xref: /freebsd/sys/dev/wpi/if_wpi.c (revision aa0a1e58)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77 
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 #include <net80211/ieee80211_ratectl.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103 
104 #include <dev/wpi/if_wpireg.h>
105 #include <dev/wpi/if_wpivar.h>
106 
107 #define WPI_DEBUG
108 
109 #ifdef WPI_DEBUG
110 #define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
111 #define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
112 #define	WPI_DEBUG_SET	(wpi_debug != 0)
113 
114 enum {
115 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
116 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
117 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
118 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
119 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
120 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
121 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
122 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
123 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
124 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
125 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
126 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
127 	WPI_DEBUG_ANY		= 0xffffffff
128 };
129 
130 static int wpi_debug = 0;
131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132 TUNABLE_INT("debug.wpi", &wpi_debug);
133 
134 #else
135 #define DPRINTF(x)
136 #define DPRINTFN(n, x)
137 #define WPI_DEBUG_SET	0
138 #endif
139 
140 struct wpi_ident {
141 	uint16_t	vendor;
142 	uint16_t	device;
143 	uint16_t	subdevice;
144 	const char	*name;
145 };
146 
147 static const struct wpi_ident wpi_ident_table[] = {
148 	/* The below entries support ABG regardless of the subid */
149 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
151 	/* The below entries only support BG */
152 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
153 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
154 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
155 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0, 0, 0, NULL }
157 };
158 
159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160 		    const char name[IFNAMSIZ], int unit, int opmode,
161 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
162 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
163 static void	wpi_vap_delete(struct ieee80211vap *);
164 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165 		    void **, bus_size_t, bus_size_t, int);
166 static void	wpi_dma_contig_free(struct wpi_dma_info *);
167 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168 static int	wpi_alloc_shared(struct wpi_softc *);
169 static void	wpi_free_shared(struct wpi_softc *);
170 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174 		    int, int);
175 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
178 static void	wpi_mem_lock(struct wpi_softc *);
179 static void	wpi_mem_unlock(struct wpi_softc *);
180 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
181 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
182 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
183 		    const uint32_t *, int);
184 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
185 static int	wpi_alloc_fwmem(struct wpi_softc *);
186 static void	wpi_free_fwmem(struct wpi_softc *);
187 static int	wpi_load_firmware(struct wpi_softc *);
188 static void	wpi_unload_firmware(struct wpi_softc *);
189 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
190 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
191 		    struct wpi_rx_data *);
192 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
193 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
194 static void	wpi_notif_intr(struct wpi_softc *);
195 static void	wpi_intr(void *);
196 static uint8_t	wpi_plcp_signal(int);
197 static void	wpi_watchdog(void *);
198 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
199 		    struct ieee80211_node *, int);
200 static void	wpi_start(struct ifnet *);
201 static void	wpi_start_locked(struct ifnet *);
202 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
203 		    const struct ieee80211_bpf_params *);
204 static void	wpi_scan_start(struct ieee80211com *);
205 static void	wpi_scan_end(struct ieee80211com *);
206 static void	wpi_set_channel(struct ieee80211com *);
207 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
208 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
209 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
210 static void	wpi_read_eeprom(struct wpi_softc *,
211 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
212 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
213 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
214 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
215 static int	wpi_wme_update(struct ieee80211com *);
216 static int	wpi_mrr_setup(struct wpi_softc *);
217 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
218 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
219 #if 0
220 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
221 #endif
222 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
223 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
224 static int	wpi_scan(struct wpi_softc *);
225 static int	wpi_config(struct wpi_softc *);
226 static void	wpi_stop_master(struct wpi_softc *);
227 static int	wpi_power_up(struct wpi_softc *);
228 static int	wpi_reset(struct wpi_softc *);
229 static void	wpi_hwreset(void *, int);
230 static void	wpi_rfreset(void *, int);
231 static void	wpi_hw_config(struct wpi_softc *);
232 static void	wpi_init(void *);
233 static void	wpi_init_locked(struct wpi_softc *, int);
234 static void	wpi_stop(struct wpi_softc *);
235 static void	wpi_stop_locked(struct wpi_softc *);
236 
237 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
238 		    int);
239 static void	wpi_calib_timeout(void *);
240 static void	wpi_power_calibration(struct wpi_softc *, int);
241 static int	wpi_get_power_index(struct wpi_softc *,
242 		    struct wpi_power_group *, struct ieee80211_channel *, int);
243 #ifdef WPI_DEBUG
244 static const char *wpi_cmd_str(int);
245 #endif
246 static int wpi_probe(device_t);
247 static int wpi_attach(device_t);
248 static int wpi_detach(device_t);
249 static int wpi_shutdown(device_t);
250 static int wpi_suspend(device_t);
251 static int wpi_resume(device_t);
252 
253 
254 static device_method_t wpi_methods[] = {
255 	/* Device interface */
256 	DEVMETHOD(device_probe,		wpi_probe),
257 	DEVMETHOD(device_attach,	wpi_attach),
258 	DEVMETHOD(device_detach,	wpi_detach),
259 	DEVMETHOD(device_shutdown,	wpi_shutdown),
260 	DEVMETHOD(device_suspend,	wpi_suspend),
261 	DEVMETHOD(device_resume,	wpi_resume),
262 
263 	{ 0, 0 }
264 };
265 
266 static driver_t wpi_driver = {
267 	"wpi",
268 	wpi_methods,
269 	sizeof (struct wpi_softc)
270 };
271 
272 static devclass_t wpi_devclass;
273 
274 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
275 
276 static const uint8_t wpi_ridx_to_plcp[] = {
277 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
278 	/* R1-R4 (ral/ural is R4-R1) */
279 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
280 	/* CCK: device-dependent */
281 	10, 20, 55, 110
282 };
283 static const uint8_t wpi_ridx_to_rate[] = {
284 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
285 	2, 4, 11, 22 /*CCK */
286 };
287 
288 
289 static int
290 wpi_probe(device_t dev)
291 {
292 	const struct wpi_ident *ident;
293 
294 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
295 		if (pci_get_vendor(dev) == ident->vendor &&
296 		    pci_get_device(dev) == ident->device) {
297 			device_set_desc(dev, ident->name);
298 			return 0;
299 		}
300 	}
301 	return ENXIO;
302 }
303 
304 /**
305  * Load the firmare image from disk to the allocated dma buffer.
306  * we also maintain the reference to the firmware pointer as there
307  * is times where we may need to reload the firmware but we are not
308  * in a context that can access the filesystem (ie taskq cause by restart)
309  *
310  * @return 0 on success, an errno on failure
311  */
312 static int
313 wpi_load_firmware(struct wpi_softc *sc)
314 {
315 	const struct firmware *fp;
316 	struct wpi_dma_info *dma = &sc->fw_dma;
317 	const struct wpi_firmware_hdr *hdr;
318 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
319 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
320 	int error;
321 
322 	DPRINTFN(WPI_DEBUG_FIRMWARE,
323 	    ("Attempting Loading Firmware from wpi_fw module\n"));
324 
325 	WPI_UNLOCK(sc);
326 
327 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
328 		device_printf(sc->sc_dev,
329 		    "could not load firmware image 'wpifw'\n");
330 		error = ENOENT;
331 		WPI_LOCK(sc);
332 		goto fail;
333 	}
334 
335 	fp = sc->fw_fp;
336 
337 	WPI_LOCK(sc);
338 
339 	/* Validate the firmware is minimum a particular version */
340 	if (fp->version < WPI_FW_MINVERSION) {
341 	    device_printf(sc->sc_dev,
342 			   "firmware version is too old. Need %d, got %d\n",
343 			   WPI_FW_MINVERSION,
344 			   fp->version);
345 	    error = ENXIO;
346 	    goto fail;
347 	}
348 
349 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
350 		device_printf(sc->sc_dev,
351 		    "firmware file too short: %zu bytes\n", fp->datasize);
352 		error = ENXIO;
353 		goto fail;
354 	}
355 
356 	hdr = (const struct wpi_firmware_hdr *)fp->data;
357 
358 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
359 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
360 
361 	rtextsz = le32toh(hdr->rtextsz);
362 	rdatasz = le32toh(hdr->rdatasz);
363 	itextsz = le32toh(hdr->itextsz);
364 	idatasz = le32toh(hdr->idatasz);
365 	btextsz = le32toh(hdr->btextsz);
366 
367 	/* check that all firmware segments are present */
368 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
369 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
370 		device_printf(sc->sc_dev,
371 		    "firmware file too short: %zu bytes\n", fp->datasize);
372 		error = ENXIO; /* XXX appropriate error code? */
373 		goto fail;
374 	}
375 
376 	/* get pointers to firmware segments */
377 	rtext = (const uint8_t *)(hdr + 1);
378 	rdata = rtext + rtextsz;
379 	itext = rdata + rdatasz;
380 	idata = itext + itextsz;
381 	btext = idata + idatasz;
382 
383 	DPRINTFN(WPI_DEBUG_FIRMWARE,
384 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
385 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
386 	     (le32toh(hdr->version) & 0xff000000) >> 24,
387 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
388 	     (le32toh(hdr->version) & 0x0000ffff),
389 	     rtextsz, rdatasz,
390 	     itextsz, idatasz, btextsz));
391 
392 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
393 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
394 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
395 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
396 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
397 
398 	/* sanity checks */
399 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
400 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
401 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
402 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
403 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
404 	    (btextsz & 3) != 0) {
405 		device_printf(sc->sc_dev, "firmware invalid\n");
406 		error = EINVAL;
407 		goto fail;
408 	}
409 
410 	/* copy initialization images into pre-allocated DMA-safe memory */
411 	memcpy(dma->vaddr, idata, idatasz);
412 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
413 
414 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
415 
416 	/* tell adapter where to find initialization images */
417 	wpi_mem_lock(sc);
418 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
419 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
420 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
421 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
422 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
423 	wpi_mem_unlock(sc);
424 
425 	/* load firmware boot code */
426 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
427 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
428 	    goto fail;
429 	}
430 
431 	/* now press "execute" */
432 	WPI_WRITE(sc, WPI_RESET, 0);
433 
434 	/* wait at most one second for the first alive notification */
435 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
436 		device_printf(sc->sc_dev,
437 		    "timeout waiting for adapter to initialize\n");
438 		goto fail;
439 	}
440 
441 	/* copy runtime images into pre-allocated DMA-sage memory */
442 	memcpy(dma->vaddr, rdata, rdatasz);
443 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
444 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
445 
446 	/* tell adapter where to find runtime images */
447 	wpi_mem_lock(sc);
448 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
449 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
450 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
451 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
452 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
453 	wpi_mem_unlock(sc);
454 
455 	/* wait at most one second for the first alive notification */
456 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
457 		device_printf(sc->sc_dev,
458 		    "timeout waiting for adapter to initialize2\n");
459 		goto fail;
460 	}
461 
462 	DPRINTFN(WPI_DEBUG_FIRMWARE,
463 	    ("Firmware loaded to driver successfully\n"));
464 	return error;
465 fail:
466 	wpi_unload_firmware(sc);
467 	return error;
468 }
469 
470 /**
471  * Free the referenced firmware image
472  */
473 static void
474 wpi_unload_firmware(struct wpi_softc *sc)
475 {
476 
477 	if (sc->fw_fp) {
478 		WPI_UNLOCK(sc);
479 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
480 		WPI_LOCK(sc);
481 		sc->fw_fp = NULL;
482 	}
483 }
484 
485 static int
486 wpi_attach(device_t dev)
487 {
488 	struct wpi_softc *sc = device_get_softc(dev);
489 	struct ifnet *ifp;
490 	struct ieee80211com *ic;
491 	int ac, error, supportsa = 1;
492 	uint32_t tmp;
493 	const struct wpi_ident *ident;
494 	uint8_t macaddr[IEEE80211_ADDR_LEN];
495 
496 	sc->sc_dev = dev;
497 
498 	if (bootverbose || WPI_DEBUG_SET)
499 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
500 
501 	/*
502 	 * Some card's only support 802.11b/g not a, check to see if
503 	 * this is one such card. A 0x0 in the subdevice table indicates
504 	 * the entire subdevice range is to be ignored.
505 	 */
506 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
507 		if (ident->subdevice &&
508 		    pci_get_subdevice(dev) == ident->subdevice) {
509 		    supportsa = 0;
510 		    break;
511 		}
512 	}
513 
514 	/* Create the tasks that can be queued */
515 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
516 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
517 
518 	WPI_LOCK_INIT(sc);
519 
520 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
521 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
522 
523 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
524 		device_printf(dev, "chip is in D%d power mode "
525 		    "-- setting to D0\n", pci_get_powerstate(dev));
526 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
527 	}
528 
529 	/* disable the retry timeout register */
530 	pci_write_config(dev, 0x41, 0, 1);
531 
532 	/* enable bus-mastering */
533 	pci_enable_busmaster(dev);
534 
535 	sc->mem_rid = PCIR_BAR(0);
536 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
537 	    RF_ACTIVE);
538 	if (sc->mem == NULL) {
539 		device_printf(dev, "could not allocate memory resource\n");
540 		error = ENOMEM;
541 		goto fail;
542 	}
543 
544 	sc->sc_st = rman_get_bustag(sc->mem);
545 	sc->sc_sh = rman_get_bushandle(sc->mem);
546 
547 	sc->irq_rid = 0;
548 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
549 	    RF_ACTIVE | RF_SHAREABLE);
550 	if (sc->irq == NULL) {
551 		device_printf(dev, "could not allocate interrupt resource\n");
552 		error = ENOMEM;
553 		goto fail;
554 	}
555 
556 	/*
557 	 * Allocate DMA memory for firmware transfers.
