xref: /freebsd/sys/dev/xen/blkback/blkback.c (revision e0c4386e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2009-2012 Spectra Logic Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    substantially similar to the "NO WARRANTY" disclaimer below
15  *    ("Disclaimer") and any redistribution must be conditioned upon
16  *    including a substantially similar Disclaimer requirement for further
17  *    binary redistribution.
18  *
19  * NO WARRANTY
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
28  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
29  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGES.
31  *
32  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
33  *          Ken Merry           (Spectra Logic Corporation)
34  */
35 #include <sys/cdefs.h>
36 /**
37  * \file blkback.c
38  *
39  * \brief Device driver supporting the vending of block storage from
40  *        a FreeBSD domain to other domains.
41  */
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 
48 #include <sys/bio.h>
49 #include <sys/bus.h>
50 #include <sys/conf.h>
51 #include <sys/devicestat.h>
52 #include <sys/disk.h>
53 #include <sys/fcntl.h>
54 #include <sys/filedesc.h>
55 #include <sys/kdb.h>
56 #include <sys/module.h>
57 #include <sys/namei.h>
58 #include <sys/proc.h>
59 #include <sys/rman.h>
60 #include <sys/taskqueue.h>
61 #include <sys/types.h>
62 #include <sys/vnode.h>
63 #include <sys/mount.h>
64 #include <sys/sysctl.h>
65 #include <sys/bitstring.h>
66 #include <sys/sdt.h>
67 
68 #include <geom/geom.h>
69 
70 #include <machine/_inttypes.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_extern.h>
74 #include <vm/vm_kern.h>
75 
76 #include <xen/xen-os.h>
77 #include <xen/blkif.h>
78 #include <xen/gnttab.h>
79 #include <xen/xen_intr.h>
80 
81 #include <contrib/xen/event_channel.h>
82 #include <contrib/xen/grant_table.h>
83 
84 #include <xen/xenbus/xenbusvar.h>
85 
86 /*--------------------------- Compile-time Tunables --------------------------*/
87 /**
88  * The maximum number of shared memory ring pages we will allow in a
89  * negotiated block-front/back communication channel.  Allow enough
90  * ring space for all requests to be XBB_MAX_REQUEST_SIZE'd.
91  */
92 #define	XBB_MAX_RING_PAGES		32
93 
94 /**
95  * The maximum number of outstanding request blocks (request headers plus
96  * additional segment blocks) we will allow in a negotiated block-front/back
97  * communication channel.
98  */
99 #define	XBB_MAX_REQUESTS 					\
100 	__CONST_RING_SIZE(blkif, PAGE_SIZE * XBB_MAX_RING_PAGES)
101 
102 /**
103  * \brief Define to enable rudimentary request logging to the console.
104  */
105 #undef XBB_DEBUG
106 
107 /*---------------------------------- Macros ----------------------------------*/
108 /**
109  * Custom malloc type for all driver allocations.
110  */
111 static MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data");
112 
113 #ifdef XBB_DEBUG
114 #define DPRINTF(fmt, args...)					\
115     printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
116 #else
117 #define DPRINTF(fmt, args...) do {} while(0)
118 #endif
119 
120 /**
121  * The maximum mapped region size per request we will allow in a negotiated
122  * block-front/back communication channel.
123  * Use old default of MAXPHYS == 128K.
124  */
125 #define	XBB_MAX_REQUEST_SIZE					\
126 	MIN(128 * 1024, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE)
127 
128 /**
129  * The maximum number of segments (within a request header and accompanying
130  * segment blocks) per request we will allow in a negotiated block-front/back
131  * communication channel.
132  */
133 #define	XBB_MAX_SEGMENTS_PER_REQUEST				\
134 	(MIN(UIO_MAXIOV,					\
135 	     MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST,		\
136 		 (XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1)))
137 
138 /**
139  * The maximum number of ring pages that we can allow per request list.
140  * We limit this to the maximum number of segments per request, because
141  * that is already a reasonable number of segments to aggregate.  This
142  * number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST,
143  * because that would leave situations where we can't dispatch even one
144  * large request.
145  */
146 #define	XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST
147 
148 /*--------------------------- Forward Declarations ---------------------------*/
149 struct xbb_softc;
150 struct xbb_xen_req;
151 
152 static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt,
153 			      ...) __attribute__((format(printf, 3, 4)));
154 static int  xbb_shutdown(struct xbb_softc *xbb);
155 
156 /*------------------------------ Data Structures -----------------------------*/
157 
158 STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req);
159 
160 typedef enum {
161 	XBB_REQLIST_NONE	= 0x00,
162 	XBB_REQLIST_MAPPED	= 0x01
163 } xbb_reqlist_flags;
164 
165 struct xbb_xen_reqlist {
166 	/**
167 	 * Back reference to the parent block back instance for this
168 	 * request.  Used during bio_done handling.
169 	 */
170 	struct xbb_softc        *xbb;
171 
172 	/**
173 	 * BLKIF_OP code for this request.
174 	 */
175 	int			 operation;
176 
177 	/**
178 	 * Set to BLKIF_RSP_* to indicate request status.
179 	 *
180 	 * This field allows an error status to be recorded even if the
181 	 * delivery of this status must be deferred.  Deferred reporting
182 	 * is necessary, for example, when an error is detected during
183 	 * completion processing of one bio when other bios for this
184 	 * request are still outstanding.
185 	 */
186 	int			 status;
187 
188 	/**
189 	 * Number of 512 byte sectors not transferred.
190 	 */
191 	int			 residual_512b_sectors;
192 
193 	/**
194 	 * Starting sector number of the first request in the list.
195 	 */
196 	off_t			 starting_sector_number;
197 
198 	/**
199 	 * If we're going to coalesce, the next contiguous sector would be
200 	 * this one.
201 	 */
202 	off_t			 next_contig_sector;
203 
204 	/**
205 	 * Number of child requests in the list.
206 	 */
207 	int			 num_children;
208 
209 	/**
210 	 * Number of I/O requests still pending on the backend.
211 	 */
212 	int			 pendcnt;
213 
214 	/**
215 	 * Total number of segments for requests in the list.
216 	 */
217 	int			 nr_segments;
218 
219 	/**
220 	 * Flags for this particular request list.
221 	 */
222 	xbb_reqlist_flags	 flags;
223 
224 	/**
225 	 * Kernel virtual address space reserved for this request
226 	 * list structure and used to map the remote domain's pages for
227 	 * this I/O, into our domain's address space.
228 	 */
229 	uint8_t			*kva;
230 
231 	/**
232 	 * Base, pseudo-physical address, corresponding to the start
233 	 * of this request's kva region.
234 	 */
235 	uint64_t	 	 gnt_base;
236 
237 	/**
238 	 * Array of grant handles (one per page) used to map this request.
239 	 */
240 	grant_handle_t		*gnt_handles;
241 
242 	/**
243 	 * Device statistics request ordering type (ordered or simple).
244 	 */
245 	devstat_tag_type	 ds_tag_type;
246 
247 	/**
248 	 * Device statistics request type (read, write, no_data).
249 	 */
250 	devstat_trans_flags	 ds_trans_type;
251 
252 	/**
253 	 * The start time for this request.
254 	 */
255 	struct bintime		 ds_t0;
256 
257 	/**
258 	 * Linked list of contiguous requests with the same operation type.
259 	 */
260 	struct xbb_xen_req_list	 contig_req_list;
261 
262 	/**
263 	 * Linked list links used to aggregate idle requests in the
264 	 * request list free pool (xbb->reqlist_free_stailq) and pending
265 	 * requests waiting for execution (xbb->reqlist_pending_stailq).
266 	 */
267 	STAILQ_ENTRY(xbb_xen_reqlist) links;
268 };
269 
270 STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist);
271 
272 /**
273  * \brief Object tracking an in-flight I/O from a Xen VBD consumer.
274  */
275 struct xbb_xen_req {
276 	/**
277 	 * Linked list links used to aggregate requests into a reqlist
278 	 * and to store them in the request free pool.
279 	 */
280 	STAILQ_ENTRY(xbb_xen_req) links;
281 
282 	/**
283 	 * The remote domain's identifier for this I/O request.
284 	 */
285 	uint64_t		  id;
286 
287 	/**
288 	 * The number of pages currently mapped for this request.
289 	 */
290 	int			  nr_pages;
291 
292 	/**
293 	 * The number of 512 byte sectors comprising this requests.
294 	 */
295 	int			  nr_512b_sectors;
296 
297 	/**
298 	 * BLKIF_OP code for this request.
299 	 */
300 	int			  operation;
301 
302 	/**
303 	 * Storage used for non-native ring requests.
304 	 */
305 	blkif_request_t		 ring_req_storage;
306 
307 	/**
308 	 * Pointer to the Xen request in the ring.
309 	 */
310 	blkif_request_t		*ring_req;
311 
312 	/**
313 	 * Consumer index for this request.
314 	 */
315 	RING_IDX		 req_ring_idx;
316 
317 	/**
318 	 * The start time for this request.
319 	 */
320 	struct bintime		 ds_t0;
321 
322 	/**
323 	 * Pointer back to our parent request list.
324 	 */
325 	struct xbb_xen_reqlist  *reqlist;
326 };
327 SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req);
328 
329 /**
330  * \brief Configuration data for the shared memory request ring
331  *        used to communicate with the front-end client of this
332  *        this driver.
333  */
334 struct xbb_ring_config {
335 	/** KVA address where ring memory is mapped. */
336 	vm_offset_t	va;
337 
338 	/** The pseudo-physical address where ring memory is mapped.*/
339 	uint64_t	gnt_addr;
340 
341 	/**
342 	 * Grant table handles, one per-ring page, returned by the
343 	 * hyperpervisor upon mapping of the ring and required to
344 	 * unmap it when a connection is torn down.
345 	 */
346 	grant_handle_t	handle[XBB_MAX_RING_PAGES];
347 
348 	/**
349 	 * The device bus address returned by the hypervisor when
350 	 * mapping the ring and required to unmap it when a connection
351 	 * is torn down.
352 	 */
353 	uint64_t	bus_addr[XBB_MAX_RING_PAGES];
354 
355 	/** The number of ring pages mapped for the current connection. */
356 	u_int		ring_pages;
357 
358 	/**
359 	 * The grant references, one per-ring page, supplied by the
360 	 * front-end, allowing us to reference the ring pages in the
361 	 * front-end's domain and to map these pages into our own domain.
362 	 */
363 	grant_ref_t	ring_ref[XBB_MAX_RING_PAGES];
364 
365 	/** The interrupt driven even channel used to signal ring events. */
366 	evtchn_port_t   evtchn;
367 };
368 
369 /**
370  * Per-instance connection state flags.
371  */
372 typedef enum
373 {
374 	/**
375 	 * The front-end requested a read-only mount of the
376 	 * back-end device/file.
377 	 */
378 	XBBF_READ_ONLY         = 0x01,
379 
380 	/** Communication with the front-end has been established. */
381 	XBBF_RING_CONNECTED    = 0x02,
382 
383 	/**
384 	 * Front-end requests exist in the ring and are waiting for
385 	 * xbb_xen_req objects to free up.
386 	 */
387 	XBBF_RESOURCE_SHORTAGE = 0x04,
388 
389 	/** Connection teardown in progress. */
390 	XBBF_SHUTDOWN          = 0x08,
391 
392 	/** A thread is already performing shutdown processing. */
393 	XBBF_IN_SHUTDOWN       = 0x10
394 } xbb_flag_t;
395 
396 /** Backend device type.  */
397 typedef enum {
398 	/** Backend type unknown. */
399 	XBB_TYPE_NONE		= 0x00,
400 
401 	/**
402 	 * Backend type disk (access via cdev switch
403 	 * strategy routine).
404 	 */
405 	XBB_TYPE_DISK		= 0x01,
406 
407 	/** Backend type file (access vnode operations.). */
408 	XBB_TYPE_FILE		= 0x02
409 } xbb_type;
410 
411 /**
412  * \brief Structure used to memoize information about a per-request
413  *        scatter-gather list.
414  *
415  * The chief benefit of using this data structure is it avoids having
416  * to reparse the possibly discontiguous S/G list in the original
417  * request.  Due to the way that the mapping of the memory backing an
418  * I/O transaction is handled by Xen, a second pass is unavoidable.
419  * At least this way the second walk is a simple array traversal.
420  *
421  * \note A single Scatter/Gather element in the block interface covers
422  *       at most 1 machine page.  In this context a sector (blkif
423  *       nomenclature, not what I'd choose) is a 512b aligned unit
424  *       of mapping within the machine page referenced by an S/G
425  *       element.
426  */
427 struct xbb_sg {
428 	/** The number of 512b data chunks mapped in this S/G element. */
429 	int16_t nsect;
430 
431 	/**
432 	 * The index (0 based) of the first 512b data chunk mapped
433 	 * in this S/G element.
434 	 */
435 	uint8_t first_sect;
436 
437 	/**
438 	 * The index (0 based) of the last 512b data chunk mapped
439 	 * in this S/G element.
440 	 */
441 	uint8_t last_sect;
442 };
443 
444 /**
445  * Character device backend specific configuration data.
446  */
447 struct xbb_dev_data {
448 	/** Cdev used for device backend access.  */
449 	struct cdev   *cdev;
450 
451 	/** Cdev switch used for device backend access.  */
452 	struct cdevsw *csw;
453 
454 	/** Used to hold a reference on opened cdev backend devices. */
455 	int	       dev_ref;
456 };
457 
458 /**
459  * File backend specific configuration data.
460  */
461 struct xbb_file_data {
462 	/** Credentials to use for vnode backed (file based) I/O. */
463 	struct ucred   *cred;
464 
465 	/**
466 	 * \brief Array of io vectors used to process file based I/O.
467 	 *
468 	 * Only a single file based request is outstanding per-xbb instance,
469 	 * so we only need one of these.
470 	 */
471 	struct iovec	xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
472 };
473 
474 /**
475  * Collection of backend type specific data.
476  */
477 union xbb_backend_data {
478 	struct xbb_dev_data  dev;
479 	struct xbb_file_data file;
480 };
481 
482 /**
483  * Function signature of backend specific I/O handlers.
484  */
485 typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb,
486 			      struct xbb_xen_reqlist *reqlist, int operation,
487 			      int flags);
488 
489 /**
490  * Per-instance configuration data.
491  */
492 struct xbb_softc {
493 	/**
494 	 * Task-queue used to process I/O requests.
495 	 */
496 	struct taskqueue	 *io_taskqueue;
497 
498 	/**
499 	 * Single "run the request queue" task enqueued
500 	 * on io_taskqueue.
501 	 */
502 	struct task		  io_task;
503 
504 	/** Device type for this instance. */
505 	xbb_type		  device_type;
506 
507 	/** NewBus device corresponding to this instance. */
508 	device_t		  dev;
509 
510 	/** Backend specific dispatch routine for this instance. */
511 	xbb_dispatch_t		  dispatch_io;
512 
513 	/** The number of requests outstanding on the backend device/file. */
514 	int			  active_request_count;
515 
516 	/** Free pool of request tracking structures. */
517 	struct xbb_xen_req_list   request_free_stailq;
518 
519 	/** Array, sized at connection time, of request tracking structures. */
520 	struct xbb_xen_req	 *requests;
521 
522 	/** Free pool of request list structures. */
523 	struct xbb_xen_reqlist_list reqlist_free_stailq;
524 
525 	/** List of pending request lists awaiting execution. */
526 	struct xbb_xen_reqlist_list reqlist_pending_stailq;
527 
528 	/** Array, sized at connection time, of request list structures. */
529 	struct xbb_xen_reqlist	 *request_lists;
530 
531 	/**
532 	 * Global pool of kva used for mapping remote domain ring
533 	 * and I/O transaction data.
534 	 */
535 	vm_offset_t		  kva;
536 
537 	/** Pseudo-physical address corresponding to kva. */
538 	uint64_t		  gnt_base_addr;
539 
540 	/** The size of the global kva pool. */
541 	int			  kva_size;
542 
543 	/** The size of the KVA area used for request lists. */
544 	int			  reqlist_kva_size;
545 
546 	/** The number of pages of KVA used for request lists */
547 	int			  reqlist_kva_pages;
548 
549 	/** Bitmap of free KVA pages */
550 	bitstr_t		 *kva_free;
551 
552 	/**
553 	 * \brief Cached value of the front-end's domain id.
554 	 *
555 	 * This value is used at once for each mapped page in
556 	 * a transaction.  We cache it to avoid incuring the
557 	 * cost of an ivar access every time this is needed.
