xref: /freebsd/sys/geom/eli/g_eli_integrity.c (revision aa0a1e58)
1 /*-
2  * Copyright (c) 2005-2010 Pawel Jakub Dawidek <pjd@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/linker.h>
34 #include <sys/module.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sysctl.h>
39 #include <sys/malloc.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/uio.h>
45 #include <sys/vnode.h>
46 
47 #include <vm/uma.h>
48 
49 #include <geom/geom.h>
50 #include <geom/eli/g_eli.h>
51 #include <geom/eli/pkcs5v2.h>
52 
53 /*
54  * The data layout description when integrity verification is configured.
55  *
56  * One of the most important assumption here is that authenticated data and its
57  * HMAC has to be stored in the same place (namely in the same sector) to make
58  * it work reliable.
59  * The problem is that file systems work only with sectors that are multiple of
60  * 512 bytes and a power of two number.
61  * My idea to implement it is as follows.
62  * Let's store HMAC in sector. This is a must. This leaves us 480 bytes for
63  * data. We can't use that directly (ie. we can't create provider with 480 bytes
64  * sector size). We need another sector from where we take only 32 bytes of data
65  * and we store HMAC of this data as well. This takes two sectors from the
66  * original provider at the input and leaves us one sector of authenticated data
67  * at the output. Not very efficient, but you got the idea.
68  * Now, let's assume, we want to create provider with 4096 bytes sector.
69  * To output 4096 bytes of authenticated data we need 8x480 plus 1x256, so we
70  * need nine 512-bytes sectors at the input to get one 4096-bytes sector at the
71  * output. That's better. With 4096 bytes sector we can use 89% of size of the
72  * original provider. I find it as an acceptable cost.
73  * The reliability comes from the fact, that every HMAC stored inside the sector
74  * is calculated only for the data in the same sector, so its impossible to
75  * write new data and leave old HMAC or vice versa.
76  *
77  * And here is the picture:
78  *
79  * da0: +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
80  *      |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |256b |
81  *      |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data |
82  *      +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
83  *      |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |288 bytes |
84  *      +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ |224 unused|
85  *                                                                                                      +----------+
86  * da0.eli: +----+----+----+----+----+----+----+----+----+
87  *          |480b|480b|480b|480b|480b|480b|480b|480b|256b|
88  *          +----+----+----+----+----+----+----+----+----+
89  *          |                 4096 bytes                 |
90  *          +--------------------------------------------+
91  *
92  * PS. You can use any sector size with geli(8). My example is using 4kB,
93  *     because it's most efficient. For 8kB sectors you need 2 extra sectors,
94  *     so the cost is the same as for 4kB sectors.
95  */
96 
97 /*
98  * Code paths:
99  * BIO_READ:
100  *	g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> g_eli_auth_read_done -> g_io_deliver
101  * BIO_WRITE:
102  *	g_eli_start -> g_eli_auth_run -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver
103  */
104 
105 MALLOC_DECLARE(M_ELI);
106 
107 /*
108  * Here we generate key for HMAC. Every sector has its own HMAC key, so it is
109  * not possible to copy sectors.
110  * We cannot depend on fact, that every sector has its own IV, because different
111  * IV doesn't change HMAC, when we use encrypt-then-authenticate method.
112  */
113 static void
114 g_eli_auth_keygen(struct g_eli_softc *sc, off_t offset, u_char *key)
115 {
116 	SHA256_CTX ctx;
117 
118 	/* Copy precalculated SHA256 context. */
119 	bcopy(&sc->sc_akeyctx, &ctx, sizeof(ctx));
120 	SHA256_Update(&ctx, (uint8_t *)&offset, sizeof(offset));
121 	SHA256_Final(key, &ctx);
122 }
123 
124 /*
125  * The function is called after we read and decrypt data.
