xref: /freebsd/sys/dev/xen/xenstore/xenstore.c (revision 4e4e43dc)
1 /******************************************************************************
2  * xenstore.c
3  *
4  * Low-level kernel interface to the XenStore.
5  *
6  * Copyright (C) 2005 Rusty Russell, IBM Corporation
7  * Copyright (C) 2009,2010 Spectra Logic Corporation
8  *
9  * This file may be distributed separately from the Linux kernel, or
10  * incorporated into other software packages, subject to the following license:
11  *
12  * Permission is hereby granted, free of charge, to any person obtaining a copy
13  * of this source file (the "Software"), to deal in the Software without
14  * restriction, including without limitation the rights to use, copy, modify,
15  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
16  * and to permit persons to whom the Software is furnished to do so, subject to
17  * the following conditions:
18  *
19  * The above copyright notice and this permission notice shall be included in
20  * all copies or substantial portions of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
25  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
28  * IN THE SOFTWARE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/module.h>
39 #include <sys/mutex.h>
40 #include <sys/sx.h>
41 #include <sys/syslog.h>
42 #include <sys/malloc.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/kthread.h>
46 #include <sys/sbuf.h>
47 #include <sys/sysctl.h>
48 #include <sys/uio.h>
49 #include <sys/unistd.h>
50 #include <sys/queue.h>
51 #include <sys/taskqueue.h>
52 
53 #include <machine/stdarg.h>
54 
55 #include <xen/xen-os.h>
56 #include <xen/hypervisor.h>
57 #include <xen/xen_intr.h>
58 
59 #include <xen/interface/hvm/params.h>
60 #include <xen/hvm.h>
61 
62 #include <xen/xenstore/xenstorevar.h>
63 #include <xen/xenstore/xenstore_internal.h>
64 
65 #include <vm/vm.h>
66 #include <vm/pmap.h>
67 
68 /**
69  * \file xenstore.c
70  * \brief XenStore interface
71  *
72  * The XenStore interface is a simple storage system that is a means of
73  * communicating state and configuration data between the Xen Domain 0
74  * and the various guest domains.  All configuration data other than
75  * a small amount of essential information required during the early
76  * boot process of launching a Xen aware guest, is managed using the
77  * XenStore.
78  *
79  * The XenStore is ASCII string based, and has a structure and semantics
80  * similar to a filesystem.  There are files and directories, the directories
81  * able to contain files or other directories.  The depth of the hierarchy
82  * is only limited by the XenStore's maximum path length.
83  *
84  * The communication channel between the XenStore service and other
85  * domains is via two, guest specific, ring buffers in a shared memory
86  * area.  One ring buffer is used for communicating in each direction.
87  * The grant table references for this shared memory are given to the
88  * guest either via the xen_start_info structure for a fully para-
89  * virtualized guest, or via HVM hypercalls for a hardware virtualized
90  * guest.
91  *
92  * The XenStore communication relies on an event channel and thus
93  * interrupts.  For this reason, the attachment of the XenStore
94  * relies on an interrupt driven configuration hook to hold off
95  * boot processing until communication with the XenStore service
96  * can be established.
97  *
98  * Several Xen services depend on the XenStore, most notably the
99  * XenBus used to discover and manage Xen devices.  These services
100  * are implemented as NewBus child attachments to a bus exported
101  * by this XenStore driver.
102  */
103 
104 static struct xs_watch *find_watch(const char *token);
105 
106 MALLOC_DEFINE(M_XENSTORE, "xenstore", "XenStore data and results");
107 
108 /**
109  * Pointer to shared memory communication structures allowing us
110  * to communicate with the XenStore service.
111  *
112  * When operating in full PV mode, this pointer is set early in kernel
113  * startup from within xen_machdep.c.  In HVM mode, we use hypercalls
114  * to get the guest frame number for the shared page and then map it
115  * into kva.  See xs_init() for details.
116  */
117 static struct xenstore_domain_interface *xen_store;
118 
119 /*-------------------------- Private Data Structures ------------------------*/
120 
121 /**
122  * Structure capturing messages received from the XenStore service.
123  */
124 struct xs_stored_msg {
125 	TAILQ_ENTRY(xs_stored_msg) list;
126 
127 	struct xsd_sockmsg hdr;
128 
129 	union {
130 		/* Queued replies. */
131 		struct {
132 			char *body;
133 		} reply;
134 
135 		/* Queued watch events. */
136 		struct {
137 			struct xs_watch *handle;
138 			const char **vec;
139 			u_int vec_size;
140 		} watch;
141 	} u;
142 };
143 TAILQ_HEAD(xs_stored_msg_list, xs_stored_msg);
144 
145 /**
146  * Container for all XenStore related state.
147  */
148 struct xs_softc {
149 	/** Newbus device for the XenStore. */
150 	device_t xs_dev;
151 
152 	/**
153 	 * Lock serializing access to ring producer/consumer
154 	 * indexes.  Use of this lock guarantees that wakeups
155 	 * of blocking readers/writers are not missed due to
156 	 * races with the XenStore service.
157 	 */
158 	struct mtx ring_lock;
159 
160 	/*
161 	 * Mutex used to insure exclusive access to the outgoing
162 	 * communication ring.  We use a lock type that can be
163 	 * held while sleeping so that xs_write() can block waiting
164 	 * for space in the ring to free up, without allowing another
165 	 * writer to come in and corrupt a partial message write.
166 	 */
167 	struct sx request_mutex;
168 
169 	/**
170 	 * A list of replies to our requests.
171 	 *
172 	 * The reply list is filled by xs_rcv_thread().  It
173 	 * is consumed by the context that issued the request
174 	 * to which a reply is made.  The requester blocks in
175 	 * xs_read_reply().
176 	 *
177 	 * /note Only one requesting context can be active at a time.
178 	 *       This is guaranteed by the request_mutex and insures
179 	 *	 that the requester sees replies matching the order
180 	 *	 of its requests.
181 	 */
182 	struct xs_stored_msg_list reply_list;
183 
184 	/** Lock protecting the reply list. */
185 	struct mtx reply_lock;
186 
187 	/**
188 	 * List of registered watches.
189 	 */
190 	struct xs_watch_list  registered_watches;
191 
192 	/** Lock protecting the registered watches list. */
193 	struct mtx registered_watches_lock;
194 
195 	/**
196 	 * List of pending watch callback events.
197 	 */
198 	struct xs_stored_msg_list watch_events;
199 
200 	/** Lock protecting the watch calback list. */
201 	struct mtx watch_events_lock;
202 
203 	/**
204 	 * The processid of the xenwatch thread.
205 	 */
206 	pid_t xenwatch_pid;
207 
208 	/**
209 	 * Sleepable mutex used to gate the execution of XenStore
210 	 * watch event callbacks.
211 	 *
212 	 * xenwatch_thread holds an exclusive lock on this mutex
213 	 * while delivering event callbacks, and xenstore_unregister_watch()
214 	 * uses an exclusive lock of this mutex to guarantee that no
215 	 * callbacks of the just unregistered watch are pending
216 	 * before returning to its caller.
