xref: /freebsd/sys/fs/nullfs/null_vnops.c (revision 4b9d6057)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * John Heidemann of the UCLA Ficus project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Ancestors:
35  *	...and...
36  */
37 
38 /*
39  * Null Layer
40  *
41  * (See mount_nullfs(8) for more information.)
42  *
43  * The null layer duplicates a portion of the filesystem
44  * name space under a new name.  In this respect, it is
45  * similar to the loopback filesystem.  It differs from
46  * the loopback fs in two respects:  it is implemented using
47  * a stackable layers techniques, and its "null-node"s stack above
48  * all lower-layer vnodes, not just over directory vnodes.
49  *
50  * The null layer has two purposes.  First, it serves as a demonstration
51  * of layering by proving a layer which does nothing.  (It actually
52  * does everything the loopback filesystem does, which is slightly
53  * more than nothing.)  Second, the null layer can serve as a prototype
54  * layer.  Since it provides all necessary layer framework,
55  * new filesystem layers can be created very easily be starting
56  * with a null layer.
57  *
58  * The remainder of this man page examines the null layer as a basis
59  * for constructing new layers.
60  *
61  *
62  * INSTANTIATING NEW NULL LAYERS
63  *
64  * New null layers are created with mount_nullfs(8).
65  * Mount_nullfs(8) takes two arguments, the pathname
66  * of the lower vfs (target-pn) and the pathname where the null
67  * layer will appear in the namespace (alias-pn).  After
68  * the null layer is put into place, the contents
69  * of target-pn subtree will be aliased under alias-pn.
70  *
71  *
72  * OPERATION OF A NULL LAYER
73  *
74  * The null layer is the minimum filesystem layer,
75  * simply bypassing all possible operations to the lower layer
76  * for processing there.  The majority of its activity centers
77  * on the bypass routine, through which nearly all vnode operations
78  * pass.
79  *
80  * The bypass routine accepts arbitrary vnode operations for
81  * handling by the lower layer.  It begins by examining vnode
82  * operation arguments and replacing any null-nodes by their
83  * lower-layer equivlants.  It then invokes the operation
84  * on the lower layer.  Finally, it replaces the null-nodes
85  * in the arguments and, if a vnode is return by the operation,
86  * stacks a null-node on top of the returned vnode.
87  *
88  * Although bypass handles most operations, vop_getattr, vop_lock,
89  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
90  * bypassed. Vop_getattr must change the fsid being returned.
91  * Vop_lock and vop_unlock must handle any locking for the
92  * current vnode as well as pass the lock request down.
93  * Vop_inactive and vop_reclaim are not bypassed so that
94  * they can handle freeing null-layer specific data. Vop_print
95  * is not bypassed to avoid excessive debugging information.
96  * Also, certain vnode operations change the locking state within
97  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
98  * and symlink). Ideally these operations should not change the
99  * lock state, but should be changed to let the caller of the
100  * function unlock them. Otherwise all intermediate vnode layers
101  * (such as union, umapfs, etc) must catch these functions to do
102  * the necessary locking at their layer.
103  *
104  *
105  * INSTANTIATING VNODE STACKS
106  *
107  * Mounting associates the null layer with a lower layer,
108  * effect stacking two VFSes.  Vnode stacks are instead
109  * created on demand as files are accessed.
110  *
111  * The initial mount creates a single vnode stack for the
112  * root of the new null layer.  All other vnode stacks
113  * are created as a result of vnode operations on
114  * this or other null vnode stacks.
115  *
116  * New vnode stacks come into existence as a result of
117  * an operation which returns a vnode.
118  * The bypass routine stacks a null-node above the new
119  * vnode before returning it to the caller.
120  *
121  * For example, imagine mounting a null layer with
122  * "mount_nullfs /usr/include /dev/layer/null".
123  * Changing directory to /dev/layer/null will assign
124  * the root null-node (which was created when the null layer was mounted).
125  * Now consider opening "sys".  A vop_lookup would be
126  * done on the root null-node.  This operation would bypass through
127  * to the lower layer which would return a vnode representing
128  * the UFS "sys".  Null_bypass then builds a null-node
129  * aliasing the UFS "sys" and returns this to the caller.
130  * Later operations on the null-node "sys" will repeat this
131  * process when constructing other vnode stacks.
132  *
133  *
134  * CREATING OTHER FILE SYSTEM LAYERS
135  *
136  * One of the easiest ways to construct new filesystem layers is to make
137  * a copy of the null layer, rename all files and variables, and
138  * then begin modifing the copy.  Sed can be used to easily rename
139  * all variables.
140  *
141  * The umap layer is an example of a layer descended from the
142  * null layer.
143  *
144  *
145  * INVOKING OPERATIONS ON LOWER LAYERS
146  *
147  * There are two techniques to invoke operations on a lower layer
148  * when the operation cannot be completely bypassed.  Each method
149  * is appropriate in different situations.  In both cases,
150  * it is the responsibility of the aliasing layer to make
151  * the operation arguments "correct" for the lower layer
152  * by mapping a vnode arguments to the lower layer.
153  *
154  * The first approach is to call the aliasing layer's bypass routine.
155  * This method is most suitable when you wish to invoke the operation
156  * currently being handled on the lower layer.  It has the advantage
157  * that the bypass routine already must do argument mapping.