558 	 */
559 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
560 		printf(": could not allocate firmware memory\n");
561 		error = ENOMEM;
562 		goto fail;
563 	}
564 
565 	/*
566 	 * Put adapter into a known state.
567 	 */
568 	if ((error = wpi_reset(sc)) != 0) {
569 		device_printf(dev, "could not reset adapter\n");
570 		goto fail;
571 	}
572 
573 	wpi_mem_lock(sc);
574 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
575 	if (bootverbose || WPI_DEBUG_SET)
576 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
577 
578 	wpi_mem_unlock(sc);
579 
580 	/* Allocate shared page */
581 	if ((error = wpi_alloc_shared(sc)) != 0) {
582 		device_printf(dev, "could not allocate shared page\n");
583 		goto fail;
584 	}
585 
586 	/* tx data queues  - 4 for QoS purposes */
587 	for (ac = 0; ac < WME_NUM_AC; ac++) {
588 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
589 		if (error != 0) {
590 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
591 		    goto fail;
592 		}
593 	}
594 
595 	/* command queue to talk to the card's firmware */
596 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
597 	if (error != 0) {
598 		device_printf(dev, "could not allocate command ring\n");
599 		goto fail;
600 	}
601 
602 	/* receive data queue */
603 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
604 	if (error != 0) {
605 		device_printf(dev, "could not allocate Rx ring\n");
606 		goto fail;
607 	}
608 
609 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
610 	if (ifp == NULL) {
611 		device_printf(dev, "can not if_alloc()\n");
612 		error = ENOMEM;
613 		goto fail;
614 	}
615 	ic = ifp->if_l2com;
616 
617 	ic->ic_ifp = ifp;
618 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
619 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
620 
621 	/* set device capabilities */
622 	ic->ic_caps =
623 		  IEEE80211_C_STA		/* station mode supported */
624 		| IEEE80211_C_MONITOR		/* monitor mode supported */
625 		| IEEE80211_C_TXPMGT		/* tx power management */
626 		| IEEE80211_C_SHSLOT		/* short slot time supported */
627 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
628 		| IEEE80211_C_WPA		/* 802.11i */
629 /* XXX looks like WME is partly supported? */
630 #if 0
631 		| IEEE80211_C_IBSS		/* IBSS mode support */
632 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
633 		| IEEE80211_C_WME		/* 802.11e */
634 		| IEEE80211_C_HOSTAP		/* Host access point mode */
635 #endif
636 		;
637 
638 	/*
639 	 * Read in the eeprom and also setup the channels for
640 	 * net80211. We don't set the rates as net80211 does this for us
641 	 */
642 	wpi_read_eeprom(sc, macaddr);
643 
644 	if (bootverbose || WPI_DEBUG_SET) {
645 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
646 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
647 			  sc->type > 1 ? 'B': '?');
648 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
649 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
650 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
651 			  supportsa ? "does" : "does not");
652 
653 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
654 	       what sc->rev really represents - benjsc 20070615 */
655 	}
656 
657 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
658 	ifp->if_softc = sc;
659 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
660 	ifp->if_init = wpi_init;
661 	ifp->if_ioctl = wpi_ioctl;
662 	ifp->if_start = wpi_start;
663 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
664 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
665 	IFQ_SET_READY(&ifp->if_snd);
666 
667 	ieee80211_ifattach(ic, macaddr);
668 	/* override default methods */
669 	ic->ic_raw_xmit = wpi_raw_xmit;
670 	ic->ic_wme.wme_update = wpi_wme_update;
671 	ic->ic_scan_start = wpi_scan_start;
672 	ic->ic_scan_end = wpi_scan_end;
673 	ic->ic_set_channel = wpi_set_channel;
674 	ic->ic_scan_curchan = wpi_scan_curchan;
675 	ic->ic_scan_mindwell = wpi_scan_mindwell;
676 
677 	ic->ic_vap_create = wpi_vap_create;
678 	ic->ic_vap_delete = wpi_vap_delete;
679 
680 	ieee80211_radiotap_attach(ic,
681 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
682 		WPI_TX_RADIOTAP_PRESENT,
683 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
684 		WPI_RX_RADIOTAP_PRESENT);
685 
686 	/*
687 	 * Hook our interrupt after all initialization is complete.
688 	 */
689 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
690 	    NULL, wpi_intr, sc, &sc->sc_ih);
691 	if (error != 0) {
692 		device_printf(dev, "could not set up interrupt\n");
693 		goto fail;
694 	}
695 
696 	if (bootverbose)
697 		ieee80211_announce(ic);
698 #ifdef XXX_DEBUG
699 	ieee80211_announce_channels(ic);
700 #endif
701 	return 0;
702 
703 fail:	wpi_detach(dev);
704 	return ENXIO;
705 }
706 
707 static int
708 wpi_detach(device_t dev)
709 {
710 	struct wpi_softc *sc = device_get_softc(dev);
711 	struct ifnet *ifp = sc->sc_ifp;
712 	struct ieee80211com *ic;
713 	int ac;
714 
715 	if (ifp != NULL) {
716 		ic = ifp->if_l2com;
717 
718 		ieee80211_draintask(ic, &sc->sc_restarttask);
719 		ieee80211_draintask(ic, &sc->sc_radiotask);
720 		wpi_stop(sc);
721 		callout_drain(&sc->watchdog_to);
722 		callout_drain(&sc->calib_to);
723 		ieee80211_ifdetach(ic);
724 	}
725 
726 	WPI_LOCK(sc);
727 	if (sc->txq[0].data_dmat) {
728 		for (ac = 0; ac < WME_NUM_AC; ac++)
729 			wpi_free_tx_ring(sc, &sc->txq[ac]);
730 
731 		wpi_free_tx_ring(sc, &sc->cmdq);
732 		wpi_free_rx_ring(sc, &sc->rxq);
733 		wpi_free_shared(sc);
734 	}
735 
736 	if (sc->fw_fp != NULL) {
737 		wpi_unload_firmware(sc);
738 	}
739 
740 	if (sc->fw_dma.tag)
741 		wpi_free_fwmem(sc);
742 	WPI_UNLOCK(sc);
743 
744 	if (sc->irq != NULL) {
745 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
746 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
747 	}
748 
749 	if (sc->mem != NULL)
750 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
751 
752 	if (ifp != NULL)
753 		if_free(ifp);
754 
755 	WPI_LOCK_DESTROY(sc);
756 
757 	return 0;
758 }
759 
760 static struct ieee80211vap *
761 wpi_vap_create(struct ieee80211com *ic,
762 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
763 	const uint8_t bssid[IEEE80211_ADDR_LEN],
764 	const uint8_t mac[IEEE80211_ADDR_LEN])
765 {
766 	struct wpi_vap *wvp;
767 	struct ieee80211vap *vap;
768 
769 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
770 		return NULL;
771 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
772 	    M_80211_VAP, M_NOWAIT | M_ZERO);
773 	if (wvp == NULL)
774 		return NULL;
775 	vap = &wvp->vap;
776 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
777 	/* override with driver methods */
778 	wvp->newstate = vap->iv_newstate;
779 	vap->iv_newstate = wpi_newstate;
780 
781 	ieee80211_ratectl_init(vap);
782 	/* complete setup */
783 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
784 	ic->ic_opmode = opmode;
785 	return vap;
786 }
787 
788 static void
789 wpi_vap_delete(struct ieee80211vap *vap)
790 {
791 	struct wpi_vap *wvp = WPI_VAP(vap);
792 
793 	ieee80211_ratectl_deinit(vap);
794 	ieee80211_vap_detach(vap);
795 	free(wvp, M_80211_VAP);
796 }
797 
798 static void
799 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
800 {
801 	if (error != 0)
802 		return;
803 
804 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
805 
806 	*(bus_addr_t *)arg = segs[0].ds_addr;
807 }
808 
809 /*
810  * Allocates a contiguous block of dma memory of the requested size and
811  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
812  * allocations greater than 4096 may fail. Hence if the requested alignment is
813  * greater we allocate 'alignment' size extra memory and shift the vaddr and
814  * paddr after the dma load. This bypasses the problem at the cost of a little
815  * more memory.
816  */
817 static int
818 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
819     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
820 {
821 	int error;
822 	bus_size_t align;
823 	bus_size_t reqsize;
824 
825 	DPRINTFN(WPI_DEBUG_DMA,
826 	    ("Size: %zd - alignment %zd\n", size, alignment));
827 
828 	dma->size = size;
829 	dma->tag = NULL;
830 
831 	if (alignment > 4096) {
832 		align = PAGE_SIZE;
833 		reqsize = size + alignment;
834 	} else {
835 		align = alignment;
836 		reqsize = size;
837 	}
838 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
839 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
840 	    NULL, NULL, reqsize,
841 	    1, reqsize, flags,
842 	    NULL, NULL, &dma->tag);
843 	if (error != 0) {
844 		device_printf(sc->sc_dev,
845 		    "could not create shared page DMA tag\n");
846 		goto fail;
847 	}
848 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
849 	    flags | BUS_DMA_ZERO, &dma->map);
850 	if (error != 0) {
851 		device_printf(sc->sc_dev,
852 		    "could not allocate shared page DMA memory\n");
853 		goto fail;
854 	}
855 
856 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
857 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
858 
859 	/* Save the original pointers so we can free all the memory */
860 	dma->paddr = dma->paddr_start;
861 	dma->vaddr = dma->vaddr_start;
862 
863 	/*
864 	 * Check the alignment and increment by 4096 until we get the
865 	 * requested alignment. Fail if can't obtain the alignment
866 	 * we requested.
867 	 */
868 	if ((dma->paddr & (alignment -1 )) != 0) {
869 		int i;
870 
871 		for (i = 0; i < alignment / 4096; i++) {
872 			if ((dma->paddr & (alignment - 1 )) == 0)
873 				break;
874 			dma->paddr += 4096;
875 			dma->vaddr += 4096;
876 		}
877 		if (i == alignment / 4096) {
878 			device_printf(sc->sc_dev,
879 			    "alignment requirement was not satisfied\n");
880 			goto fail;
881 		}
882 	}
883 
884 	if (error != 0) {
885 		device_printf(sc->sc_dev,
886 		    "could not load shared page DMA map\n");
887 		goto fail;
888 	}
889 
890 	if (kvap != NULL)
891 		*kvap = dma->vaddr;
892 
893 	return 0;
894 
895 fail:
896 	wpi_dma_contig_free(dma);
897 	return error;
898 }
899 
900 static void
901 wpi_dma_contig_free(struct wpi_dma_info *dma)
902 {
903 	if (dma->tag) {
904 		if (dma->map != NULL) {
905 			if (dma->paddr_start != 0) {
906 				bus_dmamap_sync(dma->tag, dma->map,
907 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
908 				bus_dmamap_unload(dma->tag, dma->map);
909 			}
910 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
911 		}
912 		bus_dma_tag_destroy(dma->tag);
913 	}
914 }
915 
916 /*
917  * Allocate a shared page between host and NIC.
918  */
919 static int
920 wpi_alloc_shared(struct wpi_softc *sc)
921 {
922 	int error;
923 
924 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
925 	    (void **)&sc->shared, sizeof (struct wpi_shared),
926 	    PAGE_SIZE,
927 	    BUS_DMA_NOWAIT);
928 
929 	if (error != 0) {
930 		device_printf(sc->sc_dev,
931 		    "could not allocate shared area DMA memory\n");
932 	}
933 
934 	return error;
935 }
936 
937 static void
938 wpi_free_shared(struct wpi_softc *sc)
939 {
940 	wpi_dma_contig_free(&sc->shared_dma);
941 }
942 
943 static int
944 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
945 {
946 
947 	int i, error;
948 
949 	ring->cur = 0;
950 
951 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
952 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
953 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
954 
955 	if (error != 0) {
956 		device_printf(sc->sc_dev,
957 		    "%s: could not allocate rx ring DMA memory, error %d\n",
958 		    __func__, error);
959 		goto fail;
960 	}
961 
962         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
963 	    BUS_SPACE_MAXADDR_32BIT,
964             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
965             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
966         if (error != 0) {
967                 device_printf(sc->sc_dev,
968 		    "%s: bus_dma_tag_create_failed, error %d\n",
969 		    __func__, error);
970                 goto fail;
971         }
972 
973 	/*
974 	 * Setup Rx buffers.