217 	 */
218 	struct sx xenwatch_mutex;
219 
220 	/**
221 	 * The HVM guest pseudo-physical frame number.  This is Xen's mapping
222 	 * of the true machine frame number into our "physical address space".
223 	 */
224 	unsigned long gpfn;
225 
226 	/**
227 	 * The event channel for communicating with the
228 	 * XenStore service.
229 	 */
230 	int evtchn;
231 
232 	/** Handle for XenStore interrupts. */
233 	xen_intr_handle_t xen_intr_handle;
234 
235 	/**
236 	 * Interrupt driven config hook allowing us to defer
237 	 * attaching children until interrupts (and thus communication
238 	 * with the XenStore service) are available.
239 	 */
240 	struct intr_config_hook xs_attachcb;
241 
242 	/**
243 	 * Xenstore is a user-space process that usually runs in Dom0,
244 	 * so if this domain is booting as Dom0, xenstore wont we accessible,
245 	 * and we have to defer the initialization of xenstore related
246 	 * devices to later (when xenstore is started).
247 	 */
248 	bool initialized;
249 
250 	/**
251 	 * Task to run when xenstore is initialized (Dom0 only), will
252 	 * take care of attaching xenstore related devices.
253 	 */
254 	struct task xs_late_init;
255 };
256 
257 /*-------------------------------- Global Data ------------------------------*/
258 static struct xs_softc xs;
259 
260 /*------------------------- Private Utility Functions -----------------------*/
261 
262 /**
263  * Count and optionally record pointers to a number of NUL terminated
264  * strings in a buffer.
265  *
266  * \param strings  A pointer to a contiguous buffer of NUL terminated strings.
267  * \param dest	   An array to store pointers to each string found in strings.
268  * \param len	   The length of the buffer pointed to by strings.
269  *
270  * \return  A count of the number of strings found.
271  */
272 static u_int
273 extract_strings(const char *strings, const char **dest, u_int len)
274 {
275 	u_int num;
276 	const char *p;
277 
278 	for (p = strings, num = 0; p < strings + len; p += strlen(p) + 1) {
279 		if (dest != NULL)
280 			*dest++ = p;
281 		num++;
282 	}
283 
284 	return (num);
285 }
286 
287 /**
288  * Convert a contiguous buffer containing a series of NUL terminated
289  * strings into an array of pointers to strings.
290  *
291  * The returned pointer references the array of string pointers which
292  * is followed by the storage for the string data.  It is the client's
293  * responsibility to free this storage.
294  *
295  * The storage addressed by strings is free'd prior to split returning.
296  *
297  * \param strings  A pointer to a contiguous buffer of NUL terminated strings.
298  * \param len	   The length of the buffer pointed to by strings.
299  * \param num	   The number of strings found and returned in the strings
300  *                 array.
301  *
302  * \return  An array of pointers to the strings found in the input buffer.
303  */
304 static const char **
305 split(char *strings, u_int len, u_int *num)
306 {
307 	const char **ret;
308 
309 	/* Protect against unterminated buffers. */
310 	if (len > 0)
311 		strings[len - 1] = '\0';
312 
313 	/* Count the strings. */
314 	*num = extract_strings(strings, /*dest*/NULL, len);
315 
316 	/* Transfer to one big alloc for easy freeing by the caller. */
317 	ret = malloc(*num * sizeof(char *) + len, M_XENSTORE, M_WAITOK);
318 	memcpy(&ret[*num], strings, len);
319 	free(strings, M_XENSTORE);
320 
321 	/* Extract pointers to newly allocated array. */
322 	strings = (char *)&ret[*num];
323 	(void)extract_strings(strings, /*dest*/ret, len);
324 
325 	return (ret);
326 }
327 
328 /*------------------------- Public Utility Functions -------------------------*/
329 /*------- API comments for these methods can be found in xenstorevar.h -------*/
330 struct sbuf *
331 xs_join(const char *dir, const char *name)
332 {
333 	struct sbuf *sb;
334 
335 	sb = sbuf_new_auto();
336 	sbuf_cat(sb, dir);
337 	if (name[0] != '\0') {
338 		sbuf_putc(sb, '/');
339 		sbuf_cat(sb, name);
340 	}
341 	sbuf_finish(sb);
342 
343 	return (sb);
344 }
345 
346 /*-------------------- Low Level Communication Management --------------------*/
347 /**
348  * Interrupt handler for the XenStore event channel.
349  *
350  * XenStore reads and writes block on "xen_store" for buffer
351  * space.  Wakeup any blocking operations when the XenStore
352  * service has modified the queues.
353  */
354 static void
355 xs_intr(void * arg __unused /*__attribute__((unused))*/)
356 {
357 
358 	/* If xenstore has not been initialized, initialize it now */
359 	if (!xs.initialized) {
360 		xs.initialized = true;
361 		/*
362 		 * Since this task is probing and attaching devices we
363 		 * have to hold the Giant lock.
364 		 */
365 		taskqueue_enqueue(taskqueue_swi_giant, &xs.xs_late_init);
366 	}
367 
368 	/*
369 	 * Hold ring lock across wakeup so that clients
370 	 * cannot miss a wakeup.
371 	 */
372 	mtx_lock(&xs.ring_lock);
373 	wakeup(xen_store);
374 	mtx_unlock(&xs.ring_lock);
375 }
376 
377 /**
378  * Verify that the indexes for a ring are valid.
379  *
380  * The difference between the producer and consumer cannot
381  * exceed the size of the ring.
382  *
383  * \param cons  The consumer index for the ring to test.
384  * \param prod  The producer index for the ring to test.
385  *
386  * \retval 1  If indexes are in range.
387  * \retval 0  If the indexes are out of range.
388  */
389 static int
390 xs_check_indexes(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod)
391 {
392 
393 	return ((prod - cons) <= XENSTORE_RING_SIZE);
394 }
395 
396 /**
397  * Return a pointer to, and the length of, the contiguous
398  * free region available for output in a ring buffer.
399  *
400  * \param cons  The consumer index for the ring.
401  * \param prod  The producer index for the ring.
402  * \param buf   The base address of the ring's storage.
403  * \param len   The amount of contiguous storage available.
404  *
405  * \return  A pointer to the start location of the free region.
406  */
407 static void *
408 xs_get_output_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod,
409     char *buf, uint32_t *len)
410 {
411 
412 	*len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(prod);
413 	if ((XENSTORE_RING_SIZE - (prod - cons)) < *len)
414 		*len = XENSTORE_RING_SIZE - (prod - cons);
415 	return (buf + MASK_XENSTORE_IDX(prod));
416 }
417 
418 /**
419  * Return a pointer to, and the length of, the contiguous
420  * data available to read from a ring buffer.
421  *
422  * \param cons  The consumer index for the ring.
423  * \param prod  The producer index for the ring.
424  * \param buf   The base address of the ring's storage.
425  * \param len   The amount of contiguous data available to read.
426  *
427  * \return  A pointer to the start location of the available data.
428  */
429 static const void *
430 xs_get_input_chunk(XENSTORE_RING_IDX cons, XENSTORE_RING_IDX prod,
431     const char *buf, uint32_t *len)
432 {
433 
434 	*len = XENSTORE_RING_SIZE - MASK_XENSTORE_IDX(cons);
435 	if ((prod - cons) < *len)
436 		*len = prod - cons;
437 	return (buf + MASK_XENSTORE_IDX(cons));
438 }
439 
440 /**
441  * Transmit data to the XenStore service.