158  * An example of this is null_getattrs in the null layer.
159  *
160  * A second approach is to directly invoke vnode operations on
161  * the lower layer with the VOP_OPERATIONNAME interface.
162  * The advantage of this method is that it is easy to invoke
163  * arbitrary operations on the lower layer.  The disadvantage
164  * is that vnode arguments must be manualy mapped.
165  *
166  */
167 
168 #include <sys/param.h>
169 #include <sys/systm.h>
170 #include <sys/conf.h>
171 #include <sys/kernel.h>
172 #include <sys/lock.h>
173 #include <sys/malloc.h>
174 #include <sys/mount.h>
175 #include <sys/mutex.h>
176 #include <sys/namei.h>
177 #include <sys/sysctl.h>
178 #include <sys/vnode.h>
179 #include <sys/stat.h>
180 
181 #include <fs/nullfs/null.h>
182 
183 #include <vm/vm.h>
184 #include <vm/vm_extern.h>
185 #include <vm/vm_object.h>
186 #include <vm/vnode_pager.h>
187 
188 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
189 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
190 	&null_bug_bypass, 0, "");
191 
192 /*
193  * This is the 10-Apr-92 bypass routine.
194  *    This version has been optimized for speed, throwing away some
195  * safety checks.  It should still always work, but it's not as
196  * robust to programmer errors.
197  *
198  * In general, we map all vnodes going down and unmap them on the way back.
199  * As an exception to this, vnodes can be marked "unmapped" by setting
200  * the Nth bit in operation's vdesc_flags.
201  *
202  * Also, some BSD vnode operations have the side effect of vrele'ing
203  * their arguments.  With stacking, the reference counts are held
204  * by the upper node, not the lower one, so we must handle these
205  * side-effects here.  This is not of concern in Sun-derived systems
206  * since there are no such side-effects.
207  *
208  * This makes the following assumptions:
209  * - only one returned vpp
210  * - no INOUT vpp's (Sun's vop_open has one of these)
211  * - the vnode operation vector of the first vnode should be used
212  *   to determine what implementation of the op should be invoked
213  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
214  *   problems on rmdir'ing mount points and renaming?)
215  */
216 int
217 null_bypass(struct vop_generic_args *ap)
218 {
219 	struct vnode **this_vp_p;
220 	struct vnode *old_vps[VDESC_MAX_VPS];
221 	struct vnode **vps_p[VDESC_MAX_VPS];
222 	struct vnode ***vppp;
223 	struct vnode *lvp;
224 	struct vnodeop_desc *descp = ap->a_desc;
225 	int error, i, reles;
226 
227 	if (null_bug_bypass)
228 		printf ("null_bypass: %s\n", descp->vdesc_name);
229 
230 #ifdef DIAGNOSTIC
231 	/*
232 	 * We require at least one vp.
233 	 */
234 	if (descp->vdesc_vp_offsets == NULL ||
235 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
236 		panic ("null_bypass: no vp's in map");
237 #endif
238 
239 	/*
240 	 * Map the vnodes going in.
241 	 * Later, we'll invoke the operation based on
242 	 * the first mapped vnode's operation vector.
243 	 */
244 	reles = descp->vdesc_flags;
245 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
246 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
247 			break;   /* bail out at end of list */
248 		vps_p[i] = this_vp_p = VOPARG_OFFSETTO(struct vnode **,
249 		    descp->vdesc_vp_offsets[i], ap);
250 
251 		/*
252 		 * We're not guaranteed that any but the first vnode
253 		 * are of our type.  Check for and don't map any
254 		 * that aren't.  (We must always map first vp or vclean fails.)
255 		 */
256 		if (i != 0 && (*this_vp_p == NULLVP ||
257 		    (*this_vp_p)->v_op != &null_vnodeops)) {
258 			old_vps[i] = NULLVP;
259 		} else {
260 			old_vps[i] = *this_vp_p;
261 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
262 
263 			/*
264 			 * The upper vnode reference to the lower
265 			 * vnode is the only reference that keeps our
266 			 * pointer to the lower vnode alive.  If lower
267 			 * vnode is relocked during the VOP call,
268 			 * upper vnode might become unlocked and
269 			 * reclaimed, which invalidates our reference.
270 			 * Add a transient hold around VOP call.
271 			 */
272 			vhold(*this_vp_p);
273 
274 			/*
275 			 * XXX - Several operations have the side effect
276 			 * of vrele'ing their vp's.  We must account for
277 			 * that.  (This should go away in the future.)
278 			 */
279 			if (reles & VDESC_VP0_WILLRELE)
280 				vref(*this_vp_p);
281 		}
282 	}
283 
284 	/*
285 	 * Call the operation on the lower layer
286 	 * with the modified argument structure.
287 	 */
288 	if (vps_p[0] != NULL && *vps_p[0] != NULL) {
289 		error = VCALL(ap);
290 	} else {
291 		printf("null_bypass: no map for %s\n", descp->vdesc_name);
292 		error = EINVAL;
293 	}
294 
295 	/*
296 	 * Maintain the illusion of call-by-value
297 	 * by restoring vnodes in the argument structure
298 	 * to their original value.