975 	 */
976 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
977 		struct wpi_rx_data *data = &ring->data[i];
978 		struct mbuf *m;
979 		bus_addr_t paddr;
980 
981 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
982 		if (error != 0) {
983 			device_printf(sc->sc_dev,
984 			    "%s: bus_dmamap_create failed, error %d\n",
985 			    __func__, error);
986 			goto fail;
987 		}
988 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
989 		if (m == NULL) {
990 			device_printf(sc->sc_dev,
991 			   "%s: could not allocate rx mbuf\n", __func__);
992 			error = ENOMEM;
993 			goto fail;
994 		}
995 		/* map page */
996 		error = bus_dmamap_load(ring->data_dmat, data->map,
997 		    mtod(m, caddr_t), MJUMPAGESIZE,
998 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
999 		if (error != 0 && error != EFBIG) {
1000 			device_printf(sc->sc_dev,
1001 			    "%s: bus_dmamap_load failed, error %d\n",
1002 			    __func__, error);
1003 			m_freem(m);
1004 			error = ENOMEM;	/* XXX unique code */
1005 			goto fail;
1006 		}
1007 		bus_dmamap_sync(ring->data_dmat, data->map,
1008 		    BUS_DMASYNC_PREWRITE);
1009 
1010 		data->m = m;
1011 		ring->desc[i] = htole32(paddr);
1012 	}
1013 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1014 	    BUS_DMASYNC_PREWRITE);
1015 	return 0;
1016 fail:
1017 	wpi_free_rx_ring(sc, ring);
1018 	return error;
1019 }
1020 
1021 static void
1022 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1023 {
1024 	int ntries;
1025 
1026 	wpi_mem_lock(sc);
1027 
1028 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1029 
1030 	for (ntries = 0; ntries < 100; ntries++) {
1031 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1032 			break;
1033 		DELAY(10);
1034 	}
1035 
1036 	wpi_mem_unlock(sc);
1037 
1038 #ifdef WPI_DEBUG
1039 	if (ntries == 100 && wpi_debug > 0)
1040 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1041 #endif
1042 
1043 	ring->cur = 0;
1044 }
1045 
1046 static void
1047 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1048 {
1049 	int i;
1050 
1051 	wpi_dma_contig_free(&ring->desc_dma);
1052 
1053 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1054 		struct wpi_rx_data *data = &ring->data[i];
1055 
1056 		if (data->m != NULL) {
1057 			bus_dmamap_sync(ring->data_dmat, data->map,
1058 			    BUS_DMASYNC_POSTREAD);
1059 			bus_dmamap_unload(ring->data_dmat, data->map);
1060 			m_freem(data->m);
1061 		}
1062 		if (data->map != NULL)
1063 			bus_dmamap_destroy(ring->data_dmat, data->map);
1064 	}
1065 }
1066 
1067 static int
1068 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1069 	int qid)
1070 {
1071 	struct wpi_tx_data *data;
1072 	int i, error;
1073 
1074 	ring->qid = qid;
1075 	ring->count = count;
1076 	ring->queued = 0;
1077 	ring->cur = 0;
1078 	ring->data = NULL;
1079 
1080 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1081 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1082 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1083 
1084 	if (error != 0) {
1085 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1086 	    goto fail;
1087 	}
1088 
1089 	/* update shared page with ring's base address */
1090 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1091 
1092 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1093 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1094 		BUS_DMA_NOWAIT);
1095 
1096 	if (error != 0) {
1097 		device_printf(sc->sc_dev,
1098 		    "could not allocate tx command DMA memory\n");
1099 		goto fail;
1100 	}
1101 
1102 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1103 	    M_NOWAIT | M_ZERO);
1104 	if (ring->data == NULL) {
1105 		device_printf(sc->sc_dev,
1106 		    "could not allocate tx data slots\n");
1107 		goto fail;
1108 	}
1109 
1110 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1111 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1112 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1113 	    &ring->data_dmat);
1114 	if (error != 0) {
1115 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1116 		goto fail;
1117 	}
1118 
1119 	for (i = 0; i < count; i++) {
1120 		data = &ring->data[i];
1121 
1122 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1123 		if (error != 0) {
1124 			device_printf(sc->sc_dev,
1125 			    "could not create tx buf DMA map\n");
1126 			goto fail;
1127 		}
1128 		bus_dmamap_sync(ring->data_dmat, data->map,
1129 		    BUS_DMASYNC_PREWRITE);
1130 	}
1131 
1132 	return 0;
1133 
1134 fail:
1135 	wpi_free_tx_ring(sc, ring);
1136 	return error;
1137 }
1138 
1139 static void
1140 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1141 {
1142 	struct wpi_tx_data *data;
1143 	int i, ntries;
1144 
1145 	wpi_mem_lock(sc);
1146 
1147 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1148 	for (ntries = 0; ntries < 100; ntries++) {
1149 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1150 			break;
1151 		DELAY(10);
1152 	}
1153 #ifdef WPI_DEBUG
1154 	if (ntries == 100 && wpi_debug > 0)
1155 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1156 		    ring->qid);
1157 #endif
1158 	wpi_mem_unlock(sc);
1159 
1160 	for (i = 0; i < ring->count; i++) {
1161 		data = &ring->data[i];
1162 
1163 		if (data->m != NULL) {
1164 			bus_dmamap_unload(ring->data_dmat, data->map);
1165 			m_freem(data->m);
1166 			data->m = NULL;
1167 		}
1168 	}
1169 
1170 	ring->queued = 0;
1171 	ring->cur = 0;
1172 }
1173 
1174 static void
1175 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1176 {
1177 	struct wpi_tx_data *data;
1178 	int i;
1179 
1180 	wpi_dma_contig_free(&ring->desc_dma);
1181 	wpi_dma_contig_free(&ring->cmd_dma);
1182 
1183 	if (ring->data != NULL) {
1184 		for (i = 0; i < ring->count; i++) {
1185 			data = &ring->data[i];
1186 
1187 			if (data->m != NULL) {
1188 				bus_dmamap_sync(ring->data_dmat, data->map,
1189 				    BUS_DMASYNC_POSTWRITE);
1190 				bus_dmamap_unload(ring->data_dmat, data->map);
1191 				m_freem(data->m);
1192 				data->m = NULL;
1193 			}
1194 		}
1195 		free(ring->data, M_DEVBUF);
1196 	}
1197 
1198 	if (ring->data_dmat != NULL)
1199 		bus_dma_tag_destroy(ring->data_dmat);
1200 }
1201 
1202 static int
1203 wpi_shutdown(device_t dev)
1204 {
1205 	struct wpi_softc *sc = device_get_softc(dev);
1206 
1207 	WPI_LOCK(sc);
1208 	wpi_stop_locked(sc);
1209 	wpi_unload_firmware(sc);
1210 	WPI_UNLOCK(sc);
1211 
1212 	return 0;
1213 }
1214 
1215 static int
1216 wpi_suspend(device_t dev)
1217 {
1218 	struct wpi_softc *sc = device_get_softc(dev);
1219 
1220 	wpi_stop(sc);
1221 	return 0;
1222 }
1223 
1224 static int
1225 wpi_resume(device_t dev)
1226 {
1227 	struct wpi_softc *sc = device_get_softc(dev);
1228 	struct ifnet *ifp = sc->sc_ifp;
1229 
1230 	pci_write_config(dev, 0x41, 0, 1);
1231 
1232 	if (ifp->if_flags & IFF_UP) {
1233 		wpi_init(ifp->if_softc);
1234 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1235 			wpi_start(ifp);
1236 	}
1237 	return 0;
1238 }
1239 
1240 /**
1241  * Called by net80211 when ever there is a change to 80211 state machine
1242  */
1243 static int
1244 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1245 {
1246 	struct wpi_vap *wvp = WPI_VAP(vap);
1247 	struct ieee80211com *ic = vap->iv_ic;
1248 	struct ifnet *ifp = ic->ic_ifp;
1249 	struct wpi_softc *sc = ifp->if_softc;
1250 	int error;
1251 
1252 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1253 		ieee80211_state_name[vap->iv_state],
1254 		ieee80211_state_name[nstate], sc->flags));
1255 
1256 	IEEE80211_UNLOCK(ic);
1257 	WPI_LOCK(sc);
1258 	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1259 		/*
1260 		 * On !INIT -> SCAN transitions, we need to clear any possible
1261 		 * knowledge about associations.
1262 		 */
1263 		error = wpi_config(sc);
1264 		if (error != 0) {
1265 			device_printf(sc->sc_dev,
1266 			    "%s: device config failed, error %d\n",
1267 			    __func__, error);
1268 		}
1269 	}
1270 	if (nstate == IEEE80211_S_AUTH ||
1271 	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1272 		/*
1273 		 * The node must be registered in the firmware before auth.
1274 		 * Also the associd must be cleared on RUN -> ASSOC
1275 		 * transitions.
1276 		 */
1277 		error = wpi_auth(sc, vap);
1278 		if (error != 0) {
1279 			device_printf(sc->sc_dev,
1280 			    "%s: could not move to auth state, error %d\n",
1281 			    __func__, error);
1282 		}
1283 	}
1284 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1285 		error = wpi_run(sc, vap);
1286 		if (error != 0) {
1287 			device_printf(sc->sc_dev,
1288 			    "%s: could not move to run state, error %d\n",
1289 			    __func__, error);
1290 		}
1291 	}
1292 	if (nstate == IEEE80211_S_RUN) {
1293 		/* RUN -> RUN transition; just restart the timers */
1294 		wpi_calib_timeout(sc);
1295 		/* XXX split out rate control timer */
1296 	}
1297 	WPI_UNLOCK(sc);
1298 	IEEE80211_LOCK(ic);
1299 	return wvp->newstate(vap, nstate, arg);
1300 }
1301 
1302 /*
1303  * Grab exclusive access to NIC memory.
1304  */
1305 static void
1306 wpi_mem_lock(struct wpi_softc *sc)
1307 {
1308 	int ntries;
1309 	uint32_t tmp;
1310 
1311 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1312 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1313 
1314 	/* spin until we actually get the lock */
1315 	for (ntries = 0; ntries < 100; ntries++) {
1316 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1317 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1318 			break;
1319 		DELAY(10);
1320 	}
1321 	if (ntries == 100)
1322 		device_printf(sc->sc_dev, "could not lock memory\n");
1323 }
1324 
1325 /*
1326  * Release lock on NIC memory.
1327  */
1328 static void
1329 wpi_mem_unlock(struct wpi_softc *sc)
1330 {
1331 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1332 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1333 }
1334 
1335 static uint32_t
1336 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1337 {
1338 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1339 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1340 }
1341 
1342 static void
1343 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1344 {
1345 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1346 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1347 }
1348 
1349 static void
1350 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1351     const uint32_t *data, int wlen)
1352 {
1353 	for (; wlen > 0; wlen--, data++, addr+=4)
1354 		wpi_mem_write(sc, addr, *data);
1355 }
1356 
1357 /*
1358  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1359  * using the traditional bit-bang method. Data is read up until len bytes have
1360  * been obtained.
1361  */
1362 static uint16_t
1363 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1364 {
1365 	int ntries;
1366 	uint32_t val;
1367 	uint8_t *out = data;
1368 
1369 	wpi_mem_lock(sc);
1370 
1371 	for (; len > 0; len -= 2, addr++) {
1372 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1373 
1374 		for (ntries = 0; ntries < 10; ntries++) {
1375 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1376 				break;
1377 			DELAY(5);
1378 		}
1379 
1380 		if (ntries == 10) {
1381 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1382 			return ETIMEDOUT;
1383 		}
1384 
1385 		*out++= val >> 16;
1386 		if (len > 1)
1387 			*out ++= val >> 24;
1388 	}
1389 
1390 	wpi_mem_unlock(sc);
1391 
1392 	return 0;
1393 }
1394 
1395 /*
1396  * The firmware text and data segments are transferred to the NIC using DMA.
1397  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1398  * where to find it.  Once the NIC has copied the firmware into its internal
1399  * memory, we can free our local copy in the driver.