558 	 */
559 	domid_t			  otherend_id;
560 
561 	/**
562 	 * \brief The blkif protocol abi in effect.
563 	 *
564 	 * There are situations where the back and front ends can
565 	 * have a different, native abi (e.g. intel x86_64 and
566 	 * 32bit x86 domains on the same machine).  The back-end
567 	 * always accommodates the front-end's native abi.  That
568 	 * value is pulled from the XenStore and recorded here.
569 	 */
570 	int			  abi;
571 
572 	/**
573 	 * \brief The maximum number of requests and request lists allowed
574 	 *        to be in flight at a time.
575 	 *
576 	 * This value is negotiated via the XenStore.
577 	 */
578 	u_int			  max_requests;
579 
580 	/**
581 	 * \brief The maximum number of segments (1 page per segment)
582 	 *	  that can be mapped by a request.
583 	 *
584 	 * This value is negotiated via the XenStore.
585 	 */
586 	u_int			  max_request_segments;
587 
588 	/**
589 	 * \brief Maximum number of segments per request list.
590 	 *
591 	 * This value is derived from and will generally be larger than
592 	 * max_request_segments.
593 	 */
594 	u_int			  max_reqlist_segments;
595 
596 	/**
597 	 * The maximum size of any request to this back-end
598 	 * device.
599 	 *
600 	 * This value is negotiated via the XenStore.
601 	 */
602 	u_int			  max_request_size;
603 
604 	/**
605 	 * The maximum size of any request list.  This is derived directly
606 	 * from max_reqlist_segments.
607 	 */
608 	u_int			  max_reqlist_size;
609 
610 	/** Various configuration and state bit flags. */
611 	xbb_flag_t		  flags;
612 
613 	/** Ring mapping and interrupt configuration data. */
614 	struct xbb_ring_config	  ring_config;
615 
616 	/** Runtime, cross-abi safe, structures for ring access. */
617 	blkif_back_rings_t	  rings;
618 
619 	/** IRQ mapping for the communication ring event channel. */
620 	xen_intr_handle_t	  xen_intr_handle;
621 
622 	/**
623 	 * \brief Backend access mode flags (e.g. write, or read-only).
624 	 *
625 	 * This value is passed to us by the front-end via the XenStore.
626 	 */
627 	char			 *dev_mode;
628 
629 	/**
630 	 * \brief Backend device type (e.g. "disk", "cdrom", "floppy").
631 	 *
632 	 * This value is passed to us by the front-end via the XenStore.
633 	 * Currently unused.
634 	 */
635 	char			 *dev_type;
636 
637 	/**
638 	 * \brief Backend device/file identifier.
639 	 *
640 	 * This value is passed to us by the front-end via the XenStore.
641 	 * We expect this to be a POSIX path indicating the file or
642 	 * device to open.
643 	 */
644 	char			 *dev_name;
645 
646 	/**
647 	 * Vnode corresponding to the backend device node or file
648 	 * we are acessing.
649 	 */
650 	struct vnode		 *vn;
651 
652 	union xbb_backend_data	  backend;
653 
654 	/** The native sector size of the backend. */
655 	u_int			  sector_size;
656 
657 	/** log2 of sector_size.  */
658 	u_int			  sector_size_shift;
659 
660 	/** Size in bytes of the backend device or file.  */
661 	off_t			  media_size;
662 
663 	/**
664 	 * \brief media_size expressed in terms of the backend native
665 	 *	  sector size.
666 	 *
667 	 * (e.g. xbb->media_size >> xbb->sector_size_shift).
668 	 */
669 	uint64_t		  media_num_sectors;
670 
671 	/**
672 	 * \brief Array of memoized scatter gather data computed during the
673 	 *	  conversion of blkif ring requests to internal xbb_xen_req
674 	 *	  structures.
675 	 *
676 	 * Ring processing is serialized so we only need one of these.
677 	 */
678 	struct xbb_sg		  xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST];
679 
680 	/**
681 	 * Temporary grant table map used in xbb_dispatch_io().  When
682 	 * XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the
683 	 * stack could cause a stack overflow.
684 	 */
685 	struct gnttab_map_grant_ref   maps[XBB_MAX_SEGMENTS_PER_REQLIST];
686 
687 	/** Mutex protecting per-instance data. */
688 	struct mtx		  lock;
689 
690 	/**
691 	 * Resource representing allocated physical address space
692 	 * associated with our per-instance kva region.
693 	 */
694 	struct resource		 *pseudo_phys_res;
695 
696 	/** Resource id for allocated physical address space. */
697 	int			  pseudo_phys_res_id;
698 
699 	/**
700 	 * I/O statistics from BlockBack dispatch down.  These are
701 	 * coalesced requests, and we start them right before execution.
702 	 */
703 	struct devstat		 *xbb_stats;
704 
705 	/**
706 	 * I/O statistics coming into BlockBack.  These are the requests as
707 	 * we get them from BlockFront.  They are started as soon as we
708 	 * receive a request, and completed when the I/O is complete.
709 	 */
710 	struct devstat		 *xbb_stats_in;
711 
712 	/** Disable sending flush to the backend */
713 	int			  disable_flush;
714 
715 	/** Send a real flush for every N flush requests */
716 	int			  flush_interval;
717 
718 	/** Count of flush requests in the interval */
719 	int			  flush_count;
720 
721 	/** Don't coalesce requests if this is set */
722 	int			  no_coalesce_reqs;
723 
724 	/** Number of requests we have received */
725 	uint64_t		  reqs_received;
726 
727 	/** Number of requests we have completed*/
728 	uint64_t		  reqs_completed;
729 
730 	/** Number of requests we queued but not pushed*/
731 	uint64_t		  reqs_queued_for_completion;
732 
733 	/** Number of requests we completed with an error status*/
734 	uint64_t		  reqs_completed_with_error;
735 
736 	/** How many forced dispatches (i.e. without coalescing) have happened */
737 	uint64_t		  forced_dispatch;
738 
739 	/** How many normal dispatches have happened */
740 	uint64_t		  normal_dispatch;
741 
742 	/** How many total dispatches have happened */
743 	uint64_t		  total_dispatch;
744 
745 	/** How many times we have run out of KVA */
746 	uint64_t		  kva_shortages;
747 
748 	/** How many times we have run out of request structures */
749 	uint64_t		  request_shortages;
750 
751 	/** Watch to wait for hotplug script execution */
752 	struct xs_watch		  hotplug_watch;
753 
754 	/** Got the needed data from hotplug scripts? */
755 	bool			  hotplug_done;
756 };
757 
758 /*---------------------------- Request Processing ----------------------------*/
759 /**
760  * Allocate an internal transaction tracking structure from the free pool.
761  *
762  * \param xbb  Per-instance xbb configuration structure.
763  *
764  * \return  On success, a pointer to the allocated xbb_xen_req structure.
765  *          Otherwise NULL.
766  */
767 static inline struct xbb_xen_req *
768 xbb_get_req(struct xbb_softc *xbb)
769 {
770 	struct xbb_xen_req *req;
771 
772 	req = NULL;
773 
774 	mtx_assert(&xbb->lock, MA_OWNED);
775 
776 	if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) {
777 		STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links);
778 		xbb->active_request_count++;
779 	}
780 
781 	return (req);
782 }
783 
784 /**
785  * Return an allocated transaction tracking structure to the free pool.
786  *
787  * \param xbb  Per-instance xbb configuration structure.
788  * \param req  The request structure to free.
789  */
790 static inline void
791 xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req)
792 {
793 	mtx_assert(&xbb->lock, MA_OWNED);
794 
795 	STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links);
796 	xbb->active_request_count--;
797 
798 	KASSERT(xbb->active_request_count >= 0,
799 		("xbb_release_req: negative active count"));
800 }
801 
802 /**
803  * Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool.
804  *
805  * \param xbb	    Per-instance xbb configuration structure.
806  * \param req_list  The list of requests to free.
807  * \param nreqs	    The number of items in the list.
808  */
809 static inline void
810 xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list,
811 		 int nreqs)
812 {
813 	mtx_assert(&xbb->lock, MA_OWNED);
814 
815 	STAILQ_CONCAT(&xbb->request_free_stailq, req_list);
816 	xbb->active_request_count -= nreqs;
817 
818 	KASSERT(xbb->active_request_count >= 0,
819 		("xbb_release_reqs: negative active count"));
820 }
821 
822 /**
823  * Given a page index and 512b sector offset within that page,
824  * calculate an offset into a request's kva region.
825  *
826  * \param reqlist The request structure whose kva region will be accessed.
827  * \param pagenr  The page index used to compute the kva offset.
828  * \param sector  The 512b sector index used to compute the page relative
829  *                kva offset.
830  *
831  * \return  The computed global KVA offset.
832  */
833 static inline uint8_t *
834 xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
835 {
836 	return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9));
837 }
838 
839 /**
840  * Given a page number and 512b sector offset within that page,
841  * calculate an offset into the request's memory region that the
842  * underlying backend device/file should use for I/O.
843  *
844  * \param reqlist The request structure whose I/O region will be accessed.
845  * \param pagenr  The page index used to compute the I/O offset.
846  * \param sector  The 512b sector index used to compute the page relative
847  *                I/O offset.
848  *
849  * \return  The computed global I/O address.
850  *
851  * Depending on configuration, this will either be a local bounce buffer
852  * or a pointer to the memory mapped in from the front-end domain for
853  * this request.
854  */
855 static inline uint8_t *
856 xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
857 {
858 	return (xbb_reqlist_vaddr(reqlist, pagenr, sector));
859 }
860 
861 /**
862  * Given a page index and 512b sector offset within that page, calculate
863  * an offset into the local pseudo-physical address space used to map a
864  * front-end's request data into a request.
865  *
866  * \param reqlist The request list structure whose pseudo-physical region
867  *                will be accessed.
868  * \param pagenr  The page index used to compute the pseudo-physical offset.
869  * \param sector  The 512b sector index used to compute the page relative
870  *                pseudo-physical offset.
871  *
872  * \return  The computed global pseudo-phsyical address.
873  *
874  * Depending on configuration, this will either be a local bounce buffer
875  * or a pointer to the memory mapped in from the front-end domain for
876  * this request.
877  */
878 static inline uintptr_t
879 xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
880 {
881 	struct xbb_softc *xbb;
882 
883 	xbb = reqlist->xbb;
884 
885 	return ((uintptr_t)(xbb->gnt_base_addr +
886 		(uintptr_t)(reqlist->kva - xbb->kva) +
887 		(PAGE_SIZE * pagenr) + (sector << 9)));
888 }
889 
890 /**
891  * Get Kernel Virtual Address space for mapping requests.
892  *
893  * \param xbb         Per-instance xbb configuration structure.
894  * \param nr_pages    Number of pages needed.
895  * \param check_only  If set, check for free KVA but don't allocate it.
896  * \param have_lock   If set, xbb lock is already held.
897  *
898  * \return  On success, a pointer to the allocated KVA region.  Otherwise NULL.
899  *
900  * Note:  This should be unnecessary once we have either chaining or
901  * scatter/gather support for struct bio.  At that point we'll be able to
902  * put multiple addresses and lengths in one bio/bio chain and won't need
903  * to map everything into one virtual segment.
904  */
905 static uint8_t *
906 xbb_get_kva(struct xbb_softc *xbb, int nr_pages)
907 {
908 	int first_clear;
909 	int num_clear;
910 	uint8_t *free_kva;
911 	int      i;
912 
913 	KASSERT(nr_pages != 0, ("xbb_get_kva of zero length"));
914 
915 	first_clear = 0;
916 	free_kva = NULL;
917 
918 	mtx_lock(&xbb->lock);
919 
920 	/*
921 	 * Look for the first available page.  If there are none, we're done.
922 	 */
923 	bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear);
924 
925 	if (first_clear == -1)
926 		goto bailout;
927 
928 	/*
929 	 * Starting at the first available page, look for consecutive free
930 	 * pages that will satisfy the user's request.
931 	 */
932 	for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) {
933 		/*
934 		 * If this is true, the page is used, so we have to reset
935 		 * the number of clear pages and the first clear page
936 		 * (since it pointed to a region with an insufficient number
937 		 * of clear pages).
938 		 */
939 		if (bit_test(xbb->kva_free, i)) {
940 			num_clear = 0;
941 			first_clear = -1;
942 			continue;
943 		}
944 
945 		if (first_clear == -1)
946 			first_clear = i;
947 
948 		/*
949 		 * If this is true, we've found a large enough free region
950 		 * to satisfy the request.
951 		 */
952 		if (++num_clear == nr_pages) {
953 			bit_nset(xbb->kva_free, first_clear,
954 				 first_clear + nr_pages - 1);
955 
956 			free_kva = xbb->kva +
957 				(uint8_t *)((intptr_t)first_clear * PAGE_SIZE);
958 
959 			KASSERT(free_kva >= (uint8_t *)xbb->kva &&
960 				free_kva + (nr_pages * PAGE_SIZE) <=
961 				(uint8_t *)xbb->ring_config.va,
962 				("Free KVA %p len %d out of range, "
963 				 "kva = %#jx, ring VA = %#jx\n", free_kva,
964 				 nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva,
965 				 (uintmax_t)xbb->ring_config.va));
966 			break;
967 		}
968 	}
969 
970 bailout:
971 
972 	if (free_kva == NULL) {
973 		xbb->flags |= XBBF_RESOURCE_SHORTAGE;
974 		xbb->kva_shortages++;
975 	}
976 
977 	mtx_unlock(&xbb->lock);
978 
979 	return (free_kva);
980 }
981 
982 /**
983  * Free allocated KVA.
984  *
985  * \param xbb	    Per-instance xbb configuration structure.
986  * \param kva_ptr   Pointer to allocated KVA region.
987  * \param nr_pages  Number of pages in the KVA region.
988  */
989 static void
990 xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages)
991 {
992 	intptr_t start_page;
993 
994 	mtx_assert(&xbb->lock, MA_OWNED);
995 
996 	start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT;
997 	bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1);
998 
999 }
1000 
1001 /**
1002  * Unmap the front-end pages associated with this I/O request.
1003  *
1004  * \param req  The request structure to unmap.
1005  */
1006 static void
1007 xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist)
1008 {
1009 	struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST];
1010 	u_int			      i;
1011 	u_int			      invcount;
1012 	int			      error __diagused;
1013 
1014 	invcount = 0;
1015 	for (i = 0; i < reqlist->nr_segments; i++) {
1016 		if (reqlist->gnt_handles[i] == GRANT_REF_INVALID)
1017 			continue;
1018 
1019 		unmap[invcount].host_addr    = xbb_get_gntaddr(reqlist, i, 0);
1020 		unmap[invcount].dev_bus_addr = 0;
1021 		unmap[invcount].handle       = reqlist->gnt_handles[i];
1022 		reqlist->gnt_handles[i]	     = GRANT_REF_INVALID;
1023 		invcount++;
1024 	}
1025 
1026 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
1027 					  unmap, invcount);
1028 	KASSERT(error == 0, ("Grant table operation failed"));
1029 }
1030 
1031 /**
1032  * Allocate an internal transaction tracking structure from the free pool.
1033  *
1034  * \param xbb  Per-instance xbb configuration structure.
1035  *
1036  * \return  On success, a pointer to the allocated xbb_xen_reqlist structure.
1037  *          Otherwise NULL.
1038  */
1039 static inline struct xbb_xen_reqlist *
1040 xbb_get_reqlist(struct xbb_softc *xbb)
1041 {
1042 	struct xbb_xen_reqlist *reqlist;
1043 
1044 	reqlist = NULL;
1045 
1046 	mtx_assert(&xbb->lock, MA_OWNED);
1047 
1048 	if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) {
1049 		STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links);
1050 		reqlist->flags = XBB_REQLIST_NONE;
1051 		reqlist->kva = NULL;
1052 		reqlist->status = BLKIF_RSP_OKAY;
1053 		reqlist->residual_512b_sectors = 0;
1054 		reqlist->num_children = 0;
1055 		reqlist->nr_segments = 0;
1056 		STAILQ_INIT(&reqlist->contig_req_list);
1057 	}
1058 
1059 	return (reqlist);
1060 }
1061 
1062 /**
1063  * Return an allocated transaction tracking structure to the free pool.
1064  *
1065  * \param xbb        Per-instance xbb configuration structure.
1066  * \param req        The request list structure to free.
1067  * \param wakeup     If set, wakeup the work thread if freeing this reqlist
1068  *                   during a resource shortage condition.
