, rxd) != 0) {
1522 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1523 			rxd->rx_desc->drlen =
1524 			    htole16(MCLBYTES - sizeof(uint32_t));
1525 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1526 			continue;
1527 		}
1528 
1529 		/*
1530 		 * It seems there is no way to strip FCS bytes.
1531 		 */
1532 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1533 		m->m_pkthdr.rcvif = ifp;
1534 #ifndef __NO_STRICT_ALIGNMENT
1535 		vte_fixup_rx(ifp, m);
1536 #endif
1537 		VTE_UNLOCK(sc);
1538 		if_input(ifp, m);
1539 		VTE_LOCK(sc);
1540 	}
1541 
1542 	if (prog > 0) {
1543 		/* Update the consumer index. */
1544 		sc->vte_cdata.vte_rx_cons = cons;
1545 		/*
1546 		 * Sync updated RX descriptors such that controller see
1547 		 * modified RX buffer addresses.
1548 		 */
1549 		bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1550 		    sc->vte_cdata.vte_rx_ring_map,
1551 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1552 #ifdef notyet
1553 		/*
1554 		 * Update residue counter.  Controller does not
1555 		 * keep track of number of available RX descriptors
1556 		 * such that driver should have to update VTE_MRDCR
1557 		 * to make controller know how many free RX
1558 		 * descriptors were added to controller.  This is
1559 		 * a similar mechanism used in VIA velocity
1560 		 * controllers and it indicates controller just
1561 		 * polls OWN bit of current RX descriptor pointer.
1562 		 * A couple of severe issues were seen on sample
1563 		 * board where the controller continuously emits TX
1564 		 * pause frames once RX pause threshold crossed.
1565 		 * Once triggered it never recovered form that
1566 		 * state, I couldn't find a way to make it back to
1567 		 * work at least.  This issue effectively
1568 		 * disconnected the system from network.  Also, the
1569 		 * controller used 00:00:00:00:00:00 as source
1570 		 * station address of TX pause frame. Probably this
1571 		 * is one of reason why vendor recommends not to
1572 		 * enable flow control on R6040 controller.
1573 		 */
1574 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
1575 		    (((VTE_RX_RING_CNT * 2) / 10) <<
1576 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1577 #endif
1578 	}
1579 }
1580 
1581 static void
1582 vte_tick(void *arg)
1583 {
1584 	struct vte_softc *sc;
1585 	struct mii_data *mii;
1586 
1587 	sc = (struct vte_softc *)arg;
1588 
1589 	VTE_LOCK_ASSERT(sc);
1590 
1591 	mii = device_get_softc(sc->vte_miibus);
1592 	mii_tick(mii);
1593 	vte_stats_update(sc);
1594 	vte_txeof(sc);
1595 	vte_watchdog(sc);
1596 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1597 }
1598 
1599 static void
1600 vte_reset(struct vte_softc *sc)
1601 {
1602 	uint16_t mcr, mdcsc;
1603 	int i;
1604 
1605 	mdcsc = CSR_READ_2(sc, VTE_MDCSC);
1606 	mcr = CSR_READ_2(sc, VTE_MCR1);
1607 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1608 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1609 		DELAY(10);
1610 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1611 			break;
1612 	}
1613 	if (i == 0)
1614 		device_printf(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1615 	/*
1616 	 * Follow the guide of vendor recommended way to reset MAC.
1617 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1618 	 * not reliable so manually reset internal state machine.
1619 	 */
1620 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1621 	CSR_WRITE_2(sc, VTE_MACSM, 0);
1622 	DELAY(5000);
1623 
1624 	/*
1625 	 * On some SoCs (like Vortex86DX3) MDC speed control register value
1626 	 * needs to be restored to original value instead of default one,
1627 	 * otherwise some PHY registers may fail to be read.