1400  */
1401 static int
1402 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1403 {
1404 	int error, ntries;
1405 
1406 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1407 
1408 	size /= sizeof(uint32_t);
1409 
1410 	wpi_mem_lock(sc);
1411 
1412 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1413 	    (const uint32_t *)fw, size);
1414 
1415 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1416 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1417 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1418 
1419 	/* run microcode */
1420 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1421 
1422 	/* wait while the adapter is busy copying the firmware */
1423 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1424 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1425 		DPRINTFN(WPI_DEBUG_HW,
1426 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1427 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1428 		if (status & WPI_TX_IDLE(6)) {
1429 			DPRINTFN(WPI_DEBUG_HW,
1430 			    ("Status Match! - ntries = %d\n", ntries));
1431 			break;
1432 		}
1433 		DELAY(10);
1434 	}
1435 	if (ntries == 1000) {
1436 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1437 		error = ETIMEDOUT;
1438 	}
1439 
1440 	/* start the microcode executing */
1441 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1442 
1443 	wpi_mem_unlock(sc);
1444 
1445 	return (error);
1446 }
1447 
1448 static void
1449 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1450 	struct wpi_rx_data *data)
1451 {
1452 	struct ifnet *ifp = sc->sc_ifp;
1453 	struct ieee80211com *ic = ifp->if_l2com;
1454 	struct wpi_rx_ring *ring = &sc->rxq;
1455 	struct wpi_rx_stat *stat;
1456 	struct wpi_rx_head *head;
1457 	struct wpi_rx_tail *tail;
1458 	struct ieee80211_node *ni;
1459 	struct mbuf *m, *mnew;
1460 	bus_addr_t paddr;
1461 	int error;
1462 
1463 	stat = (struct wpi_rx_stat *)(desc + 1);
1464 
1465 	if (stat->len > WPI_STAT_MAXLEN) {
1466 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1467 		ifp->if_ierrors++;
1468 		return;
1469 	}
1470 
1471 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1472 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1473 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1474 
1475 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1476 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1477 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1478 	    (uintmax_t)le64toh(tail->tstamp)));
1479 
1480 	/* discard Rx frames with bad CRC early */
1481 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1482 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1483 		    le32toh(tail->flags)));
1484 		ifp->if_ierrors++;
1485 		return;
1486 	}
1487 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1488 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1489 		    le16toh(head->len)));
1490 		ifp->if_ierrors++;
1491 		return;
1492 	}
1493 
1494 	/* XXX don't need mbuf, just dma buffer */
1495 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1496 	if (mnew == NULL) {
1497 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1498 		    __func__));
1499 		ifp->if_ierrors++;
1500 		return;
1501 	}
1502 	bus_dmamap_unload(ring->data_dmat, data->map);
1503 
1504 	error = bus_dmamap_load(ring->data_dmat, data->map,
1505 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1506 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1507 	if (error != 0 && error != EFBIG) {
1508 		device_printf(sc->sc_dev,
1509 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1510 		m_freem(mnew);
1511 		ifp->if_ierrors++;
1512 		return;
1513 	}
1514 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1515 
1516 	/* finalize mbuf and swap in new one */
1517 	m = data->m;
1518 	m->m_pkthdr.rcvif = ifp;
1519 	m->m_data = (caddr_t)(head + 1);
1520 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1521 
1522 	data->m = mnew;
1523 	/* update Rx descriptor */
1524 	ring->desc[ring->cur] = htole32(paddr);
1525 
1526 	if (ieee80211_radiotap_active(ic)) {
1527 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1528 
1529 		tap->wr_flags = 0;
1530 		tap->wr_chan_freq =
1531 			htole16(ic->ic_channels[head->chan].ic_freq);
1532 		tap->wr_chan_flags =
1533 			htole16(ic->ic_channels[head->chan].ic_flags);
1534 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1535 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1536 		tap->wr_tsft = tail->tstamp;
1537 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1538 		switch (head->rate) {
1539 		/* CCK rates */
1540 		case  10: tap->wr_rate =   2; break;
1541 		case  20: tap->wr_rate =   4; break;
1542 		case  55: tap->wr_rate =  11; break;
1543 		case 110: tap->wr_rate =  22; break;
1544 		/* OFDM rates */
1545 		case 0xd: tap->wr_rate =  12; break;
1546 		case 0xf: tap->wr_rate =  18; break;
1547 		case 0x5: tap->wr_rate =  24; break;
1548 		case 0x7: tap->wr_rate =  36; break;
1549 		case 0x9: tap->wr_rate =  48; break;
1550 		case 0xb: tap->wr_rate =  72; break;
1551 		case 0x1: tap->wr_rate =  96; break;
1552 		case 0x3: tap->wr_rate = 108; break;
1553 		/* unknown rate: should not happen */
1554 		default:  tap->wr_rate =   0;
1555 		}
1556 		if (le16toh(head->flags) & 0x4)
1557 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1558 	}
1559 
1560 	WPI_UNLOCK(sc);
1561 
1562 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1563 	if (ni != NULL) {
1564 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1565 		ieee80211_free_node(ni);
1566 	} else
1567 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1568 
1569 	WPI_LOCK(sc);
1570 }
1571 
1572 static void
1573 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1574 {
1575 	struct ifnet *ifp = sc->sc_ifp;
1576 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1577 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1578 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1579 	struct ieee80211_node *ni = txdata->ni;
1580 	struct ieee80211vap *vap = ni->ni_vap;
1581 	int retrycnt = 0;
1582 
1583 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1584 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1585 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1586 	    le32toh(stat->status)));
1587 
1588 	/*
1589 	 * Update rate control statistics for the node.
1590 	 * XXX we should not count mgmt frames since they're always sent at
1591 	 * the lowest available bit-rate.
1592 	 * XXX frames w/o ACK shouldn't be used either
1593 	 */
1594 	if (stat->ntries > 0) {
1595 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1596 		retrycnt = 1;
1597 	}
1598 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1599 	    &retrycnt, NULL);
1600 
1601 	/* XXX oerrors should only count errors !maxtries */
1602 	if ((le32toh(stat->status) & 0xff) != 1)
1603 		ifp->if_oerrors++;
1604 	else
1605 		ifp->if_opackets++;
1606 
1607 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1608 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1609 	/* XXX handle M_TXCB? */
1610 	m_freem(txdata->m);
1611 	txdata->m = NULL;
1612 	ieee80211_free_node(txdata->ni);
1613 	txdata->ni = NULL;
1614 
1615 	ring->queued--;
1616 
1617 	sc->sc_tx_timer = 0;
1618 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1619 	wpi_start_locked(ifp);
1620 }
1621 
1622 static void
1623 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1624 {
1625 	struct wpi_tx_ring *ring = &sc->cmdq;
1626 	struct wpi_tx_data *data;
1627 
1628 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1629 				 "type=%s len=%d\n", desc->qid, desc->idx,
1630 				 desc->flags, wpi_cmd_str(desc->type),
1631 				 le32toh(desc->len)));
1632 
1633 	if ((desc->qid & 7) != 4)
1634 		return;	/* not a command ack */
1635 
1636 	data = &ring->data[desc->idx];
1637 
1638 	/* if the command was mapped in a mbuf, free it */
1639 	if (data->m != NULL) {
1640 		bus_dmamap_unload(ring->data_dmat, data->map);
1641 		m_freem(data->m);
1642 		data->m = NULL;
1643 	}
1644 
1645 	sc->flags &= ~WPI_FLAG_BUSY;
1646 	wakeup(&ring->cmd[desc->idx]);
1647 }
1648 
1649 static void
1650 wpi_notif_intr(struct wpi_softc *sc)
1651 {
1652 	struct ifnet *ifp = sc->sc_ifp;
1653 	struct ieee80211com *ic = ifp->if_l2com;
1654 	struct wpi_rx_desc *desc;
1655 	struct wpi_rx_data *data;
1656 	uint32_t hw;
1657 
1658 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1659 	    BUS_DMASYNC_POSTREAD);
1660 
1661 	hw = le32toh(sc->shared->next);
1662 	while (sc->rxq.cur != hw) {
1663 		data = &sc->rxq.data[sc->rxq.cur];
1664 
1665 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1666 		    BUS_DMASYNC_POSTREAD);
1667 		desc = (void *)data->m->m_ext.ext_buf;
1668 
1669 		DPRINTFN(WPI_DEBUG_NOTIFY,
1670 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1671 			  desc->qid,
1672 			  desc->idx,
1673 			  desc->flags,
1674 			  desc->type,
1675 			  le32toh(desc->len)));
1676 
1677 		if (!(desc->qid & 0x80))	/* reply to a command */
1678 			wpi_cmd_intr(sc, desc);
1679 
1680 		switch (desc->type) {
1681 		case WPI_RX_DONE:
1682 			/* a 802.11 frame was received */
1683 			wpi_rx_intr(sc, desc, data);
1684 			break;
1685 
1686 		case WPI_TX_DONE:
1687 			/* a 802.11 frame has been transmitted */
1688 			wpi_tx_intr(sc, desc);
1689 			break;
1690 
1691 		case WPI_UC_READY:
1692 		{
1693 			struct wpi_ucode_info *uc =
1694 				(struct wpi_ucode_info *)(desc + 1);
1695 
1696 			/* the microcontroller is ready */
1697 			DPRINTF(("microcode alive notification version %x "
1698 				"alive %x\n", le32toh(uc->version),
1699 				le32toh(uc->valid)));
1700 
1701 			if (le32toh(uc->valid) != 1) {
1702 				device_printf(sc->sc_dev,
1703 				    "microcontroller initialization failed\n");
1704 				wpi_stop_locked(sc);
1705 			}
1706 			break;
1707 		}
1708 		case WPI_STATE_CHANGED:
1709 		{
1710 			uint32_t *status = (uint32_t *)(desc + 1);
1711 
1712 			/* enabled/disabled notification */
1713 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1714 
1715 			if (le32toh(*status) & 1) {
1716 				device_printf(sc->sc_dev,
1717 				    "Radio transmitter is switched off\n");
1718 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1719 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1720 				/* Disable firmware commands */
1721 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1722 			}
1723 			break;
1724 		}
1725 		case WPI_START_SCAN:
1726 		{
1727 #ifdef WPI_DEBUG
1728 			struct wpi_start_scan *scan =
1729 				(struct wpi_start_scan *)(desc + 1);
1730 #endif
1731 
1732 			DPRINTFN(WPI_DEBUG_SCANNING,
1733 				 ("scanning channel %d status %x\n",
1734 			    scan->chan, le32toh(scan->status)));
1735 			break;
1736 		}
1737 		case WPI_STOP_SCAN:
1738 		{
1739 #ifdef WPI_DEBUG
1740 			struct wpi_stop_scan *scan =
1741 				(struct wpi_stop_scan *)(desc + 1);
1742 #endif
1743 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1744 
1745 			DPRINTFN(WPI_DEBUG_SCANNING,
1746 			    ("scan finished nchan=%d status=%d chan=%d\n",
1747 			     scan->nchan, scan->status, scan->chan));
1748 
1749 			sc->sc_scan_timer = 0;
1750 			ieee80211_scan_next(vap);
1751 			break;
1752 		}
1753 		case WPI_MISSED_BEACON:
1754 		{
1755 			struct wpi_missed_beacon *beacon =
1756 				(struct wpi_missed_beacon *)(desc + 1);
1757 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1758 
1759 			if (le32toh(beacon->consecutive) >=
1760 			    vap->iv_bmissthreshold) {
1761 				DPRINTF(("Beacon miss: %u >= %u\n",
1762 					 le32toh(beacon->consecutive),
1763 					 vap->iv_bmissthreshold));
1764 				ieee80211_beacon_miss(ic);
1765 			}
1766 			break;
1767 		}
1768 		}
1769 
1770 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1771 	}
1772 
1773 	/* tell the firmware what we have processed */
1774 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1775 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1776 }
1777 
1778 static void
1779 wpi_intr(void *arg)
1780 {
1781 	struct wpi_softc *sc = arg;
1782 	uint32_t r;
1783 
1784 	WPI_LOCK(sc);
1785 
1786 	r = WPI_READ(sc, WPI_INTR);
1787 	if (r == 0 || r == 0xffffffff) {
1788 		WPI_UNLOCK(sc);
1789 		return;
1790 	}
1791 
1792 	/* disable interrupts */
1793 	WPI_WRITE(sc, WPI_MASK, 0);
1794 	/* ack interrupts */
1795 	WPI_WRITE(sc, WPI_INTR, r);
1796 
1797 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1798 		struct ifnet *ifp = sc->sc_ifp;
1799 		struct ieee80211com *ic = ifp->if_l2com;
1800 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1801 
1802 		device_printf(sc->sc_dev, "fatal firmware error\n");
1803 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1804 				"(Hardware Error)"));
1805 		if (vap != NULL)
1806 			ieee80211_cancel_scan(vap);
1807 		ieee80211_runtask(ic, &sc->sc_restarttask);
1808 		sc->flags &= ~WPI_FLAG_BUSY;
1809 		WPI_UNLOCK(sc);
1810 		return;
1811 	}
1812 
1813 	if (r & WPI_RX_INTR)
1814 		wpi_notif_intr(sc);
1815 
1816 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1817 		wakeup(sc);
1818 
1819 	/* re-enable interrupts */
1820 	if (sc->sc_ifp->if_flags & IFF_UP)
1821 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1822 
1823 	WPI_UNLOCK(sc);
1824 }
1825 
1826 static uint8_t
1827 wpi_plcp_signal(int rate)
1828 {
1829 	switch (rate) {
1830 	/* CCK rates (returned values are device-dependent) */
1831 	case 2:		return 10;
1832 	case 4:		return 20;
1833 	case 11:	return 55;
1834 	case 22:	return 110;
1835 
1836 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1837 	/* R1-R4 (ral/ural is R4-R1) */
1838 	case 12:	return 0xd;
1839 	case 18:	return 0xf;
1840 	case 24:	return 0x5;
1841 	case 36:	return 0x7;
1842 	case 48:	return 0x9;
1843 	case 72:	return 0xb;
1844 	case 96:	return 0x1;
1845 	case 108:	return 0x3;
1846 
1847 	/* unsupported rates (should not get there) */
1848 	default:	return 0;
1849 	}
1850 }
1851 
1852 /* quickly determine if a given rate is CCK or OFDM */
1853 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1854 
1855 /*
1856  * Construct the data packet for a transmit buffer and acutally put
1857  * the buffer onto the transmit ring, kicking the card to process the
1858  * the buffer.