1069  */
1070 static inline void
1071 xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1072 		    int wakeup)
1073 {
1074 
1075 	mtx_assert(&xbb->lock, MA_OWNED);
1076 
1077 	if (wakeup) {
1078 		wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE;
1079 		xbb->flags &= ~XBBF_RESOURCE_SHORTAGE;
1080 	}
1081 
1082 	if (reqlist->kva != NULL)
1083 		xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments);
1084 
1085 	xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children);
1086 
1087 	STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
1088 
1089 	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1090 		/*
1091 		 * Shutdown is in progress.  See if we can
1092 		 * progress further now that one more request
1093 		 * has completed and been returned to the
1094 		 * free pool.
1095 		 */
1096 		xbb_shutdown(xbb);
1097 	}
1098 
1099 	if (wakeup != 0)
1100 		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1101 }
1102 
1103 /**
1104  * Request resources and do basic request setup.
1105  *
1106  * \param xbb          Per-instance xbb configuration structure.
1107  * \param reqlist      Pointer to reqlist pointer.
1108  * \param ring_req     Pointer to a block ring request.
1109  * \param ring_index   The ring index of this request.
1110  *
1111  * \return  0 for success, non-zero for failure.
1112  */
1113 static int
1114 xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist,
1115 		  blkif_request_t *ring_req, RING_IDX ring_idx)
1116 {
1117 	struct xbb_xen_reqlist *nreqlist;
1118 	struct xbb_xen_req     *nreq;
1119 
1120 	nreqlist = NULL;
1121 	nreq     = NULL;
1122 
1123 	mtx_lock(&xbb->lock);
1124 
1125 	/*
1126 	 * We don't allow new resources to be allocated if we're in the
1127 	 * process of shutting down.
1128 	 */
1129 	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1130 		mtx_unlock(&xbb->lock);
1131 		return (1);
1132 	}
1133 
1134 	/*
1135 	 * Allocate a reqlist if the caller doesn't have one already.
1136 	 */
1137 	if (*reqlist == NULL) {
1138 		nreqlist = xbb_get_reqlist(xbb);
1139 		if (nreqlist == NULL)
1140 			goto bailout_error;
1141 	}
1142 
1143 	/* We always allocate a request. */
1144 	nreq = xbb_get_req(xbb);
1145 	if (nreq == NULL)
1146 		goto bailout_error;
1147 
1148 	mtx_unlock(&xbb->lock);
1149 
1150 	if (*reqlist == NULL) {
1151 		*reqlist = nreqlist;
1152 		nreqlist->operation = ring_req->operation;
1153 		nreqlist->starting_sector_number = ring_req->sector_number;
1154 		STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist,
1155 				   links);
1156 	}
1157 
1158 	nreq->reqlist = *reqlist;
1159 	nreq->req_ring_idx = ring_idx;
1160 	nreq->id = ring_req->id;
1161 	nreq->operation = ring_req->operation;
1162 
1163 	if (xbb->abi != BLKIF_PROTOCOL_NATIVE) {
1164 		bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req));
1165 		nreq->ring_req = &nreq->ring_req_storage;
1166 	} else {
1167 		nreq->ring_req = ring_req;
1168 	}
1169 
1170 	binuptime(&nreq->ds_t0);
1171 	devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0);
1172 	STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links);
1173 	(*reqlist)->num_children++;
1174 	(*reqlist)->nr_segments += ring_req->nr_segments;
1175 
1176 	return (0);
1177 
1178 bailout_error:
1179 
1180 	/*
1181 	 * We're out of resources, so set the shortage flag.  The next time
1182 	 * a request is released, we'll try waking up the work thread to
1183 	 * see if we can allocate more resources.
1184 	 */
1185 	xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1186 	xbb->request_shortages++;
1187 
1188 	if (nreq != NULL)
1189 		xbb_release_req(xbb, nreq);
1190 
1191 	if (nreqlist != NULL)
1192 		xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0);
1193 
1194 	mtx_unlock(&xbb->lock);
1195 
1196 	return (1);
1197 }
1198 
1199 /**
1200  * Create and queue a response to a blkif request.
1201  *
1202  * \param xbb     Per-instance xbb configuration structure.
1203  * \param req     The request structure to which to respond.
1204  * \param status  The status code to report.  See BLKIF_RSP_*
1205  *                in sys/contrib/xen/io/blkif.h.
1206  */
1207 static void
1208 xbb_queue_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status)
1209 {
1210 	blkif_response_t *resp;
1211 
1212 	/*
1213 	 * The mutex is required here, and should be held across this call
1214 	 * until after the subsequent call to xbb_push_responses().  This
1215 	 * is to guarantee that another context won't queue responses and
1216 	 * push them while we're active.
1217 	 *
1218 	 * That could lead to the other end being notified of responses
1219 	 * before the resources have been freed on this end.  The other end
1220 	 * would then be able to queue additional I/O, and we may run out
1221  	 * of resources because we haven't freed them all yet.
1222 	 */
1223 	mtx_assert(&xbb->lock, MA_OWNED);
1224 
1225 	/*
1226 	 * Place on the response ring for the relevant domain.
1227 	 * For now, only the spacing between entries is different
1228 	 * in the different ABIs, not the response entry layout.
1229 	 */
1230 	switch (xbb->abi) {
1231 	case BLKIF_PROTOCOL_NATIVE:
1232 		resp = RING_GET_RESPONSE(&xbb->rings.native,
1233 					 xbb->rings.native.rsp_prod_pvt);
1234 		break;
1235 	case BLKIF_PROTOCOL_X86_32:
1236 		resp = (blkif_response_t *)
1237 		    RING_GET_RESPONSE(&xbb->rings.x86_32,
1238 				      xbb->rings.x86_32.rsp_prod_pvt);
1239 		break;
1240 	case BLKIF_PROTOCOL_X86_64:
1241 		resp = (blkif_response_t *)
1242 		    RING_GET_RESPONSE(&xbb->rings.x86_64,
1243 				      xbb->rings.x86_64.rsp_prod_pvt);
1244 		break;
1245 	default:
1246 		panic("Unexpected blkif protocol ABI.");
1247 	}
1248 
1249 	resp->id        = req->id;
1250 	resp->operation = req->operation;
1251 	resp->status    = status;
1252 
1253 	if (status != BLKIF_RSP_OKAY)
1254 		xbb->reqs_completed_with_error++;
1255 
1256 	xbb->rings.common.rsp_prod_pvt++;
1257 
1258 	xbb->reqs_queued_for_completion++;
1259 
1260 }
1261 
1262 /**
1263  * Send queued responses to blkif requests.
1264  *
1265  * \param xbb            Per-instance xbb configuration structure.
1266  * \param run_taskqueue  Flag that is set to 1 if the taskqueue
1267  *			 should be run, 0 if it does not need to be run.
1268  * \param notify	 Flag that is set to 1 if the other end should be
1269  * 			 notified via irq, 0 if the other end should not be
1270  *			 notified.
1271  */
1272 static void
1273 xbb_push_responses(struct xbb_softc *xbb, int *run_taskqueue, int *notify)
1274 {
1275 	int more_to_do;
1276 
1277 	/*
1278 	 * The mutex is required here.
1279 	 */
1280 	mtx_assert(&xbb->lock, MA_OWNED);
1281 
1282 	more_to_do = 0;
1283 
1284 	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, *notify);
1285 
1286 	if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) {
1287 		/*
1288 		 * Tail check for pending requests. Allows frontend to avoid
1289 		 * notifications if requests are already in flight (lower
1290 		 * overheads and promotes batching).
1291 		 */
1292 		RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do);
1293 	} else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) {
1294 		more_to_do = 1;
1295 	}
1296 
1297 	xbb->reqs_completed += xbb->reqs_queued_for_completion;
1298 	xbb->reqs_queued_for_completion = 0;
1299 
1300 	*run_taskqueue = more_to_do;
1301 }
1302 
1303 /**
1304  * Complete a request list.
1305  *
1306  * \param xbb        Per-instance xbb configuration structure.
1307  * \param reqlist    Allocated internal request list structure.
1308  */
1309 static void
1310 xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1311 {
1312 	struct xbb_xen_req *nreq;
1313 	off_t		    sectors_sent;
1314 	int		    notify, run_taskqueue;
1315 
1316 	sectors_sent = 0;
1317 
1318 	if (reqlist->flags & XBB_REQLIST_MAPPED)
1319 		xbb_unmap_reqlist(reqlist);
1320 
1321 	mtx_lock(&xbb->lock);
1322 
1323 	/*
1324 	 * All I/O is done, send the response. A lock is not necessary
1325 	 * to protect the request list, because all requests have
1326 	 * completed.  Therefore this is the only context accessing this
1327 	 * reqlist right now.  However, in order to make sure that no one
1328 	 * else queues responses onto the queue or pushes them to the other
1329 	 * side while we're active, we need to hold the lock across the
1330 	 * calls to xbb_queue_response() and xbb_push_responses().
1331 	 */
1332 	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1333 		off_t cur_sectors_sent;
1334 
1335 		/* Put this response on the ring, but don't push yet */
1336 		xbb_queue_response(xbb, nreq, reqlist->status);
1337 
1338 		/* We don't report bytes sent if there is an error. */
1339 		if (reqlist->status == BLKIF_RSP_OKAY)
1340 			cur_sectors_sent = nreq->nr_512b_sectors;
1341 		else
1342 			cur_sectors_sent = 0;
1343 
1344 		sectors_sent += cur_sectors_sent;
1345 
1346 		devstat_end_transaction(xbb->xbb_stats_in,
1347 					/*bytes*/cur_sectors_sent << 9,
1348 					reqlist->ds_tag_type,
1349 					reqlist->ds_trans_type,
1350 					/*now*/NULL,
1351 					/*then*/&nreq->ds_t0);
1352 	}
1353 
1354 	/*
1355 	 * Take out any sectors not sent.  If we wind up negative (which
1356 	 * might happen if an error is reported as well as a residual), just
1357 	 * report 0 sectors sent.
1358 	 */
1359 	sectors_sent -= reqlist->residual_512b_sectors;
1360 	if (sectors_sent < 0)
1361 		sectors_sent = 0;
1362 
1363 	devstat_end_transaction(xbb->xbb_stats,
1364 				/*bytes*/ sectors_sent << 9,
1365 				reqlist->ds_tag_type,
1366 				reqlist->ds_trans_type,
1367 				/*now*/NULL,
1368 				/*then*/&reqlist->ds_t0);
1369 
1370 	xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1);
1371 
1372 	xbb_push_responses(xbb, &run_taskqueue, &notify);
1373 
1374 	mtx_unlock(&xbb->lock);
1375 
1376 	if (run_taskqueue)
1377 		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1378 
1379 	if (notify)
1380 		xen_intr_signal(xbb->xen_intr_handle);
1381 }
1382 
1383 /**
1384  * Completion handler for buffer I/O requests issued by the device
1385  * backend driver.
1386  *
1387  * \param bio  The buffer I/O request on which to perform completion
1388  *             processing.
1389  */
1390 static void
1391 xbb_bio_done(struct bio *bio)
1392 {
1393 	struct xbb_softc       *xbb;
1394 	struct xbb_xen_reqlist *reqlist;
1395 
1396 	reqlist = bio->bio_caller1;
1397 	xbb     = reqlist->xbb;
1398 
1399 	reqlist->residual_512b_sectors += bio->bio_resid >> 9;
1400 
1401 	/*
1402 	 * This is a bit imprecise.  With aggregated I/O a single
1403 	 * request list can contain multiple front-end requests and
1404 	 * a multiple bios may point to a single request.  By carefully
1405 	 * walking the request list, we could map residuals and errors
1406 	 * back to the original front-end request, but the interface
1407 	 * isn't sufficiently rich for us to properly report the error.
1408 	 * So, we just treat the entire request list as having failed if an
1409 	 * error occurs on any part.  And, if an error occurs, we treat
1410 	 * the amount of data transferred as 0.
1411 	 *
1412 	 * For residuals, we report it on the overall aggregated device,
1413 	 * but not on the individual requests, since we don't currently
1414 	 * do the work to determine which front-end request to which the
1415 	 * residual applies.
1416 	 */
1417 	if (bio->bio_error) {
1418 		DPRINTF("BIO returned error %d for operation on device %s\n",
1419 			bio->bio_error, xbb->dev_name);
1420 		reqlist->status = BLKIF_RSP_ERROR;
1421 
1422 		if (bio->bio_error == ENXIO
1423 		 && xenbus_get_state(xbb->dev) == XenbusStateConnected) {
1424 			/*
1425 			 * Backend device has disappeared.  Signal the
1426 			 * front-end that we (the device proxy) want to
1427 			 * go away.
1428 			 */
1429 			xenbus_set_state(xbb->dev, XenbusStateClosing);
1430 		}
1431 	}
1432 
1433 	/*
1434 	 * Decrement the pending count for the request list.  When we're
1435 	 * done with the requests, send status back for all of them.
1436 	 */
1437 	if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1)
1438 		xbb_complete_reqlist(xbb, reqlist);
1439 
1440 	g_destroy_bio(bio);
1441 }
1442 
1443 /**
1444  * Parse a blkif request into an internal request structure and send
1445  * it to the backend for processing.
1446  *
1447  * \param xbb       Per-instance xbb configuration structure.
1448  * \param reqlist   Allocated internal request list structure.
1449  *
1450  * \return          On success, 0.  For resource shortages, non-zero.
1451  *
1452  * This routine performs the backend common aspects of request parsing
1453  * including compiling an internal request structure, parsing the S/G
1454  * list and any secondary ring requests in which they may reside, and
1455  * the mapping of front-end I/O pages into our domain.
1456  */
1457 static int
1458 xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1459 {
1460 	struct xbb_sg                *xbb_sg;
1461 	struct gnttab_map_grant_ref  *map;
1462 	struct blkif_request_segment *sg;
1463 	struct blkif_request_segment *last_block_sg;
1464 	struct xbb_xen_req	     *nreq;
1465 	u_int			      nseg;
1466 	u_int			      seg_idx;
1467 	u_int			      block_segs;
1468 	int			      nr_sects;
1469 	int			      total_sects;
1470 	int			      operation;
1471 	uint8_t			      bio_flags;
1472 	int			      error;
1473 
1474 	reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE;
1475 	bio_flags            = 0;
1476 	total_sects	     = 0;
1477 	nr_sects	     = 0;
1478 
1479 	/*
1480 	 * First determine whether we have enough free KVA to satisfy this
1481 	 * request list.  If not, tell xbb_run_queue() so it can go to
1482 	 * sleep until we have more KVA.
1483 	 */
1484 	reqlist->kva = NULL;
1485 	if (reqlist->nr_segments != 0) {
1486 		reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments);
1487 		if (reqlist->kva == NULL) {
1488 			/*
1489 			 * If we're out of KVA, return ENOMEM.
1490 			 */
1491 			return (ENOMEM);
1492 		}
1493 	}
1494 
1495 	binuptime(&reqlist->ds_t0);
1496 	devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0);
1497 
1498 	switch (reqlist->operation) {
1499 	case BLKIF_OP_WRITE_BARRIER:
1500 		bio_flags       |= BIO_ORDERED;
1501 		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1502 		/* FALLTHROUGH */
1503 	case BLKIF_OP_WRITE:
1504 		operation = BIO_WRITE;
1505 		reqlist->ds_trans_type = DEVSTAT_WRITE;
1506 		if ((xbb->flags & XBBF_READ_ONLY) != 0) {
1507 			DPRINTF("Attempt to write to read only device %s\n",
1508 				xbb->dev_name);
1509 			reqlist->status = BLKIF_RSP_ERROR;
1510 			goto send_response;
1511 		}
1512 		break;
1513 	case BLKIF_OP_READ:
1514 		operation = BIO_READ;
1515 		reqlist->ds_trans_type = DEVSTAT_READ;
1516 		break;
1517 	case BLKIF_OP_FLUSH_DISKCACHE:
1518 		/*
1519 		 * If this is true, the user has requested that we disable
1520 		 * flush support.  So we just complete the requests
1521 		 * successfully.
1522 		 */
1523 		if (xbb->disable_flush != 0) {
1524 			goto send_response;
1525 		}
1526 
1527 		/*
1528 		 * The user has requested that we only send a real flush
1529 		 * for every N flush requests.  So keep count, and either
1530 		 * complete the request immediately or queue it for the
1531 		 * backend.