1628 	 */
1629 	if (mdcsc != MDCSC_DEFAULT)
1630 		CSR_WRITE_2(sc, VTE_MDCSC, mdcsc);
1631 }
1632 
1633 static void
1634 vte_init(void *xsc)
1635 {
1636 	struct vte_softc *sc;
1637 
1638 	sc = (struct vte_softc *)xsc;
1639 	VTE_LOCK(sc);
1640 	vte_init_locked(sc);
1641 	VTE_UNLOCK(sc);
1642 }
1643 
1644 static void
1645 vte_init_locked(struct vte_softc *sc)
1646 {
1647 	if_t ifp;
1648 	bus_addr_t paddr;
1649 	uint8_t *eaddr;
1650 
1651 	VTE_LOCK_ASSERT(sc);
1652 
1653 	ifp = sc->vte_ifp;
1654 
1655 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1656 		return;
1657 	/*
1658 	 * Cancel any pending I/O.
1659 	 */
1660 	vte_stop(sc);
1661 	/*
1662 	 * Reset the chip to a known state.
1663 	 */
1664 	vte_reset(sc);
1665 
1666 	/* Initialize RX descriptors. */
1667 	if (vte_init_rx_ring(sc) != 0) {
1668 		device_printf(sc->vte_dev, "no memory for RX buffers.\n");
1669 		vte_stop(sc);
1670 		return;
1671 	}
1672 	if (vte_init_tx_ring(sc) != 0) {
1673 		device_printf(sc->vte_dev, "no memory for TX buffers.\n");
1674 		vte_stop(sc);
1675 		return;
1676 	}
1677 
1678 	/*
1679 	 * Reprogram the station address.  Controller supports up
1680 	 * to 4 different station addresses so driver programs the
1681 	 * first station address as its own ethernet address and
1682 	 * configure the remaining three addresses as perfect
1683 	 * multicast addresses.
1684 	 */
1685 	eaddr = if_getlladdr(sc->vte_ifp);
1686 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1687 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1688 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1689 
1690 	/* Set TX descriptor base addresses. */
1691 	paddr = sc->vte_cdata.vte_tx_ring_paddr;
1692 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1693 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1694 	/* Set RX descriptor base addresses. */
1695 	paddr = sc->vte_cdata.vte_rx_ring_paddr;
1696 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1697 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1698 	/*
1699 	 * Initialize RX descriptor residue counter and set RX
1700 	 * pause threshold to 20% of available RX descriptors.
1701 	 * See comments on vte_rxeof() for details on flow control
1702 	 * issues.
1703 	 */
1704 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1705 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1706 
1707 	/*
1708 	 * Always use maximum frame size that controller can
1709 	 * support.  Otherwise received frames that has longer
1710 	 * frame length than vte(4) MTU would be silently dropped
1711 	 * in controller.  This would break path-MTU discovery as
1712 	 * sender wouldn't get any responses from receiver. The
1713 	 * RX buffer size should be multiple of 4.
1714 	 * Note, jumbo frames are silently ignored by controller
1715 	 * and even MAC counters do not detect them.
1716 	 */
1717 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1718 
1719 	/* Configure FIFO. */
1720 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1721 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1722 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1723 
1724 	/*
1725 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
1726 	 * control configuration is done after detecting a valid
1727 	 * link.  Note, we don't generate early interrupt here
1728 	 * as well since FreeBSD does not have interrupt latency
1729 	 * problems like Windows.
1730 	 */
1731 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1732 	/*
1733 	 * We manually keep track of PHY status changes to
1734 	 * configure resolved duplex and flow control since only
1735 	 * duplex configuration can be automatically reflected to
1736 	 * MCR0.
1737 	 */
1738 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1739 	    MCR1_EXCESS_COL_RETRY_16);
1740 
1741 	/* Initialize RX filter. */
1742 	vte_rxfilter(sc);
1743 
1744 	/* Disable TX/RX interrupt moderation control. */
1745 	CSR_WRITE_2(sc, VTE_MRICR, 0);
1746 	CSR_WRITE_2(sc, VTE_MTICR, 0);
1747 
1748 	/* Enable MAC event counter interrupts. */
1749 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1750 	/* Clear MAC statistics. */
1751 	vte_stats_clear(sc);
1752 
1753 	/* Acknowledge all pending interrupts and clear it. */
1754 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1755 	CSR_WRITE_2(sc, VTE_MISR, 0);
1756 
1757 	sc->vte_flags &= ~VTE_FLAG_LINK;
1758 	/* Switch to the current media. */
1759 	vte_mediachange_locked(ifp);
1760 
1761 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1762 
1763 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1764 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1765 }
1766 
1767 static void
1768 vte_stop(struct vte_softc *sc)
1769 {
1770 	if_t ifp;
1771 	struct vte_txdesc *txd;
1772 	struct vte_rxdesc *rxd;
1773 	int i;
1774 
1775 	VTE_LOCK_ASSERT(sc);
1776 	/*
1777 	 * Mark the interface down and cancel the watchdog timer.