1859  */
1860 static int
1861 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1862 	int ac)
1863 {
1864 	struct ieee80211vap *vap = ni->ni_vap;
1865 	struct ifnet *ifp = sc->sc_ifp;
1866 	struct ieee80211com *ic = ifp->if_l2com;
1867 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1868 	struct wpi_tx_ring *ring = &sc->txq[ac];
1869 	struct wpi_tx_desc *desc;
1870 	struct wpi_tx_data *data;
1871 	struct wpi_tx_cmd *cmd;
1872 	struct wpi_cmd_data *tx;
1873 	struct ieee80211_frame *wh;
1874 	const struct ieee80211_txparam *tp;
1875 	struct ieee80211_key *k;
1876 	struct mbuf *mnew;
1877 	int i, error, nsegs, rate, hdrlen, ismcast;
1878 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1879 
1880 	desc = &ring->desc[ring->cur];
1881 	data = &ring->data[ring->cur];
1882 
1883 	wh = mtod(m0, struct ieee80211_frame *);
1884 
1885 	hdrlen = ieee80211_hdrsize(wh);
1886 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1887 
1888 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1889 		k = ieee80211_crypto_encap(ni, m0);
1890 		if (k == NULL) {
1891 			m_freem(m0);
1892 			return ENOBUFS;
1893 		}
1894 		/* packet header may have moved, reset our local pointer */
1895 		wh = mtod(m0, struct ieee80211_frame *);
1896 	}
1897 
1898 	cmd = &ring->cmd[ring->cur];
1899 	cmd->code = WPI_CMD_TX_DATA;
1900 	cmd->flags = 0;
1901 	cmd->qid = ring->qid;
1902 	cmd->idx = ring->cur;
1903 
1904 	tx = (struct wpi_cmd_data *)cmd->data;
1905 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1906 	tx->timeout = htole16(0);
1907 	tx->ofdm_mask = 0xff;
1908 	tx->cck_mask = 0x0f;
1909 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1910 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1911 	tx->len = htole16(m0->m_pkthdr.len);
1912 
1913 	if (!ismcast) {
1914 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1915 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1916 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1917 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1918 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1919 			tx->rts_ntries = 7;
1920 		}
1921 	}
1922 	/* pick a rate */
1923 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1924 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1925 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1926 		/* tell h/w to set timestamp in probe responses */
1927 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1928 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1929 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1930 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1931 			tx->timeout = htole16(3);
1932 		else
1933 			tx->timeout = htole16(2);
1934 		rate = tp->mgmtrate;
1935 	} else if (ismcast) {
1936 		rate = tp->mcastrate;
1937 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1938 		rate = tp->ucastrate;
1939 	} else {
1940 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1941 		rate = ni->ni_txrate;
1942 	}
1943 	tx->rate = wpi_plcp_signal(rate);
1944 
1945 	/* be very persistant at sending frames out */
1946 #if 0
1947 	tx->data_ntries = tp->maxretry;
1948 #else
1949 	tx->data_ntries = 15;		/* XXX way too high */
1950 #endif
1951 
1952 	if (ieee80211_radiotap_active_vap(vap)) {
1953 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1954 		tap->wt_flags = 0;
1955 		tap->wt_rate = rate;
1956 		tap->wt_hwqueue = ac;
1957 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1958 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1959 
1960 		ieee80211_radiotap_tx(vap, m0);
1961 	}
1962 
1963 	/* save and trim IEEE802.11 header */
1964 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1965 	m_adj(m0, hdrlen);
1966 
1967 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1968 	    &nsegs, BUS_DMA_NOWAIT);
1969 	if (error != 0 && error != EFBIG) {
1970 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1971 		    error);
1972 		m_freem(m0);
1973 		return error;
1974 	}
1975 	if (error != 0) {
1976 		/* XXX use m_collapse */
1977 		mnew = m_defrag(m0, M_DONTWAIT);
1978 		if (mnew == NULL) {
1979 			device_printf(sc->sc_dev,
1980 			    "could not defragment mbuf\n");
1981 			m_freem(m0);
1982 			return ENOBUFS;
1983 		}
1984 		m0 = mnew;
1985 
1986 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1987 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1988 		if (error != 0) {
1989 			device_printf(sc->sc_dev,
1990 			    "could not map mbuf (error %d)\n", error);
1991 			m_freem(m0);
1992 			return error;
1993 		}
1994 	}
1995 
1996 	data->m = m0;
1997 	data->ni = ni;
1998 
1999 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2000 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2001 
2002 	/* first scatter/gather segment is used by the tx data command */
2003 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2004 	    (1 + nsegs) << 24);
2005 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2006 	    ring->cur * sizeof (struct wpi_tx_cmd));
2007 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2008 	for (i = 1; i <= nsegs; i++) {
2009 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2010 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2011 	}
2012 
2013 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2014 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2015 	    BUS_DMASYNC_PREWRITE);
2016 
2017 	ring->queued++;
2018 
2019 	/* kick ring */
2020 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2021 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2022 
2023 	return 0;
2024 }
2025 
2026 /**
2027  * Process data waiting to be sent on the IFNET output queue
2028  */
2029 static void
2030 wpi_start(struct ifnet *ifp)
2031 {
2032 	struct wpi_softc *sc = ifp->if_softc;
2033 
2034 	WPI_LOCK(sc);
2035 	wpi_start_locked(ifp);
2036 	WPI_UNLOCK(sc);
2037 }
2038 
2039 static void
2040 wpi_start_locked(struct ifnet *ifp)
2041 {
2042 	struct wpi_softc *sc = ifp->if_softc;
2043 	struct ieee80211_node *ni;
2044 	struct mbuf *m;
2045 	int ac;
2046 
2047 	WPI_LOCK_ASSERT(sc);
2048 
2049 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2050 		return;
2051 
2052 	for (;;) {
2053 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2054 		if (m == NULL)
2055 			break;
2056 		ac = M_WME_GETAC(m);
2057 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2058 			/* there is no place left in this ring */
2059 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2060 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2061 			break;
2062 		}
2063 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2064 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2065 			ieee80211_free_node(ni);
2066 			ifp->if_oerrors++;
2067 			break;
2068 		}
2069 		sc->sc_tx_timer = 5;
2070 	}
2071 }
2072 
2073 static int
2074 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2075 	const struct ieee80211_bpf_params *params)
2076 {
2077 	struct ieee80211com *ic = ni->ni_ic;
2078 	struct ifnet *ifp = ic->ic_ifp;
2079 	struct wpi_softc *sc = ifp->if_softc;
2080 
2081 	/* prevent management frames from being sent if we're not ready */
2082 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2083 		m_freem(m);
2084 		ieee80211_free_node(ni);
2085 		return ENETDOWN;
2086 	}
2087 	WPI_LOCK(sc);
2088 
2089 	/* management frames go into ring 0 */
2090 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2091 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2092 		m_freem(m);
2093 		WPI_UNLOCK(sc);
2094 		ieee80211_free_node(ni);
2095 		return ENOBUFS;		/* XXX */
2096 	}
2097 
2098 	ifp->if_opackets++;
2099 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2100 		goto bad;
2101 	sc->sc_tx_timer = 5;
2102 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2103 
2104 	WPI_UNLOCK(sc);
2105 	return 0;
2106 bad:
2107 	ifp->if_oerrors++;
2108 	WPI_UNLOCK(sc);
2109 	ieee80211_free_node(ni);
2110 	return EIO;		/* XXX */
2111 }
2112 
2113 static int
2114 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2115 {
2116 	struct wpi_softc *sc = ifp->if_softc;
2117 	struct ieee80211com *ic = ifp->if_l2com;
2118 	struct ifreq *ifr = (struct ifreq *) data;
2119 	int error = 0, startall = 0;
2120 
2121 	switch (cmd) {
2122 	case SIOCSIFFLAGS:
2123 		WPI_LOCK(sc);
2124 		if ((ifp->if_flags & IFF_UP)) {
2125 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2126 				wpi_init_locked(sc, 0);
2127 				startall = 1;
2128 			}
2129 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2130 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2131 			wpi_stop_locked(sc);
2132 		WPI_UNLOCK(sc);
2133 		if (startall)
2134 			ieee80211_start_all(ic);
2135 		break;
2136 	case SIOCGIFMEDIA:
2137 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2138 		break;
2139 	case SIOCGIFADDR:
2140 		error = ether_ioctl(ifp, cmd, data);
2141 		break;
2142 	default:
2143 		error = EINVAL;
2144 		break;
2145 	}
2146 	return error;
2147 }
2148 
2149 /*
2150  * Extract various information from EEPROM.
2151  */
2152 static void
2153 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2154 {
2155 	int i;
2156 
2157 	/* read the hardware capabilities, revision and SKU type */
2158 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2159 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2160 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2161 
2162 	/* read the regulatory domain */
2163 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2164 
2165 	/* read in the hw MAC address */
2166 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2167 
2168 	/* read the list of authorized channels */
2169 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2170 		wpi_read_eeprom_channels(sc,i);
2171 
2172 	/* read the power level calibration info for each group */
2173 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2174 		wpi_read_eeprom_group(sc,i);
2175 }
2176 
2177 /*
2178  * Send a command to the firmware.
2179  */
2180 static int
2181 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2182 {
2183 	struct wpi_tx_ring *ring = &sc->cmdq;
2184 	struct wpi_tx_desc *desc;
2185 	struct wpi_tx_cmd *cmd;
2186 
2187 #ifdef WPI_DEBUG
2188 	if (!async) {
2189 		WPI_LOCK_ASSERT(sc);
2190 	}
2191 #endif
2192 
2193 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2194 		    async));
2195 
2196 	if (sc->flags & WPI_FLAG_BUSY) {
2197 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2198 		    __func__, code);
2199 		return EAGAIN;
2200 	}
2201 	sc->flags|= WPI_FLAG_BUSY;
2202 
2203 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2204 	    code, size));
2205 
2206 	desc = &ring->desc[ring->cur];
2207 	cmd = &ring->cmd[ring->cur];
2208 
2209 	cmd->code = code;
2210 	cmd->flags = 0;
2211 	cmd->qid = ring->qid;
2212 	cmd->idx = ring->cur;
2213 	memcpy(cmd->data, buf, size);
2214 
2215 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2216 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2217 		ring->cur * sizeof (struct wpi_tx_cmd));
2218 	desc->segs[0].len  = htole32(4 + size);
2219 
2220 	/* kick cmd ring */
2221 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2222 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2223 
2224 	if (async) {
2225 		sc->flags &= ~ WPI_FLAG_BUSY;
2226 		return 0;
2227 	}
2228 
2229 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2230 }
2231 
2232 static int
2233 wpi_wme_update(struct ieee80211com *ic)
2234 {
2235 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2236 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2237 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2238 	const struct wmeParams *wmep;
2239 	struct wpi_wme_setup wme;
2240 	int ac;
2241 
2242 	/* don't override default WME values if WME is not actually enabled */
2243 	if (!(ic->ic_flags & IEEE80211_F_WME))
2244 		return 0;
2245 
2246 	wme.flags = 0;
2247 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2248 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2249 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2250 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2251 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2252 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2253 
2254 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2255 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2256 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2257 	}
2258 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2259 #undef WPI_USEC
2260 #undef WPI_EXP2
2261 }
2262 
2263 /*
2264  * Configure h/w multi-rate retries.
2265  */
2266 static int
2267 wpi_mrr_setup(struct wpi_softc *sc)
2268 {
2269 	struct ifnet *ifp = sc->sc_ifp;
2270 	struct ieee80211com *ic = ifp->if_l2com;
2271 	struct wpi_mrr_setup mrr;
2272 	int i, error;
2273 
2274 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2275 
2276 	/* CCK rates (not used with 802.11a) */
2277 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2278 		mrr.rates[i].flags = 0;
2279 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2280 		/* fallback to the immediate lower CCK rate (if any) */
2281 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2282 		/* try one time at this rate before falling back to "next" */
2283 		mrr.rates[i].ntries = 1;
2284 	}
2285 
2286 	/* OFDM rates (not used with 802.11b) */
2287 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2288 		mrr.rates[i].flags = 0;
2289 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2290 		/* fallback to the immediate lower OFDM rate (if any) */
2291 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2292 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2293 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2294 			WPI_OFDM6 : WPI_CCK2) :
2295 		    i - 1;
2296 		/* try one time at this rate before falling back to "next" */
2297 		mrr.rates[i].ntries = 1;
2298 	}
2299 
2300 	/* setup MRR for control frames */
2301 	mrr.which = htole32(WPI_MRR_CTL);
2302 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2303 	if (error != 0) {
2304 		device_printf(sc->sc_dev,
2305 		    "could not setup MRR for control frames\n");
2306 		return error;
2307 	}
2308 
2309 	/* setup MRR for data frames */
2310 	mrr.which = htole32(WPI_MRR_DATA);
2311 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2312 	if (error != 0) {
2313 		device_printf(sc->sc_dev,
2314 		    "could not setup MRR for data frames\n");
2315 		return error;
2316 	}
2317 
2318 	return 0;
2319 }
2320 
2321 static void
2322 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2323 {
2324 	struct wpi_cmd_led led;
2325 
2326 	led.which = which;
2327 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2328 	led.off = off;
2329 	led.on = on;
2330 
2331 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2332 }
2333 
2334 static void
2335 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2336 {
2337 	struct wpi_cmd_tsf tsf;
2338 	uint64_t val, mod;
2339 
2340 	memset(&tsf, 0, sizeof tsf);
2341 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2342 	tsf.bintval = htole16(ni->ni_intval);
2343 	tsf.lintval = htole16(10);
2344 
2345 	/* compute remaining time until next beacon */
2346 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2347 	mod = le64toh(tsf.tstamp) % val;
2348 	tsf.binitval = htole32((uint32_t)(val - mod));
2349 
2350 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2351 		device_printf(sc->sc_dev, "could not enable TSF\n");
2352 }
2353 
2354 #if 0
2355 /*
2356  * Build a beacon frame that the firmware will broadcast periodically in
2357  * IBSS or HostAP modes.