126  *
127  * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> G_ELI_AUTH_READ_DONE -> g_io_deliver
128  */
129 static int
130 g_eli_auth_read_done(struct cryptop *crp)
131 {
132 	struct g_eli_softc *sc;
133 	struct bio *bp;
134 
135 	if (crp->crp_etype == EAGAIN) {
136 		if (g_eli_crypto_rerun(crp) == 0)
137 			return (0);
138 	}
139 	bp = (struct bio *)crp->crp_opaque;
140 	bp->bio_inbed++;
141 	if (crp->crp_etype == 0) {
142 		bp->bio_completed += crp->crp_olen;
143 		G_ELI_DEBUG(3, "Crypto READ request done (%d/%d) (add=%jd completed=%jd).",
144 		    bp->bio_inbed, bp->bio_children, (intmax_t)crp->crp_olen, (intmax_t)bp->bio_completed);
145 	} else {
146 		G_ELI_DEBUG(1, "Crypto READ request failed (%d/%d) error=%d.",
147 		    bp->bio_inbed, bp->bio_children, crp->crp_etype);
148 		if (bp->bio_error == 0)
149 			bp->bio_error = crp->crp_etype;
150 	}
151 	/*
152 	 * Do we have all sectors already?
153 	 */
154 	if (bp->bio_inbed < bp->bio_children)
155 		return (0);
156 	sc = bp->bio_to->geom->softc;
157 	if (bp->bio_error == 0) {
158 		u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
159 		u_char *srcdata, *dstdata, *auth;
160 		off_t coroff, corsize;
161 
162 		/*
163 		 * Verify data integrity based on calculated and read HMACs.
164 		 */
165 		/* Sectorsize of decrypted provider eg. 4096. */
166 		decr_secsize = bp->bio_to->sectorsize;
167 		/* The real sectorsize of encrypted provider, eg. 512. */
168 		encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
169 		/* Number of data bytes in one encrypted sector, eg. 480. */
170 		data_secsize = sc->sc_data_per_sector;
171 		/* Number of sectors from decrypted provider, eg. 2. */
172 		nsec = bp->bio_length / decr_secsize;
173 		/* Number of sectors from encrypted provider, eg. 18. */
174 		nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
175 		/* Last sector number in every big sector, eg. 9. */
176 		lsec = sc->sc_bytes_per_sector / encr_secsize;
177 
178 		srcdata = bp->bio_driver2;
179 		dstdata = bp->bio_data;
180 		auth = srcdata + encr_secsize * nsec;
181 		coroff = -1;
182 		corsize = 0;
183 
184 		for (i = 1; i <= nsec; i++) {
185 			data_secsize = sc->sc_data_per_sector;
186 			if ((i % lsec) == 0)
187 				data_secsize = decr_secsize % data_secsize;
188 			if (bcmp(srcdata, auth, sc->sc_alen) != 0) {
189 				/*
190 				 * Curruption detected, remember the offset if
191 				 * this is the first corrupted sector and
192 				 * increase size.
193 				 */
194 				if (bp->bio_error == 0)
195 					bp->bio_error = -1;
196 				if (coroff == -1) {
197 					coroff = bp->bio_offset +
198 					    (dstdata - (u_char *)bp->bio_data);
199 				}
200 				corsize += data_secsize;
201 			} else {
202 				/*
203 				 * No curruption, good.
204 				 * Report previous corruption if there was one.
205 				 */
206 				if (coroff != -1) {
207 					G_ELI_DEBUG(0, "%s: %jd bytes "
208 					    "corrupted at offset %jd.",
209 					    sc->sc_name, (intmax_t)corsize,
210 					    (intmax_t)coroff);
211 					coroff = -1;
212 					corsize = 0;
213 				}
214 				bcopy(srcdata + sc->sc_alen, dstdata,
215 				    data_secsize);
216 			}
217 			srcdata += encr_secsize;
218 			dstdata += data_secsize;
219 			auth += sc->sc_alen;
220 		}
221 		/* Report previous corruption if there was one. */
222 		if (coroff != -1) {
223 			G_ELI_DEBUG(0, "%s: %jd bytes corrupted at offset %jd.",
224 			    sc->sc_name, (intmax_t)corsize, (intmax_t)coroff);
225 		}
226 	}
227 	free(bp->bio_driver2, M_ELI);
228 	bp->bio_driver2 = NULL;
229 	if (bp->bio_error != 0) {
230 		if (bp->bio_error == -1)
231 			bp->bio_error = EINVAL;
232 		else {
233 			G_ELI_LOGREQ(0, bp,
234 			    "Crypto READ request failed (error=%d).",
235 			    bp->bio_error);
236 		}
237 		bp->bio_completed = 0;
238 	}
239 	/*
240 	 * Read is finished, send it up.
241 	 */
242 	g_io_deliver(bp, bp->bio_error);
243 	atomic_subtract_int(&sc->sc_inflight, 1);
244 	return (0);
245 }
246 
247 /*
248  * The function is called after data encryption.
