xref: /freebsd/sys/geom/part/g_part_bsd64.c (revision 4b9d6057)
1 /*-
2  * Copyright (c) 2014 Andrey V. Elsukov <ae@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/param.h>
28 #include <sys/bio.h>
29 #include <sys/gsb_crc32.h>
30 #include <sys/disklabel.h>
31 #include <sys/endian.h>
32 #include <sys/gpt.h>
33 #include <sys/kernel.h>
34 #include <sys/kobj.h>
35 #include <sys/limits.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/queue.h>
40 #include <sys/sbuf.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <geom/geom.h>
44 #include <geom/geom_int.h>
45 #include <geom/part/g_part.h>
46 
47 #include "g_part_if.h"
48 
49 FEATURE(geom_part_bsd64, "GEOM partitioning class for 64-bit BSD disklabels");
50 
51 /* XXX: move this to sys/disklabel64.h */
52 #define	DISKMAGIC64     ((uint32_t)0xc4464c59)
53 #define	MAXPARTITIONS64	16
54 #define	RESPARTITIONS64	32
55 
56 struct disklabel64 {
57 	char	  d_reserved0[512];	/* reserved or unused */
58 	uint32_t d_magic;		/* the magic number */
59 	uint32_t d_crc;		/* crc32() d_magic through last part */
60 	uint32_t d_align;		/* partition alignment requirement */
61 	uint32_t d_npartitions;	/* number of partitions */
62 	struct uuid d_stor_uuid;	/* unique uuid for label */
63 
64 	uint64_t d_total_size;		/* total size incl everything (bytes) */
65 	uint64_t d_bbase;		/* boot area base offset (bytes) */
66 					/* boot area is pbase - bbase */
67 	uint64_t d_pbase;		/* first allocatable offset (bytes) */
68 	uint64_t d_pstop;		/* last allocatable offset+1 (bytes) */
69 	uint64_t d_abase;		/* location of backup copy if not 0 */
70 
71 	u_char	  d_packname[64];
72 	u_char    d_reserved[64];
73 
74 	/*
75 	 * Note: offsets are relative to the base of the slice, NOT to
76 	 * d_pbase.  Unlike 32 bit disklabels the on-disk format for
77 	 * a 64 bit disklabel remains slice-relative.
78 	 *
79 	 * An uninitialized partition has a p_boffset and p_bsize of 0.
80 	 *
81 	 * If p_fstype is not supported for a live partition it is set
82 	 * to FS_OTHER.  This is typically the case when the filesystem
83 	 * is identified by its uuid.
84 	 */
85 	struct partition64 {		/* the partition table */
86 		uint64_t p_boffset;	/* slice relative offset, in bytes */
87 		uint64_t p_bsize;	/* size of partition, in bytes */
88 		uint8_t  p_fstype;
89 		uint8_t  p_unused01;	/* reserved, must be 0 */
90 		uint8_t  p_unused02;	/* reserved, must be 0 */
91 		uint8_t  p_unused03;	/* reserved, must be 0 */
92 		uint32_t p_unused04;	/* reserved, must be 0 */
93 		uint32_t p_unused05;	/* reserved, must be 0 */
94 		uint32_t p_unused06;	/* reserved, must be 0 */
95 		struct uuid p_type_uuid;/* mount type as UUID */
96 		struct uuid p_stor_uuid;/* unique uuid for storage */
97 	} d_partitions[MAXPARTITIONS64];/* actually may be more */
98 };
99 
100 struct g_part_bsd64_table {
101 	struct g_part_table	base;
102 
103 	uint32_t		d_align;
104 	uint64_t		d_bbase;
105 	uint64_t		d_abase;
106 	struct uuid		d_stor_uuid;
107 	char			d_reserved0[512];
108 	u_char			d_packname[64];
109 	u_char			d_reserved[64];
110 };
111 
112 struct g_part_bsd64_entry {
113 	struct g_part_entry	base;
114 
115 	uint8_t			fstype;
116 	struct uuid		type_uuid;
117 	struct uuid		stor_uuid;
118 };
119 
120 static int g_part_bsd64_add(struct g_part_table *, struct g_part_entry *,
121     struct g_part_parms *);
122 static int g_part_bsd64_bootcode(struct g_part_table *, struct g_part_parms *);
123 static int g_part_bsd64_create(struct g_part_table *, struct g_part_parms *);
124 static int g_part_bsd64_destroy(struct g_part_table *, struct g_part_parms *);
125 static void g_part_bsd64_dumpconf(struct g_part_table *, struct g_part_entry *,