2358  */
2359 static int
2360 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2361 {
2362 	struct ifnet *ifp = sc->sc_ifp;
2363 	struct ieee80211com *ic = ifp->if_l2com;
2364 	struct wpi_tx_ring *ring = &sc->cmdq;
2365 	struct wpi_tx_desc *desc;
2366 	struct wpi_tx_data *data;
2367 	struct wpi_tx_cmd *cmd;
2368 	struct wpi_cmd_beacon *bcn;
2369 	struct ieee80211_beacon_offsets bo;
2370 	struct mbuf *m0;
2371 	bus_addr_t physaddr;
2372 	int error;
2373 
2374 	desc = &ring->desc[ring->cur];
2375 	data = &ring->data[ring->cur];
2376 
2377 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2378 	if (m0 == NULL) {
2379 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2380 		return ENOMEM;
2381 	}
2382 
2383 	cmd = &ring->cmd[ring->cur];
2384 	cmd->code = WPI_CMD_SET_BEACON;
2385 	cmd->flags = 0;
2386 	cmd->qid = ring->qid;
2387 	cmd->idx = ring->cur;
2388 
2389 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2390 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2391 	bcn->id = WPI_ID_BROADCAST;
2392 	bcn->ofdm_mask = 0xff;
2393 	bcn->cck_mask = 0x0f;
2394 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2395 	bcn->len = htole16(m0->m_pkthdr.len);
2396 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2397 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2398 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2399 
2400 	/* save and trim IEEE802.11 header */
2401 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2402 	m_adj(m0, sizeof (struct ieee80211_frame));
2403 
2404 	/* assume beacon frame is contiguous */
2405 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2406 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2407 	if (error != 0) {
2408 		device_printf(sc->sc_dev, "could not map beacon\n");
2409 		m_freem(m0);
2410 		return error;
2411 	}
2412 
2413 	data->m = m0;
2414 
2415 	/* first scatter/gather segment is used by the beacon command */
2416 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2417 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2418 		ring->cur * sizeof (struct wpi_tx_cmd));
2419 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2420 	desc->segs[1].addr = htole32(physaddr);
2421 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2422 
2423 	/* kick cmd ring */
2424 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2425 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2426 
2427 	return 0;
2428 }
2429 #endif
2430 
2431 static int
2432 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2433 {
2434 	struct ieee80211com *ic = vap->iv_ic;
2435 	struct ieee80211_node *ni = vap->iv_bss;
2436 	struct wpi_node_info node;
2437 	int error;
2438 
2439 
2440 	/* update adapter's configuration */
2441 	sc->config.associd = 0;
2442 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2443 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2444 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2445 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2446 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2447 		    WPI_CONFIG_24GHZ);
2448 	} else {
2449 		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2450 		    WPI_CONFIG_24GHZ);
2451 	}
2452 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2453 		sc->config.cck_mask  = 0;
2454 		sc->config.ofdm_mask = 0x15;
2455 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2456 		sc->config.cck_mask  = 0x03;
2457 		sc->config.ofdm_mask = 0;
2458 	} else {
2459 		/* XXX assume 802.11b/g */
2460 		sc->config.cck_mask  = 0x0f;
2461 		sc->config.ofdm_mask = 0x15;
2462 	}
2463 
2464 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2465 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2466 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2467 		sizeof (struct wpi_config), 1);
2468 	if (error != 0) {
2469 		device_printf(sc->sc_dev, "could not configure\n");
2470 		return error;
2471 	}
2472 
2473 	/* configuration has changed, set Tx power accordingly */
2474 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2475 		device_printf(sc->sc_dev, "could not set Tx power\n");
2476 		return error;
2477 	}
2478 
2479 	/* add default node */
2480 	memset(&node, 0, sizeof node);
2481 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2482 	node.id = WPI_ID_BSS;
2483 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2484 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2485 	node.action = htole32(WPI_ACTION_SET_RATE);
2486 	node.antenna = WPI_ANTENNA_BOTH;
2487 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2488 	if (error != 0)
2489 		device_printf(sc->sc_dev, "could not add BSS node\n");
2490 
2491 	return (error);
2492 }
2493 
2494 static int
2495 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2496 {
2497 	struct ieee80211com *ic = vap->iv_ic;
2498 	struct ieee80211_node *ni = vap->iv_bss;
2499 	int error;
2500 
2501 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2502 		/* link LED blinks while monitoring */
2503 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2504 		return 0;
2505 	}
2506 
2507 	wpi_enable_tsf(sc, ni);
2508 
2509 	/* update adapter's configuration */
2510 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2511 	/* short preamble/slot time are negotiated when associating */
2512 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2513 	    WPI_CONFIG_SHSLOT);
2514 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2515 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2516 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2517 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2518 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2519 
2520 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2521 
2522 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2523 		    sc->config.flags));
2524 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2525 		    wpi_config), 1);
2526 	if (error != 0) {
2527 		device_printf(sc->sc_dev, "could not update configuration\n");
2528 		return error;
2529 	}
2530 
2531 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2532 	if (error != 0) {
2533 		device_printf(sc->sc_dev, "could set txpower\n");
2534 		return error;
2535 	}
2536 
2537 	/* link LED always on while associated */
2538 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2539 
2540 	/* start automatic rate control timer */
2541 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2542 
2543 	return (error);
2544 }
2545 
2546 /*
2547  * Send a scan request to the firmware.  Since this command is huge, we map it
2548  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2549  * much of this code is similar to that in wpi_cmd but because we must manually
2550  * construct the probe & channels, we duplicate what's needed here. XXX In the
2551  * future, this function should be modified to use wpi_cmd to help cleanup the
2552  * code base.
2553  */
2554 static int
2555 wpi_scan(struct wpi_softc *sc)
2556 {
2557 	struct ifnet *ifp = sc->sc_ifp;
2558 	struct ieee80211com *ic = ifp->if_l2com;
2559 	struct ieee80211_scan_state *ss = ic->ic_scan;
2560 	struct wpi_tx_ring *ring = &sc->cmdq;
2561 	struct wpi_tx_desc *desc;
2562 	struct wpi_tx_data *data;
2563 	struct wpi_tx_cmd *cmd;
2564 	struct wpi_scan_hdr *hdr;
2565 	struct wpi_scan_chan *chan;
2566 	struct ieee80211_frame *wh;
2567 	struct ieee80211_rateset *rs;
2568 	struct ieee80211_channel *c;
2569 	enum ieee80211_phymode mode;
2570 	uint8_t *frm;
2571 	int nrates, pktlen, error, i, nssid;
2572 	bus_addr_t physaddr;
2573 
2574 	desc = &ring->desc[ring->cur];
2575 	data = &ring->data[ring->cur];
2576 
2577 	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2578 	if (data->m == NULL) {
2579 		device_printf(sc->sc_dev,
2580 		    "could not allocate mbuf for scan command\n");
2581 		return ENOMEM;
2582 	}
2583 
2584 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2585 	cmd->code = WPI_CMD_SCAN;
2586 	cmd->flags = 0;
2587 	cmd->qid = ring->qid;
2588 	cmd->idx = ring->cur;
2589 
2590 	hdr = (struct wpi_scan_hdr *)cmd->data;
2591 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2592 
2593 	/*
2594 	 * Move to the next channel if no packets are received within 5 msecs
2595 	 * after sending the probe request (this helps to reduce the duration
2596 	 * of active scans).
2597 	 */
2598 	hdr->quiet = htole16(5);
2599 	hdr->threshold = htole16(1);
2600 
2601 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2602 		/* send probe requests at 6Mbps */
2603 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2604 
2605 		/* Enable crc checking */
2606 		hdr->promotion = htole16(1);
2607 	} else {
2608 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2609 		/* send probe requests at 1Mbps */
2610 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2611 	}
2612 	hdr->tx.id = WPI_ID_BROADCAST;
2613 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2614 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2615 
2616 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2617 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2618 	for (i = 0; i < nssid; i++) {
2619 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2620 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2621 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2622 		    hdr->scan_essids[i].esslen);
2623 #ifdef WPI_DEBUG
2624 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2625 			printf("Scanning Essid: ");
2626 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2627 			    hdr->scan_essids[i].esslen);
2628 			printf("\n");
2629 		}
2630 #endif
2631 	}
2632 
2633 	/*
2634 	 * Build a probe request frame.  Most of the following code is a
2635 	 * copy & paste of what is done in net80211.
2636 	 */
2637 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2638 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2639 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2640 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2641 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2642 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2643 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2644 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2645 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2646 
2647 	frm = (uint8_t *)(wh + 1);
2648 
2649 	/* add essid IE, the hardware will fill this in for us */
2650 	*frm++ = IEEE80211_ELEMID_SSID;
2651 	*frm++ = 0;
2652 
2653 	mode = ieee80211_chan2mode(ic->ic_curchan);
2654 	rs = &ic->ic_sup_rates[mode];
2655 
2656 	/* add supported rates IE */
2657 	*frm++ = IEEE80211_ELEMID_RATES;
2658 	nrates = rs->rs_nrates;
2659 	if (nrates > IEEE80211_RATE_SIZE)
2660 		nrates = IEEE80211_RATE_SIZE;
2661 	*frm++ = nrates;
2662 	memcpy(frm, rs->rs_rates, nrates);
2663 	frm += nrates;
2664 
2665 	/* add supported xrates IE */
2666 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2667 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2668 		*frm++ = IEEE80211_ELEMID_XRATES;
2669 		*frm++ = nrates;
2670 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2671 		frm += nrates;
2672 	}
2673 
2674 	/* setup length of probe request */
2675 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2676 
2677 	/*
2678 	 * Construct information about the channel that we
2679 	 * want to scan. The firmware expects this to be directly
2680 	 * after the scan probe request
2681 	 */
2682 	c = ic->ic_curchan;
2683 	chan = (struct wpi_scan_chan *)frm;
2684 	chan->chan = ieee80211_chan2ieee(ic, c);
2685 	chan->flags = 0;
2686 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2687 		chan->flags |= WPI_CHAN_ACTIVE;
2688 		if (nssid != 0)
2689 			chan->flags |= WPI_CHAN_DIRECT;
2690 	}
2691 	chan->gain_dsp = 0x6e; /* Default level */
2692 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2693 		chan->active = htole16(10);
2694 		chan->passive = htole16(ss->ss_maxdwell);
2695 		chan->gain_radio = 0x3b;
2696 	} else {
2697 		chan->active = htole16(20);
2698 		chan->passive = htole16(ss->ss_maxdwell);
2699 		chan->gain_radio = 0x28;
2700 	}
2701 
2702 	DPRINTFN(WPI_DEBUG_SCANNING,
2703 	    ("Scanning %u Passive: %d\n",
2704 	     chan->chan,
2705 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2706 
2707 	hdr->nchan++;
2708 	chan++;
2709 
2710 	frm += sizeof (struct wpi_scan_chan);
2711 #if 0
2712 	// XXX All Channels....
2713 	for (c  = &ic->ic_channels[1];
2714 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2715 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2716 			continue;
2717 
2718 		chan->chan = ieee80211_chan2ieee(ic, c);
2719 		chan->flags = 0;
2720 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2721 		    chan->flags |= WPI_CHAN_ACTIVE;
2722 		    if (ic->ic_des_ssid[0].len != 0)
2723 			chan->flags |= WPI_CHAN_DIRECT;
2724 		}
2725 		chan->gain_dsp = 0x6e; /* Default level */
2726 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2727 			chan->active = htole16(10);
2728 			chan->passive = htole16(110);
2729 			chan->gain_radio = 0x3b;
2730 		} else {
2731 			chan->active = htole16(20);
2732 			chan->passive = htole16(120);
2733 			chan->gain_radio = 0x28;
2734 		}
2735 
2736 		DPRINTFN(WPI_DEBUG_SCANNING,
2737 			 ("Scanning %u Passive: %d\n",
2738 			  chan->chan,
2739 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2740 
2741 		hdr->nchan++;
2742 		chan++;
2743 
2744 		frm += sizeof (struct wpi_scan_chan);
2745 	}
2746 #endif
2747 
2748 	hdr->len = htole16(frm - (uint8_t *)hdr);
2749 	pktlen = frm - (uint8_t *)cmd;
2750 
2751 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2752 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2753 	if (error != 0) {
2754 		device_printf(sc->sc_dev, "could not map scan command\n");
2755 		m_freem(data->m);
2756 		data->m = NULL;
2757 		return error;
2758 	}
2759 
2760 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2761 	desc->segs[0].addr = htole32(physaddr);
2762 	desc->segs[0].len  = htole32(pktlen);
2763 
2764 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2765 	    BUS_DMASYNC_PREWRITE);
2766 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2767 
2768 	/* kick cmd ring */
2769 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2770 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2771 
2772 	sc->sc_scan_timer = 5;
2773 	return 0;	/* will be notified async. of failure/success */
2774 }
2775 
2776 /**
2777  * Configure the card to listen to a particular channel, this transisions the
2778  * card in to being able to receive frames from remote devices.