1778 	 */
1779 	ifp = sc->vte_ifp;
1780 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
1781 	sc->vte_flags &= ~VTE_FLAG_LINK;
1782 	callout_stop(&sc->vte_tick_ch);
1783 	sc->vte_watchdog_timer = 0;
1784 	vte_stats_update(sc);
1785 	/* Disable interrupts. */
1786 	CSR_WRITE_2(sc, VTE_MIER, 0);
1787 	CSR_WRITE_2(sc, VTE_MECIER, 0);
1788 	/* Stop RX/TX MACs. */
1789 	vte_stop_mac(sc);
1790 	/* Clear interrupts. */
1791 	CSR_READ_2(sc, VTE_MISR);
1792 	/*
1793 	 * Free TX/RX mbufs still in the queues.
1794 	 */
1795 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1796 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1797 		if (rxd->rx_m != NULL) {
1798 			bus_dmamap_sync(sc->vte_cdata.vte_rx_tag,
1799 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1800 			bus_dmamap_unload(sc->vte_cdata.vte_rx_tag,
1801 			    rxd->rx_dmamap);
1802 			m_freem(rxd->rx_m);
1803 			rxd->rx_m = NULL;
1804 		}
1805 	}
1806 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1807 		txd = &sc->vte_cdata.vte_txdesc[i];
1808 		if (txd->tx_m != NULL) {
1809 			bus_dmamap_sync(sc->vte_cdata.vte_tx_tag,
1810 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1811 			bus_dmamap_unload(sc->vte_cdata.vte_tx_tag,
1812 			    txd->tx_dmamap);
1813 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
1814 				m_freem(txd->tx_m);
1815 			txd->tx_m = NULL;
1816 			txd->tx_flags &= ~VTE_TXMBUF;
1817 		}
1818 	}
1819 	/* Free TX mbuf pools used for deep copy. */
1820 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1821 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1822 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
1823 			sc->vte_cdata.vte_txmbufs[i] = NULL;
1824 		}
1825 	}
1826 }
1827 
1828 static void
1829 vte_start_mac(struct vte_softc *sc)
1830 {
1831 	uint16_t mcr;
1832 	int i;
1833 
1834 	VTE_LOCK_ASSERT(sc);
1835 
1836 	/* Enable RX/TX MACs. */
1837 	mcr = CSR_READ_2(sc, VTE_MCR0);
1838 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1839 	    (MCR0_RX_ENB | MCR0_TX_ENB)) {
1840 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1841 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1842 		for (i = VTE_TIMEOUT; i > 0; i--) {
1843 			mcr = CSR_READ_2(sc, VTE_MCR0);
1844 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1845 			    (MCR0_RX_ENB | MCR0_TX_ENB))
1846 				break;
1847 			DELAY(10);
1848 		}
1849 		if (i == 0)
1850 			device_printf(sc->vte_dev,
1851 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1852 	}
1853 }
1854 
1855 static void
1856 vte_stop_mac(struct vte_softc *sc)
1857 {
1858 	uint16_t mcr;
1859 	int i;
1860 
1861 	VTE_LOCK_ASSERT(sc);
1862 
1863 	/* Disable RX/TX MACs. */
1864 	mcr = CSR_READ_2(sc, VTE_MCR0);
1865 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1866 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1867 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1868 		for (i = VTE_TIMEOUT; i > 0; i--) {
1869 			mcr = CSR_READ_2(sc, VTE_MCR0);
1870 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1871 				break;
1872 			DELAY(10);
1873 		}
1874 		if (i == 0)
1875 			device_printf(sc->vte_dev,