126     struct sbuf *, const char *);
127 static int g_part_bsd64_dumpto(struct g_part_table *, struct g_part_entry *);
128 static int g_part_bsd64_modify(struct g_part_table *, struct g_part_entry *,
129     struct g_part_parms *);
130 static const char *g_part_bsd64_name(struct g_part_table *, struct g_part_entry *,
131     char *, size_t);
132 static int g_part_bsd64_probe(struct g_part_table *, struct g_consumer *);
133 static int g_part_bsd64_read(struct g_part_table *, struct g_consumer *);
134 static const char *g_part_bsd64_type(struct g_part_table *, struct g_part_entry *,
135     char *, size_t);
136 static int g_part_bsd64_write(struct g_part_table *, struct g_consumer *);
137 static int g_part_bsd64_resize(struct g_part_table *, struct g_part_entry *,
138     struct g_part_parms *);
139 
140 static kobj_method_t g_part_bsd64_methods[] = {
141 	KOBJMETHOD(g_part_add,		g_part_bsd64_add),
142 	KOBJMETHOD(g_part_bootcode,	g_part_bsd64_bootcode),
143 	KOBJMETHOD(g_part_create,	g_part_bsd64_create),
144 	KOBJMETHOD(g_part_destroy,	g_part_bsd64_destroy),
145 	KOBJMETHOD(g_part_dumpconf,	g_part_bsd64_dumpconf),
146 	KOBJMETHOD(g_part_dumpto,	g_part_bsd64_dumpto),
147 	KOBJMETHOD(g_part_modify,	g_part_bsd64_modify),
148 	KOBJMETHOD(g_part_resize,	g_part_bsd64_resize),
149 	KOBJMETHOD(g_part_name,		g_part_bsd64_name),
150 	KOBJMETHOD(g_part_probe,	g_part_bsd64_probe),
151 	KOBJMETHOD(g_part_read,		g_part_bsd64_read),
152 	KOBJMETHOD(g_part_type,		g_part_bsd64_type),
153 	KOBJMETHOD(g_part_write,	g_part_bsd64_write),
154 	{ 0, 0 }
155 };
156 
157 static struct g_part_scheme g_part_bsd64_scheme = {
158 	"BSD64",
159 	g_part_bsd64_methods,
160 	sizeof(struct g_part_bsd64_table),
161 	.gps_entrysz = sizeof(struct g_part_bsd64_entry),
162 	.gps_minent = MAXPARTITIONS64,
163 	.gps_maxent = MAXPARTITIONS64
164 };
165 G_PART_SCHEME_DECLARE(g_part_bsd64);
166 MODULE_VERSION(geom_part_bsd64, 0);
167 
168 #define	EQUUID(a, b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
169 static struct uuid bsd64_uuid_unused = GPT_ENT_TYPE_UNUSED;
170 static struct uuid bsd64_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
171 static struct uuid bsd64_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
172 static struct uuid bsd64_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
173 static struct uuid bsd64_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
174 static struct uuid bsd64_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
175 static struct uuid bsd64_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
176 static struct uuid bsd64_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
177 static struct uuid bsd64_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
178 static struct uuid bsd64_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
179 static struct uuid bsd64_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
180 static struct uuid bsd64_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
181 static struct uuid bsd64_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
182 static struct uuid bsd64_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
183 
184 struct bsd64_uuid_alias {
185 	struct uuid *uuid;
186 	uint8_t fstype;
187 	int alias;
188 };
189 static struct bsd64_uuid_alias dfbsd_alias_match[] = {
190 	{ &bsd64_uuid_dfbsd_swap, FS_SWAP, G_PART_ALIAS_DFBSD_SWAP },
191 	{ &bsd64_uuid_dfbsd_ufs1, FS_BSDFFS, G_PART_ALIAS_DFBSD_UFS },
192 	{ &bsd64_uuid_dfbsd_vinum, FS_VINUM, G_PART_ALIAS_DFBSD_VINUM },
193 	{ &bsd64_uuid_dfbsd_ccd, FS_CCD, G_PART_ALIAS_DFBSD_CCD },
194 	{ &bsd64_uuid_dfbsd_legacy, FS_OTHER, G_PART_ALIAS_DFBSD_LEGACY },