2779  */
2780 static int
2781 wpi_config(struct wpi_softc *sc)
2782 {
2783 	struct ifnet *ifp = sc->sc_ifp;
2784 	struct ieee80211com *ic = ifp->if_l2com;
2785 	struct wpi_power power;
2786 	struct wpi_bluetooth bluetooth;
2787 	struct wpi_node_info node;
2788 	int error;
2789 
2790 	/* set power mode */
2791 	memset(&power, 0, sizeof power);
2792 	power.flags = htole32(WPI_POWER_CAM|0x8);
2793 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2794 	if (error != 0) {
2795 		device_printf(sc->sc_dev, "could not set power mode\n");
2796 		return error;
2797 	}
2798 
2799 	/* configure bluetooth coexistence */
2800 	memset(&bluetooth, 0, sizeof bluetooth);
2801 	bluetooth.flags = 3;
2802 	bluetooth.lead = 0xaa;
2803 	bluetooth.kill = 1;
2804 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2805 	    0);
2806 	if (error != 0) {
2807 		device_printf(sc->sc_dev,
2808 		    "could not configure bluetooth coexistence\n");
2809 		return error;
2810 	}
2811 
2812 	/* configure adapter */
2813 	memset(&sc->config, 0, sizeof (struct wpi_config));
2814 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2815 	/*set default channel*/
2816 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2817 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2818 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2819 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2820 		    WPI_CONFIG_24GHZ);
2821 	}
2822 	sc->config.filter = 0;
2823 	switch (ic->ic_opmode) {
2824 	case IEEE80211_M_STA:
2825 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2826 		sc->config.mode = WPI_MODE_STA;
2827 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2828 		break;
2829 	case IEEE80211_M_IBSS:
2830 	case IEEE80211_M_AHDEMO:
2831 		sc->config.mode = WPI_MODE_IBSS;
2832 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2833 					     WPI_FILTER_MULTICAST);
2834 		break;
2835 	case IEEE80211_M_HOSTAP:
2836 		sc->config.mode = WPI_MODE_HOSTAP;
2837 		break;
2838 	case IEEE80211_M_MONITOR:
2839 		sc->config.mode = WPI_MODE_MONITOR;
2840 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2841 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2842 		break;
2843 	default:
2844 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2845 		return EINVAL;
2846 	}
2847 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2848 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2849 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2850 		sizeof (struct wpi_config), 0);
2851 	if (error != 0) {
2852 		device_printf(sc->sc_dev, "configure command failed\n");
2853 		return error;
2854 	}
2855 
2856 	/* configuration has changed, set Tx power accordingly */
2857 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2858 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2859 	    return error;
2860 	}
2861 
2862 	/* add broadcast node */
2863 	memset(&node, 0, sizeof node);
2864 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2865 	node.id = WPI_ID_BROADCAST;
2866 	node.rate = wpi_plcp_signal(2);
2867 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2868 	if (error != 0) {
2869 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2870 		return error;
2871 	}
2872 
2873 	/* Setup rate scalling */
2874 	error = wpi_mrr_setup(sc);
2875 	if (error != 0) {
2876 		device_printf(sc->sc_dev, "could not setup MRR\n");
2877 		return error;
2878 	}
2879 
2880 	return 0;
2881 }
2882 
2883 static void
2884 wpi_stop_master(struct wpi_softc *sc)
2885 {
2886 	uint32_t tmp;
2887 	int ntries;
2888 
2889 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2890 
2891 	tmp = WPI_READ(sc, WPI_RESET);
2892 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2893 
2894 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2895 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2896 		return;	/* already asleep */
2897 
2898 	for (ntries = 0; ntries < 100; ntries++) {
2899 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2900 			break;
2901 		DELAY(10);
2902 	}
2903 	if (ntries == 100) {
2904 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2905 	}
2906 }
2907 
2908 static int
2909 wpi_power_up(struct wpi_softc *sc)
2910 {
2911 	uint32_t tmp;
2912 	int ntries;
2913 
2914 	wpi_mem_lock(sc);
2915 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2916 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2917 	wpi_mem_unlock(sc);
2918 
2919 	for (ntries = 0; ntries < 5000; ntries++) {
2920 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2921 			break;
2922 		DELAY(10);
2923 	}
2924 	if (ntries == 5000) {
2925 		device_printf(sc->sc_dev,
2926 		    "timeout waiting for NIC to power up\n");
2927 		return ETIMEDOUT;
2928 	}
2929 	return 0;
2930 }
2931 
2932 static int
2933 wpi_reset(struct wpi_softc *sc)
2934 {
2935 	uint32_t tmp;
2936 	int ntries;
2937 
2938 	DPRINTFN(WPI_DEBUG_HW,
2939 	    ("Resetting the card - clearing any uploaded firmware\n"));
2940 
2941 	/* clear any pending interrupts */
2942 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2943 
2944 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2945 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2946 
2947 	tmp = WPI_READ(sc, WPI_CHICKEN);
2948 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2949 
2950 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2951 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2952 
2953 	/* wait for clock stabilization */
2954 	for (ntries = 0; ntries < 25000; ntries++) {
2955 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2956 			break;
2957 		DELAY(10);
2958 	}
2959 	if (ntries == 25000) {
2960 		device_printf(sc->sc_dev,
2961 		    "timeout waiting for clock stabilization\n");
2962 		return ETIMEDOUT;
2963 	}
2964 
2965 	/* initialize EEPROM */
2966 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2967 
2968 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2969 		device_printf(sc->sc_dev, "EEPROM not found\n");
2970 		return EIO;
2971 	}
2972 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2973 
2974 	return 0;
2975 }
2976 
2977 static void
2978 wpi_hw_config(struct wpi_softc *sc)
2979 {
2980 	uint32_t rev, hw;
2981 
2982 	/* voodoo from the Linux "driver".. */
2983 	hw = WPI_READ(sc, WPI_HWCONFIG);
2984 
2985 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2986 	if ((rev & 0xc0) == 0x40)
2987 		hw |= WPI_HW_ALM_MB;
2988 	else if (!(rev & 0x80))
2989 		hw |= WPI_HW_ALM_MM;
2990 
2991 	if (sc->cap == 0x80)
2992 		hw |= WPI_HW_SKU_MRC;
2993 
2994 	hw &= ~WPI_HW_REV_D;
2995 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2996 		hw |= WPI_HW_REV_D;
2997 
2998 	if (sc->type > 1)
2999 		hw |= WPI_HW_TYPE_B;
3000 
3001 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3002 }
3003 
3004 static void
3005 wpi_rfkill_resume(struct wpi_softc *sc)
3006 {
3007 	struct ifnet *ifp = sc->sc_ifp;
3008 	struct ieee80211com *ic = ifp->if_l2com;
3009 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3010 	int ntries;
3011 
3012 	/* enable firmware again */
3013 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3014 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3015 
3016 	/* wait for thermal sensors to calibrate */
3017 	for (ntries = 0; ntries < 1000; ntries++) {
3018 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3019 			break;
3020 		DELAY(10);
3021 	}
3022 
3023 	if (ntries == 1000) {
3024 		device_printf(sc->sc_dev,
3025 		    "timeout waiting for thermal calibration\n");
3026 		return;
3027 	}
3028 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3029 
3030 	if (wpi_config(sc) != 0) {
3031 		device_printf(sc->sc_dev, "device config failed\n");
3032 		return;
3033 	}
3034 
3035 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3036 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3037 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3038 
3039 	if (vap != NULL) {
3040 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3041 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3042 				ieee80211_beacon_miss(ic);
3043 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3044 			} else
3045 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3046 		} else {
3047 			ieee80211_scan_next(vap);
3048 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3049 		}
3050 	}
3051 
3052 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3053 }
3054 
3055 static void
3056 wpi_init_locked(struct wpi_softc *sc, int force)
3057 {
3058 	struct ifnet *ifp = sc->sc_ifp;
3059 	uint32_t tmp;
3060 	int ntries, qid;
3061 
3062 	wpi_stop_locked(sc);
3063 	(void)wpi_reset(sc);
3064 
3065 	wpi_mem_lock(sc);
3066 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3067 	DELAY(20);
3068 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3069 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3070 	wpi_mem_unlock(sc);
3071 
3072 	(void)wpi_power_up(sc);
3073 	wpi_hw_config(sc);
3074 
3075 	/* init Rx ring */
3076 	wpi_mem_lock(sc);
3077 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3078 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3079 	    offsetof(struct wpi_shared, next));
3080 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3081 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3082 	wpi_mem_unlock(sc);
3083 
3084 	/* init Tx rings */
3085 	wpi_mem_lock(sc);
3086 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3087 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3088 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3089 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3090 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3091 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3092 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3093 
3094 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3095 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3096 
3097 	for (qid = 0; qid < 6; qid++) {
3098 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3099 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3100 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3101 	}
3102 	wpi_mem_unlock(sc);
3103 
3104 	/* clear "radio off" and "disable command" bits (reversed logic) */
3105 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3106 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3107 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3108 
3109 	/* clear any pending interrupts */
3110 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3111 
3112 	/* enable interrupts */
3113 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3114 
3115 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3116 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3117 
3118 	if ((wpi_load_firmware(sc)) != 0) {
3119 	    device_printf(sc->sc_dev,
3120 		"A problem occurred loading the firmware to the driver\n");
3121 	    return;
3122 	}
3123 
3124 	/* At this point the firmware is up and running. If the hardware
3125 	 * RF switch is turned off thermal calibration will fail, though
3126 	 * the card is still happy to continue to accept commands, catch
3127 	 * this case and schedule a task to watch for it to be turned on.
3128 	 */
3129 	wpi_mem_lock(sc);
3130 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3131 	wpi_mem_unlock(sc);
3132 
3133 	if (!(tmp & 0x1)) {
3134 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3135 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3136 		goto out;
3137 	}
3138 
3139 	/* wait for thermal sensors to calibrate */
3140 	for (ntries = 0; ntries < 1000; ntries++) {
3141 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3142 			break;
3143 		DELAY(10);
3144 	}
3145 
3146 	if (ntries == 1000) {
3147 		device_printf(sc->sc_dev,
3148 		    "timeout waiting for thermal sensors calibration\n");
3149 		return;
3150 	}
3151 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3152 
3153 	if (wpi_config(sc) != 0) {
3154 		device_printf(sc->sc_dev, "device config failed\n");
3155 		return;
3156 	}
3157 
3158 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3159 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3160 out:
3161 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3162 }
3163 
3164 static void
3165 wpi_init(void *arg)
3166 {
3167 	struct wpi_softc *sc = arg;
3168 	struct ifnet *ifp = sc->sc_ifp;
3169 	struct ieee80211com *ic = ifp->if_l2com;
3170 
3171 	WPI_LOCK(sc);
3172 	wpi_init_locked(sc, 0);
3173 	WPI_UNLOCK(sc);
3174 
3175 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3176 		ieee80211_start_all(ic);		/* start all vaps */
3177 }
3178 
3179 static void
3180 wpi_stop_locked(struct wpi_softc *sc)
3181 {
3182 	struct ifnet *ifp = sc->sc_ifp;
3183 	uint32_t tmp;
3184 	int ac;
3185 
3186 	sc->sc_tx_timer = 0;
3187 	sc->sc_scan_timer = 0;
3188 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3189 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3190 	callout_stop(&sc->watchdog_to);
3191 	callout_stop(&sc->calib_to);
3192 
3193 
3194 	/* disable interrupts */
3195 	WPI_WRITE(sc, WPI_MASK, 0);
3196 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3197 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3198 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3199 
3200 	wpi_mem_lock(sc);
3201 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3202 	wpi_mem_unlock(sc);
3203 
3204 	/* reset all Tx rings */
3205 	for (ac = 0; ac < 4; ac++)
3206 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3207 	wpi_reset_tx_ring(sc, &sc->cmdq);
3208 
3209 	/* reset Rx ring */
3210 	wpi_reset_rx_ring(sc, &sc->rxq);
3211 
3212 	wpi_mem_lock(sc);
3213 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3214 	wpi_mem_unlock(sc);
3215 
3216 	DELAY(5);
3217 
3218 	wpi_stop_master(sc);
3219 
3220 	tmp = WPI_READ(sc, WPI_RESET);
3221 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3222 	sc->flags &= ~WPI_FLAG_BUSY;
3223 }
3224 
3225 static void
3226 wpi_stop(struct wpi_softc *sc)
3227 {
3228 	WPI_LOCK(sc);
3229 	wpi_stop_locked(sc);
3230 	WPI_UNLOCK(sc);
3231 }
3232 
3233 static void
3234 wpi_calib_timeout(void *arg)
3235 {
3236 	struct wpi_softc *sc = arg;
3237 	struct ifnet *ifp = sc->sc_ifp;
3238 	struct ieee80211com *ic = ifp->if_l2com;
3239 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3240 	int temp;
3241 
3242 	if (vap->iv_state != IEEE80211_S_RUN)
3243 		return;
3244 
3245 	/* update sensor data */
3246 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3247 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3248 
3249 	wpi_power_calibration(sc, temp);
3250 
3251 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3252 }
3253 
3254 /*
3255  * This function is called periodically (every 60 seconds) to adjust output
3256  * power to temperature changes.
3257  */
3258 static void
3259 wpi_power_calibration(struct wpi_softc *sc, int temp)
3260 {
3261 	struct ifnet *ifp = sc->sc_ifp;
3262 	struct ieee80211com *ic = ifp->if_l2com;
3263 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3264 
3265 	/* sanity-check read value */
3266 	if (temp < -260 || temp > 25) {
3267 		/* this can't be correct, ignore */
3268 		DPRINTFN(WPI_DEBUG_TEMP,
3269 		    ("out-of-range temperature reported: %d\n", temp));
3270 		return;
3271 	}
3272 
3273 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3274 
3275 	/* adjust Tx power if need be */
3276 	if (abs(temp - sc->temp) <= 6)
3277 		return;
3278 
3279 	sc->temp = temp;
3280 
3281 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3282 		/* just warn, too bad for the automatic calibration... */
3283 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3284 	}
3285 }
3286 
3287 /**
3288  * Read the eeprom to find out what channels are valid for the given
3289  * band and update net80211 with what we find.