442  *
443  * \param tdata  A pointer to the contiguous data to send.
444  * \param len    The amount of data to send.
445  *
446  * \return  On success 0, otherwise an errno value indicating the
447  *          cause of failure.
448  *
449  * \invariant  Called from thread context.
450  * \invariant  The buffer pointed to by tdata is at least len bytes
451  *             in length.
452  * \invariant  xs.request_mutex exclusively locked.
453  */
454 static int
455 xs_write_store(const void *tdata, unsigned len)
456 {
457 	XENSTORE_RING_IDX cons, prod;
458 	const char *data = (const char *)tdata;
459 	int error;
460 
461 	sx_assert(&xs.request_mutex, SX_XLOCKED);
462 	while (len != 0) {
463 		void *dst;
464 		u_int avail;
465 
466 		/* Hold lock so we can't miss wakeups should we block. */
467 		mtx_lock(&xs.ring_lock);
468 		cons = xen_store->req_cons;
469 		prod = xen_store->req_prod;
470 		if ((prod - cons) == XENSTORE_RING_SIZE) {
471 			/*
472 			 * Output ring is full. Wait for a ring event.
473 			 *
474 			 * Note that the events from both queues
475 			 * are combined, so being woken does not
476 			 * guarantee that data exist in the read
477 			 * ring.
478 			 *
479 			 * To simplify error recovery and the retry,
480 			 * we specify PDROP so our lock is *not* held
481 			 * when msleep returns.
482 			 */
483 			error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP,
484 			     "xbwrite", /*timeout*/0);
485 			if (error && error != EWOULDBLOCK)
486 				return (error);
487 
488 			/* Try again. */
489 			continue;
490 		}
491 		mtx_unlock(&xs.ring_lock);
492 
493 		/* Verify queue sanity. */
494 		if (!xs_check_indexes(cons, prod)) {
495 			xen_store->req_cons = xen_store->req_prod = 0;
496 			return (EIO);
497 		}
498 
499 		dst = xs_get_output_chunk(cons, prod, xen_store->req, &avail);
500 		if (avail > len)
501 			avail = len;
502 
503 		memcpy(dst, data, avail);
504 		data += avail;
505 		len -= avail;
506 
507 		/*
508 		 * The store to the producer index, which indicates
509 		 * to the other side that new data has arrived, must
510 		 * be visible only after our copy of the data into the
511 		 * ring has completed.
512 		 */
513 		wmb();
514 		xen_store->req_prod += avail;
515 
516 		/*
517 		 * xen_intr_signal() implies mb(). The other side will see
518 		 * the change to req_prod at the time of the interrupt.
519 		 */
520 		xen_intr_signal(xs.xen_intr_handle);
521 	}
522 
523 	return (0);
524 }
525 
526 /**
527  * Receive data from the XenStore service.
528  *
529  * \param tdata  A pointer to the contiguous buffer to receive the data.
530  * \param len    The amount of data to receive.
531  *
532  * \return  On success 0, otherwise an errno value indicating the
533  *          cause of failure.
534  *
535  * \invariant  Called from thread context.
536  * \invariant  The buffer pointed to by tdata is at least len bytes
537  *             in length.
538  *
539  * \note xs_read does not perform any internal locking to guarantee
540  *       serial access to the incoming ring buffer.  However, there
541  *	 is only one context processing reads: xs_rcv_thread().
542  */
543 static int
544 xs_read_store(void *tdata, unsigned len)
545 {
546 	XENSTORE_RING_IDX cons, prod;
547 	char *data = (char *)tdata;
548 	int error;
549 
550 	while (len != 0) {
551 		u_int avail;
552 		const char *src;
553 
554 		/* Hold lock so we can't miss wakeups should we block. */
555 		mtx_lock(&xs.ring_lock);
556 		cons = xen_store->rsp_cons;
557 		prod = xen_store->rsp_prod;
558 		if (cons == prod) {
559 			/*
560 			 * Nothing to read. Wait for a ring event.
561 			 *
562 			 * Note that the events from both queues
563 			 * are combined, so being woken does not
564 			 * guarantee that data exist in the read
565 			 * ring.
566 			 *
567 			 * To simplify error recovery and the retry,
568 			 * we specify PDROP so our lock is *not* held
569 			 * when msleep returns.
570 			 */
571 			error = msleep(xen_store, &xs.ring_lock, PCATCH|PDROP,
572 			    "xbread", /*timeout*/0);
573 			if (error && error != EWOULDBLOCK)
574 				return (error);
575 			continue;
576 		}
577 		mtx_unlock(&xs.ring_lock);
578 
579 		/* Verify queue sanity. */
580 		if (!xs_check_indexes(cons, prod)) {
581 			xen_store->rsp_cons = xen_store->rsp_prod = 0;
582 			return (EIO);
583 		}
584 
585 		src = xs_get_input_chunk(cons, prod, xen_store->rsp, &avail);
586 		if (avail > len)
587 			avail = len;
588 
589 		/*
590 		 * Insure the data we read is related to the indexes
591 		 * we read above.
592 		 */
593 		rmb();
594 
595 		memcpy(data, src, avail);
596 		data += avail;
597 		len -= avail;
598 
599 		/*
600 		 * Insure that the producer of this ring does not see
601 		 * the ring space as free until after we have copied it
602 		 * out.
603 		 */
604 		mb();
605 		xen_store->rsp_cons += avail;
606 
607 		/*
608 		 * xen_intr_signal() implies mb(). The producer will see
609 		 * the updated consumer index when the event is delivered.
610 		 */
611 		xen_intr_signal(xs.xen_intr_handle);
612 	}
613 
614 	return (0);
615 }
616 
617 /*----------------------- Received Message Processing ------------------------*/
618 /**
619  * Block reading the next message from the XenStore service and
620  * process the result.
621  *
622  * \param type  The returned type of the XenStore message received.
623  *
624  * \return  0 on success.  Otherwise an errno value indicating the
625  *          type of failure encountered.