1532 		 */
1533 		if (xbb->flush_interval != 0) {
1534 		 	if (++(xbb->flush_count) < xbb->flush_interval) {
1535 				goto send_response;
1536 			} else
1537 				xbb->flush_count = 0;
1538 		}
1539 
1540 		operation = BIO_FLUSH;
1541 		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1542 		reqlist->ds_trans_type = DEVSTAT_NO_DATA;
1543 		goto do_dispatch;
1544 		/*NOTREACHED*/
1545 	default:
1546 		DPRINTF("error: unknown block io operation [%d]\n",
1547 			reqlist->operation);
1548 		reqlist->status = BLKIF_RSP_ERROR;
1549 		goto send_response;
1550 	}
1551 
1552 	reqlist->xbb  = xbb;
1553 	xbb_sg        = xbb->xbb_sgs;
1554 	map	      = xbb->maps;
1555 	seg_idx	      = 0;
1556 
1557 	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1558 		blkif_request_t		*ring_req;
1559 
1560 		ring_req	      = nreq->ring_req;
1561 		nr_sects              = 0;
1562 		nseg                  = ring_req->nr_segments;
1563 		nreq->nr_pages        = nseg;
1564 		nreq->nr_512b_sectors = 0;
1565 		sg	              = NULL;
1566 
1567 		/* Check that number of segments is sane. */
1568 		if (__predict_false(nseg == 0)
1569 		 || __predict_false(nseg > xbb->max_request_segments)) {
1570 			DPRINTF("Bad number of segments in request (%d)\n",
1571 				nseg);
1572 			reqlist->status = BLKIF_RSP_ERROR;
1573 			goto send_response;
1574 		}
1575 
1576 		block_segs    = nseg;
1577 		sg            = ring_req->seg;
1578 		last_block_sg = sg + block_segs;
1579 
1580 		while (sg < last_block_sg) {
1581 			KASSERT(seg_idx <
1582 				XBB_MAX_SEGMENTS_PER_REQLIST,
1583 				("seg_idx %d is too large, max "
1584 				"segs %d\n", seg_idx,
1585 				XBB_MAX_SEGMENTS_PER_REQLIST));
1586 
1587 			xbb_sg->first_sect = sg->first_sect;
1588 			xbb_sg->last_sect  = sg->last_sect;
1589 			xbb_sg->nsect =
1590 			    (int8_t)(sg->last_sect -
1591 			    sg->first_sect + 1);
1592 
1593 			if ((sg->last_sect >= (PAGE_SIZE >> 9))
1594 			 || (xbb_sg->nsect <= 0)) {
1595 				reqlist->status = BLKIF_RSP_ERROR;
1596 				goto send_response;
1597 			}
1598 
1599 			nr_sects += xbb_sg->nsect;
1600 			map->host_addr = xbb_get_gntaddr(reqlist,
1601 						seg_idx, /*sector*/0);
1602 			KASSERT(map->host_addr + PAGE_SIZE <=
1603 				xbb->ring_config.gnt_addr,
1604 				("Host address %#jx len %d overlaps "
1605 				 "ring address %#jx\n",
1606 				(uintmax_t)map->host_addr, PAGE_SIZE,
1607 				(uintmax_t)xbb->ring_config.gnt_addr));
1608 
1609 			map->flags     = GNTMAP_host_map;
1610 			map->ref       = sg->gref;
1611 			map->dom       = xbb->otherend_id;
1612 			if (operation == BIO_WRITE)
1613 				map->flags |= GNTMAP_readonly;
1614 			sg++;
1615 			map++;
1616 			xbb_sg++;
1617 			seg_idx++;
1618 		}
1619 
1620 		/* Convert to the disk's sector size */
1621 		nreq->nr_512b_sectors = nr_sects;
1622 		nr_sects = (nr_sects << 9) >> xbb->sector_size_shift;
1623 		total_sects += nr_sects;
1624 
1625 		if ((nreq->nr_512b_sectors &
1626 		    ((xbb->sector_size >> 9) - 1)) != 0) {
1627 			device_printf(xbb->dev, "%s: I/O size (%d) is not "
1628 				      "a multiple of the backing store sector "
1629 				      "size (%d)\n", __func__,
1630 				      nreq->nr_512b_sectors << 9,
1631 				      xbb->sector_size);
1632 			reqlist->status = BLKIF_RSP_ERROR;
1633 			goto send_response;
1634 		}
1635 	}
1636 
1637 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref,
1638 					  xbb->maps, reqlist->nr_segments);
1639 	if (error != 0)
1640 		panic("Grant table operation failed (%d)", error);
1641 
1642 	reqlist->flags |= XBB_REQLIST_MAPPED;
1643 
1644 	for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments;
1645 	     seg_idx++, map++){
1646 		if (__predict_false(map->status != 0)) {
1647 			DPRINTF("invalid buffer -- could not remap "
1648 			        "it (%d)\n", map->status);
1649 			DPRINTF("Mapping(%d): Host Addr 0x%"PRIx64", flags "
1650 			        "0x%x ref 0x%x, dom %d\n", seg_idx,
1651 				map->host_addr, map->flags, map->ref,
1652 				map->dom);
1653 			reqlist->status = BLKIF_RSP_ERROR;
1654 			goto send_response;
1655 		}
1656 
1657 		reqlist->gnt_handles[seg_idx] = map->handle;
1658 	}
1659 	if (reqlist->starting_sector_number + total_sects >
1660 	    xbb->media_num_sectors) {
1661 		DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] "
1662 			"extends past end of device %s\n",
1663 			operation == BIO_READ ? "read" : "write",
1664 			reqlist->starting_sector_number,
1665 			reqlist->starting_sector_number + total_sects,
1666 			xbb->dev_name);
1667 		reqlist->status = BLKIF_RSP_ERROR;
1668 		goto send_response;
1669 	}
1670 
1671 do_dispatch:
1672 
1673 	error = xbb->dispatch_io(xbb,
1674 				 reqlist,
1675 				 operation,
1676 				 bio_flags);
1677 
1678 	if (error != 0) {
1679 		reqlist->status = BLKIF_RSP_ERROR;
1680 		goto send_response;
1681 	}
1682 
1683 	return (0);
1684 
1685 send_response:
1686 
1687 	xbb_complete_reqlist(xbb, reqlist);
1688 
1689 	return (0);
1690 }
1691 
1692 static __inline int
1693 xbb_count_sects(blkif_request_t *ring_req)
1694 {
1695 	int i;
1696 	int cur_size = 0;
1697 
1698 	for (i = 0; i < ring_req->nr_segments; i++) {
1699 		int nsect;
1700 
1701 		nsect = (int8_t)(ring_req->seg[i].last_sect -
1702 			ring_req->seg[i].first_sect + 1);
1703 		if (nsect <= 0)
1704 			break;
1705 
1706 		cur_size += nsect;
1707 	}
1708 
1709 	return (cur_size);
1710 }
1711 
1712 /**
1713  * Process incoming requests from the shared communication ring in response
1714  * to a signal on the ring's event channel.
1715  *
1716  * \param context  Callback argument registerd during task initialization -
1717  *                 the xbb_softc for this instance.
1718  * \param pending  The number of taskqueue_enqueue events that have
1719  *                 occurred since this handler was last run.
1720  */
1721 static void
1722 xbb_run_queue(void *context, int pending)
1723 {
1724 	struct xbb_softc       *xbb;
1725 	blkif_back_rings_t     *rings;
1726 	RING_IDX		rp;
1727 	uint64_t		cur_sector;
1728 	int			cur_operation;
1729 	struct xbb_xen_reqlist *reqlist;
1730 
1731 	xbb   = (struct xbb_softc *)context;
1732 	rings = &xbb->rings;
1733 
1734 	/*
1735 	 * Work gather and dispatch loop.  Note that we have a bias here
1736 	 * towards gathering I/O sent by blockfront.  We first gather up
1737 	 * everything in the ring, as long as we have resources.  Then we
1738 	 * dispatch one request, and then attempt to gather up any
1739 	 * additional requests that have come in while we were dispatching
1740 	 * the request.
1741 	 *
1742 	 * This allows us to get a clearer picture (via devstat) of how
1743 	 * many requests blockfront is queueing to us at any given time.
1744 	 */
1745 	for (;;) {
1746 		int retval;
1747 
1748 		/*
1749 		 * Initialize reqlist to the last element in the pending
1750 		 * queue, if there is one.  This allows us to add more
1751 		 * requests to that request list, if we have room.
1752 		 */
1753 		reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq,
1754 				      xbb_xen_reqlist, links);
1755 		if (reqlist != NULL) {
1756 			cur_sector = reqlist->next_contig_sector;
1757 			cur_operation = reqlist->operation;
1758 		} else {
1759 			cur_operation = 0;
1760 			cur_sector    = 0;
1761 		}
1762 
1763 		/*
1764 		 * Cache req_prod to avoid accessing a cache line shared
1765 		 * with the frontend.
1766 		 */
1767 		rp = rings->common.sring->req_prod;
1768 
1769 		/* Ensure we see queued requests up to 'rp'. */
1770 		rmb();
1771 
1772 		/**
1773 		 * Run so long as there is work to consume and the generation
1774 		 * of a response will not overflow the ring.
1775 		 *
1776 		 * @note There's a 1 to 1 relationship between requests and
1777 		 *       responses, so an overflow should never occur.  This
1778 		 *       test is to protect our domain from digesting bogus
1779 		 *       data.  Shouldn't we log this?
1780 		 */
1781 		while (rings->common.req_cons != rp
1782 		    && RING_REQUEST_CONS_OVERFLOW(&rings->common,
1783 						  rings->common.req_cons) == 0){
1784 			blkif_request_t	        ring_req_storage;
1785 			blkif_request_t	       *ring_req;
1786 			int			cur_size;
1787 
1788 			switch (xbb->abi) {
1789 			case BLKIF_PROTOCOL_NATIVE:
1790 				ring_req = RING_GET_REQUEST(&xbb->rings.native,
1791 				    rings->common.req_cons);
1792 				break;
1793 			case BLKIF_PROTOCOL_X86_32:
1794 			{
1795 				struct blkif_x86_32_request *ring_req32;
1796 
1797 				ring_req32 = RING_GET_REQUEST(
1798 				    &xbb->rings.x86_32, rings->common.req_cons);
1799 				blkif_get_x86_32_req(&ring_req_storage,
1800 						     ring_req32);
1801 				ring_req = &ring_req_storage;
1802 				break;
1803 			}
1804 			case BLKIF_PROTOCOL_X86_64:
1805 			{
1806 				struct blkif_x86_64_request *ring_req64;
1807 
1808 				ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64,
1809 				    rings->common.req_cons);
1810 				blkif_get_x86_64_req(&ring_req_storage,
1811 						     ring_req64);
1812 				ring_req = &ring_req_storage;
1813 				break;
1814 			}
1815 			default:
1816 				panic("Unexpected blkif protocol ABI.");
1817 				/* NOTREACHED */
1818 			}
1819 
1820 			/*
1821 			 * Check for situations that would require closing
1822 			 * off this I/O for further coalescing:
1823 			 *  - Coalescing is turned off.
1824 			 *  - Current I/O is out of sequence with the previous
1825 			 *    I/O.
1826 			 *  - Coalesced I/O would be too large.
1827 			 */
1828 			if ((reqlist != NULL)
1829 			 && ((xbb->no_coalesce_reqs != 0)
1830 			  || ((xbb->no_coalesce_reqs == 0)
1831 			   && ((ring_req->sector_number != cur_sector)
1832 			    || (ring_req->operation != cur_operation)
1833 			    || ((ring_req->nr_segments + reqlist->nr_segments) >
1834 			         xbb->max_reqlist_segments))))) {
1835 				reqlist = NULL;
1836 			}
1837 
1838 			/*
1839 			 * Grab and check for all resources in one shot.
1840 			 * If we can't get all of the resources we need,
1841 			 * the shortage is noted and the thread will get
1842 			 * woken up when more resources are available.
1843 			 */
1844 			retval = xbb_get_resources(xbb, &reqlist, ring_req,
1845 						   xbb->rings.common.req_cons);
1846 
1847 			if (retval != 0) {
1848 				/*
1849 				 * Resource shortage has been recorded.
1850 				 * We'll be scheduled to run once a request
1851 				 * object frees up due to a completion.
1852 				 */
1853 				break;
1854 			}
1855 
1856 			/*
1857 			 * Signify that	we can overwrite this request with
1858 			 * a response by incrementing our consumer index.
1859 			 * The response won't be generated until after
1860 			 * we've already consumed all necessary data out
1861 			 * of the version of the request in the ring buffer
1862 			 * (for native mode).  We must update the consumer
1863 			 * index  before issuing back-end I/O so there is
1864 			 * no possibility that it will complete and a
1865 			 * response be generated before we make room in
1866 			 * the queue for that response.
1867 			 */
1868 			xbb->rings.common.req_cons++;
1869 			xbb->reqs_received++;
1870 
1871 			cur_size = xbb_count_sects(ring_req);
1872 			cur_sector = ring_req->sector_number + cur_size;
1873 			reqlist->next_contig_sector = cur_sector;
1874 			cur_operation = ring_req->operation;
1875 		}
1876 
1877 		/* Check for I/O to dispatch */
1878 		reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
1879 		if (reqlist == NULL) {
1880 			/*
1881 			 * We're out of work to do, put the task queue to
1882 			 * sleep.
1883 			 */
1884 			break;
1885 		}
1886 
1887 		/*
1888 		 * Grab the first request off the queue and attempt
1889 		 * to dispatch it.
1890 		 */
1891 		STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links);
1892 
1893 		retval = xbb_dispatch_io(xbb, reqlist);
1894 		if (retval != 0) {
1895 			/*
1896 			 * xbb_dispatch_io() returns non-zero only when
1897 			 * there is a resource shortage.  If that's the
1898 			 * case, re-queue this request on the head of the
1899 			 * queue, and go to sleep until we have more
1900 			 * resources.
1901 			 */
1902 			STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq,
1903 					   reqlist, links);
1904 			break;
1905 		} else {
1906 			/*
1907 			 * If we still have anything on the queue after
1908 			 * removing the head entry, that is because we
1909 			 * met one of the criteria to create a new
1910 			 * request list (outlined above), and we'll call
1911 			 * that a forced dispatch for statistical purposes.
1912 			 *
1913 			 * Otherwise, if there is only one element on the
1914 			 * queue, we coalesced everything available on
1915 			 * the ring and we'll call that a normal dispatch.
1916 			 */
1917 			reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
1918 
1919 			if (reqlist != NULL)
1920 				xbb->forced_dispatch++;
1921 			else
1922 				xbb->normal_dispatch++;
1923 
1924 			xbb->total_dispatch++;
1925 		}
1926 	}
1927 }
1928 
1929 /**
1930  * Interrupt handler bound to the shared ring's event channel.
1931  *
1932  * \param arg  Callback argument registerd during event channel
1933  *             binding - the xbb_softc for this instance.
1934  */
1935 static int
1936 xbb_filter(void *arg)
1937 {
1938 	struct xbb_softc *xbb;
1939 
1940 	/* Defer to taskqueue thread. */
1941 	xbb = (struct xbb_softc *)arg;
1942 	taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1943 
1944 	return (FILTER_HANDLED);
1945 }
1946 
1947 SDT_PROVIDER_DEFINE(xbb);
1948 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_dev, flush, "int");
1949 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, read, "int", "uint64_t",
1950 		  "uint64_t");
1951 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, write, "int",
1952 		  "uint64_t", "uint64_t");
1953 
1954 /*----------------------------- Backend Handlers -----------------------------*/
1955 /**
1956  * Backend handler for character device access.
1957  *
1958  * \param xbb        Per-instance xbb configuration structure.
1959  * \param reqlist    Allocated internal request list structure.
1960  * \param operation  BIO_* I/O operation code.
1961  * \param bio_flags  Additional bio_flag data to pass to any generated
1962  *                   bios (e.g. BIO_ORDERED)..
1963  *
1964  * \return  0 for success, errno codes for failure.