299 	 */
300 	reles = descp->vdesc_flags;
301 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
302 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
303 			break;   /* bail out at end of list */
304 		if (old_vps[i] != NULL) {
305 			lvp = *(vps_p[i]);
306 
307 			/*
308 			 * Get rid of the transient hold on lvp.
309 			 * If lowervp was unlocked during VOP
310 			 * operation, nullfs upper vnode could have
311 			 * been reclaimed, which changes its v_vnlock
312 			 * back to private v_lock.  In this case we
313 			 * must move lock ownership from lower to
314 			 * upper (reclaimed) vnode.
315 			 */
316 			if (lvp != NULLVP) {
317 				if (VOP_ISLOCKED(lvp) == LK_EXCLUSIVE &&
318 				    old_vps[i]->v_vnlock != lvp->v_vnlock) {
319 					VOP_UNLOCK(lvp);
320 					VOP_LOCK(old_vps[i], LK_EXCLUSIVE |
321 					    LK_RETRY);
322 				}
323 				vdrop(lvp);
324 			}
325 
326 			*(vps_p[i]) = old_vps[i];
327 #if 0
328 			if (reles & VDESC_VP0_WILLUNLOCK)
329 				VOP_UNLOCK(*(vps_p[i]), 0);
330 #endif
331 			if (reles & VDESC_VP0_WILLRELE)
332 				vrele(*(vps_p[i]));
333 		}
334 	}
335 
336 	/*
337 	 * Map the possible out-going vpp
338 	 * (Assumes that the lower layer always returns
339 	 * a VREF'ed vpp unless it gets an error.)
340 	 */
341 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && error == 0) {
342 		/*
343 		 * XXX - even though some ops have vpp returned vp's,
344 		 * several ops actually vrele this before returning.
345 		 * We must avoid these ops.
346 		 * (This should go away when these ops are regularized.)
347 		 */
348 		vppp = VOPARG_OFFSETTO(struct vnode ***,
349 		    descp->vdesc_vpp_offset, ap);
350 		if (*vppp != NULL)
351 			error = null_nodeget(old_vps[0]->v_mount, **vppp,
352 			    *vppp);
353 	}
354 
355 	return (error);
356 }
357 
358 static int
359 null_add_writecount(struct vop_add_writecount_args *ap)
360 {
361 	struct vnode *lvp, *vp;
362 	int error;
363 
364 	vp = ap->a_vp;
365 	lvp = NULLVPTOLOWERVP(vp);
366 	VI_LOCK(vp);
367 	/* text refs are bypassed to lowervp */
368 	VNASSERT(vp->v_writecount >= 0, vp, ("wrong null writecount"));
369 	VNASSERT(vp->v_writecount + ap->a_inc >= 0, vp,
370 	    ("wrong writecount inc %d", ap->a_inc));
371 	error = VOP_ADD_WRITECOUNT(lvp, ap->a_inc);
372 	if (error == 0)
373 		vp->v_writecount += ap->a_inc;
374 	VI_UNLOCK(vp);
375 	return (error);
376 }
377 
378 /*
379  * We have to carry on the locking protocol on the null layer vnodes
380  * as we progress through the tree. We also have to enforce read-only
381  * if this layer is mounted read-only.
382  */
383 static int
384 null_lookup(struct vop_lookup_args *ap)
385 {
386 	struct componentname *cnp = ap->a_cnp;
387 	struct vnode *dvp = ap->a_dvp;
388 	int flags = cnp->cn_flags;
389 	struct vnode *vp, *ldvp, *lvp;
390 	struct mount *mp;
391 	int error;
392 
393 	mp = dvp->v_mount;
394 	if ((flags & ISLASTCN) != 0 && (mp->mnt_flag & MNT_RDONLY) != 0 &&
395 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
396 		return (EROFS);
397 	/*
398 	 * Although it is possible to call null_bypass(), we'll do
399 	 * a direct call to reduce overhead
400 	 */
401 	ldvp = NULLVPTOLOWERVP(dvp);
402 	vp = lvp = NULL;
403 
404 	/*
405 	 * Renames in the lower mounts might create an inconsistent
406 	 * configuration where lower vnode is moved out of the
407 	 * directory tree remounted by our null mount.  Do not try to
408 	 * handle it fancy, just avoid VOP_LOOKUP() with DOTDOT name
409 	 * which cannot be handled by VOP, at least passing over lower
410 	 * root.
411 	 */
412 	if ((ldvp->v_vflag & VV_ROOT) != 0 && (flags & ISDOTDOT) != 0) {
413 		KASSERT((dvp->v_vflag & VV_ROOT) == 0,
414 		    ("ldvp %p fl %#x dvp %p fl %#x flags %#x",
415 		    ldvp, ldvp->v_vflag, dvp, dvp->v_vflag, flags));
416 		return (ENOENT);
417 	}
418 
419 	/*
420 	 * Hold ldvp.  The reference on it, owned by dvp, is lost in
421 	 * case of dvp reclamation, and we need ldvp to move our lock
422 	 * from ldvp to dvp.
423 	 */
424 	vhold(ldvp);
425 
426 	error = VOP_LOOKUP(ldvp, &lvp, cnp);
427 
428 	/*
429 	 * VOP_LOOKUP() on lower vnode may unlock ldvp, which allows
430 	 * dvp to be reclaimed due to shared v_vnlock.  Check for the
431 	 * doomed state and return error.