626  */
627 static int
628 xs_process_msg(enum xsd_sockmsg_type *type)
629 {
630 	struct xs_stored_msg *msg;
631 	char *body;
632 	int error;
633 
634 	msg = malloc(sizeof(*msg), M_XENSTORE, M_WAITOK);
635 	error = xs_read_store(&msg->hdr, sizeof(msg->hdr));
636 	if (error) {
637 		free(msg, M_XENSTORE);
638 		return (error);
639 	}
640 
641 	body = malloc(msg->hdr.len + 1, M_XENSTORE, M_WAITOK);
642 	error = xs_read_store(body, msg->hdr.len);
643 	if (error) {
644 		free(body, M_XENSTORE);
645 		free(msg, M_XENSTORE);
646 		return (error);
647 	}
648 	body[msg->hdr.len] = '\0';
649 
650 	*type = msg->hdr.type;
651 	if (msg->hdr.type == XS_WATCH_EVENT) {
652 		msg->u.watch.vec = split(body, msg->hdr.len,
653 		    &msg->u.watch.vec_size);
654 
655 		mtx_lock(&xs.registered_watches_lock);
656 		msg->u.watch.handle = find_watch(
657 		    msg->u.watch.vec[XS_WATCH_TOKEN]);
658 		mtx_lock(&xs.watch_events_lock);
659 		if (msg->u.watch.handle != NULL &&
660 		    (!msg->u.watch.handle->max_pending ||
661 		    msg->u.watch.handle->pending <
662 		    msg->u.watch.handle->max_pending)) {
663 			msg->u.watch.handle->pending++;
664 			TAILQ_INSERT_TAIL(&xs.watch_events, msg, list);
665 			wakeup(&xs.watch_events);
666 			mtx_unlock(&xs.watch_events_lock);
667 		} else {
668 			mtx_unlock(&xs.watch_events_lock);
669 			free(msg->u.watch.vec, M_XENSTORE);
670 			free(msg, M_XENSTORE);
671 		}
672 		mtx_unlock(&xs.registered_watches_lock);
673 	} else {
674 		msg->u.reply.body = body;
675 		mtx_lock(&xs.reply_lock);
676 		TAILQ_INSERT_TAIL(&xs.reply_list, msg, list);
677 		wakeup(&xs.reply_list);
678 		mtx_unlock(&xs.reply_lock);
679 	}
680 
681 	return (0);
682 }
683 
684 /**
685  * Thread body of the XenStore receive thread.
686  *
687  * This thread blocks waiting for data from the XenStore service
688  * and processes and received messages.
689  */
690 static void
691 xs_rcv_thread(void *arg __unused)
692 {
693 	int error;
694 	enum xsd_sockmsg_type type;
695 
696 	for (;;) {
697 		error = xs_process_msg(&type);
698 		if (error)
699 			printf("XENSTORE error %d while reading message\n",
700 			    error);
701 	}
702 }
703 
704 /*---------------- XenStore Message Request/Reply Processing -----------------*/
705 #define xsd_error_count	(sizeof(xsd_errors) / sizeof(xsd_errors[0]))
706 
707 /**
708  * Convert a XenStore error string into an errno number.
709  *
710  * \param errorstring  The error string to convert.
711  *
712  * \return  The errno best matching the input string.
713  *
714  * \note Unknown error strings are converted to EINVAL.
715  */
716 static int
717 xs_get_error(const char *errorstring)
718 {
719 	u_int i;
720 
721 	for (i = 0; i < xsd_error_count; i++) {
722 		if (!strcmp(errorstring, xsd_errors[i].errstring))
723 			return (xsd_errors[i].errnum);
724 	}
725 	log(LOG_WARNING, "XENSTORE xen store gave: unknown error %s",
726 	    errorstring);
727 	return (EINVAL);
728 }
729 
730 /**
731  * Block waiting for a reply to a message request.
732  *
733  * \param type	  The returned type of the reply.
734  * \param len	  The returned body length of the reply.
735  * \param result  The returned body of the reply.
736  *
737  * \return  0 on success.  Otherwise an errno indicating the
738  *          cause of failure.
739  */
740 static int
741 xs_read_reply(enum xsd_sockmsg_type *type, u_int *len, void **result)
742 {
743 	struct xs_stored_msg *msg;
744 	char *body;
745 	int error;
746 
747 	mtx_lock(&xs.reply_lock);
748 	while (TAILQ_EMPTY(&xs.reply_list)) {
749 		error = mtx_sleep(&xs.reply_list, &xs.reply_lock, 0, "xswait",
750 		    hz/10);
751 		if (error && error != EWOULDBLOCK) {
752 			mtx_unlock(&xs.reply_lock);
753 			return (error);
754 		}
755 	}
756 	msg = TAILQ_FIRST(&xs.reply_list);
757 	TAILQ_REMOVE(&xs.reply_list, msg, list);
758 	mtx_unlock(&xs.reply_lock);
759 
760 	*type = msg->hdr.type;
761 	if (len)
762 		*len = msg->hdr.len;
763 	body = msg->u.reply.body;
764 
765 	free(msg, M_XENSTORE);
766 	*result = body;
767 	return (0);
768 }
769 
770 /**
771  * Pass-thru interface for XenStore access by userland processes
772  * via the XenStore device.
773  *
774  * Reply type and length data are returned by overwriting these
775  * fields in the passed in request message.
776  *
777  * \param msg	  A properly formatted message to transmit to
778  *		  the XenStore service.
779  * \param result  The returned body of the reply.
780  *
781  * \return  0 on success.  Otherwise an errno indicating the cause
782  *          of failure.
783  *
784  * \note The returned result is provided in malloced storage and thus
785  *       must be free'd by the caller with 'free(result, M_XENSTORE);
786  */
787 int
788 xs_dev_request_and_reply(struct xsd_sockmsg *msg, void **result)
789 {
790 	uint32_t request_type;
791 	int error;
792 
793 	request_type = msg->type;
794 
795 	sx_xlock(&xs.request_mutex);
796 	if ((error = xs_write_store(msg, sizeof(*msg) + msg->len)) == 0)
797 		error = xs_read_reply(&msg->type, &msg->len, result);
798 	sx_xunlock(&xs.request_mutex);
799 
800 	return (error);
801 }
802 
803 /**
804  * Send a message with an optionally muti-part body to the XenStore service.
805  *
806  * \param t              The transaction to use for this request.
807  * \param request_type   The type of message to send.
808  * \param iovec          Pointers to the body sections of the request.
809  * \param num_vecs       The number of body sections in the request.
810  * \param len            The returned length of the reply.
811  * \param result         The returned body of the reply.
812  *
813  * \return  0 on success.  Otherwise an errno indicating
814  *          the cause of failure.
815  *
816  * \note The returned result is provided in malloced storage and thus
817  *       must be free'd by the caller with 'free(*result, M_XENSTORE);
818  */
819 static int
820 xs_talkv(struct xs_transaction t, enum xsd_sockmsg_type request_type,
821     const struct iovec *iovec, u_int num_vecs, u_int *len, void **result)
822 {
823 	struct xsd_sockmsg msg;
824 	void *ret = NULL;
825 	u_int i;
826 	int error;
827 
828 	msg.tx_id = t.id;
829 	msg.req_id = 0;
830 	msg.type = request_type;
831 	msg.len = 0;
832 	for (i = 0; i < num_vecs; i++)
833 		msg.len += iovec[i].iov_len;
834 
835 	sx_xlock(&xs.request_mutex);
836 	error = xs_write_store(&msg, sizeof(msg));
837 	if (error) {
838 		printf("xs_talkv failed %d\n", error);
839 		goto error_lock_held;
840 	}
841 
842 	for (i = 0; i < num_vecs; i++) {
843 		error = xs_write_store(iovec[i].iov_base, iovec[i].iov_len);
844 		if (error) {
845 			printf("xs_talkv failed %d\n", error);
846 			goto error_lock_held;
847 		}
848 	}
849 
850 	error = xs_read_reply(&msg.type, len, &ret);
851 
852 error_lock_held:
853 	sx_xunlock(&xs.request_mutex);
854 	if (error)
855 		return (error);
856 
857 	if (msg.type == XS_ERROR) {
858 		error = xs_get_error(ret);
859 		free(ret, M_XENSTORE);
860 		return (error);
861 	}
862 
863 	/* Reply is either error or an echo of our request message type. */
864 	KASSERT(msg.type == request_type, ("bad xenstore message type"));
865 
866 	if (result)
867 		*result = ret;
868 	else
869 		free(ret, M_XENSTORE);
870 
871 	return (0);
872 }
873 
874 /**
875  * Wrapper for xs_talkv allowing easy transmission of a message with
876  * a single, contiguous, message body.