1876 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1877 	}
1878 }
1879 
1880 static int
1881 vte_init_tx_ring(struct vte_softc *sc)
1882 {
1883 	struct vte_tx_desc *desc;
1884 	struct vte_txdesc *txd;
1885 	bus_addr_t addr;
1886 	int i;
1887 
1888 	VTE_LOCK_ASSERT(sc);
1889 
1890 	sc->vte_cdata.vte_tx_prod = 0;
1891 	sc->vte_cdata.vte_tx_cons = 0;
1892 	sc->vte_cdata.vte_tx_cnt = 0;
1893 
1894 	/* Pre-allocate TX mbufs for deep copy. */
1895 	if (tx_deep_copy != 0) {
1896 		for (i = 0; i < VTE_TX_RING_CNT; i++) {
1897 			sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_NOWAIT,
1898 			    MT_DATA, M_PKTHDR);
1899 			if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1900 				return (ENOBUFS);
1901 			sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1902 			sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1903 		}
1904 	}
1905 	desc = sc->vte_cdata.vte_tx_ring;
1906 	bzero(desc, VTE_TX_RING_SZ);
1907 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1908 		txd = &sc->vte_cdata.vte_txdesc[i];
1909 		txd->tx_m = NULL;
1910 		if (i != VTE_TX_RING_CNT - 1)
1911 			addr = sc->vte_cdata.vte_tx_ring_paddr +
1912 			    sizeof(struct vte_tx_desc) * (i + 1);
1913 		else
1914 			addr = sc->vte_cdata.vte_tx_ring_paddr +
1915 			    sizeof(struct vte_tx_desc) * 0;
1916 		desc = &sc->vte_cdata.vte_tx_ring[i];
1917 		desc->dtnp = htole32(addr);
1918 		txd->tx_desc = desc;
1919 	}
1920 
1921 	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1922 	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1923 	    BUS_DMASYNC_PREWRITE);
1924 	return (0);
1925 }
1926 
1927 static int
1928 vte_init_rx_ring(struct vte_softc *sc)
1929 {
1930 	struct vte_rx_desc *desc;
1931 	struct vte_rxdesc *rxd;
1932 	bus_addr_t addr;
1933 	int i;
1934 
1935 	VTE_LOCK_ASSERT(sc);
1936 
1937 	sc->vte_cdata.vte_rx_cons = 0;
1938 	desc = sc->vte_cdata.vte_rx_ring;
1939 	bzero(desc, VTE_RX_RING_SZ);
1940 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1941 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1942 		rxd->rx_m = NULL;
1943 		if (i != VTE_RX_RING_CNT - 1)
1944 			addr = sc->vte_cdata.vte_rx_ring_paddr +
1945 			    sizeof(struct vte_rx_desc) * (i + 1);
1946 		else
1947 			addr = sc->vte_cdata.vte_rx_ring_paddr +
1948 			    sizeof(struct vte_rx_desc) * 0;
1949 		desc = &sc->vte_cdata.vte_rx_ring[i];
1950 		desc->drnp = htole32(addr);
1951 		rxd->rx_desc = desc;
1952 		if (vte_newbuf(sc, rxd) != 0)
1953 			return (ENOBUFS);
1954 	}
1955 
1956 	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1957 	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_PREREAD |
1958 	    BUS_DMASYNC_PREWRITE);
1959 
1960 	return (0);
1961 }
1962 
1963 struct vte_maddr_ctx {
1964 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1965 	uint16_t mchash[4];
1966 	u_int nperf;
1967 };
1968 
1969 static u_int
1970 vte_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1971 {
1972 	struct vte_maddr_ctx *ctx = arg;
1973 	uint8_t *eaddr;
1974 	uint32_t crc;
1975 
1976 	/*
1977 	 * Program the first 3 multicast groups into the perfect filter.
1978 	 * For all others, use the hash table.