249  *
250  * g_eli_start -> g_eli_auth_run -> G_ELI_AUTH_WRITE_DONE -> g_io_request -> g_eli_write_done -> g_io_deliver
251  */
252 static int
253 g_eli_auth_write_done(struct cryptop *crp)
254 {
255 	struct g_eli_softc *sc;
256 	struct g_consumer *cp;
257 	struct bio *bp, *cbp, *cbp2;
258 	u_int nsec;
259 
260 	if (crp->crp_etype == EAGAIN) {
261 		if (g_eli_crypto_rerun(crp) == 0)
262 			return (0);
263 	}
264 	bp = (struct bio *)crp->crp_opaque;
265 	bp->bio_inbed++;
266 	if (crp->crp_etype == 0) {
267 		G_ELI_DEBUG(3, "Crypto WRITE request done (%d/%d).",
268 		    bp->bio_inbed, bp->bio_children);
269 	} else {
270 		G_ELI_DEBUG(1, "Crypto WRITE request failed (%d/%d) error=%d.",
271 		    bp->bio_inbed, bp->bio_children, crp->crp_etype);
272 		if (bp->bio_error == 0)
273 			bp->bio_error = crp->crp_etype;
274 	}
275 	/*
276 	 * All sectors are already encrypted?
277 	 */
278 	if (bp->bio_inbed < bp->bio_children)
279 		return (0);
280 	sc = bp->bio_to->geom->softc;
281 	if (bp->bio_error != 0) {
282 		G_ELI_LOGREQ(0, bp, "Crypto WRITE request failed (error=%d).",
283 		    bp->bio_error);
284 		free(bp->bio_driver2, M_ELI);
285 		bp->bio_driver2 = NULL;
286 		cbp = bp->bio_driver1;
287 		bp->bio_driver1 = NULL;
288 		g_destroy_bio(cbp);
289 		g_io_deliver(bp, bp->bio_error);
290 		atomic_subtract_int(&sc->sc_inflight, 1);
291 		return (0);
292 	}
293 	cp = LIST_FIRST(&sc->sc_geom->consumer);
294 	cbp = bp->bio_driver1;
295 	bp->bio_driver1 = NULL;
296 	cbp->bio_to = cp->provider;
297 	cbp->bio_done = g_eli_write_done;
298 
299 	/* Number of sectors from decrypted provider, eg. 1. */
300 	nsec = bp->bio_length / bp->bio_to->sectorsize;
301 	/* Number of sectors from encrypted provider, eg. 9. */
302 	nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;
303 
304 	cbp->bio_length = cp->provider->sectorsize * nsec;
305 	cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
306 	cbp->bio_data = bp->bio_driver2;
307 
308 	/*
309 	 * We write more than what is requested, so we have to be ready to write
310 	 * more than MAXPHYS.
311 	 */
312 	cbp2 = NULL;
313 	if (cbp->bio_length > MAXPHYS) {
314 		cbp2 = g_duplicate_bio(bp);
315 		cbp2->bio_length = cbp->bio_length - MAXPHYS;
316 		cbp2->bio_data = cbp->bio_data + MAXPHYS;
317 		cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
318 		cbp2->bio_to = cp->provider;
319 		cbp2->bio_done = g_eli_write_done;
320 		cbp->bio_length = MAXPHYS;
321 	}
322 	/*
323 	 * Send encrypted data to the provider.