877  *
878  * \param t              The transaction to use for this request.
879  * \param request_type   The type of message to send.
880  * \param body           The body of the request.
881  * \param len            The returned length of the reply.
882  * \param result         The returned body of the reply.
883  *
884  * \return  0 on success.  Otherwise an errno indicating
885  *          the cause of failure.
886  *
887  * \note The returned result is provided in malloced storage and thus
888  *       must be free'd by the caller with 'free(*result, M_XENSTORE);
889  */
890 static int
891 xs_single(struct xs_transaction t, enum xsd_sockmsg_type request_type,
892     const char *body, u_int *len, void **result)
893 {
894 	struct iovec iovec;
895 
896 	iovec.iov_base = (void *)(uintptr_t)body;
897 	iovec.iov_len = strlen(body) + 1;
898 
899 	return (xs_talkv(t, request_type, &iovec, 1, len, result));
900 }
901 
902 /*------------------------- XenStore Watch Support ---------------------------*/
903 /**
904  * Transmit a watch request to the XenStore service.
905  *
906  * \param path    The path in the XenStore to watch.
907  * \param tocken  A unique identifier for this watch.
908  *
909  * \return  0 on success.  Otherwise an errno indicating the
910  *          cause of failure.
911  */
912 static int
913 xs_watch(const char *path, const char *token)
914 {
915 	struct iovec iov[2];
916 
917 	iov[0].iov_base = (void *)(uintptr_t) path;
918 	iov[0].iov_len = strlen(path) + 1;
919 	iov[1].iov_base = (void *)(uintptr_t) token;
920 	iov[1].iov_len = strlen(token) + 1;
921 
922 	return (xs_talkv(XST_NIL, XS_WATCH, iov, 2, NULL, NULL));
923 }
924 
925 /**
926  * Transmit an uwatch request to the XenStore service.
927  *
928  * \param path    The path in the XenStore to watch.
929  * \param tocken  A unique identifier for this watch.
930  *
931  * \return  0 on success.  Otherwise an errno indicating the
932  *          cause of failure.
933  */
934 static int
935 xs_unwatch(const char *path, const char *token)
936 {
937 	struct iovec iov[2];
938 
939 	iov[0].iov_base = (void *)(uintptr_t) path;
940 	iov[0].iov_len = strlen(path) + 1;
941 	iov[1].iov_base = (void *)(uintptr_t) token;
942 	iov[1].iov_len = strlen(token) + 1;
943 
944 	return (xs_talkv(XST_NIL, XS_UNWATCH, iov, 2, NULL, NULL));
945 }
946 
947 /**
948  * Convert from watch token (unique identifier) to the associated
949  * internal tracking structure for this watch.
950  *
951  * \param tocken  The unique identifier for the watch to find.
952  *
953  * \return  A pointer to the found watch structure or NULL.
954  */
955 static struct xs_watch *
956 find_watch(const char *token)
957 {
958 	struct xs_watch *i, *cmp;
959 
960 	cmp = (void *)strtoul(token, NULL, 16);
961 
962 	LIST_FOREACH(i, &xs.registered_watches, list)
963 		if (i == cmp)
964 			return (i);
965 
966 	return (NULL);
967 }
968 
969 /**
970  * Thread body of the XenStore watch event dispatch thread.
971  */
972 static void
973 xenwatch_thread(void *unused)
974 {
975 	struct xs_stored_msg *msg;
976 
977 	for (;;) {
978 		mtx_lock(&xs.watch_events_lock);
979 		while (TAILQ_EMPTY(&xs.watch_events))
980 			mtx_sleep(&xs.watch_events,
981 			    &xs.watch_events_lock,
982 			    PWAIT | PCATCH, "waitev", hz/10);
983 
984 		mtx_unlock(&xs.watch_events_lock);
985 		sx_xlock(&xs.xenwatch_mutex);
986 
987 		mtx_lock(&xs.watch_events_lock);
988 		msg = TAILQ_FIRST(&xs.watch_events);
989 		if (msg) {
990 			TAILQ_REMOVE(&xs.watch_events, msg, list);
991 			msg->u.watch.handle->pending--;
992 		}
993 		mtx_unlock(&xs.watch_events_lock);
994 
995 		if (msg != NULL) {
996 			/*
997 			 * XXX There are messages coming in with a NULL
998 			 * XXX callback.  This deserves further investigation;
999 			 * XXX the workaround here simply prevents the kernel
1000 			 * XXX from panic'ing on startup.
1001 			 */
1002 			if (msg->u.watch.handle->callback != NULL)
1003 				msg->u.watch.handle->callback(
1004 					msg->u.watch.handle,
1005 					(const char **)msg->u.watch.vec,
1006 					msg->u.watch.vec_size);
1007 			free(msg->u.watch.vec, M_XENSTORE);
1008 			free(msg, M_XENSTORE);
1009 		}
1010 
1011 		sx_xunlock(&xs.xenwatch_mutex);
1012 	}
1013 }
1014 
1015 /*----------- XenStore Configuration, Initialization, and Control ------------*/
1016 /**
1017  * Setup communication channels with the XenStore service.
1018  *
1019  * \return  On success, 0. Otherwise an errno value indicating the
1020  *          type of failure.
1021  */
1022 static int
1023 xs_init_comms(void)
1024 {
1025 	int error;
1026 
1027 	if (xen_store->rsp_prod != xen_store->rsp_cons) {
1028 		log(LOG_WARNING, "XENSTORE response ring is not quiescent "
1029 		    "(%08x:%08x): fixing up\n",
1030 		    xen_store->rsp_cons, xen_store->rsp_prod);
1031 		xen_store->rsp_cons = xen_store->rsp_prod;
1032 	}
1033 
1034 	xen_intr_unbind(&xs.xen_intr_handle);
1035 
1036 	error = xen_intr_bind_local_port(xs.xs_dev, xs.evtchn,
1037 	    /*filter*/NULL, xs_intr, /*arg*/NULL, INTR_TYPE_NET|INTR_MPSAFE,
1038 	    &xs.xen_intr_handle);
1039 	if (error) {
1040 		log(LOG_WARNING, "XENSTORE request irq failed %i\n", error);
1041 		return (error);
1042 	}
1043 
1044 	return (0);
1045 }
1046 
1047 /*------------------ Private Device Attachment Functions  --------------------*/
1048 static void
1049 xs_identify(driver_t *driver, device_t parent)
1050 {
1051 
1052 	BUS_ADD_CHILD(parent, 0, "xenstore", 0);
1053 }
1054 
1055 /**
1056  * Probe for the existence of the XenStore.