1979 	 */
1980 	if (ctx->nperf < VTE_RXFILT_PERFECT_CNT) {
1981 		eaddr = LLADDR(sdl);
1982 		ctx->rxfilt_perf[ctx->nperf][0] = eaddr[1] << 8 | eaddr[0];
1983 		ctx->rxfilt_perf[ctx->nperf][1] = eaddr[3] << 8 | eaddr[2];
1984 		ctx->rxfilt_perf[ctx->nperf][2] = eaddr[5] << 8 | eaddr[4];
1985 		ctx->nperf++;
1986 
1987 		return (1);
1988 	}
1989 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
1990 	ctx->mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1991 
1992 	return (1);
1993 }
1994 
1995 static void
1996 vte_rxfilter(struct vte_softc *sc)
1997 {
1998 	if_t ifp;
1999 	struct vte_maddr_ctx ctx;
2000 	uint16_t mcr;
2001 	int i;
2002 
2003 	VTE_LOCK_ASSERT(sc);
2004 
2005 	ifp = sc->vte_ifp;
2006 
2007 	bzero(ctx.mchash, sizeof(ctx.mchash));
2008 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
2009 		ctx.rxfilt_perf[i][0] = 0xFFFF;
2010 		ctx.rxfilt_perf[i][1] = 0xFFFF;
2011 		ctx.rxfilt_perf[i][2] = 0xFFFF;
2012 	}
2013 	ctx.nperf = 0;
2014 
2015 	mcr = CSR_READ_2(sc, VTE_MCR0);
2016 	mcr &= ~(MCR0_PROMISC | MCR0_MULTICAST);
2017 	mcr |= MCR0_BROADCAST_DIS;
2018 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
2019 		mcr &= ~MCR0_BROADCAST_DIS;
2020 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2021 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
2022 			mcr |= MCR0_PROMISC;
2023 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
2024 			mcr |= MCR0_MULTICAST;
2025 		ctx.mchash[0] = 0xFFFF;
2026 		ctx.mchash[1] = 0xFFFF;
2027 		ctx.mchash[2] = 0xFFFF;
2028 		ctx.mchash[3] = 0xFFFF;
2029 		goto chipit;
2030 	}
2031 
2032 	if_foreach_llmaddr(ifp, vte_hash_maddr, &ctx);
2033 	if (ctx.mchash[0] != 0 || ctx.mchash[1] != 0 ||
2034 	    ctx.mchash[2] != 0 || ctx.mchash[3] != 0)
2035 		mcr |= MCR0_MULTICAST;
2036 
2037 chipit:
2038 	/* Program multicast hash table. */
2039 	CSR_WRITE_2(sc, VTE_MAR0, ctx.mchash[0]);
2040 	CSR_WRITE_2(sc, VTE_MAR1, ctx.mchash[1]);
2041 	CSR_WRITE_2(sc, VTE_MAR2, ctx.mchash[2]);
2042 	CSR_WRITE_2(sc, VTE_MAR3, ctx.mchash[3]);
2043 	/* Program perfect filter table. */
2044 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
2045 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
2046 		    ctx.rxfilt_perf[i][0]);
2047 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
2048 		    ctx.rxfilt_perf[i][1]);
2049 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
2050 		    ctx.rxfilt_perf[i][2]);
2051 	}
2052 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
2053 	CSR_READ_2(sc, VTE_MCR0);
2054 }
2055 
2056 static int
2057 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2058 {
2059 	int error, value;
2060 
2061 	if (arg1 == NULL)
2062 		return (EINVAL);
2063 	value = *(int *)arg1;
2064 	error = sysctl_handle_int(oidp, &value, 0, req);
2065 	if (error || req->newptr == NULL)
2066 		return (error);
2067 	if (value < low || value > high)
2068 		return (EINVAL);
2069 	*(int *)arg1 = value;
2070 
2071 	return (0);
2072 }
2073 
2074 static int
2075 sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS)
2076 {
2077 
2078 	return (sysctl_int_range(oidp, arg1, arg2, req,
2079 	    VTE_IM_BUNDLE_MIN, VTE_IM_BUNDLE_MAX));
2080 }
2081