324 	 */
325 	G_ELI_LOGREQ(2, cbp, "Sending request.");
326 	bp->bio_inbed = 0;
327 	bp->bio_children = (cbp2 != NULL ? 2 : 1);
328 	g_io_request(cbp, cp);
329 	if (cbp2 != NULL) {
330 		G_ELI_LOGREQ(2, cbp2, "Sending request.");
331 		g_io_request(cbp2, cp);
332 	}
333 	return (0);
334 }
335 
336 void
337 g_eli_auth_read(struct g_eli_softc *sc, struct bio *bp)
338 {
339 	struct g_consumer *cp;
340 	struct bio *cbp, *cbp2;
341 	size_t size;
342 	off_t nsec;
343 
344 	bp->bio_pflags = 0;
345 
346 	cp = LIST_FIRST(&sc->sc_geom->consumer);
347 	cbp = bp->bio_driver1;
348 	bp->bio_driver1 = NULL;
349 	cbp->bio_to = cp->provider;
350 	cbp->bio_done = g_eli_read_done;
351 
352 	/* Number of sectors from decrypted provider, eg. 1. */
353 	nsec = bp->bio_length / bp->bio_to->sectorsize;
354 	/* Number of sectors from encrypted provider, eg. 9. */
355 	nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;
356 
357 	cbp->bio_length = cp->provider->sectorsize * nsec;
358 	size = cbp->bio_length;
359 	size += sc->sc_alen * nsec;
360 	size += sizeof(struct cryptop) * nsec;
361 	size += sizeof(struct cryptodesc) * nsec * 2;
362 	size += G_ELI_AUTH_SECKEYLEN * nsec;
363 	size += sizeof(struct uio) * nsec;
364 	size += sizeof(struct iovec) * nsec;
365 	cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
366 	bp->bio_driver2 = malloc(size, M_ELI, M_WAITOK);
367 	cbp->bio_data = bp->bio_driver2;
368 
369 	/*
370 	 * We read more than what is requested, so we have to be ready to read
371 	 * more than MAXPHYS.
372 	 */
373 	cbp2 = NULL;
374 	if (cbp->bio_length > MAXPHYS) {
375 		cbp2 = g_duplicate_bio(bp);
376 		cbp2->bio_length = cbp->bio_length - MAXPHYS;
377 		cbp2->bio_data = cbp->bio_data + MAXPHYS;
378 		cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
379 		cbp2->bio_to = cp->provider;
380 		cbp2->bio_done = g_eli_read_done;
381 		cbp->bio_length = MAXPHYS;
382 	}
383 	/*
384 	 * Read encrypted data from provider.
385 	 */
386 	G_ELI_LOGREQ(2, cbp, "Sending request.");
387 	g_io_request(cbp, cp);
388 	if (cbp2 != NULL) {
389 		G_ELI_LOGREQ(2, cbp2, "Sending request.");
390 		g_io_request(cbp2, cp);
391 	}
392 }
393 
394 /*
395  * This is the main function responsible for cryptography (ie. communication
396  * with crypto(9) subsystem).
397  *
398  * BIO_READ:
399  *	g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> G_ELI_AUTH_RUN -> g_eli_auth_read_done -> g_io_deliver
400  * BIO_WRITE:
401  *	g_eli_start -> G_ELI_AUTH_RUN -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver
402  */
403 void
404 g_eli_auth_run(struct g_eli_worker *wr, struct bio *bp)
405 {
406 	struct g_eli_softc *sc;
407 	struct cryptop *crp;
408 	struct cryptodesc *crde, *crda;
409 	struct uio *uio;
410 	struct iovec *iov;
411 	u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
412 	off_t dstoff;
413 	int err, error;
414 	u_char *p, *data, *auth, *authkey, *plaindata;
415 
416 	G_ELI_LOGREQ(3, bp, "%s", __func__);
417 
418 	bp->bio_pflags = wr->w_number;
419 	sc = wr->w_softc;
420 	/* Sectorsize of decrypted provider eg. 4096. */
421 	decr_secsize = bp->bio_to->sectorsize;
422 	/* The real sectorsize of encrypted provider, eg. 512. */
423 	encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
424 	/* Number of data bytes in one encrypted sector, eg. 480. */
425 	data_secsize = sc->sc_data_per_sector;
426 	/* Number of sectors from decrypted provider, eg. 2. */
427 	nsec = bp->bio_length / decr_secsize;
428 	/* Number of sectors from encrypted provider, eg. 18. */
429 	nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
430 	/* Last sector number in every big sector, eg. 9. */