432 	 */
433 	if (VN_IS_DOOMED(dvp)) {
434 		if (error == 0 || error == EJUSTRETURN) {
435 			if (lvp != NULL)
436 				vput(lvp);
437 			error = ENOENT;
438 		}
439 
440 		/*
441 		 * If vgone() did reclaimed dvp before curthread
442 		 * relocked ldvp, the locks of dvp and ldpv are no
443 		 * longer shared.  In this case, relock of ldvp in
444 		 * lower fs VOP_LOOKUP() does not restore the locking
445 		 * state of dvp.  Compensate for this by unlocking
446 		 * ldvp and locking dvp, which is also correct if the
447 		 * locks are still shared.
448 		 */
449 		VOP_UNLOCK(ldvp);
450 		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
451 	}
452 	vdrop(ldvp);
453 
454 	if (error == EJUSTRETURN && (flags & ISLASTCN) != 0 &&
455 	    (mp->mnt_flag & MNT_RDONLY) != 0 &&
456 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
457 		error = EROFS;
458 
459 	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
460 		if (ldvp == lvp) {
461 			*ap->a_vpp = dvp;
462 			VREF(dvp);
463 			vrele(lvp);
464 		} else {
465 			error = null_nodeget(mp, lvp, &vp);
466 			if (error == 0)
467 				*ap->a_vpp = vp;
468 		}
469 	}
470 	return (error);
471 }
472 
473 static int
474 null_open(struct vop_open_args *ap)
475 {
476 	int retval;
477 	struct vnode *vp, *ldvp;
478 
479 	vp = ap->a_vp;
480 	ldvp = NULLVPTOLOWERVP(vp);
481 	retval = null_bypass(&ap->a_gen);
482 	if (retval == 0) {
483 		vp->v_object = ldvp->v_object;
484 		if ((vn_irflag_read(ldvp) & VIRF_PGREAD) != 0) {
485 			MPASS(vp->v_object != NULL);
486 			if ((vn_irflag_read(vp) & VIRF_PGREAD) == 0) {
487 				vn_irflag_set_cond(vp, VIRF_PGREAD);
488 			}
489 		}
490 	}
491 	return (retval);
492 }
493 
494 /*
495  * Setattr call. Disallow write attempts if the layer is mounted read-only.
496  */
497 static int
498 null_setattr(struct vop_setattr_args *ap)
499 {
500 	struct vnode *vp = ap->a_vp;
501 	struct vattr *vap = ap->a_vap;
502 
503   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
504 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
505 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
506 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
507 		return (EROFS);
508 	if (vap->va_size != VNOVAL) {
509  		switch (vp->v_type) {
510  		case VDIR:
511  			return (EISDIR);
512  		case VCHR:
513  		case VBLK:
514  		case VSOCK:
515  		case VFIFO:
516 			if (vap->va_flags != VNOVAL)
517 				return (EOPNOTSUPP);
518 			return (0);
519 		case VREG:
520 		case VLNK:
521  		default:
522 			/*
523 			 * Disallow write attempts if the filesystem is
524 			 * mounted read-only.
525 			 */
526 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
527 				return (EROFS);
528 		}
529 	}
530 
531 	return (null_bypass((struct vop_generic_args *)ap));
532 }
533 
534 /*
535  *  We handle stat and getattr only to change the fsid.
536  */
537 static int
538 null_stat(struct vop_stat_args *ap)
539 {
540 	int error;
541 
542 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
543 		return (error);
544 
545 	ap->a_sb->st_dev = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
546 	return (0);
547 }
548 
549 static int
550 null_getattr(struct vop_getattr_args *ap)
551 {
552 	int error;
553 
554 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
555 		return (error);
556 
557 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
558 	return (0);
559 }
560 
561 /*
562  * Handle to disallow write access if mounted read-only.
563  */
564 static int
565 null_access(struct vop_access_args *ap)
566 {
567 	struct vnode *vp = ap->a_vp;
568 	accmode_t accmode = ap->a_accmode;
569 
570 	/*
571 	 * Disallow write attempts on read-only layers;
572 	 * unless the file is a socket, fifo, or a block or
573 	 * character device resident on the filesystem.
574 	 */
575 	if (accmode & VWRITE) {
576 		switch (vp->v_type) {
577 		case VDIR:
578 		case VLNK:
579 		case VREG:
580 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
581 				return (EROFS);
582 			break;
583 		default:
584 			break;
585 		}
586 	}
587 	return (null_bypass((struct vop_generic_args *)ap));
588 }
589 
590 static int
591 null_accessx(struct vop_accessx_args *ap)
592 {
593 	struct vnode *vp = ap->a_vp;
594 	accmode_t accmode = ap->a_accmode;
595 
596 	/*
597 	 * Disallow write attempts on read-only layers;
598 	 * unless the file is a socket, fifo, or a block or
599 	 * character device resident on the filesystem.