1965  */
1966 static int
1967 xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1968 		 int operation, int bio_flags)
1969 {
1970 	struct xbb_dev_data *dev_data;
1971 	struct bio          *bios[XBB_MAX_SEGMENTS_PER_REQLIST];
1972 	off_t                bio_offset;
1973 	struct bio          *bio;
1974 	struct xbb_sg       *xbb_sg;
1975 	u_int	             nbio;
1976 	u_int                bio_idx;
1977 	u_int		     nseg;
1978 	u_int                seg_idx;
1979 	int                  error;
1980 
1981 	dev_data   = &xbb->backend.dev;
1982 	bio_offset = (off_t)reqlist->starting_sector_number
1983 		   << xbb->sector_size_shift;
1984 	error      = 0;
1985 	nbio       = 0;
1986 	bio_idx    = 0;
1987 
1988 	if (operation == BIO_FLUSH) {
1989 		bio = g_new_bio();
1990 		if (__predict_false(bio == NULL)) {
1991 			DPRINTF("Unable to allocate bio for BIO_FLUSH\n");
1992 			error = ENOMEM;
1993 			return (error);
1994 		}
1995 
1996 		bio->bio_cmd	 = BIO_FLUSH;
1997 		bio->bio_flags	|= BIO_ORDERED;
1998 		bio->bio_dev	 = dev_data->cdev;
1999 		bio->bio_offset	 = 0;
2000 		bio->bio_data	 = 0;
2001 		bio->bio_done	 = xbb_bio_done;
2002 		bio->bio_caller1 = reqlist;
2003 		bio->bio_pblkno	 = 0;
2004 
2005 		reqlist->pendcnt = 1;
2006 
2007 		SDT_PROBE1(xbb, kernel, xbb_dispatch_dev, flush,
2008 			   device_get_unit(xbb->dev));
2009 
2010 		(*dev_data->csw->d_strategy)(bio);
2011 
2012 		return (0);
2013 	}
2014 
2015 	xbb_sg = xbb->xbb_sgs;
2016 	bio    = NULL;
2017 	nseg = reqlist->nr_segments;
2018 
2019 	for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2020 		/*
2021 		 * KVA will not be contiguous, so any additional
2022 		 * I/O will need to be represented in a new bio.
2023 		 */
2024 		if ((bio != NULL)
2025 		 && (xbb_sg->first_sect != 0)) {
2026 			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2027 				printf("%s: Discontiguous I/O request "
2028 				       "from domain %d ends on "
2029 				       "non-sector boundary\n",
2030 				       __func__, xbb->otherend_id);
2031 				error = EINVAL;
2032 				goto fail_free_bios;
2033 			}
2034 			bio = NULL;
2035 		}
2036 
2037 		if (bio == NULL) {
2038 			/*
2039 			 * Make sure that the start of this bio is
2040 			 * aligned to a device sector.
2041 			 */
2042 			if ((bio_offset & (xbb->sector_size - 1)) != 0){
2043 				printf("%s: Misaligned I/O request "
2044 				       "from domain %d\n", __func__,
2045 				       xbb->otherend_id);
2046 				error = EINVAL;
2047 				goto fail_free_bios;
2048 			}
2049 
2050 			bio = bios[nbio++] = g_new_bio();
2051 			if (__predict_false(bio == NULL)) {
2052 				error = ENOMEM;
2053 				goto fail_free_bios;
2054 			}
2055 			bio->bio_cmd     = operation;
2056 			bio->bio_flags  |= bio_flags;
2057 			bio->bio_dev     = dev_data->cdev;
2058 			bio->bio_offset  = bio_offset;
2059 			bio->bio_data    = xbb_reqlist_ioaddr(reqlist, seg_idx,
2060 						xbb_sg->first_sect);
2061 			bio->bio_done    = xbb_bio_done;
2062 			bio->bio_caller1 = reqlist;
2063 			bio->bio_pblkno  = bio_offset >> xbb->sector_size_shift;
2064 		}
2065 
2066 		bio->bio_length += xbb_sg->nsect << 9;
2067 		bio->bio_bcount  = bio->bio_length;
2068 		bio_offset      += xbb_sg->nsect << 9;
2069 
2070 		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) {
2071 			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2072 				printf("%s: Discontiguous I/O request "
2073 				       "from domain %d ends on "
2074 				       "non-sector boundary\n",
2075 				       __func__, xbb->otherend_id);
2076 				error = EINVAL;
2077 				goto fail_free_bios;
2078 			}
2079 			/*
2080 			 * KVA will not be contiguous, so any additional
2081 			 * I/O will need to be represented in a new bio.
2082 			 */
2083 			bio = NULL;
2084 		}
2085 	}
2086 
2087 	reqlist->pendcnt = nbio;
2088 
2089 	for (bio_idx = 0; bio_idx < nbio; bio_idx++)
2090 	{
2091 		if (operation == BIO_READ) {
2092 			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, read,
2093 				   device_get_unit(xbb->dev),
2094 				   bios[bio_idx]->bio_offset,
2095 				   bios[bio_idx]->bio_length);
2096 		} else if (operation == BIO_WRITE) {
2097 			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, write,
2098 				   device_get_unit(xbb->dev),
2099 				   bios[bio_idx]->bio_offset,
2100 				   bios[bio_idx]->bio_length);
2101 		}
2102 		(*dev_data->csw->d_strategy)(bios[bio_idx]);
2103 	}
2104 
2105 	return (error);
2106 
2107 fail_free_bios:
2108 	for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++)
2109 		g_destroy_bio(bios[bio_idx]);
2110 
2111 	return (error);
2112 }
2113 
2114 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_file, flush, "int");
2115 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, read, "int", "uint64_t",
2116 		  "uint64_t");
2117 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, write, "int",
2118 		  "uint64_t", "uint64_t");
2119 
2120 /**
2121  * Backend handler for file access.
2122  *
2123  * \param xbb        Per-instance xbb configuration structure.
2124  * \param reqlist    Allocated internal request list.
2125  * \param operation  BIO_* I/O operation code.
2126  * \param flags      Additional bio_flag data to pass to any generated bios
2127  *                   (e.g. BIO_ORDERED)..
2128  *
2129  * \return  0 for success, errno codes for failure.
2130  */
2131 static int
2132 xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2133 		  int operation, int flags)
2134 {
2135 	struct xbb_file_data *file_data;
2136 	u_int                 seg_idx;
2137 	u_int		      nseg;
2138 	struct uio            xuio;
2139 	struct xbb_sg        *xbb_sg;
2140 	struct iovec         *xiovec;
2141 	int                   error;
2142 
2143 	file_data = &xbb->backend.file;
2144 	error = 0;
2145 	bzero(&xuio, sizeof(xuio));
2146 
2147 	switch (operation) {
2148 	case BIO_READ:
2149 		xuio.uio_rw = UIO_READ;
2150 		break;
2151 	case BIO_WRITE:
2152 		xuio.uio_rw = UIO_WRITE;
2153 		break;
2154 	case BIO_FLUSH: {
2155 		struct mount *mountpoint;
2156 
2157 		SDT_PROBE1(xbb, kernel, xbb_dispatch_file, flush,
2158 			   device_get_unit(xbb->dev));
2159 
2160 		(void) vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2161 
2162 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2163 		error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread);
2164 		VOP_UNLOCK(xbb->vn);
2165 
2166 		vn_finished_write(mountpoint);
2167 
2168 		goto bailout_send_response;
2169 		/* NOTREACHED */
2170 	}
2171 	default:
2172 		panic("invalid operation %d", operation);
2173 		/* NOTREACHED */
2174 	}
2175 	xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number
2176 			<< xbb->sector_size_shift;
2177 	xuio.uio_segflg = UIO_SYSSPACE;
2178 	xuio.uio_iov = file_data->xiovecs;
2179 	xuio.uio_iovcnt = 0;
2180 	xbb_sg = xbb->xbb_sgs;
2181 	nseg = reqlist->nr_segments;
2182 
2183 	for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2184 		/*
2185 		 * If the first sector is not 0, the KVA will
2186 		 * not be contiguous and we'll need to go on
2187 		 * to another segment.
2188 		 */
2189 		if (xbb_sg->first_sect != 0)
2190 			xiovec = NULL;
2191 
2192 		if (xiovec == NULL) {
2193 			xiovec = &file_data->xiovecs[xuio.uio_iovcnt];
2194 			xiovec->iov_base = xbb_reqlist_ioaddr(reqlist,
2195 			    seg_idx, xbb_sg->first_sect);
2196 			xiovec->iov_len = 0;
2197 			xuio.uio_iovcnt++;
2198 		}
2199 
2200 		xiovec->iov_len += xbb_sg->nsect << 9;
2201 
2202 		xuio.uio_resid += xbb_sg->nsect << 9;
2203 
2204 		/*
2205 		 * If the last sector is not the full page
2206 		 * size count, the next segment will not be
2207 		 * contiguous in KVA and we need a new iovec.
2208 		 */
2209 		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9)
2210 			xiovec = NULL;
2211 	}
2212 
2213 	xuio.uio_td = curthread;
2214 
2215 	switch (operation) {
2216 	case BIO_READ:
2217 
2218 		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, read,
2219 			   device_get_unit(xbb->dev), xuio.uio_offset,
2220 			   xuio.uio_resid);
2221 
2222 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2223 
2224 		/*
2225 		 * UFS pays attention to IO_DIRECT for reads.  If the
2226 		 * DIRECTIO option is configured into the kernel, it calls
2227 		 * ffs_rawread().  But that only works for single-segment
2228 		 * uios with user space addresses.  In our case, with a
2229 		 * kernel uio, it still reads into the buffer cache, but it
2230 		 * will just try to release the buffer from the cache later
2231 		 * on in ffs_read().
2232 		 *
2233 		 * ZFS does not pay attention to IO_DIRECT for reads.
2234 		 *
2235 		 * UFS does not pay attention to IO_SYNC for reads.
2236 		 *
2237 		 * ZFS pays attention to IO_SYNC (which translates into the
2238 		 * Solaris define FRSYNC for zfs_read()) for reads.  It
2239 		 * attempts to sync the file before reading.
2240 		 *
2241 		 * So, to attempt to provide some barrier semantics in the
2242 		 * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC.
2243 		 */
2244 		error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2245 				 (IO_DIRECT|IO_SYNC) : 0, file_data->cred);
2246 
2247 		VOP_UNLOCK(xbb->vn);
2248 		break;
2249 	case BIO_WRITE: {
2250 		struct mount *mountpoint;
2251 
2252 		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, write,
2253 			   device_get_unit(xbb->dev), xuio.uio_offset,
2254 			   xuio.uio_resid);
2255 
2256 		(void)vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2257 
2258 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2259 
2260 		/*
2261 		 * UFS pays attention to IO_DIRECT for writes.  The write
2262 		 * is done asynchronously.  (Normally the write would just
2263 		 * get put into cache.
2264 		 *
2265 		 * UFS pays attention to IO_SYNC for writes.  It will
2266 		 * attempt to write the buffer out synchronously if that
2267 		 * flag is set.
2268 		 *
2269 		 * ZFS does not pay attention to IO_DIRECT for writes.
2270 		 *
2271 		 * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC)
2272 		 * for writes.  It will flush the transaction from the
2273 		 * cache before returning.
2274 		 *
2275 		 * So if we've got the BIO_ORDERED flag set, we want
2276 		 * IO_SYNC in either the UFS or ZFS case.
2277 		 */
2278 		error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2279 				  IO_SYNC : 0, file_data->cred);
2280 		VOP_UNLOCK(xbb->vn);
2281 
2282 		vn_finished_write(mountpoint);
2283 
2284 		break;
2285 	}
2286 	default:
2287 		panic("invalid operation %d", operation);
2288 		/* NOTREACHED */
2289 	}
2290 
2291 bailout_send_response:
2292 
2293 	if (error != 0)
2294 		reqlist->status = BLKIF_RSP_ERROR;
2295 
2296 	xbb_complete_reqlist(xbb, reqlist);
2297 
2298 	return (0);
2299 }
2300 
2301 /*--------------------------- Backend Configuration --------------------------*/
2302 /**
2303  * Close and cleanup any backend device/file specific state for this
2304  * block back instance.
2305  *
2306  * \param xbb  Per-instance xbb configuration structure.
2307  */
2308 static void
2309 xbb_close_backend(struct xbb_softc *xbb)
2310 {
2311 	DROP_GIANT();
2312 	DPRINTF("closing dev=%s\n", xbb->dev_name);
2313 	if (xbb->vn) {
2314 		int flags = FREAD;
2315 
2316 		if ((xbb->flags & XBBF_READ_ONLY) == 0)
2317 			flags |= FWRITE;
2318 
2319 		switch (xbb->device_type) {
2320 		case XBB_TYPE_DISK:
2321 			if (xbb->backend.dev.csw) {
2322 				dev_relthread(xbb->backend.dev.cdev,
2323 					      xbb->backend.dev.dev_ref);
2324 				xbb->backend.dev.csw  = NULL;
2325 				xbb->backend.dev.cdev = NULL;
2326 			}
2327 			break;
2328 		case XBB_TYPE_FILE:
2329 			break;
2330 		case XBB_TYPE_NONE:
2331 		default:
2332 			panic("Unexpected backend type.");
2333 			break;
2334 		}
2335 
2336 		(void)vn_close(xbb->vn, flags, NOCRED, curthread);
2337 		xbb->vn = NULL;
2338 
2339 		switch (xbb->device_type) {
2340 		case XBB_TYPE_DISK:
2341 			break;
2342 		case XBB_TYPE_FILE:
2343 			if (xbb->backend.file.cred != NULL) {
2344 				crfree(xbb->backend.file.cred);
2345 				xbb->backend.file.cred = NULL;
2346 			}
2347 			break;
2348 		case XBB_TYPE_NONE:
2349 		default:
2350 			panic("Unexpected backend type.");
2351 			break;
2352 		}
2353 	}
2354 	PICKUP_GIANT();
2355 }
2356 
2357 /**
2358  * Open a character device to be used for backend I/O.
2359  *
2360  * \param xbb  Per-instance xbb configuration structure.
2361  *
2362  * \return  0 for success, errno codes for failure.
2363  */
2364 static int
2365 xbb_open_dev(struct xbb_softc *xbb)
2366 {
2367 	struct vattr   vattr;
2368 	struct cdev   *dev;
2369 	struct cdevsw *devsw;
2370 	int	       error;
2371 
2372 	xbb->device_type = XBB_TYPE_DISK;
2373 	xbb->dispatch_io = xbb_dispatch_dev;
2374 	xbb->backend.dev.cdev = xbb->vn->v_rdev;
2375 	xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev,
2376 					     &xbb->backend.dev.dev_ref);
2377 	if (xbb->backend.dev.csw == NULL)
2378 		panic("Unable to retrieve device switch");
2379 
2380 	error = VOP_GETATTR(xbb->vn, &vattr, NOCRED);
2381 	if (error) {
2382 		xenbus_dev_fatal(xbb->dev, error, "error getting "
2383 				 "vnode attributes for device %s",
2384 				 xbb->dev_name);
2385 		return (error);
2386 	}
2387 
2388 	dev = xbb->vn->v_rdev;
2389 	devsw = dev->si_devsw;
2390 	if (!devsw->d_ioctl) {
2391 		xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for "
2392 				 "device %s!", xbb->dev_name);
2393 		return (ENODEV);
2394 	}
2395 
2396 	error = devsw->d_ioctl(dev, DIOCGSECTORSIZE,
2397 			       (caddr_t)&xbb->sector_size, FREAD,
2398 			       curthread);
2399 	if (error) {
2400 		xenbus_dev_fatal(xbb->dev, error,
2401 				 "error calling ioctl DIOCGSECTORSIZE "
2402 				 "for device %s", xbb->dev_name);
2403 		return (error);
2404 	}
2405 
2406 	error = devsw->d_ioctl(dev, DIOCGMEDIASIZE,
2407 			       (caddr_t)&xbb->media_size, FREAD,
2408 			       curthread);
2409 	if (error) {
2410 		xenbus_dev_fatal(xbb->dev, error,
2411 				 "error calling ioctl DIOCGMEDIASIZE "
2412 				 "for device %s", xbb->dev_name);
2413 		return (error);
2414 	}
2415 
2416 	return (0);
2417 }
2418 
2419 /**
2420  * Open a file to be used for backend I/O.
2421  *
2422  * \param xbb  Per-instance xbb configuration structure.
2423  *
2424  * \return  0 for success, errno codes for failure.
2425  */
2426 static int
2427 xbb_open_file(struct xbb_softc *xbb)
2428 {
2429 	struct xbb_file_data *file_data;
2430 	struct vattr          vattr;
2431 	int                   error;
2432 
2433 	file_data = &xbb->backend.file;
2434 	xbb->device_type = XBB_TYPE_FILE;
2435 	xbb->dispatch_io = xbb_dispatch_file;
2436 	error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred);
2437 	if (error != 0) {
2438 		xenbus_dev_fatal(xbb->dev, error,
2439 				 "error calling VOP_GETATTR()"
2440 				 "for file %s", xbb->dev_name);
2441 		return (error);
2442 	}
2443 
2444 	/*
2445 	 * Verify that we have the ability to upgrade to exclusive
2446 	 * access on this file so we can trap errors at open instead
2447 	 * of reporting them during first access.