431 	lsec = sc->sc_bytes_per_sector / encr_secsize;
432 	/* Destination offset, used for IV generation. */
433 	dstoff = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
434 
435 	auth = NULL;	/* Silence compiler warning. */
436 	plaindata = bp->bio_data;
437 	if (bp->bio_cmd == BIO_READ) {
438 		data = bp->bio_driver2;
439 		auth = data + encr_secsize * nsec;
440 		p = auth + sc->sc_alen * nsec;
441 	} else {
442 		size_t size;
443 
444 		size = encr_secsize * nsec;
445 		size += sizeof(*crp) * nsec;
446 		size += sizeof(*crde) * nsec;
447 		size += sizeof(*crda) * nsec;
448 		size += G_ELI_AUTH_SECKEYLEN * nsec;
449 		size += sizeof(*uio) * nsec;
450 		size += sizeof(*iov) * nsec;
451 		data = malloc(size, M_ELI, M_WAITOK);
452 		bp->bio_driver2 = data;
453 		p = data + encr_secsize * nsec;
454 	}
455 	bp->bio_inbed = 0;
456 	bp->bio_children = nsec;
457 
458 	error = 0;
459 	for (i = 1; i <= nsec; i++, dstoff += encr_secsize) {
460 		crp = (struct cryptop *)p;	p += sizeof(*crp);
461 		crde = (struct cryptodesc *)p;	p += sizeof(*crde);
462 		crda = (struct cryptodesc *)p;	p += sizeof(*crda);
463 		authkey = (u_char *)p;		p += G_ELI_AUTH_SECKEYLEN;
464 		uio = (struct uio *)p;		p += sizeof(*uio);
465 		iov = (struct iovec *)p;	p += sizeof(*iov);
466 
467 		data_secsize = sc->sc_data_per_sector;
468 		if ((i % lsec) == 0)
469 			data_secsize = decr_secsize % data_secsize;
470 
471 		if (bp->bio_cmd == BIO_READ) {
472 			/* Remember read HMAC. */
473 			bcopy(data, auth, sc->sc_alen);
474 			auth += sc->sc_alen;
475 			/* TODO: bzero(9) can be commented out later. */
476 			bzero(data, sc->sc_alen);
477 		} else {
478 			bcopy(plaindata, data + sc->sc_alen, data_secsize);
479 			plaindata += data_secsize;
480 		}
481 
482 		iov->iov_len = sc->sc_alen + data_secsize;
483 		iov->iov_base = data;
484 		data += encr_secsize;
485 
486 		uio->uio_iov = iov;
487 		uio->uio_iovcnt = 1;
488 		uio->uio_segflg = UIO_SYSSPACE;
489 		uio->uio_resid = iov->iov_len;
490 
491 		crp->crp_sid = wr->w_sid;
492 		crp->crp_ilen = uio->uio_resid;
493 		crp->crp_olen = data_secsize;
494 		crp->crp_opaque = (void *)bp;
495 		crp->crp_buf = (void *)uio;
496 		crp->crp_flags = CRYPTO_F_IOV | CRYPTO_F_CBIFSYNC | CRYPTO_F_REL;
497 		if (g_eli_batch)
498 			crp->crp_flags |= CRYPTO_F_BATCH;
499 		if (bp->bio_cmd == BIO_WRITE) {
500 			crp->crp_callback = g_eli_auth_write_done;
501 			crp->crp_desc = crde;
502 			crde->crd_next = crda;
503 			crda->crd_next = NULL;
504 		} else {
505 			crp->crp_callback = g_eli_auth_read_done;
506 			crp->crp_desc = crda;
507 			crda->crd_next = crde;
508 			crde->crd_next = NULL;
509 		}
510 
511 		crde->crd_skip = sc->sc_alen;
512 		crde->crd_len = data_secsize;
513 		crde->crd_flags = CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT;
514 		if (bp->bio_cmd == BIO_WRITE)
515 			crde->crd_flags |= CRD_F_ENCRYPT;
516 		crde->crd_alg = sc->sc_ealgo;
517 		crde->crd_key = g_eli_crypto_key(sc, dstoff, encr_secsize);
518 		crde->crd_klen = sc->sc_ekeylen;
519 		if (sc->sc_ealgo == CRYPTO_AES_XTS)
520 			crde->crd_klen <<= 1;
521 		g_eli_crypto_ivgen(sc, dstoff, crde->crd_iv,
522 		    sizeof(crde->crd_iv));
523 
524 		crda->crd_skip = sc->sc_alen;
525 		crda->crd_len = data_secsize;
526 		crda->crd_inject = 0;
527 		crda->crd_flags = CRD_F_KEY_EXPLICIT;
528 		crda->crd_alg = sc->sc_aalgo;
529 		g_eli_auth_keygen(sc, dstoff, authkey);
530 		crda->crd_key = authkey;
531 		crda->crd_klen = G_ELI_AUTH_SECKEYLEN * 8;
532 
533 		crp->crp_etype = 0;
534 		err = crypto_dispatch(crp);
535 		if (err != 0 && error == 0)
536 			error = err;
537 	}
538 	if (bp->bio_error == 0)
539 		bp->bio_error = error;
540 }
541