600 	 */
601 	if (accmode & VWRITE) {
602 		switch (vp->v_type) {
603 		case VDIR:
604 		case VLNK:
605 		case VREG:
606 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
607 				return (EROFS);
608 			break;
609 		default:
610 			break;
611 		}
612 	}
613 	return (null_bypass((struct vop_generic_args *)ap));
614 }
615 
616 /*
617  * Increasing refcount of lower vnode is needed at least for the case
618  * when lower FS is NFS to do sillyrename if the file is in use.
619  * Unfortunately v_usecount is incremented in many places in
620  * the kernel and, as such, there may be races that result in
621  * the NFS client doing an extraneous silly rename, but that seems
622  * preferable to not doing a silly rename when it is needed.
623  */
624 static int
625 null_remove(struct vop_remove_args *ap)
626 {
627 	int retval, vreleit;
628 	struct vnode *lvp, *vp;
629 
630 	vp = ap->a_vp;
631 	if (vrefcnt(vp) > 1) {
632 		lvp = NULLVPTOLOWERVP(vp);
633 		VREF(lvp);
634 		vreleit = 1;
635 	} else
636 		vreleit = 0;
637 	VTONULL(vp)->null_flags |= NULLV_DROP;
638 	retval = null_bypass(&ap->a_gen);
639 	if (vreleit != 0)
640 		vrele(lvp);
641 	return (retval);
642 }
643 
644 /*
645  * We handle this to eliminate null FS to lower FS
646  * file moving. Don't know why we don't allow this,
647  * possibly we should.
648  */
649 static int
650 null_rename(struct vop_rename_args *ap)
651 {
652 	struct vnode *fdvp, *fvp, *tdvp, *tvp;
653 	struct vnode *lfdvp, *lfvp, *ltdvp, *ltvp;
654 	struct null_node *fdnn, *fnn, *tdnn, *tnn;
655 	int error;
656 
657 	tdvp = ap->a_tdvp;
658 	fvp = ap->a_fvp;
659 	fdvp = ap->a_fdvp;
660 	tvp = ap->a_tvp;
661 	lfdvp = NULL;
662 
663 	/* Check for cross-device rename. */
664 	if ((fvp->v_mount != tdvp->v_mount) ||
665 	    (tvp != NULL && fvp->v_mount != tvp->v_mount)) {
666 		error = EXDEV;
667 		goto upper_err;
668 	}
669 
670 	VI_LOCK(fdvp);
671 	fdnn = VTONULL(fdvp);
672 	if (fdnn == NULL) {	/* fdvp is not locked, can be doomed */
673 		VI_UNLOCK(fdvp);
674 		error = ENOENT;
675 		goto upper_err;
676 	}
677 	lfdvp = fdnn->null_lowervp;
678 	vref(lfdvp);
679 	VI_UNLOCK(fdvp);
680 
681 	VI_LOCK(fvp);
682 	fnn = VTONULL(fvp);
683 	if (fnn == NULL) {
684 		VI_UNLOCK(fvp);
685 		error = ENOENT;
686 		goto upper_err;
687 	}
688 	lfvp = fnn->null_lowervp;
689 	vref(lfvp);
690 	VI_UNLOCK(fvp);
691 
692 	tdnn = VTONULL(tdvp);
693 	ltdvp = tdnn->null_lowervp;
694 	vref(ltdvp);
695 
696 	if (tvp != NULL) {
697 		tnn = VTONULL(tvp);
698 		ltvp = tnn->null_lowervp;
699 		vref(ltvp);
700 		tnn->null_flags |= NULLV_DROP;
701 	} else {
702 		ltvp = NULL;
703 	}
704 
705 	error = VOP_RENAME(lfdvp, lfvp, ap->a_fcnp, ltdvp, ltvp, ap->a_tcnp);
706 	vrele(fdvp);
707 	vrele(fvp);
708 	vrele(tdvp);
709 	if (tvp != NULL)
710 		vrele(tvp);
711 	return (error);
712 
713 upper_err:
714 	if (tdvp == tvp)
715 		vrele(tdvp);
716 	else
717 		vput(tdvp);
718 	if (tvp)
719 		vput(tvp);
720 	if (lfdvp != NULL)
721 		vrele(lfdvp);
722 	vrele(fdvp);
723 	vrele(fvp);
724 	return (error);
725 }
726 
727 static int
728 null_rmdir(struct vop_rmdir_args *ap)
729 {
730 
731 	VTONULL(ap->a_vp)->null_flags |= NULLV_DROP;
732 	return (null_bypass(&ap->a_gen));
733 }
734 
735 /*
736  * We need to process our own vnode lock and then clear the
737  * interlock flag as it applies only to our vnode, not the
738  * vnodes below us on the stack.
739  */
740 static int
741 null_lock(struct vop_lock1_args *ap)
742 {
743 	struct vnode *vp = ap->a_vp;
744 	int flags;
745 	struct null_node *nn;
746 	struct vnode *lvp;
747 	int error;
748 
749 	if ((ap->a_flags & LK_INTERLOCK) == 0)
750 		VI_LOCK(vp);
751 	else
752 		ap->a_flags &= ~LK_INTERLOCK;
753 	flags = ap->a_flags;
754 	nn = VTONULL(vp);
755 	/*
756 	 * If we're still active we must ask the lower layer to
757 	 * lock as ffs has special lock considerations in its
758 	 * vop lock.