1057  *
1058  * \param dev
1059  */
1060 static int
1061 xs_probe(device_t dev)
1062 {
1063 	/*
1064 	 * We are either operating within a PV kernel or being probed
1065 	 * as the child of the successfully attached xenpci device.
1066 	 * Thus we are in a Xen environment and there will be a XenStore.
1067 	 * Unconditionally return success.
1068 	 */
1069 	device_set_desc(dev, "XenStore");
1070 	return (BUS_PROBE_NOWILDCARD);
1071 }
1072 
1073 static void
1074 xs_attach_deferred(void *arg)
1075 {
1076 
1077 	bus_generic_probe(xs.xs_dev);
1078 	bus_generic_attach(xs.xs_dev);
1079 
1080 	config_intrhook_disestablish(&xs.xs_attachcb);
1081 }
1082 
1083 static void
1084 xs_attach_late(void *arg, int pending)
1085 {
1086 
1087 	KASSERT((pending == 1), ("xs late attach queued several times"));
1088 	bus_generic_probe(xs.xs_dev);
1089 	bus_generic_attach(xs.xs_dev);
1090 }
1091 
1092 /**
1093  * Attach to the XenStore.
1094  *
1095  * This routine also prepares for the probe/attach of drivers that rely
1096  * on the XenStore.
1097  */
1098 static int
1099 xs_attach(device_t dev)
1100 {
1101 	int error;
1102 
1103 	/* Allow us to get device_t from softc and vice-versa. */
1104 	xs.xs_dev = dev;
1105 	device_set_softc(dev, &xs);
1106 
1107 	/* Initialize the interface to xenstore. */
1108 	struct proc *p;
1109 
1110 	xs.initialized = false;
1111 	xs.evtchn = xen_get_xenstore_evtchn();
1112 	if (xs.evtchn == 0) {
1113 		struct evtchn_alloc_unbound alloc_unbound;
1114 
1115 		/* Allocate a local event channel for xenstore */
1116 		alloc_unbound.dom = DOMID_SELF;
1117 		alloc_unbound.remote_dom = DOMID_SELF;
1118 		error = HYPERVISOR_event_channel_op(
1119 		    EVTCHNOP_alloc_unbound, &alloc_unbound);
1120 		if (error != 0)
1121 			panic(
1122 			   "unable to alloc event channel for Dom0: %d",
1123 			    error);
1124 
1125 		xs.evtchn = alloc_unbound.port;
1126 
1127 		/* Allocate memory for the xs shared ring */
1128 		xen_store = malloc(PAGE_SIZE, M_XENSTORE, M_WAITOK | M_ZERO);
1129 		xs.gpfn = atop(pmap_kextract((vm_offset_t)xen_store));
1130 	} else {
1131 		xs.gpfn = xen_get_xenstore_mfn();
1132 		xen_store = pmap_mapdev_attr(ptoa(xs.gpfn), PAGE_SIZE,
1133 		    PAT_WRITE_BACK);
1134 		xs.initialized = true;
1135 	}
1136 
1137 	TAILQ_INIT(&xs.reply_list);
1138 	TAILQ_INIT(&xs.watch_events);
1139 
1140 	mtx_init(&xs.ring_lock, "ring lock", NULL, MTX_DEF);
1141 	mtx_init(&xs.reply_lock, "reply lock", NULL, MTX_DEF);
1142 	sx_init(&xs.xenwatch_mutex, "xenwatch");
1143 	sx_init(&xs.request_mutex, "xenstore request");
1144 	mtx_init(&xs.registered_watches_lock, "watches", NULL, MTX_DEF);
1145 	mtx_init(&xs.watch_events_lock, "watch events", NULL, MTX_DEF);
1146 
1147 	/* Initialize the shared memory rings to talk to xenstored */
1148 	error = xs_init_comms();
1149 	if (error)
1150 		return (error);
1151 
1152 	error = kproc_create(xenwatch_thread, NULL, &p, RFHIGHPID,
1153 	    0, "xenwatch");
1154 	if (error)
1155 		return (error);
1156 	xs.xenwatch_pid = p->p_pid;
1157 
1158 	error = kproc_create(xs_rcv_thread, NULL, NULL,
1159 	    RFHIGHPID, 0, "xenstore_rcv");
1160 
1161 	xs.xs_attachcb.ich_func = xs_attach_deferred;
1162 	xs.xs_attachcb.ich_arg = NULL;
1163 	if (xs.initialized) {
1164 		config_intrhook_establish(&xs.xs_attachcb);
1165 	} else {
1166 		TASK_INIT(&xs.xs_late_init, 0, xs_attach_late, NULL);
1167 	}
1168 
1169 	return (error);
1170 }
1171 
1172 /**
1173  * Prepare for suspension of this VM by halting XenStore access after
1174  * all transactions and individual requests have completed.
1175  */
1176 static int
1177 xs_suspend(device_t dev)
1178 {
1179 	int error;
1180 
1181 	/* Suspend child Xen devices. */
1182 	error = bus_generic_suspend(dev);
1183 	if (error != 0)
1184 		return (error);
1185 
1186 	sx_xlock(&xs.request_mutex);
1187 
1188 	return (0);
1189 }
1190 
1191 /**
1192  * Resume XenStore operations after this VM is resumed.
1193  */
1194 static int
1195 xs_resume(device_t dev __unused)
1196 {
1197 	struct xs_watch *watch;
1198 	char token[sizeof(watch) * 2 + 1];
1199 
1200 	xs_init_comms();
1201 
1202 	sx_xunlock(&xs.request_mutex);
1203 
1204 	/*
1205 	 * NB: since xenstore childs have not been resumed yet, there's
1206 	 * no need to hold any watch mutex. Having clients try to add or
1207 	 * remove watches at this point (before xenstore is resumed) is
1208 	 * clearly a violantion of the resume order.