195 	{ &bsd64_uuid_dfbsd_hammer, FS_HAMMER, G_PART_ALIAS_DFBSD_HAMMER },
196 	{ &bsd64_uuid_dfbsd_hammer2, FS_HAMMER2, G_PART_ALIAS_DFBSD_HAMMER2 },
197 	{ NULL, 0, 0}
198 };
199 static struct bsd64_uuid_alias fbsd_alias_match[] = {
200 	{ &bsd64_uuid_freebsd_boot, FS_OTHER, G_PART_ALIAS_FREEBSD_BOOT },
201 	{ &bsd64_uuid_freebsd_swap, FS_OTHER, G_PART_ALIAS_FREEBSD_SWAP },
202 	{ &bsd64_uuid_freebsd_ufs, FS_OTHER, G_PART_ALIAS_FREEBSD_UFS },
203 	{ &bsd64_uuid_freebsd_zfs, FS_OTHER, G_PART_ALIAS_FREEBSD_ZFS },
204 	{ &bsd64_uuid_freebsd_vinum, FS_OTHER, G_PART_ALIAS_FREEBSD_VINUM },
205 	{ &bsd64_uuid_freebsd_nandfs, FS_OTHER, G_PART_ALIAS_FREEBSD_NANDFS },
206 	{ NULL, 0, 0}
207 };
208 
209 static int
210 bsd64_parse_type(const char *type, struct g_part_bsd64_entry *entry)
211 {
212 	struct uuid tmp;
213 	const struct bsd64_uuid_alias *uap;
214 	const char *alias;
215 	char *p;
216 	long lt;
217 	int error;
218 
219 	if (type[0] == '!') {
220 		if (type[1] == '\0')
221 			return (EINVAL);
222 		lt = strtol(type + 1, &p, 0);
223 		/* The type specified as number */
224 		if (*p == '\0') {
225 			if (lt <= 0 || lt > 255)
226 				return (EINVAL);
227 			entry->fstype = lt;
228 			entry->type_uuid = bsd64_uuid_unused;
229 			return (0);
230 		}
231 		/* The type specified as uuid */
232 		error = parse_uuid(type + 1, &tmp);
233 		if (error != 0)
234 			return (error);
235 		if (EQUUID(&tmp, &bsd64_uuid_unused))
236 			return (EINVAL);
237 		for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) {
238 			if (EQUUID(&tmp, uap->uuid)) {
239 				/* Prefer fstype for known uuids */
240 				entry->type_uuid = bsd64_uuid_unused;
241 				entry->fstype = uap->fstype;
242 				return (0);
243 			}
244 		}
245 		entry->type_uuid = tmp;
246 		entry->fstype = FS_OTHER;
247 		return (0);
248 	}
249 	/* The type specified as symbolic alias name */
250 	for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++) {
251 		alias = g_part_alias_name(uap->alias);
252 		if (!strcasecmp(type, alias)) {
253 			entry->type_uuid = *uap->uuid;
254 			entry->fstype = uap->fstype;
255 			return (0);
256 		}
257 	}
258 	for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) {
259 		alias = g_part_alias_name(uap->alias);
260 		if (!strcasecmp(type, alias)) {
261 			entry->type_uuid = bsd64_uuid_unused;
262 			entry->fstype = uap->fstype;
263 			return (0);
264 		}
265 	}
266 	return (EINVAL);
267 }
268 
269 static int
270 g_part_bsd64_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
271     struct g_part_parms *gpp)
272 {
273 	struct g_part_bsd64_entry *entry;
274 
275 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
276 		return (EINVAL);
277 
278 	entry = (struct g_part_bsd64_entry *)baseentry;
279 	if (bsd64_parse_type(gpp->gpp_type, entry) != 0)
280 		return (EINVAL);
281 	kern_uuidgen(&entry->stor_uuid, 1);
282 	return (0);
283 }
284 
285 static int
286 g_part_bsd64_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
287 {
288 
289 	return (EOPNOTSUPP);
290 }
291 
292 #define	PALIGN_SIZE	(1024 * 1024)
293 #define	PALIGN_MASK	(PALIGN_SIZE - 1)
294 #define	BLKSIZE		(4 * 1024)
295 #define	BOOTSIZE	(32 * 1024)
296 #define	DALIGN_SIZE	(32 * 1024)
297 static int
298 g_part_bsd64_create(struct g_part_table *basetable, struct g_part_parms *gpp)
299 {
300 	struct g_part_bsd64_table *table;
301 	struct g_part_entry *baseentry;
302 	struct g_provider *pp;
303 	uint64_t blkmask, pbase;
304 	uint32_t blksize, ressize;
305 
306 	pp = gpp->gpp_provider;
307 	if (pp->mediasize < 2* PALIGN_SIZE)
308 		return (ENOSPC);
309 
310 	/*
311 	 * Use at least 4KB block size. Blksize is stored in the d_align.