759 	 */
760 	if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
761 		/*
762 		 * We have to hold the vnode here to solve a potential
763 		 * reclaim race.  If we're forcibly vgone'd while we
764 		 * still have refs, a thread could be sleeping inside
765 		 * the lowervp's vop_lock routine.  When we vgone we will
766 		 * drop our last ref to the lowervp, which would allow it
767 		 * to be reclaimed.  The lowervp could then be recycled,
768 		 * in which case it is not legal to be sleeping in its VOP.
769 		 * We prevent it from being recycled by holding the vnode
770 		 * here.
771 		 */
772 		vholdnz(lvp);
773 		VI_UNLOCK(vp);
774 		error = VOP_LOCK(lvp, flags);
775 
776 		/*
777 		 * We might have slept to get the lock and someone might have
778 		 * clean our vnode already, switching vnode lock from one in
779 		 * lowervp to v_lock in our own vnode structure.  Handle this
780 		 * case by reacquiring correct lock in requested mode.
781 		 */
782 		if (VTONULL(vp) == NULL && error == 0) {
783 			ap->a_flags &= ~LK_TYPE_MASK;
784 			switch (flags & LK_TYPE_MASK) {
785 			case LK_SHARED:
786 				ap->a_flags |= LK_SHARED;
787 				break;
788 			case LK_UPGRADE:
789 			case LK_EXCLUSIVE:
790 				ap->a_flags |= LK_EXCLUSIVE;
791 				break;
792 			default:
793 				panic("Unsupported lock request %d\n",
794 				    ap->a_flags);
795 			}
796 			VOP_UNLOCK(lvp);
797 			error = vop_stdlock(ap);
798 		}
799 		vdrop(lvp);
800 	} else {
801 		VI_UNLOCK(vp);
802 		error = vop_stdlock(ap);
803 	}
804 
805 	return (error);
806 }
807 
808 /*
809  * We need to process our own vnode unlock and then clear the
810  * interlock flag as it applies only to our vnode, not the
811  * vnodes below us on the stack.
812  */
813 static int
814 null_unlock(struct vop_unlock_args *ap)
815 {
816 	struct vnode *vp = ap->a_vp;
817 	struct null_node *nn;
818 	struct vnode *lvp;
819 	int error;
820 
821 	nn = VTONULL(vp);
822 	if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
823 		vholdnz(lvp);
824 		error = VOP_UNLOCK(lvp);
825 		vdrop(lvp);
826 	} else {
827 		error = vop_stdunlock(ap);
828 	}
829 
830 	return (error);
831 }
832 
833 /*
834  * Do not allow the VOP_INACTIVE to be passed to the lower layer,
835  * since the reference count on the lower vnode is not related to
836  * ours.
837  */
838 static int
839 null_want_recycle(struct vnode *vp)
840 {
841 	struct vnode *lvp;
842 	struct null_node *xp;
843 	struct mount *mp;
844 	struct null_mount *xmp;
845 
846 	xp = VTONULL(vp);
847 	lvp = NULLVPTOLOWERVP(vp);
848 	mp = vp->v_mount;
849 	xmp = MOUNTTONULLMOUNT(mp);
850 	if ((xmp->nullm_flags & NULLM_CACHE) == 0 ||
851 	    (xp->null_flags & NULLV_DROP) != 0 ||
852 	    (lvp->v_vflag & VV_NOSYNC) != 0) {
853 		/*
854 		 * If this is the last reference and caching of the
855 		 * nullfs vnodes is not enabled, or the lower vnode is
856 		 * deleted, then free up the vnode so as not to tie up
857 		 * the lower vnodes.
858 		 */
859 		return (1);
860 	}
861 	return (0);
862 }
863 
864 static int
865 null_inactive(struct vop_inactive_args *ap)
866 {
867 	struct vnode *vp;
868 
869 	vp = ap->a_vp;
870 	if (null_want_recycle(vp)) {
871 		vp->v_object = NULL;
872 		vrecycle(vp);
873 	}
874 	return (0);
875 }
876 
877 static int
878 null_need_inactive(struct vop_need_inactive_args *ap)
879 {
880 
881 	return (null_want_recycle(ap->a_vp) || vn_need_pageq_flush(ap->a_vp));
882 }
883 
884 /*
885  * Now, the nullfs vnode and, due to the sharing lock, the lower
886  * vnode, are exclusively locked, and we shall destroy the null vnode.
887  */
888 static int
889 null_reclaim(struct vop_reclaim_args *ap)
890 {
891 	struct vnode *vp;
892 	struct null_node *xp;
893 	struct vnode *lowervp;
894 
895 	vp = ap->a_vp;
896 	xp = VTONULL(vp);
897 	lowervp = xp->null_lowervp;
898 
899 	KASSERT(lowervp != NULL && vp->v_vnlock != &vp->v_lock,
900 	    ("Reclaiming incomplete null vnode %p", vp));
901 
902 	null_hashrem(xp);
903 	/*
904 	 * Use the interlock to protect the clearing of v_data to
905 	 * prevent faults in null_lock().
906 	 */
907 	lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL);
908 	VI_LOCK(vp);
909 	vp->v_data = NULL;
910 	vp->v_object = NULL;
911 	vp->v_vnlock = &vp->v_lock;
912 
913 	/*
914 	 * If we were opened for write, we leased the write reference
915 	 * to the lower vnode.  If this is a reclamation due to the
916 	 * forced unmount, undo the reference now.