2448 	 */
2449 	if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) {
2450 		vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY);
2451 		if (VN_IS_DOOMED(xbb->vn)) {
2452 			error = EBADF;
2453 			xenbus_dev_fatal(xbb->dev, error,
2454 					 "error locking file %s",
2455 					 xbb->dev_name);
2456 
2457 			return (error);
2458 		}
2459 	}
2460 
2461 	file_data->cred = crhold(curthread->td_ucred);
2462 	xbb->media_size = vattr.va_size;
2463 
2464 	/*
2465 	 * XXX KDM vattr.va_blocksize may be larger than 512 bytes here.
2466 	 * With ZFS, it is 131072 bytes.  Block sizes that large don't work
2467 	 * with disklabel and UFS on FreeBSD at least.  Large block sizes
2468 	 * may not work with other OSes as well.  So just export a sector
2469 	 * size of 512 bytes, which should work with any OS or
2470 	 * application.  Since our backing is a file, any block size will
2471 	 * work fine for the backing store.
2472 	 */
2473 #if 0
2474 	xbb->sector_size = vattr.va_blocksize;
2475 #endif
2476 	xbb->sector_size = 512;
2477 
2478 	/*
2479 	 * Sanity check.  The media size has to be at least one
2480 	 * sector long.
2481 	 */
2482 	if (xbb->media_size < xbb->sector_size) {
2483 		error = EINVAL;
2484 		xenbus_dev_fatal(xbb->dev, error,
2485 				 "file %s size %ju < block size %u",
2486 				 xbb->dev_name,
2487 				 (uintmax_t)xbb->media_size,
2488 				 xbb->sector_size);
2489 	}
2490 	return (error);
2491 }
2492 
2493 /**
2494  * Open the backend provider for this connection.
2495  *
2496  * \param xbb  Per-instance xbb configuration structure.
2497  *
2498  * \return  0 for success, errno codes for failure.
2499  */
2500 static int
2501 xbb_open_backend(struct xbb_softc *xbb)
2502 {
2503 	struct nameidata nd;
2504 	int		 flags;
2505 	int		 error;
2506 
2507 	flags = FREAD;
2508 	error = 0;
2509 
2510 	DPRINTF("opening dev=%s\n", xbb->dev_name);
2511 
2512 	if (rootvnode == NULL) {
2513 		xenbus_dev_fatal(xbb->dev, ENOENT,
2514 				 "Root file system not mounted");
2515 		return (ENOENT);
2516 	}
2517 
2518 	if ((xbb->flags & XBBF_READ_ONLY) == 0)
2519 		flags |= FWRITE;
2520 
2521 	pwd_ensure_dirs();
2522 
2523  again:
2524 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name);
2525 	error = vn_open(&nd, &flags, 0, NULL);
2526 	if (error) {
2527 		/*
2528 		 * This is the only reasonable guess we can make as far as
2529 		 * path if the user doesn't give us a fully qualified path.
2530 		 * If they want to specify a file, they need to specify the
2531 		 * full path.
2532 		 */
2533 		if (xbb->dev_name[0] != '/') {
2534 			char *dev_path = "/dev/";
2535 			char *dev_name;
2536 
2537 			/* Try adding device path at beginning of name */
2538 			dev_name = malloc(strlen(xbb->dev_name)
2539 					+ strlen(dev_path) + 1,
2540 					  M_XENBLOCKBACK, M_NOWAIT);
2541 			if (dev_name) {
2542 				sprintf(dev_name, "%s%s", dev_path,
2543 					xbb->dev_name);
2544 				free(xbb->dev_name, M_XENBLOCKBACK);
2545 				xbb->dev_name = dev_name;
2546 				goto again;
2547 			}
2548 		}
2549 		xenbus_dev_fatal(xbb->dev, error, "error opening device %s",
2550 				 xbb->dev_name);
2551 		return (error);
2552 	}
2553 
2554 	NDFREE_PNBUF(&nd);
2555 
2556 	xbb->vn = nd.ni_vp;
2557 
2558 	/* We only support disks and files. */
2559 	if (vn_isdisk_error(xbb->vn, &error)) {
2560 		error = xbb_open_dev(xbb);
2561 	} else if (xbb->vn->v_type == VREG) {
2562 		error = xbb_open_file(xbb);
2563 	} else {
2564 		error = EINVAL;
2565 		xenbus_dev_fatal(xbb->dev, error, "%s is not a disk "
2566 				 "or file", xbb->dev_name);
2567 	}
2568 	VOP_UNLOCK(xbb->vn);
2569 
2570 	if (error != 0) {
2571 		xbb_close_backend(xbb);
2572 		return (error);
2573 	}
2574 
2575 	xbb->sector_size_shift = fls(xbb->sector_size) - 1;
2576 	xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift;
2577 
2578 	DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n",
2579 		(xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file",
2580 		xbb->dev_name, xbb->sector_size, xbb->media_size);
2581 
2582 	return (0);
2583 }
2584 
2585 /*------------------------ Inter-Domain Communication ------------------------*/
2586 /**
2587  * Free dynamically allocated KVA or pseudo-physical address allocations.
2588  *
2589  * \param xbb  Per-instance xbb configuration structure.
2590  */
2591 static void
2592 xbb_free_communication_mem(struct xbb_softc *xbb)
2593 {
2594 	if (xbb->kva != 0) {
2595 		if (xbb->pseudo_phys_res != NULL) {
2596 			xenmem_free(xbb->dev, xbb->pseudo_phys_res_id,
2597 			    xbb->pseudo_phys_res);
2598 			xbb->pseudo_phys_res = NULL;
2599 		}
2600 	}
2601 	xbb->kva = 0;
2602 	xbb->gnt_base_addr = 0;
2603 	if (xbb->kva_free != NULL) {
2604 		free(xbb->kva_free, M_XENBLOCKBACK);
2605 		xbb->kva_free = NULL;
2606 	}
2607 }
2608 
2609 /**
2610  * Cleanup all inter-domain communication mechanisms.
2611  *
2612  * \param xbb  Per-instance xbb configuration structure.
2613  */
2614 static int
2615 xbb_disconnect(struct xbb_softc *xbb)
2616 {
2617 	DPRINTF("\n");
2618 
2619 	mtx_unlock(&xbb->lock);
2620 	xen_intr_unbind(&xbb->xen_intr_handle);
2621 	if (xbb->io_taskqueue != NULL)
2622 		taskqueue_drain(xbb->io_taskqueue, &xbb->io_task);
2623 	mtx_lock(&xbb->lock);
2624 
2625 	/*
2626 	 * No new interrupts can generate work, but we must wait
2627 	 * for all currently active requests to drain.
2628 	 */
2629 	if (xbb->active_request_count != 0)
2630 		return (EAGAIN);
2631 
2632 	if (xbb->flags & XBBF_RING_CONNECTED) {
2633 		struct gnttab_unmap_grant_ref  ops[XBB_MAX_RING_PAGES];
2634 		struct gnttab_unmap_grant_ref *op;
2635 		unsigned int ring_idx;
2636 		int error;
2637 
2638 		for (ring_idx = 0, op = ops;
2639 		     ring_idx < xbb->ring_config.ring_pages;
2640 		     ring_idx++, op++) {
2641 			op->host_addr    = xbb->ring_config.gnt_addr
2642 				         + (ring_idx * PAGE_SIZE);
2643 			op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx];
2644 			op->handle	 = xbb->ring_config.handle[ring_idx];
2645 		}
2646 
2647 		error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops,
2648 						  xbb->ring_config.ring_pages);
2649 		if (error != 0)
2650 			panic("Grant table op failed (%d)", error);
2651 
2652 		xbb->flags &= ~XBBF_RING_CONNECTED;
2653 	}
2654 
2655 	xbb_free_communication_mem(xbb);
2656 
2657 	if (xbb->requests != NULL) {
2658 		free(xbb->requests, M_XENBLOCKBACK);
2659 		xbb->requests = NULL;
2660 	}
2661 
2662 	if (xbb->request_lists != NULL) {
2663 		struct xbb_xen_reqlist *reqlist;
2664 		int i;
2665 
2666 		/* There is one request list for ever allocated request. */
2667 		for (i = 0, reqlist = xbb->request_lists;
2668 		     i < xbb->max_requests; i++, reqlist++){
2669 			if (reqlist->gnt_handles != NULL) {
2670 				free(reqlist->gnt_handles, M_XENBLOCKBACK);
2671 				reqlist->gnt_handles = NULL;
2672 			}
2673 		}
2674 		free(xbb->request_lists, M_XENBLOCKBACK);
2675 		xbb->request_lists = NULL;
2676 	}
2677 
2678 	return (0);
2679 }
2680 
2681 /**
2682  * Map shared memory ring into domain local address space, initialize
2683  * ring control structures, and bind an interrupt to the event channel
2684  * used to notify us of ring changes.
2685  *
2686  * \param xbb  Per-instance xbb configuration structure.
2687  */
2688 static int
2689 xbb_connect_ring(struct xbb_softc *xbb)
2690 {
2691 	struct gnttab_map_grant_ref  gnts[XBB_MAX_RING_PAGES];
2692 	struct gnttab_map_grant_ref *gnt;
2693 	u_int			     ring_idx;
2694 	int			     error;
2695 
2696 	if ((xbb->flags & XBBF_RING_CONNECTED) != 0)
2697 		return (0);
2698 
2699 	/*
2700 	 * Kva for our ring is at the tail of the region of kva allocated
2701 	 * by xbb_alloc_communication_mem().
2702 	 */
2703 	xbb->ring_config.va = xbb->kva
2704 			    + (xbb->kva_size
2705 			     - (xbb->ring_config.ring_pages * PAGE_SIZE));
2706 	xbb->ring_config.gnt_addr = xbb->gnt_base_addr
2707 				  + (xbb->kva_size
2708 				   - (xbb->ring_config.ring_pages * PAGE_SIZE));
2709 
2710 	for (ring_idx = 0, gnt = gnts;
2711 	     ring_idx < xbb->ring_config.ring_pages;
2712 	     ring_idx++, gnt++) {
2713 		gnt->host_addr = xbb->ring_config.gnt_addr
2714 			       + (ring_idx * PAGE_SIZE);
2715 		gnt->flags     = GNTMAP_host_map;
2716 		gnt->ref       = xbb->ring_config.ring_ref[ring_idx];
2717 		gnt->dom       = xbb->otherend_id;
2718 	}
2719 
2720 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts,
2721 					  xbb->ring_config.ring_pages);
2722 	if (error)
2723 		panic("blkback: Ring page grant table op failed (%d)", error);
2724 
2725 	for (ring_idx = 0, gnt = gnts;
2726 	     ring_idx < xbb->ring_config.ring_pages;
2727 	     ring_idx++, gnt++) {
2728 		if (gnt->status != 0) {
2729 			struct gnttab_unmap_grant_ref unmap[XBB_MAX_RING_PAGES];
2730 			unsigned int i, j;
2731 
2732 			xbb->ring_config.va = 0;
2733 			xenbus_dev_fatal(xbb->dev, EACCES,
2734 					 "Ring shared page mapping failed. "
2735 					 "Status %d.", gnt->status);
2736 
2737 			/* Unmap everything to avoid leaking grant table maps */
2738 			for (i = 0, j = 0; i < xbb->ring_config.ring_pages;
2739 			    i++) {
2740 				if (gnts[i].status != GNTST_okay)
2741 					continue;
2742 
2743 				unmap[j].host_addr = gnts[i].host_addr;
2744 				unmap[j].dev_bus_addr = gnts[i].dev_bus_addr;
2745 				unmap[j++].handle = gnts[i].handle;
2746 			}
2747 			if (j != 0) {
2748 				error = HYPERVISOR_grant_table_op(
2749 				    GNTTABOP_unmap_grant_ref, unmap, j);
2750 				if (error != 0)
2751 					panic("Unable to unmap grants (%d)",
2752 					    error);
2753 			}
2754 			return (EACCES);
2755 		}
2756 		xbb->ring_config.handle[ring_idx]   = gnt->handle;
2757 		xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr;
2758 	}
2759 
2760 	/* Initialize the ring based on ABI. */
2761 	switch (xbb->abi) {
2762 	case BLKIF_PROTOCOL_NATIVE:
2763 	{
2764 		blkif_sring_t *sring;
2765 		sring = (blkif_sring_t *)xbb->ring_config.va;
2766 		BACK_RING_INIT(&xbb->rings.native, sring,
2767 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2768 		break;
2769 	}
2770 	case BLKIF_PROTOCOL_X86_32:
2771 	{
2772 		blkif_x86_32_sring_t *sring_x86_32;
2773 		sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va;
2774 		BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32,
2775 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2776 		break;
2777 	}
2778 	case BLKIF_PROTOCOL_X86_64:
2779 	{
2780 		blkif_x86_64_sring_t *sring_x86_64;
2781 		sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va;
2782 		BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64,
2783 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2784 		break;
2785 	}
2786 	default:
2787 		panic("Unexpected blkif protocol ABI.");
2788 	}
2789 
2790 	xbb->flags |= XBBF_RING_CONNECTED;
2791 
2792 	error = xen_intr_bind_remote_port(xbb->dev,
2793 					  xbb->otherend_id,
2794 					  xbb->ring_config.evtchn,
2795 					  xbb_filter,
2796 					  /*ithread_handler*/NULL,
2797 					  /*arg*/xbb,
2798 					  INTR_TYPE_BIO | INTR_MPSAFE,
2799 					  &xbb->xen_intr_handle);
2800 	if (error) {
2801 		xenbus_dev_fatal(xbb->dev, error, "binding event channel");
2802 		return (error);
2803 	}
2804 
2805 	DPRINTF("rings connected!\n");
2806 
2807 	return 0;
2808 }
2809 
2810 /**
2811  * Size KVA and pseudo-physical address allocations based on negotiated
2812  * values for the size and number of I/O requests, and the size of our
2813  * communication ring.
2814  *
2815  * \param xbb  Per-instance xbb configuration structure.
2816  *
2817  * These address spaces are used to dynamically map pages in the
2818  * front-end's domain into our own.
2819  */
2820 static int
2821 xbb_alloc_communication_mem(struct xbb_softc *xbb)
2822 {
2823 	xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments;
2824 	xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE;
2825 	xbb->kva_size = xbb->reqlist_kva_size +
2826 			(xbb->ring_config.ring_pages * PAGE_SIZE);
2827 
2828 	xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages, M_XENBLOCKBACK, M_NOWAIT);
2829 	if (xbb->kva_free == NULL)
2830 		return (ENOMEM);
2831 
2832 	DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n",
2833 		device_get_nameunit(xbb->dev), xbb->kva_size,
2834 		xbb->reqlist_kva_size);
2835 	/*
2836 	 * Reserve a range of pseudo physical memory that we can map
2837 	 * into kva.  These pages will only be backed by machine
2838 	 * pages ("real memory") during the lifetime of front-end requests
2839 	 * via grant table operations.
2840 	 */
2841 	xbb->pseudo_phys_res_id = 0;
2842 	xbb->pseudo_phys_res = xenmem_alloc(xbb->dev, &xbb->pseudo_phys_res_id,
2843 	    xbb->kva_size);
2844 	if (xbb->pseudo_phys_res == NULL) {
2845 		xbb->kva = 0;
2846 		return (ENOMEM);
2847 	}
2848 	xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res);
2849 	xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res);
2850 
2851 	DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n",
2852 		device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva,
2853 		(uintmax_t)xbb->gnt_base_addr);
2854 	return (0);
2855 }
2856 
2857 /**
2858  * Collect front-end information from the XenStore.
2859  *
2860  * \param xbb  Per-instance xbb configuration structure.
2861  */
2862 static int
2863 xbb_collect_frontend_info(struct xbb_softc *xbb)
2864 {
2865 	char	    protocol_abi[64];
2866 	const char *otherend_path;
2867 	int	    error;
2868 	u_int	    ring_idx;
2869 	u_int	    ring_page_order;
2870 	size_t	    ring_size;
2871 
2872 	otherend_path = xenbus_get_otherend_path(xbb->dev);
2873 
2874 	/*
2875 	 * Protocol defaults valid even if all negotiation fails.
2876 	 */
2877 	xbb->ring_config.ring_pages = 1;
2878 	xbb->max_request_segments   = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2879 	xbb->max_request_size	    = xbb->max_request_segments * PAGE_SIZE;
2880 
2881 	/*
2882 	 * Mandatory data (used in all versions of the protocol) first.