312 	 * XXX: Actually it is used just for calculate d_bbase and used
313 	 * for better alignment in bsdlabel64(8).
314 	 */
315 	blksize = pp->sectorsize < BLKSIZE ? BLKSIZE: pp->sectorsize;
316 	blkmask = blksize - 1;
317 	/* Reserve enough space for RESPARTITIONS64 partitions. */
318 	ressize = offsetof(struct disklabel64, d_partitions[RESPARTITIONS64]);
319 	ressize = (ressize + blkmask) & ~blkmask;
320 	/*
321 	 * Reserve enough space for bootcode and align first allocatable
322 	 * offset to PALIGN_SIZE.
323 	 * XXX: Currently DragonFlyBSD has 32KB bootcode, but the size could
324 	 * be bigger, because it is possible change it (it is equal pbase-bbase)
325 	 * in the bsdlabel64(8).
326 	 */
327 	pbase = ressize + ((BOOTSIZE + blkmask) & ~blkmask);
328 	pbase = (pbase + PALIGN_MASK) & ~PALIGN_MASK;
329 	/*
330 	 * Take physical offset into account and make first allocatable
331 	 * offset 32KB aligned to the start of the physical disk.
332 	 * XXX: Actually there are no such restrictions, this is how
333 	 * DragonFlyBSD behaves.
334 	 */
335 	pbase += DALIGN_SIZE - pp->stripeoffset % DALIGN_SIZE;
336 
337 	table = (struct g_part_bsd64_table *)basetable;
338 	table->d_align = blksize;
339 	table->d_bbase = ressize / pp->sectorsize;
340 	table->d_abase = ((pp->mediasize - ressize) &
341 	    ~blkmask) / pp->sectorsize;
342 	kern_uuidgen(&table->d_stor_uuid, 1);
343 	basetable->gpt_first = pbase / pp->sectorsize;
344 	basetable->gpt_last = table->d_abase - 1; /* XXX */
345 	/*
346 	 * Create 'c' partition and make it internal, so user will not be
347 	 * able use it.
348 	 */
349 	baseentry = g_part_new_entry(basetable, RAW_PART + 1, 0, 0);
350 	baseentry->gpe_internal = 1;
351 	return (0);
352 }
353 
354 static int
355 g_part_bsd64_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
356 {
357 	struct g_provider *pp;
358 
359 	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
360 	if (pp->sectorsize > offsetof(struct disklabel64, d_magic))
361 		basetable->gpt_smhead |= 1;
362 	else
363 		basetable->gpt_smhead |= 3;
364 	return (0);
365 }
366 
367 static void
368 g_part_bsd64_dumpconf(struct g_part_table *basetable,
369     struct g_part_entry *baseentry, struct sbuf *sb, const char *indent)
370 {
371 	struct g_part_bsd64_table *table;
372 	struct g_part_bsd64_entry *entry;
373 	char buf[sizeof(table->d_packname)];
374 
375 	entry = (struct g_part_bsd64_entry *)baseentry;
376 	if (indent == NULL) {
377 		/* conftxt: libdisk compatibility */
378 		sbuf_printf(sb, " xs BSD64 xt %u", entry->fstype);
379 	} else if (entry != NULL) {
380 		/* confxml: partition entry information */
381 		sbuf_printf(sb, "%s<rawtype>%u</rawtype>\n", indent,
382 		    entry->fstype);
383 		if (!EQUUID(&bsd64_uuid_unused, &entry->type_uuid)) {
384 			sbuf_printf(sb, "%s<type_uuid>", indent);
385 			sbuf_printf_uuid(sb, &entry->type_uuid);
386 			sbuf_cat(sb, "</type_uuid>\n");
387 		}
388 		sbuf_printf(sb, "%s<stor_uuid>", indent);
389 		sbuf_printf_uuid(sb, &entry->stor_uuid);
390 		sbuf_cat(sb, "</stor_uuid>\n");
391 	} else {
392 		/* confxml: scheme information */
393 		table = (struct g_part_bsd64_table *)basetable;
394 		sbuf_printf(sb, "%s<bootbase>%ju</bootbase>\n", indent,
395 		    (uintmax_t)table->d_bbase);
396 		if (table->d_abase)
397 			sbuf_printf(sb, "%s<backupbase>%ju</backupbase>\n",