1209 	 */
1210 	LIST_FOREACH(watch, &xs.registered_watches, list) {
1211 		sprintf(token, "%lX", (long)watch);
1212 		xs_watch(watch->node, token);
1213 	}
1214 
1215 	/* Resume child Xen devices. */
1216 	bus_generic_resume(dev);
1217 
1218 	return (0);
1219 }
1220 
1221 /*-------------------- Private Device Attachment Data  -----------------------*/
1222 static device_method_t xenstore_methods[] = {
1223 	/* Device interface */
1224 	DEVMETHOD(device_identify,	xs_identify),
1225 	DEVMETHOD(device_probe,         xs_probe),
1226 	DEVMETHOD(device_attach,        xs_attach),
1227 	DEVMETHOD(device_detach,        bus_generic_detach),
1228 	DEVMETHOD(device_shutdown,      bus_generic_shutdown),
1229 	DEVMETHOD(device_suspend,       xs_suspend),
1230 	DEVMETHOD(device_resume,        xs_resume),
1231 
1232 	/* Bus interface */
1233 	DEVMETHOD(bus_add_child,        bus_generic_add_child),
1234 	DEVMETHOD(bus_alloc_resource,   bus_generic_alloc_resource),
1235 	DEVMETHOD(bus_release_resource, bus_generic_release_resource),
1236 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1237 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1238 
1239 	DEVMETHOD_END
1240 };
1241 
1242 DEFINE_CLASS_0(xenstore, xenstore_driver, xenstore_methods, 0);
1243 static devclass_t xenstore_devclass;
1244 
1245 DRIVER_MODULE(xenstore, xenpv, xenstore_driver, xenstore_devclass, 0, 0);
1246 
1247 /*------------------------------- Sysctl Data --------------------------------*/
1248 /* XXX Shouldn't the node be somewhere else? */
1249 SYSCTL_NODE(_dev, OID_AUTO, xen, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
1250     "Xen");
1251 SYSCTL_INT(_dev_xen, OID_AUTO, xsd_port, CTLFLAG_RD, &xs.evtchn, 0, "");
1252 SYSCTL_ULONG(_dev_xen, OID_AUTO, xsd_kva, CTLFLAG_RD, (u_long *) &xen_store, 0, "");
1253 
1254 /*-------------------------------- Public API --------------------------------*/
1255 /*------- API comments for these methods can be found in xenstorevar.h -------*/
1256 bool
1257 xs_initialized(void)
1258 {
1259 
1260 	return (xs.initialized);
1261 }
1262 
1263 evtchn_port_t
1264 xs_evtchn(void)
1265 {
1266 
1267     return (xs.evtchn);
1268 }
1269 
1270 vm_paddr_t
1271 xs_address(void)
1272 {
1273 
1274     return (ptoa(xs.gpfn));
1275 }
1276 
1277 int
1278 xs_directory(struct xs_transaction t, const char *dir, const char *node,
1279     u_int *num, const char ***result)
1280 {
1281 	struct sbuf *path;
1282 	char *strings;
1283 	u_int len = 0;
1284 	int error;
1285 
1286 	path = xs_join(dir, node);
1287 	error = xs_single(t, XS_DIRECTORY, sbuf_data(path), &len,
1288 	    (void **)&strings);
1289 	sbuf_delete(path);
1290 	if (error)
1291 		return (error);
1292 
1293 	*result = split(strings, len, num);
1294 
1295 	return (0);
1296 }
1297 
1298 int
1299 xs_exists(struct xs_transaction t, const char *dir, const char *node)
1300 {
1301 	const char **d;
1302 	int error, dir_n;
1303 
1304 	error = xs_directory(t, dir, node, &dir_n, &d);
1305 	if (error)
1306 		return (0);
1307 	free(d, M_XENSTORE);
1308 	return (1);
1309 }
1310 
1311 int
1312 xs_read(struct xs_transaction t, const char *dir, const char *node,
1313     u_int *len, void **result)
1314 {
1315 	struct sbuf *path;
1316 	void *ret;
1317 	int error;
1318 
1319 	path = xs_join(dir, node);
1320 	error = xs_single(t, XS_READ, sbuf_data(path), len, &ret);
1321 	sbuf_delete(path);
1322 	if (error)
1323 		return (error);
1324 	*result = ret;
1325 	return (0);
1326 }
1327 
1328 int
1329 xs_write(struct xs_transaction t, const char *dir, const char *node,
1330     const char *string)
1331 {
1332 	struct sbuf *path;
1333 	struct iovec iovec[2];
1334 	int error;
1335 
1336 	path = xs_join(dir, node);
1337 
1338 	iovec[0].iov_base = (void *)(uintptr_t) sbuf_data(path);
1339 	iovec[0].iov_len = sbuf_len(path) + 1;
1340 	iovec[1].iov_base = (void *)(uintptr_t) string;
1341 	iovec[1].iov_len = strlen(string);
1342 
1343 	error = xs_talkv(t, XS_WRITE, iovec, 2, NULL, NULL);
1344 	sbuf_delete(path);
1345 
1346 	return (error);
1347 }
1348 
1349 int
1350 xs_mkdir(struct xs_transaction t, const char *dir, const char *node)
1351 {
1352 	struct sbuf *path;
1353 	int ret;
1354 
1355 	path = xs_join(dir, node);
1356 	ret = xs_single(t, XS_MKDIR, sbuf_data(path), NULL, NULL);
1357 	sbuf_delete(path);
1358 
1359 	return (ret);
1360 }
1361 
1362 int
1363 xs_rm(struct xs_transaction t, const char *dir, const char *node)
1364 {
1365 	struct sbuf *path;
1366 	int ret;
1367 
1368 	path = xs_join(dir, node);
1369 	ret = xs_single(t, XS_RM, sbuf_data(path), NULL, NULL);
1370 	sbuf_delete(path);
1371 
1372 	return (ret);
1373 }
1374 
1375 int
1376 xs_rm_tree(struct xs_transaction xbt, const char *base, const char *node)
1377 {
1378 	struct xs_transaction local_xbt;
1379 	struct sbuf *root_path_sbuf;
1380 	struct sbuf *cur_path_sbuf;
1381 	char *root_path;
1382 	char *cur_path;
1383 	const char **dir;
1384 	int error;
1385 
1386 retry:
1387 	root_path_sbuf = xs_join(base, node);
1388 	cur_path_sbuf  = xs_join(base, node);
1389 	root_path      = sbuf_data(root_path_sbuf);
1390 	cur_path       = sbuf_data(cur_path_sbuf);
1391 	dir            = NULL;
1392 	local_xbt.id   = 0;
1393 
1394 	if (xbt.id == 0) {
1395 		error = xs_transaction_start(&local_xbt);
1396 		if (error != 0)
1397 			goto out;
1398 		xbt = local_xbt;
1399 	}
1400 
1401 	while (1) {
1402 		u_int count;
1403 		u_int i;
1404 
1405 		error = xs_directory(xbt, cur_path, "", &count, &dir);
1406 		if (error)
1407 			goto out;
1408 
1409 		for (i = 0; i < count; i++) {
1410 			error = xs_rm(xbt, cur_path, dir[i]);
1411 			if (error == ENOTEMPTY) {
1412 				struct sbuf *push_dir;
1413 
1414 				/*
1415 				 * Descend to clear out this sub directory.
1416 				 * We'll return to cur_dir once push_dir
1417 				 * is empty.