917 	 */
918 	if (vp->v_writecount > 0)
919 		VOP_ADD_WRITECOUNT(lowervp, -vp->v_writecount);
920 	else if (vp->v_writecount < 0)
921 		vp->v_writecount = 0;
922 
923 	VI_UNLOCK(vp);
924 
925 	if ((xp->null_flags & NULLV_NOUNLOCK) != 0)
926 		vunref(lowervp);
927 	else
928 		vput(lowervp);
929 	free(xp, M_NULLFSNODE);
930 
931 	return (0);
932 }
933 
934 static int
935 null_print(struct vop_print_args *ap)
936 {
937 	struct vnode *vp = ap->a_vp;
938 
939 	printf("\tvp=%p, lowervp=%p\n", vp, VTONULL(vp)->null_lowervp);
940 	return (0);
941 }
942 
943 /* ARGSUSED */
944 static int
945 null_getwritemount(struct vop_getwritemount_args *ap)
946 {
947 	struct null_node *xp;
948 	struct vnode *lowervp;
949 	struct vnode *vp;
950 
951 	vp = ap->a_vp;
952 	VI_LOCK(vp);
953 	xp = VTONULL(vp);
954 	if (xp && (lowervp = xp->null_lowervp)) {
955 		vholdnz(lowervp);
956 		VI_UNLOCK(vp);
957 		VOP_GETWRITEMOUNT(lowervp, ap->a_mpp);
958 		vdrop(lowervp);
959 	} else {
960 		VI_UNLOCK(vp);
961 		*(ap->a_mpp) = NULL;
962 	}
963 	return (0);
964 }
965 
966 static int
967 null_vptofh(struct vop_vptofh_args *ap)
968 {
969 	struct vnode *lvp;
970 
971 	lvp = NULLVPTOLOWERVP(ap->a_vp);
972 	return VOP_VPTOFH(lvp, ap->a_fhp);
973 }
974 
975 static int
976 null_vptocnp(struct vop_vptocnp_args *ap)
977 {
978 	struct vnode *vp = ap->a_vp;
979 	struct vnode **dvp = ap->a_vpp;
980 	struct vnode *lvp, *ldvp;
981 	struct mount *mp;
982 	int error, locked;
983 
984 	locked = VOP_ISLOCKED(vp);
985 	lvp = NULLVPTOLOWERVP(vp);
986 	mp = vp->v_mount;
987 	error = vfs_busy(mp, MBF_NOWAIT);
988 	if (error != 0)
989 		return (error);
990 	vhold(lvp);
991 	VOP_UNLOCK(vp); /* vp is held by vn_vptocnp_locked that called us */
992 	ldvp = lvp;
993 	vref(lvp);
994 	error = vn_vptocnp(&ldvp, ap->a_buf, ap->a_buflen);
995 	vdrop(lvp);
996 	if (error != 0) {
997 		vn_lock(vp, locked | LK_RETRY);
998 		vfs_unbusy(mp);
999 		return (ENOENT);
1000 	}
1001 
1002 	error = vn_lock(ldvp, LK_SHARED);
1003 	if (error != 0) {
1004 		vrele(ldvp);
1005 		vn_lock(vp, locked | LK_RETRY);
1006 		vfs_unbusy(mp);
1007 		return (ENOENT);
1008 	}
1009 	error = null_nodeget(mp, ldvp, dvp);
1010 	if (error == 0) {
1011 #ifdef DIAGNOSTIC
1012 		NULLVPTOLOWERVP(*dvp);
1013 #endif
1014 		VOP_UNLOCK(*dvp); /* keep reference on *dvp */
1015 	}
1016 	vn_lock(vp, locked | LK_RETRY);
1017 	vfs_unbusy(mp);
1018 	return (error);
1019 }
1020 
1021 static int
1022 null_read_pgcache(struct vop_read_pgcache_args *ap)
1023 {
1024 	struct vnode *lvp, *vp;
1025 	struct null_node *xp;
1026 	int error;
1027 
1028 	vp = ap->a_vp;
1029 	VI_LOCK(vp);
1030 	xp = VTONULL(vp);
1031 	if (xp == NULL) {
1032 		VI_UNLOCK(vp);
1033 		return (EJUSTRETURN);
1034 	}
1035 	lvp = xp->null_lowervp;
1036 	vref(lvp);
1037 	VI_UNLOCK(vp);
1038 	error = VOP_READ_PGCACHE(lvp, ap->a_uio, ap->a_ioflag, ap->a_cred);
1039 	vrele(lvp);
1040 	return (error);
1041 }
1042 
1043 static int
1044 null_advlock(struct vop_advlock_args *ap)
1045 {
1046 	struct vnode *lvp, *vp;
1047 	struct null_node *xp;
1048 	int error;
1049 
1050 	vp = ap->a_vp;
1051 	VI_LOCK(vp);
1052 	xp = VTONULL(vp);
1053 	if (xp == NULL) {
1054 		VI_UNLOCK(vp);
1055 		return (EBADF);
1056 	}
1057 	lvp = xp->null_lowervp;
1058 	vref(lvp);
1059 	VI_UNLOCK(vp);
1060 	error = VOP_ADVLOCK(lvp, ap->a_id, ap->a_op, ap->a_fl, ap->a_flags);
1061 	vrele(lvp);
1062 	return (error);
1063 }
1064 
1065 /*
1066  * Avoid standard bypass, since lower dvp and vp could be no longer
1067  * valid after vput().