3290  */
3291 static void
3292 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3293 {
3294 	struct ifnet *ifp = sc->sc_ifp;
3295 	struct ieee80211com *ic = ifp->if_l2com;
3296 	const struct wpi_chan_band *band = &wpi_bands[n];
3297 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3298 	struct ieee80211_channel *c;
3299 	int chan, i, passive;
3300 
3301 	wpi_read_prom_data(sc, band->addr, channels,
3302 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3303 
3304 	for (i = 0; i < band->nchan; i++) {
3305 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3306 			DPRINTFN(WPI_DEBUG_HW,
3307 			    ("Channel Not Valid: %d, band %d\n",
3308 			     band->chan[i],n));
3309 			continue;
3310 		}
3311 
3312 		passive = 0;
3313 		chan = band->chan[i];
3314 		c = &ic->ic_channels[ic->ic_nchans++];
3315 
3316 		/* is active scan allowed on this channel? */
3317 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3318 			passive = IEEE80211_CHAN_PASSIVE;
3319 		}
3320 
3321 		if (n == 0) {	/* 2GHz band */
3322 			c->ic_ieee = chan;
3323 			c->ic_freq = ieee80211_ieee2mhz(chan,
3324 			    IEEE80211_CHAN_2GHZ);
3325 			c->ic_flags = IEEE80211_CHAN_B | passive;
3326 
3327 			c = &ic->ic_channels[ic->ic_nchans++];
3328 			c->ic_ieee = chan;
3329 			c->ic_freq = ieee80211_ieee2mhz(chan,
3330 			    IEEE80211_CHAN_2GHZ);
3331 			c->ic_flags = IEEE80211_CHAN_G | passive;
3332 
3333 		} else {	/* 5GHz band */
3334 			/*
3335 			 * Some 3945ABG adapters support channels 7, 8, 11
3336 			 * and 12 in the 2GHz *and* 5GHz bands.
3337 			 * Because of limitations in our net80211(9) stack,
3338 			 * we can't support these channels in 5GHz band.
3339 			 * XXX not true; just need to map to proper frequency
3340 			 */
3341 			if (chan <= 14)
3342 				continue;
3343 
3344 			c->ic_ieee = chan;
3345 			c->ic_freq = ieee80211_ieee2mhz(chan,
3346 			    IEEE80211_CHAN_5GHZ);
3347 			c->ic_flags = IEEE80211_CHAN_A | passive;
3348 		}
3349 
3350 		/* save maximum allowed power for this channel */
3351 		sc->maxpwr[chan] = channels[i].maxpwr;
3352 
3353 #if 0
3354 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3355 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3356 		//ic->ic_channels[chan].ic_minpower...
3357 		//ic->ic_channels[chan].ic_maxregtxpower...
3358 #endif
3359 
3360 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3361 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3362 		    channels[i].flags, sc->maxpwr[chan],
3363 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3364 		    ic->ic_nchans));
3365 	}
3366 }
3367 
3368 static void
3369 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3370 {
3371 	struct wpi_power_group *group = &sc->groups[n];
3372 	struct wpi_eeprom_group rgroup;
3373 	int i;
3374 
3375 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3376 	    sizeof rgroup);
3377 
3378 	/* save power group information */
3379 	group->chan   = rgroup.chan;
3380 	group->maxpwr = rgroup.maxpwr;
3381 	/* temperature at which the samples were taken */
3382 	group->temp   = (int16_t)le16toh(rgroup.temp);
3383 
3384 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3385 		    group->chan, group->maxpwr, group->temp));
3386 
3387 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3388 		group->samples[i].index = rgroup.samples[i].index;
3389 		group->samples[i].power = rgroup.samples[i].power;
3390 
3391 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3392 			    group->samples[i].index, group->samples[i].power));
3393 	}
3394 }
3395 
3396 /*
3397  * Update Tx power to match what is defined for channel `c'.
3398  */
3399 static int
3400 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3401 {
3402 	struct ifnet *ifp = sc->sc_ifp;
3403 	struct ieee80211com *ic = ifp->if_l2com;
3404 	struct wpi_power_group *group;
3405 	struct wpi_cmd_txpower txpower;
3406 	u_int chan;
3407 	int i;
3408 
3409 	/* get channel number */
3410 	chan = ieee80211_chan2ieee(ic, c);
3411 
3412 	/* find the power group to which this channel belongs */
3413 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3414 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3415 			if (chan <= group->chan)
3416 				break;
3417 	} else
3418 		group = &sc->groups[0];
3419 
3420 	memset(&txpower, 0, sizeof txpower);
3421 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3422 	txpower.channel = htole16(chan);
3423 
3424 	/* set Tx power for all OFDM and CCK rates */
3425 	for (i = 0; i <= 11 ; i++) {
3426 		/* retrieve Tx power for this channel/rate combination */
3427 		int idx = wpi_get_power_index(sc, group, c,
3428 		    wpi_ridx_to_rate[i]);
3429 
3430 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3431 
3432 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3433 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3434 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3435 		} else {
3436 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3437 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3438 		}
3439 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3440 			    chan, wpi_ridx_to_rate[i], idx));
3441 	}
3442 
3443 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3444 }
3445 
3446 /*
3447  * Determine Tx power index for a given channel/rate combination.
3448  * This takes into account the regulatory information from EEPROM and the
3449  * current temperature.
3450  */
3451 static int
3452 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3453     struct ieee80211_channel *c, int rate)
3454 {
3455 /* fixed-point arithmetic division using a n-bit fractional part */
3456 #define fdivround(a, b, n)      \
3457 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3458 
3459 /* linear interpolation */
3460 #define interpolate(x, x1, y1, x2, y2, n)       \
3461 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3462 
3463 	struct ifnet *ifp = sc->sc_ifp;
3464 	struct ieee80211com *ic = ifp->if_l2com;
3465 	struct wpi_power_sample *sample;
3466 	int pwr, idx;
3467 	u_int chan;
3468 
3469 	/* get channel number */
3470 	chan = ieee80211_chan2ieee(ic, c);
3471 
3472 	/* default power is group's maximum power - 3dB */
3473 	pwr = group->maxpwr / 2;
3474 
3475 	/* decrease power for highest OFDM rates to reduce distortion */
3476 	switch (rate) {
3477 		case 72:	/* 36Mb/s */
3478 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3479 			break;
3480 		case 96:	/* 48Mb/s */
3481 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3482 			break;
3483 		case 108:	/* 54Mb/s */
3484 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3485 			break;
3486 	}
3487 
3488 	/* never exceed channel's maximum allowed Tx power */
3489 	pwr = min(pwr, sc->maxpwr[chan]);
3490 
3491 	/* retrieve power index into gain tables from samples */
3492 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3493 		if (pwr > sample[1].power)
3494 			break;
3495 	/* fixed-point linear interpolation using a 19-bit fractional part */
3496 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3497 	    sample[1].power, sample[1].index, 19);
3498 
3499 	/*
3500 	 *  Adjust power index based on current temperature
3501 	 *	- if colder than factory-calibrated: decreate output power
3502 	 *	- if warmer than factory-calibrated: increase output power
3503 	 */
3504 	idx -= (sc->temp - group->temp) * 11 / 100;
3505 
3506 	/* decrease power for CCK rates (-5dB) */
3507 	if (!WPI_RATE_IS_OFDM(rate))
3508 		idx += 10;
3509 
3510 	/* keep power index in a valid range */
3511 	if (idx < 0)
3512 		return 0;
3513 	if (idx > WPI_MAX_PWR_INDEX)
3514 		return WPI_MAX_PWR_INDEX;
3515 	return idx;
3516 
3517 #undef interpolate
3518 #undef fdivround
3519 }
3520 
3521 /**
3522  * Called by net80211 framework to indicate that a scan
3523  * is starting. This function doesn't actually do the scan,
3524  * wpi_scan_curchan starts things off. This function is more
3525  * of an early warning from the framework we should get ready
3526  * for the scan.
3527  */
3528 static void
3529 wpi_scan_start(struct ieee80211com *ic)
3530 {
3531 	struct ifnet *ifp = ic->ic_ifp;
3532 	struct wpi_softc *sc = ifp->if_softc;
3533 
3534 	WPI_LOCK(sc);
3535 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3536 	WPI_UNLOCK(sc);
3537 }
3538 
3539 /**
3540  * Called by the net80211 framework, indicates that the
3541  * scan has ended. If there is a scan in progress on the card
3542  * then it should be aborted.
3543  */
3544 static void
3545 wpi_scan_end(struct ieee80211com *ic)
3546 {
3547 	/* XXX ignore */
3548 }
3549 
3550 /**
3551  * Called by the net80211 framework to indicate to the driver
3552  * that the channel should be changed
3553  */
3554 static void
3555 wpi_set_channel(struct ieee80211com *ic)
3556 {
3557 	struct ifnet *ifp = ic->ic_ifp;
3558 	struct wpi_softc *sc = ifp->if_softc;
3559 	int error;
3560 
3561 	/*
3562 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3563 	 * are already taken care of by their respective firmware commands.
3564 	 */
3565 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3566 		WPI_LOCK(sc);
3567 		error = wpi_config(sc);
3568 		WPI_UNLOCK(sc);
3569 		if (error != 0)
3570 			device_printf(sc->sc_dev,
3571 			    "error %d settting channel\n", error);
3572 	}
3573 }
3574 
3575 /**
3576  * Called by net80211 to indicate that we need to scan the current
3577  * channel. The channel is previously be set via the wpi_set_channel
3578  * callback.
3579  */
3580 static void
3581 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3582 {
3583 	struct ieee80211vap *vap = ss->ss_vap;
3584 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3585 	struct wpi_softc *sc = ifp->if_softc;
3586 
3587 	WPI_LOCK(sc);
3588 	if (wpi_scan(sc))
3589 		ieee80211_cancel_scan(vap);
3590 	WPI_UNLOCK(sc);
3591 }
3592 
3593 /**
3594  * Called by the net80211 framework to indicate
3595  * the minimum dwell time has been met, terminate the scan.
3596  * We don't actually terminate the scan as the firmware will notify
3597  * us when it's finished and we have no way to interrupt it.
3598  */
3599 static void
3600 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3601 {
3602 	/* NB: don't try to abort scan; wait for firmware to finish */
3603 }
3604 
3605 static void
3606 wpi_hwreset(void *arg, int pending)
3607 {
3608 	struct wpi_softc *sc = arg;
3609 
3610 	WPI_LOCK(sc);
3611 	wpi_init_locked(sc, 0);
3612 	WPI_UNLOCK(sc);
3613 }
3614 
3615 static void
3616 wpi_rfreset(void *arg, int pending)
3617 {
3618 	struct wpi_softc *sc = arg;
3619 
3620 	WPI_LOCK(sc);
3621 	wpi_rfkill_resume(sc);
3622 	WPI_UNLOCK(sc);
3623 }
3624 
3625 /*
3626  * Allocate DMA-safe memory for firmware transfer.
3627  */
3628 static int
3629 wpi_alloc_fwmem(struct wpi_softc *sc)
3630 {
3631 	/* allocate enough contiguous space to store text and data */
3632 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3633 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3634 	    BUS_DMA_NOWAIT);
3635 }
3636 
3637 static void
3638 wpi_free_fwmem(struct wpi_softc *sc)
3639 {
3640 	wpi_dma_contig_free(&sc->fw_dma);
3641 }
3642 
3643 /**
3644  * Called every second, wpi_watchdog used by the watch dog timer
3645  * to check that the card is still alive
3646  */
3647 static void
3648 wpi_watchdog(void *arg)
3649 {
3650 	struct wpi_softc *sc = arg;
3651 	struct ifnet *ifp = sc->sc_ifp;
3652 	struct ieee80211com *ic = ifp->if_l2com;
3653 	uint32_t tmp;
3654 
3655 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3656 
3657 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3658 		/* No need to lock firmware memory */
3659 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3660 
3661 		if ((tmp & 0x1) == 0) {
3662 			/* Radio kill switch is still off */
3663 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3664 			return;
3665 		}
3666 
3667 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3668 		ieee80211_runtask(ic, &sc->sc_radiotask);
3669 		return;
3670 	}
3671 
3672 	if (sc->sc_tx_timer > 0) {
3673 		if (--sc->sc_tx_timer == 0) {
3674 			device_printf(sc->sc_dev,"device timeout\n");
3675 			ifp->if_oerrors++;
3676 			ieee80211_runtask(ic, &sc->sc_restarttask);
3677 		}
3678 	}
3679 	if (sc->sc_scan_timer > 0) {
3680 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3681 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3682 			device_printf(sc->sc_dev,"scan timeout\n");
3683 			ieee80211_cancel_scan(vap);
3684 			ieee80211_runtask(ic, &sc->sc_restarttask);
3685 		}
3686 	}
3687 
3688 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3689 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3690 }
3691 
3692 #ifdef WPI_DEBUG
3693 static const char *wpi_cmd_str(int cmd)
3694 {
3695 	switch (cmd) {
3696 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3697 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3698 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3699 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3700 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3701 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3702 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3703 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3704 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3705 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3706 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3707 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3708 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3709 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3710 
3711 	default:
3712 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3713 		return "UNKNOWN CMD";	/* Make the compiler happy */
3714 	}
3715 }
3716 #endif
3717 
3718 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3719 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3720 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3721