1418 				 */
1419 				push_dir = xs_join(cur_path, dir[i]);
1420 				sbuf_delete(cur_path_sbuf);
1421 				cur_path_sbuf = push_dir;
1422 				cur_path = sbuf_data(cur_path_sbuf);
1423 				break;
1424 			} else if (error != 0) {
1425 				goto out;
1426 			}
1427 		}
1428 
1429 		free(dir, M_XENSTORE);
1430 		dir = NULL;
1431 
1432 		if (i == count) {
1433 			char *last_slash;
1434 
1435 			/* Directory is empty.  It is now safe to remove. */
1436 			error = xs_rm(xbt, cur_path, "");
1437 			if (error != 0)
1438 				goto out;
1439 
1440 			if (!strcmp(cur_path, root_path))
1441 				break;
1442 
1443 			/* Return to processing the parent directory. */
1444 			last_slash = strrchr(cur_path, '/');
1445 			KASSERT(last_slash != NULL,
1446 				("xs_rm_tree: mangled path %s", cur_path));
1447 			*last_slash = '\0';
1448 		}
1449 	}
1450 
1451 out:
1452 	sbuf_delete(cur_path_sbuf);
1453 	sbuf_delete(root_path_sbuf);
1454 	if (dir != NULL)
1455 		free(dir, M_XENSTORE);
1456 
1457 	if (local_xbt.id != 0) {
1458 		int terror;
1459 
1460 		terror = xs_transaction_end(local_xbt, /*abort*/error != 0);
1461 		xbt.id = 0;
1462 		if (terror == EAGAIN && error == 0)
1463 			goto retry;
1464 	}
1465 	return (error);
1466 }
1467 
1468 int
1469 xs_transaction_start(struct xs_transaction *t)
1470 {
1471 	char *id_str;
1472 	int error;
1473 
1474 	error = xs_single(XST_NIL, XS_TRANSACTION_START, "", NULL,
1475 	    (void **)&id_str);
1476 	if (error == 0) {
1477 		t->id = strtoul(id_str, NULL, 0);
1478 		free(id_str, M_XENSTORE);
1479 	}
1480 	return (error);
1481 }
1482 
1483 int
1484 xs_transaction_end(struct xs_transaction t, int abort)
1485 {
1486 	char abortstr[2];
1487 
1488 	if (abort)
1489 		strcpy(abortstr, "F");
1490 	else
1491 		strcpy(abortstr, "T");
1492 
1493 	return (xs_single(t, XS_TRANSACTION_END, abortstr, NULL, NULL));
1494 }
1495 
1496 int
1497 xs_scanf(struct xs_transaction t, const char *dir, const char *node,
1498      int *scancountp, const char *fmt, ...)
1499 {
1500 	va_list ap;
1501 	int error, ns;
1502 	char *val;
1503 
1504 	error = xs_read(t, dir, node, NULL, (void **) &val);
1505 	if (error)
1506 		return (error);
1507 
1508 	va_start(ap, fmt);
1509 	ns = vsscanf(val, fmt, ap);
1510 	va_end(ap);
1511 	free(val, M_XENSTORE);
1512 	/* Distinctive errno. */
1513 	if (ns == 0)
1514 		return (ERANGE);
1515 	if (scancountp)
1516 		*scancountp = ns;
1517 	return (0);
1518 }
1519 
1520 int
1521 xs_vprintf(struct xs_transaction t,
1522     const char *dir, const char *node, const char *fmt, va_list ap)
1523 {
1524 	struct sbuf *sb;
1525 	int error;
1526 
1527 	sb = sbuf_new_auto();
1528 	sbuf_vprintf(sb, fmt, ap);
1529 	sbuf_finish(sb);
1530 	error = xs_write(t, dir, node, sbuf_data(sb));
1531 	sbuf_delete(sb);
1532 
1533 	return (error);
1534 }
1535 
1536 int
1537 xs_printf(struct xs_transaction t, const char *dir, const char *node,
1538      const char *fmt, ...)
1539 {
1540 	va_list ap;
1541 	int error;
1542 
1543 	va_start(ap, fmt);
1544 	error = xs_vprintf(t, dir, node, fmt, ap);
1545 	va_end(ap);
1546 
1547 	return (error);
1548 }
1549 
1550 int
1551 xs_gather(struct xs_transaction t, const char *dir, ...)
1552 {
1553 	va_list ap;
1554 	const char *name;
1555 	int error;
1556 
1557 	va_start(ap, dir);
1558 	error = 0;
1559 	while (error == 0 && (name = va_arg(ap, char *)) != NULL) {
1560 		const char *fmt = va_arg(ap, char *);
1561 		void *result = va_arg(ap, void *);
1562 		char *p;
1563 
1564 		error = xs_read(t, dir, name, NULL, (void **) &p);
1565 		if (error)
1566 			break;
1567 
1568 		if (fmt) {
1569 			if (sscanf(p, fmt, result) == 0)
1570 				error = EINVAL;
1571 			free(p, M_XENSTORE);
1572 		} else
1573 			*(char **)result = p;
1574 	}
1575 	va_end(ap);
1576 
1577 	return (error);
1578 }
1579 
1580 int
1581 xs_register_watch(struct xs_watch *watch)
1582 {
1583 	/* Pointer in ascii is the token. */
1584 	char token[sizeof(watch) * 2 + 1];
1585 	int error;
1586 
1587 	watch->pending = 0;
1588 	sprintf(token, "%lX", (long)watch);
1589 
1590 	mtx_lock(&xs.registered_watches_lock);
1591 	KASSERT(find_watch(token) == NULL, ("watch already registered"));
1592 	LIST_INSERT_HEAD(&xs.registered_watches, watch, list);
1593 	mtx_unlock(&xs.registered_watches_lock);
1594 
1595 	error = xs_watch(watch->node, token);
1596 
1597 	/* Ignore errors due to multiple registration. */
1598 	if (error == EEXIST)
1599 		error = 0;
1600 
1601 	if (error != 0) {
1602 		mtx_lock(&xs.registered_watches_lock);
1603 		LIST_REMOVE(watch, list);
1604 		mtx_unlock(&xs.registered_watches_lock);
1605 	}
1606 
1607 	return (error);
1608 }
1609 
1610 void
1611 xs_unregister_watch(struct xs_watch *watch)
1612 {
1613 	struct xs_stored_msg *msg, *tmp;
1614 	char token[sizeof(watch) * 2 + 1];
1615 	int error;
1616 
1617 	sprintf(token, "%lX", (long)watch);
1618 
1619 	mtx_lock(&xs.registered_watches_lock);
1620 	if (find_watch(token) == NULL) {
1621 		mtx_unlock(&xs.registered_watches_lock);
1622 		return;
1623 	}
1624 	LIST_REMOVE(watch, list);
1625 	mtx_unlock(&xs.registered_watches_lock);
1626 
1627 	error = xs_unwatch(watch->node, token);
1628 	if (error)
1629 		log(LOG_WARNING, "XENSTORE Failed to release watch %s: %i\n",
1630 		    watch->node, error);
1631 
1632 	/* Cancel pending watch events. */
1633 	mtx_lock(&xs.watch_events_lock);
1634 	TAILQ_FOREACH_SAFE(msg, &xs.watch_events, list, tmp) {
1635 		if (msg->u.watch.handle != watch)
1636 			continue;
1637 		TAILQ_REMOVE(&xs.watch_events, msg, list);
1638 		free(msg->u.watch.vec, M_XENSTORE);
1639 		free(msg, M_XENSTORE);
1640 	}
1641 	mtx_unlock(&xs.watch_events_lock);
1642 
1643 	/* Flush any currently-executing callback, unless we are it. :-) */
1644 	if (curproc->p_pid != xs.xenwatch_pid) {
1645 		sx_xlock(&xs.xenwatch_mutex);
1646 		sx_xunlock(&xs.xenwatch_mutex);
1647 	}
1648 }
1649 
1650 void
1651 xs_lock(void)
1652 {
1653 
1654 	sx_xlock(&xs.request_mutex);
1655 	return;
1656 }
1657 
1658 void
1659 xs_unlock(void)
1660 {
1661 
1662 	sx_xunlock(&xs.request_mutex);
1663 	return;
1664 }
1665