1068  */
1069 static int
1070 null_vput_pair(struct vop_vput_pair_args *ap)
1071 {
1072 	struct mount *mp;
1073 	struct vnode *dvp, *ldvp, *lvp, *vp, *vp1, **vpp;
1074 	int error, res;
1075 
1076 	dvp = ap->a_dvp;
1077 	ldvp = NULLVPTOLOWERVP(dvp);
1078 	vref(ldvp);
1079 
1080 	vpp = ap->a_vpp;
1081 	vp = NULL;
1082 	lvp = NULL;
1083 	mp = NULL;
1084 	if (vpp != NULL)
1085 		vp = *vpp;
1086 	if (vp != NULL) {
1087 		lvp = NULLVPTOLOWERVP(vp);
1088 		vref(lvp);
1089 		if (!ap->a_unlock_vp) {
1090 			vhold(vp);
1091 			vhold(lvp);
1092 			mp = vp->v_mount;
1093 			vfs_ref(mp);
1094 		}
1095 	}
1096 
1097 	res = VOP_VPUT_PAIR(ldvp, lvp != NULL ? &lvp : NULL, true);
1098 	if (vp != NULL && ap->a_unlock_vp)
1099 		vrele(vp);
1100 	vrele(dvp);
1101 
1102 	if (vp == NULL || ap->a_unlock_vp)
1103 		return (res);
1104 
1105 	/* lvp has been unlocked and vp might be reclaimed */
1106 	VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
1107 	if (vp->v_data == NULL && vfs_busy(mp, MBF_NOWAIT) == 0) {
1108 		vput(vp);
1109 		vget(lvp, LK_EXCLUSIVE | LK_RETRY);
1110 		if (VN_IS_DOOMED(lvp)) {
1111 			vput(lvp);
1112 			vget(vp, LK_EXCLUSIVE | LK_RETRY);
1113 		} else {
1114 			error = null_nodeget(mp, lvp, &vp1);
1115 			if (error == 0) {
1116 				*vpp = vp1;
1117 			} else {
1118 				vget(vp, LK_EXCLUSIVE | LK_RETRY);
1119 			}
1120 		}
1121 		vfs_unbusy(mp);
1122 	}
1123 	vdrop(lvp);
1124 	vdrop(vp);
1125 	vfs_rel(mp);
1126 
1127 	return (res);
1128 }
1129 
1130 static int
1131 null_getlowvnode(struct vop_getlowvnode_args *ap)
1132 {
1133 	struct vnode *vp, *vpl;
1134 
1135 	vp = ap->a_vp;
1136 	if (vn_lock(vp, LK_SHARED) != 0)
1137 		return (EBADF);
1138 
1139 	vpl = NULLVPTOLOWERVP(vp);
1140 	vhold(vpl);
1141 	VOP_UNLOCK(vp);
1142 	VOP_GETLOWVNODE(vpl, ap->a_vplp, ap->a_flags);
1143 	vdrop(vpl);
1144 	return (0);
1145 }
1146 
1147 /*
1148  * Global vfs data structures
1149  */
1150 struct vop_vector null_vnodeops = {
1151 	.vop_bypass =		null_bypass,
1152 	.vop_access =		null_access,
1153 	.vop_accessx =		null_accessx,
1154 	.vop_advlock =		null_advlock,
1155 	.vop_advlockpurge =	vop_stdadvlockpurge,
1156 	.vop_bmap =		VOP_EOPNOTSUPP,
1157 	.vop_stat =		null_stat,
1158 	.vop_getattr =		null_getattr,
1159 	.vop_getlowvnode =	null_getlowvnode,
1160 	.vop_getwritemount =	null_getwritemount,
1161 	.vop_inactive =		null_inactive,
1162 	.vop_need_inactive =	null_need_inactive,
1163 	.vop_islocked =		vop_stdislocked,
1164 	.vop_lock1 =		null_lock,
1165 	.vop_lookup =		null_lookup,
1166 	.vop_open =		null_open,
1167 	.vop_print =		null_print,
1168 	.vop_read_pgcache =	null_read_pgcache,
1169 	.vop_reclaim =		null_reclaim,
1170 	.vop_remove =		null_remove,
1171 	.vop_rename =		null_rename,
1172 	.vop_rmdir =		null_rmdir,
1173 	.vop_setattr =		null_setattr,
1174 	.vop_strategy =		VOP_EOPNOTSUPP,
1175 	.vop_unlock =		null_unlock,
1176 	.vop_vptocnp =		null_vptocnp,
1177 	.vop_vptofh =		null_vptofh,
1178 	.vop_add_writecount =	null_add_writecount,
1179 	.vop_vput_pair =	null_vput_pair,
1180 	.vop_copy_file_range =	VOP_PANIC,
1181 };
1182 VFS_VOP_VECTOR_REGISTER(null_vnodeops);
1183