2883 	 */
2884 	error = xs_scanf(XST_NIL, otherend_path,
2885 			 "event-channel", NULL, "%" PRIu32,
2886 			 &xbb->ring_config.evtchn);
2887 	if (error != 0) {
2888 		xenbus_dev_fatal(xbb->dev, error,
2889 				 "Unable to retrieve event-channel information "
2890 				 "from frontend %s.  Unable to connect.",
2891 				 xenbus_get_otherend_path(xbb->dev));
2892 		return (error);
2893 	}
2894 
2895 	/*
2896 	 * These fields are initialized to legacy protocol defaults
2897 	 * so we only need to fail if reading the updated value succeeds
2898 	 * and the new value is outside of its allowed range.
2899 	 *
2900 	 * \note xs_gather() returns on the first encountered error, so
2901 	 *       we must use independent calls in order to guarantee
2902 	 *       we don't miss information in a sparsly populated front-end
2903 	 *       tree.
2904 	 *
2905 	 * \note xs_scanf() does not update variables for unmatched
2906 	 *       fields.
2907 	 */
2908 	ring_page_order = 0;
2909 	xbb->max_requests = 32;
2910 
2911 	(void)xs_scanf(XST_NIL, otherend_path,
2912 		       "ring-page-order", NULL, "%u",
2913 		       &ring_page_order);
2914 	xbb->ring_config.ring_pages = 1 << ring_page_order;
2915 	ring_size = PAGE_SIZE * xbb->ring_config.ring_pages;
2916 	xbb->max_requests = BLKIF_MAX_RING_REQUESTS(ring_size);
2917 
2918 	if (xbb->ring_config.ring_pages	> XBB_MAX_RING_PAGES) {
2919 		xenbus_dev_fatal(xbb->dev, EINVAL,
2920 				 "Front-end specified ring-pages of %u "
2921 				 "exceeds backend limit of %u.  "
2922 				 "Unable to connect.",
2923 				 xbb->ring_config.ring_pages,
2924 				 XBB_MAX_RING_PAGES);
2925 		return (EINVAL);
2926 	}
2927 
2928 	if (xbb->ring_config.ring_pages	== 1) {
2929 		error = xs_gather(XST_NIL, otherend_path,
2930 				  "ring-ref", "%" PRIu32,
2931 				  &xbb->ring_config.ring_ref[0],
2932 				  NULL);
2933 		if (error != 0) {
2934 			xenbus_dev_fatal(xbb->dev, error,
2935 					 "Unable to retrieve ring information "
2936 					 "from frontend %s.  Unable to "
2937 					 "connect.",
2938 					 xenbus_get_otherend_path(xbb->dev));
2939 			return (error);
2940 		}
2941 	} else {
2942 		/* Multi-page ring format. */
2943 		for (ring_idx = 0; ring_idx < xbb->ring_config.ring_pages;
2944 		     ring_idx++) {
2945 			char ring_ref_name[]= "ring_refXX";
2946 
2947 			snprintf(ring_ref_name, sizeof(ring_ref_name),
2948 				 "ring-ref%u", ring_idx);
2949 			error = xs_scanf(XST_NIL, otherend_path,
2950 					 ring_ref_name, NULL, "%" PRIu32,
2951 					 &xbb->ring_config.ring_ref[ring_idx]);
2952 			if (error != 0) {
2953 				xenbus_dev_fatal(xbb->dev, error,
2954 						 "Failed to retriev grant "
2955 						 "reference for page %u of "
2956 						 "shared ring.  Unable "
2957 						 "to connect.", ring_idx);
2958 				return (error);
2959 			}
2960 		}
2961 	}
2962 
2963 	error = xs_gather(XST_NIL, otherend_path,
2964 			  "protocol", "%63s", protocol_abi,
2965 			  NULL);
2966 	if (error != 0
2967 	 || !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) {
2968 		/*
2969 		 * Assume native if the frontend has not
2970 		 * published ABI data or it has published and
2971 		 * matches our own ABI.
2972 		 */
2973 		xbb->abi = BLKIF_PROTOCOL_NATIVE;
2974 	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) {
2975 		xbb->abi = BLKIF_PROTOCOL_X86_32;
2976 	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) {
2977 		xbb->abi = BLKIF_PROTOCOL_X86_64;
2978 	} else {
2979 		xenbus_dev_fatal(xbb->dev, EINVAL,
2980 				 "Unknown protocol ABI (%s) published by "
2981 				 "frontend.  Unable to connect.", protocol_abi);
2982 		return (EINVAL);
2983 	}
2984 	return (0);
2985 }
2986 
2987 /**
2988  * Allocate per-request data structures given request size and number
2989  * information negotiated with the front-end.
2990  *
2991  * \param xbb  Per-instance xbb configuration structure.
2992  */
2993 static int
2994 xbb_alloc_requests(struct xbb_softc *xbb)
2995 {
2996 	struct xbb_xen_req *req;
2997 	struct xbb_xen_req *last_req;
2998 
2999 	/*
3000 	 * Allocate request book keeping datastructures.
3001 	 */
3002 	xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests),
3003 			       M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3004 	if (xbb->requests == NULL) {
3005 		xenbus_dev_fatal(xbb->dev, ENOMEM,
3006 				  "Unable to allocate request structures");
3007 		return (ENOMEM);
3008 	}
3009 
3010 	req      = xbb->requests;
3011 	last_req = &xbb->requests[xbb->max_requests - 1];
3012 	STAILQ_INIT(&xbb->request_free_stailq);
3013 	while (req <= last_req) {
3014 		STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links);
3015 		req++;
3016 	}
3017 	return (0);
3018 }
3019 
3020 static int
3021 xbb_alloc_request_lists(struct xbb_softc *xbb)
3022 {
3023 	struct xbb_xen_reqlist *reqlist;
3024 	int			i;
3025 
3026 	/*
3027 	 * If no requests can be merged, we need 1 request list per
3028 	 * in flight request.
3029 	 */
3030 	xbb->request_lists = malloc(xbb->max_requests *
3031 		sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3032 	if (xbb->request_lists == NULL) {
3033 		xenbus_dev_fatal(xbb->dev, ENOMEM,
3034 				  "Unable to allocate request list structures");
3035 		return (ENOMEM);
3036 	}
3037 
3038 	STAILQ_INIT(&xbb->reqlist_free_stailq);
3039 	STAILQ_INIT(&xbb->reqlist_pending_stailq);
3040 	for (i = 0; i < xbb->max_requests; i++) {
3041 		int seg;
3042 
3043 		reqlist      = &xbb->request_lists[i];
3044 
3045 		reqlist->xbb = xbb;
3046 
3047 		reqlist->gnt_handles = malloc(xbb->max_reqlist_segments *
3048 					      sizeof(*reqlist->gnt_handles),
3049 					      M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3050 		if (reqlist->gnt_handles == NULL) {
3051 			xenbus_dev_fatal(xbb->dev, ENOMEM,
3052 					  "Unable to allocate request "
3053 					  "grant references");
3054 			return (ENOMEM);
3055 		}
3056 
3057 		for (seg = 0; seg < xbb->max_reqlist_segments; seg++)
3058 			reqlist->gnt_handles[seg] = GRANT_REF_INVALID;
3059 
3060 		STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
3061 	}
3062 	return (0);
3063 }
3064 
3065 /**
3066  * Supply information about the physical device to the frontend
3067  * via XenBus.
3068  *
3069  * \param xbb  Per-instance xbb configuration structure.
3070  */
3071 static int
3072 xbb_publish_backend_info(struct xbb_softc *xbb)
3073 {
3074 	struct xs_transaction xst;
3075 	const char	     *our_path;
3076 	const char	     *leaf;
3077 	int		      error;
3078 
3079 	our_path = xenbus_get_node(xbb->dev);
3080 	while (1) {
3081 		error = xs_transaction_start(&xst);
3082 		if (error != 0) {
3083 			xenbus_dev_fatal(xbb->dev, error,
3084 					 "Error publishing backend info "
3085 					 "(start transaction)");
3086 			return (error);
3087 		}
3088 
3089 		leaf = "sectors";
3090 		error = xs_printf(xst, our_path, leaf,
3091 				  "%"PRIu64, xbb->media_num_sectors);
3092 		if (error != 0)
3093 			break;
3094 
3095 		/* XXX Support all VBD attributes here. */
3096 		leaf = "info";
3097 		error = xs_printf(xst, our_path, leaf, "%u",
3098 				  xbb->flags & XBBF_READ_ONLY
3099 				? VDISK_READONLY : 0);
3100 		if (error != 0)
3101 			break;
3102 
3103 		leaf = "sector-size";
3104 		error = xs_printf(xst, our_path, leaf, "%u",
3105 				  xbb->sector_size);
3106 		if (error != 0)
3107 			break;
3108 
3109 		error = xs_transaction_end(xst, 0);
3110 		if (error == 0) {
3111 			return (0);
3112 		} else if (error != EAGAIN) {
3113 			xenbus_dev_fatal(xbb->dev, error, "ending transaction");
3114 			return (error);
3115 		}
3116 	}
3117 
3118 	xenbus_dev_fatal(xbb->dev, error, "writing %s/%s",
3119 			our_path, leaf);
3120 	xs_transaction_end(xst, 1);
3121 	return (error);
3122 }
3123 
3124 /**
3125  * Connect to our blkfront peer now that it has completed publishing
3126  * its configuration into the XenStore.
3127  *
3128  * \param xbb  Per-instance xbb configuration structure.
3129  */
3130 static void
3131 xbb_connect(struct xbb_softc *xbb)
3132 {
3133 	int error;
3134 
3135 	if (!xbb->hotplug_done ||
3136 	    (xenbus_get_state(xbb->dev) != XenbusStateInitWait) ||
3137 	    (xbb_collect_frontend_info(xbb) != 0))
3138 		return;
3139 
3140 	xbb->flags &= ~XBBF_SHUTDOWN;
3141 
3142 	/*
3143 	 * We limit the maximum number of reqlist segments to the maximum
3144 	 * number of segments in the ring, or our absolute maximum,
3145 	 * whichever is smaller.
3146 	 */
3147 	xbb->max_reqlist_segments = MIN(xbb->max_request_segments *
3148 		xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST);
3149 
3150 	/*
3151 	 * The maximum size is simply a function of the number of segments
3152 	 * we can handle.
3153 	 */
3154 	xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE;
3155 
3156 	/* Allocate resources whose size depends on front-end configuration. */
3157 	error = xbb_alloc_communication_mem(xbb);
3158 	if (error != 0) {
3159 		xenbus_dev_fatal(xbb->dev, error,
3160 				 "Unable to allocate communication memory");
3161 		return;
3162 	}
3163 
3164 	error = xbb_publish_backend_info(xbb);
3165 	if (error != 0) {
3166 		xenbus_dev_fatal(xbb->dev, error,
3167 		    "Unable to publish device information");
3168 		return;
3169 	}
3170 
3171 	error = xbb_alloc_requests(xbb);
3172 	if (error != 0) {
3173 		/* Specific errors are reported by xbb_alloc_requests(). */
3174 		return;
3175 	}
3176 
3177 	error = xbb_alloc_request_lists(xbb);
3178 	if (error != 0) {
3179 		/* Specific errors are reported by xbb_alloc_request_lists(). */
3180 		return;
3181 	}
3182 
3183 	/*
3184 	 * Connect communication channel.
3185 	 */
3186 	error = xbb_connect_ring(xbb);
3187 	if (error != 0) {
3188 		/* Specific errors are reported by xbb_connect_ring(). */
3189 		return;
3190 	}
3191 
3192 	/* Ready for I/O. */
3193 	xenbus_set_state(xbb->dev, XenbusStateConnected);
3194 }
3195 
3196 /*-------------------------- Device Teardown Support -------------------------*/
3197 /**
3198  * Perform device shutdown functions.
3199  *
3200  * \param xbb  Per-instance xbb configuration structure.
3201  *
3202  * Mark this instance as shutting down, wait for any active I/O on the
3203  * backend device/file to drain, disconnect from the front-end, and notify
3204  * any waiters (e.g. a thread invoking our detach method) that detach can
3205  * now proceed.
3206  */
3207 static int
3208 xbb_shutdown(struct xbb_softc *xbb)
3209 {
3210 	XenbusState frontState;
3211 	int	    error;
3212 
3213 	DPRINTF("\n");
3214 
3215 	/*
3216 	 * Due to the need to drop our mutex during some
3217 	 * xenbus operations, it is possible for two threads
3218 	 * to attempt to close out shutdown processing at
3219 	 * the same time.  Tell the caller that hits this
3220 	 * race to try back later.
3221 	 */
3222 	if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0)
3223 		return (EAGAIN);
3224 
3225 	xbb->flags |= XBBF_IN_SHUTDOWN;
3226 	mtx_unlock(&xbb->lock);
3227 
3228 	if (xbb->hotplug_watch.node != NULL) {
3229 		xs_unregister_watch(&xbb->hotplug_watch);
3230 		free(xbb->hotplug_watch.node, M_XENBLOCKBACK);
3231 		xbb->hotplug_watch.node = NULL;
3232 	}
3233 
3234 	if (xenbus_get_state(xbb->dev) < XenbusStateClosing)
3235 		xenbus_set_state(xbb->dev, XenbusStateClosing);
3236 
3237 	frontState = xenbus_get_otherend_state(xbb->dev);
3238 	mtx_lock(&xbb->lock);
3239 	xbb->flags &= ~XBBF_IN_SHUTDOWN;
3240 
3241 	/* Wait for the frontend to disconnect (if it's connected). */
3242 	if (frontState == XenbusStateConnected)
3243 		return (EAGAIN);
3244 
3245 	DPRINTF("\n");
3246 
3247 	/* Indicate shutdown is in progress. */
3248 	xbb->flags |= XBBF_SHUTDOWN;
3249 
3250 	/* Disconnect from the front-end. */
3251 	error = xbb_disconnect(xbb);
3252 	if (error != 0) {
3253 		/*
3254 		 * Requests still outstanding.  We'll be called again
3255 		 * once they complete.
3256 		 */
3257 		KASSERT(error == EAGAIN,
3258 			("%s: Unexpected xbb_disconnect() failure %d",
3259 			 __func__, error));
3260 
3261 		return (error);
3262 	}
3263 
3264 	DPRINTF("\n");
3265 
3266 	/* Indicate to xbb_detach() that is it safe to proceed. */
3267 	wakeup(xbb);
3268 
3269 	return (0);
3270 }
3271 
3272 /**
3273  * Report an attach time error to the console and Xen, and cleanup
3274  * this instance by forcing immediate detach processing.
3275  *
3276  * \param xbb  Per-instance xbb configuration structure.
3277  * \param err  Errno describing the error.
3278  * \param fmt  Printf style format and arguments
3279  */
3280 static void
3281 xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...)
3282 {
3283 	va_list ap;
3284 	va_list ap_hotplug;
3285 
3286 	va_start(ap, fmt);
3287 	va_copy(ap_hotplug, ap);
3288 	xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev),
3289 		  "hotplug-error", fmt, ap_hotplug);
3290 	va_end(ap_hotplug);
3291 	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3292 		  "hotplug-status", "error");
3293 
3294 	xenbus_dev_vfatal(xbb->dev, err, fmt, ap);
3295 	va_end(ap);
3296 
3297 	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3298 		  "online", "0");
3299 	mtx_lock(&xbb->lock);
3300 	xbb_shutdown(xbb);
3301 	mtx_unlock(&xbb->lock);
3302 }
3303 
3304 /*---------------------------- NewBus Entrypoints ----------------------------*/
3305 /**
3306  * Inspect a XenBus device and claim it if is of the appropriate type.
3307  *
3308  * \param dev  NewBus device object representing a candidate XenBus device.
3309  *
3310  * \return  0 for success, errno codes for failure.
3311  */
3312 static int
3313 xbb_probe(device_t dev)
3314 {
3315 
3316 	if (strcmp(xenbus_get_type(dev), "vbd"))
3317 		return (ENXIO);
3318 
3319 	/* Only attach if Xen creates IOMMU entries for grant mapped pages. */
3320 	if (!xen_has_iommu_maps()) {
3321 		static bool warned;
3322 
3323 		if (!warned) {
3324 			warned = true;
3325 			printf(
3326 	"xen-blkback disabled due to grant maps lacking IOMMU entries\n");
3327 		}
3328 		return (ENXIO);
3329 	}
3330 
3331 	device_set_desc(dev, "Backend Virtual Block Device");
3332 	device_quiet(dev);
3333 	return (0);
3334 }
3335 
3336 /**
3337  * Setup sysctl variables to control various Block Back parameters.
3338  *
3339  * \param xbb  Xen Block Back softc.
3340  *
3341  */
3342 static void
3343 xbb_setup_sysctl(struct xbb_softc *xbb)
3344 {
3345 	struct sysctl_ctx_list *sysctl_ctx = NULL;
3346 	struct sysctl_oid      *sysctl_tree = NULL;
3347 
3348 	sysctl_ctx = device_get_sysctl_ctx(xbb->dev);
3349 	if (sysctl_ctx == NULL)
3350 		return;
3351 
3352 	sysctl_tree = device_get_sysctl_tree(xbb->dev);
3353 	if (sysctl_tree == NULL)
3354 		return;
3355 
3356 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3357 		       "disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0,
3358 		       "fake the flush command");
3359 
3360 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3361 		       "flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0,
3362 		       "send a real flush for N flush requests");
3363 
3364 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3365 		       "no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0,
3366 		       "Don't coalesce contiguous requests");
3367 
3368 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3369 			 "reqs_received", CTLFLAG_RW, &xbb->reqs_received,
3370 			 "how many I/O requests we have received");
3371 
3372 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3373 			 "reqs_completed", CTLFLAG_RW, &xbb->reqs_completed,
3374 			 "how many I/O requests have been completed");
3375 
3376 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3377 			 "reqs_queued_for_completion", CTLFLAG_RW,
3378 			 &xbb->reqs_queued_for_completion,
3379 			 "how many I/O requests queued but not yet pushed");
3380 
3381 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3382 			 "reqs_completed_with_error", CTLFLAG_RW,
3383 			 &xbb->reqs_completed_with_error,
3384 			 "how many I/O requests completed with error status");
3385 
3386 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3387 			 "forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch,
3388 			 "how many I/O dispatches were forced");
3389 
3390 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3391 			 "normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch,
3392 			 "how many I/O dispatches were normal");
3393 
3394 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3395 			 "total_dispatch", CTLFLAG_RW, &xbb->total_dispatch,
3396 			 "total number of I/O dispatches");
3397 
3398 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3399 			 "kva_shortages", CTLFLAG_RW, &xbb->kva_shortages,
3400 			 "how many times we have run out of KVA");
3401 
3402 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3403 			 "request_shortages", CTLFLAG_RW,
3404 			 &xbb->request_shortages,
3405 			 "how many times we have run out of requests");
3406 
3407 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3408 		        "max_requests", CTLFLAG_RD, &xbb->max_requests, 0,
3409 		        "maximum outstanding requests (negotiated)");
3410 
3411 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3412 		        "max_request_segments", CTLFLAG_RD,
3413 		        &xbb->max_request_segments, 0,
3414 		        "maximum number of pages per requests (negotiated)");
3415 
3416 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3417 		        "max_request_size", CTLFLAG_RD,
3418 		        &xbb->max_request_size, 0,
3419 		        "maximum size in bytes of a request (negotiated)");
3420 
3421 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3422 		        "ring_pages", CTLFLAG_RD,
3423 		        &xbb->ring_config.ring_pages, 0,
3424 		        "communication channel pages (negotiated)");
3425 }
3426 
3427 static void
3428 xbb_attach_disk(device_t dev)
3429 {
3430 	struct xbb_softc	*xbb;
3431 	int			 error;
3432 
3433 	xbb = device_get_softc(dev);
3434 
3435 	KASSERT(xbb->hotplug_done, ("Missing hotplug execution"));
3436 
3437 	/* Parse fopen style mode flags. */
3438 	if (strchr(xbb->dev_mode, 'w') == NULL)
3439 		xbb->flags |= XBBF_READ_ONLY;
3440 
3441 	/*
3442 	 * Verify the physical device is present and can support
3443 	 * the desired I/O mode.
3444 	 */
3445 	error = xbb_open_backend(xbb);
3446 	if (error != 0) {
3447 		xbb_attach_failed(xbb, error, "Unable to open %s",
3448 				  xbb->dev_name);
3449 		return;
3450 	}
3451 
3452 	/* Use devstat(9) for recording statistics. */
3453 	xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev),
3454 					   xbb->sector_size,
3455 					   DEVSTAT_ALL_SUPPORTED,
3456 					   DEVSTAT_TYPE_DIRECT
3457 					 | DEVSTAT_TYPE_IF_OTHER,
3458 					   DEVSTAT_PRIORITY_OTHER);
3459 
3460 	xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev),
3461 					      xbb->sector_size,
3462 					      DEVSTAT_ALL_SUPPORTED,
3463 					      DEVSTAT_TYPE_DIRECT
3464 					    | DEVSTAT_TYPE_IF_OTHER,
3465 					      DEVSTAT_PRIORITY_OTHER);
3466 	/*
3467 	 * Setup sysctl variables.
3468 	 */
3469 	xbb_setup_sysctl(xbb);
3470 
3471 	/*
3472 	 * Create a taskqueue for doing work that must occur from a
3473 	 * thread context.
3474 	 */
3475 	xbb->io_taskqueue = taskqueue_create_fast(device_get_nameunit(dev),
3476 						  M_NOWAIT,
3477 						  taskqueue_thread_enqueue,
3478 						  /*contxt*/&xbb->io_taskqueue);
3479 	if (xbb->io_taskqueue == NULL) {
3480 		xbb_attach_failed(xbb, error, "Unable to create taskqueue");
3481 		return;
3482 	}
3483 
3484 	taskqueue_start_threads(&xbb->io_taskqueue,
3485 				/*num threads*/1,
3486 				/*priority*/PWAIT,
3487 				/*thread name*/
3488 				"%s taskq", device_get_nameunit(dev));
3489 
3490 	/* Update hot-plug status to satisfy xend. */
3491 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3492 			  "hotplug-status", "connected");
3493 	if (error) {
3494 		xbb_attach_failed(xbb, error, "writing %s/hotplug-status",
3495 				  xenbus_get_node(xbb->dev));
3496 		return;
3497 	}
3498 
3499 	/* The front end might be waiting for the backend, attach if so. */
3500 	if (xenbus_get_otherend_state(xbb->dev) == XenbusStateInitialised)
3501 		xbb_connect(xbb);
3502 }
3503 
3504 static void
3505 xbb_attach_cb(struct xs_watch *watch, const char **vec, unsigned int len)
3506 {
3507 	device_t dev;
3508 	struct xbb_softc *xbb;
3509 	int error;
3510 
3511 	dev = (device_t)watch->callback_data;
3512 	xbb = device_get_softc(dev);
3513 
3514 	error = xs_gather(XST_NIL, xenbus_get_node(dev), "physical-device-path",
3515 	    NULL, &xbb->dev_name, NULL);
3516 	if (error != 0)
3517 		return;
3518 
3519 	xs_unregister_watch(watch);
3520 	free(watch->node, M_XENBLOCKBACK);
3521 	watch->node = NULL;
3522 	xbb->hotplug_done = true;
3523 
3524 	/* Collect physical device information. */
3525 	error = xs_gather(XST_NIL, xenbus_get_otherend_path(dev), "device-type",
3526 	    NULL, &xbb->dev_type, NULL);
3527 	if (error != 0)
3528 		xbb->dev_type = NULL;
3529 
3530 	error = xs_gather(XST_NIL, xenbus_get_node(dev), "mode", NULL,
3531 	   &xbb->dev_mode, NULL);
3532 	if (error != 0) {
3533 		xbb_attach_failed(xbb, error, "reading backend fields at %s",
3534 		    xenbus_get_node(dev));
3535 		return;
3536 	}
3537 
3538 	xbb_attach_disk(dev);
3539 }
3540 
3541 /**
3542  * Attach to a XenBus device that has been claimed by our probe routine.
3543  *
3544  * \param dev  NewBus device object representing this Xen Block Back instance.
3545  *
3546  * \return  0 for success, errno codes for failure.
3547  */
3548 static int
3549 xbb_attach(device_t dev)
3550 {
3551 	struct xbb_softc	*xbb;
3552 	int			 error;
3553 	u_int			 max_ring_page_order;
3554 	struct sbuf		*watch_path;
3555 
3556 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
3557 
3558 	/*
3559 	 * Basic initialization.
3560 	 * After this block it is safe to call xbb_detach()
3561 	 * to clean up any allocated data for this instance.
3562 	 */
3563 	xbb = device_get_softc(dev);
3564 	xbb->dev = dev;
3565 	xbb->otherend_id = xenbus_get_otherend_id(dev);
3566 	TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb);
3567 	mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF);
3568 
3569 	/*
3570 	 * Publish protocol capabilities for consumption by the
3571 	 * front-end.
3572 	 */
3573 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3574 			  "feature-barrier", "1");
3575 	if (error) {
3576 		xbb_attach_failed(xbb, error, "writing %s/feature-barrier",
3577 				  xenbus_get_node(xbb->dev));
3578 		return (error);
3579 	}
3580 
3581 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3582 			  "feature-flush-cache", "1");
3583 	if (error) {
3584 		xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache",
3585 				  xenbus_get_node(xbb->dev));
3586 		return (error);
3587 	}
3588 
3589 	max_ring_page_order = flsl(XBB_MAX_RING_PAGES) - 1;
3590 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3591 			  "max-ring-page-order", "%u", max_ring_page_order);
3592 	if (error) {
3593 		xbb_attach_failed(xbb, error, "writing %s/max-ring-page-order",
3594 				  xenbus_get_node(xbb->dev));
3595 		return (error);
3596 	}
3597 
3598 	/* Tell the toolstack blkback has attached. */
3599 	xenbus_set_state(dev, XenbusStateInitWait);
3600 
3601 	if (xbb->hotplug_done) {
3602 		xbb_attach_disk(dev);
3603 		return (0);
3604 	}
3605 
3606 	/*
3607 	 * We need to wait for hotplug script execution before
3608 	 * moving forward.
3609 	 */
3610 	watch_path = xs_join(xenbus_get_node(xbb->dev), "physical-device-path");
3611 	xbb->hotplug_watch.callback_data = (uintptr_t)dev;
3612 	xbb->hotplug_watch.callback = xbb_attach_cb;
3613 	KASSERT(xbb->hotplug_watch.node == NULL, ("watch node already setup"));
3614 	xbb->hotplug_watch.node = strdup(sbuf_data(watch_path), M_XENBLOCKBACK);
3615 	/*
3616 	 * We don't care about the path updated, just about the value changes
3617 	 * on that single node, hence there's no need to queue more that one
3618 	 * event.
3619 	 */
3620 	xbb->hotplug_watch.max_pending = 1;
3621 	sbuf_delete(watch_path);
3622 	error = xs_register_watch(&xbb->hotplug_watch);
3623 	if (error != 0) {
3624 		xbb_attach_failed(xbb, error, "failed to create watch on %s",
3625 		    xbb->hotplug_watch.node);
3626 		free(xbb->hotplug_watch.node, M_XENBLOCKBACK);
3627 		return (error);
3628 	}
3629 
3630 	return (0);
3631 }
3632 
3633 /**
3634  * Detach from a block back device instance.
3635  *
3636  * \param dev  NewBus device object representing this Xen Block Back instance.
3637  *
3638  * \return  0 for success, errno codes for failure.
3639  *
3640  * \note A block back device may be detached at any time in its life-cycle,
3641  *       including part way through the attach process.  For this reason,
3642  *       initialization order and the initialization state checks in this
3643  *       routine must be carefully coupled so that attach time failures
3644  *       are gracefully handled.
3645  */
3646 static int
3647 xbb_detach(device_t dev)
3648 {
3649         struct xbb_softc *xbb;
3650 
3651 	DPRINTF("\n");
3652 
3653         xbb = device_get_softc(dev);
3654 	mtx_lock(&xbb->lock);
3655 	while (xbb_shutdown(xbb) == EAGAIN) {
3656 		msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0,
3657 		       "xbb_shutdown", 0);
3658 	}
3659 	mtx_unlock(&xbb->lock);
3660 
3661 	DPRINTF("\n");
3662 
3663 	if (xbb->io_taskqueue != NULL)
3664 		taskqueue_free(xbb->io_taskqueue);
3665 
3666 	if (xbb->xbb_stats != NULL)
3667 		devstat_remove_entry(xbb->xbb_stats);
3668 
3669 	if (xbb->xbb_stats_in != NULL)
3670 		devstat_remove_entry(xbb->xbb_stats_in);
3671 
3672 	xbb_close_backend(xbb);
3673 
3674 	if (xbb->dev_mode != NULL) {
3675 		free(xbb->dev_mode, M_XENSTORE);
3676 		xbb->dev_mode = NULL;
3677 	}
3678 
3679 	if (xbb->dev_type != NULL) {
3680 		free(xbb->dev_type, M_XENSTORE);
3681 		xbb->dev_type = NULL;
3682 	}
3683 
3684 	if (xbb->dev_name != NULL) {
3685 		free(xbb->dev_name, M_XENSTORE);
3686 		xbb->dev_name = NULL;
3687 	}
3688 
3689 	mtx_destroy(&xbb->lock);
3690         return (0);
3691 }
3692 
3693 /**
3694  * Prepare this block back device for suspension of this VM.
3695  *
3696  * \param dev  NewBus device object representing this Xen Block Back instance.
3697  *
3698  * \return  0 for success, errno codes for failure.
3699  */
3700 static int
3701 xbb_suspend(device_t dev)
3702 {
3703 #ifdef NOT_YET
3704         struct xbb_softc *sc = device_get_softc(dev);
3705 
3706         /* Prevent new requests being issued until we fix things up. */
3707         mtx_lock(&sc->xb_io_lock);
3708         sc->connected = BLKIF_STATE_SUSPENDED;
3709         mtx_unlock(&sc->xb_io_lock);
3710 #endif
3711 
3712         return (0);
3713 }
3714 
3715 /**
3716  * Perform any processing required to recover from a suspended state.
3717  *
3718  * \param dev  NewBus device object representing this Xen Block Back instance.
3719  *
3720  * \return  0 for success, errno codes for failure.
3721  */
3722 static int
3723 xbb_resume(device_t dev)
3724 {
3725 	return (0);
3726 }
3727 
3728 /**
3729  * Handle state changes expressed via the XenStore by our front-end peer.
3730  *
3731  * \param dev             NewBus device object representing this Xen
3732  *                        Block Back instance.
3733  * \param frontend_state  The new state of the front-end.
3734  *
3735  * \return  0 for success, errno codes for failure.
3736  */
3737 static void
3738 xbb_frontend_changed(device_t dev, XenbusState frontend_state)
3739 {
3740 	struct xbb_softc *xbb = device_get_softc(dev);
3741 
3742 	DPRINTF("frontend_state=%s, xbb_state=%s\n",
3743 	        xenbus_strstate(frontend_state),
3744 		xenbus_strstate(xenbus_get_state(xbb->dev)));
3745 
3746 	switch (frontend_state) {
3747 	case XenbusStateInitialising:
3748 		break;
3749 	case XenbusStateInitialised:
3750 	case XenbusStateConnected:
3751 		xbb_connect(xbb);
3752 		break;
3753 	case XenbusStateClosing:
3754 	case XenbusStateClosed:
3755 		mtx_lock(&xbb->lock);
3756 		xbb_shutdown(xbb);
3757 		mtx_unlock(&xbb->lock);
3758 		if (frontend_state == XenbusStateClosed)
3759 			xenbus_set_state(xbb->dev, XenbusStateClosed);
3760 		break;
3761 	default:
3762 		xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend",
3763 				 frontend_state);
3764 		break;
3765 	}
3766 }
3767 
3768 /*---------------------------- NewBus Registration ---------------------------*/
3769 static device_method_t xbb_methods[] = {
3770 	/* Device interface */
3771 	DEVMETHOD(device_probe,		xbb_probe),
3772 	DEVMETHOD(device_attach,	xbb_attach),
3773 	DEVMETHOD(device_detach,	xbb_detach),
3774 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
3775 	DEVMETHOD(device_suspend,	xbb_suspend),
3776 	DEVMETHOD(device_resume,	xbb_resume),
3777 
3778 	/* Xenbus interface */
3779 	DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed),
3780 
3781 	DEVMETHOD_END
3782 };
3783 
3784 static driver_t xbb_driver = {
3785         "xbbd",
3786         xbb_methods,
3787         sizeof(struct xbb_softc),
3788 };
3789 
3790 DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, 0, 0);
3791