398 			    indent, (uintmax_t)table->d_abase);
399 		sbuf_printf(sb, "%s<stor_uuid>", indent);
400 		sbuf_printf_uuid(sb, &table->d_stor_uuid);
401 		sbuf_cat(sb, "</stor_uuid>\n");
402 		sbuf_printf(sb, "%s<label>", indent);
403 		strncpy(buf, table->d_packname, sizeof(buf) - 1);
404 		buf[sizeof(buf) - 1] = '\0';
405 		g_conf_cat_escaped(sb, buf);
406 		sbuf_cat(sb, "</label>\n");
407 	}
408 }
409 
410 static int
411 g_part_bsd64_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
412 {
413 	struct g_part_bsd64_entry *entry;
414 
415 	/* Allow dumping to a swap partition. */
416 	entry = (struct g_part_bsd64_entry *)baseentry;
417 	if (entry->fstype == FS_SWAP ||
418 	    EQUUID(&entry->type_uuid, &bsd64_uuid_dfbsd_swap) ||
419 	    EQUUID(&entry->type_uuid, &bsd64_uuid_freebsd_swap))
420 		return (1);
421 	return (0);
422 }
423 
424 static int
425 g_part_bsd64_modify(struct g_part_table *basetable,
426     struct g_part_entry *baseentry, struct g_part_parms *gpp)
427 {
428 	struct g_part_bsd64_entry *entry;
429 
430 	if (gpp->gpp_parms & G_PART_PARM_LABEL)
431 		return (EINVAL);
432 
433 	entry = (struct g_part_bsd64_entry *)baseentry;
434 	if (gpp->gpp_parms & G_PART_PARM_TYPE)
435 		return (bsd64_parse_type(gpp->gpp_type, entry));
436 	return (0);
437 }
438 
439 static int
440 g_part_bsd64_resize(struct g_part_table *basetable,
441     struct g_part_entry *baseentry, struct g_part_parms *gpp)
442 {
443 	struct g_part_bsd64_table *table;
444 	struct g_provider *pp;
445 
446 	if (baseentry == NULL) {
447 		pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
448 		table = (struct g_part_bsd64_table *)basetable;
449 		table->d_abase =
450 		    rounddown2(pp->mediasize - table->d_bbase * pp->sectorsize,
451 		        table->d_align) / pp->sectorsize;
452 		basetable->gpt_last = table->d_abase - 1;
453 		return (0);
454 	}
455 	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
456 	return (0);
457 }
458 
459 static const char *
460 g_part_bsd64_name(struct g_part_table *table, struct g_part_entry *baseentry,
461     char *buf, size_t bufsz)
462 {
463 
464 	snprintf(buf, bufsz, "%c", 'a' + baseentry->gpe_index - 1);
465 	return (buf);
466 }
467 
468 static int
469 g_part_bsd64_probe(struct g_part_table *table, struct g_consumer *cp)
470 {
471 	struct g_provider *pp;
472 	uint32_t v;
473 	int error;
474 	u_char *buf;
475 
476 	pp = cp->provider;
477 	if (pp->mediasize < 2 * PALIGN_SIZE)
478 		return (ENOSPC);
479 	v = rounddown2(pp->sectorsize + offsetof(struct disklabel64, d_magic),
480 		       pp->sectorsize);
481 	buf = g_read_data(cp, 0, v, &error);
482 	if (buf == NULL)
483 		return (error);
484 	v = le32dec(buf + offsetof(struct disklabel64, d_magic));
485 	g_free(buf);
486 	return (v == DISKMAGIC64 ? G_PART_PROBE_PRI_HIGH: ENXIO);
487 }
488 
489 static int
490 g_part_bsd64_read(struct g_part_table *basetable, struct g_consumer *cp)
491 {
492 	struct g_part_bsd64_table *table;
493 	struct g_part_bsd64_entry *entry;
494 	struct g_part_entry *baseentry;
495 	struct g_provider *pp;
496 	struct disklabel64 *dlp;
497 	uint64_t v64, sz;
498 	uint32_t v32;
499 	int error, index;
500 	u_char *buf;
501 
502 	pp = cp->provider;
503 	table = (struct g_part_bsd64_table *)basetable;
504 	v32 = roundup2(sizeof(struct disklabel64), pp->sectorsize);
505 	buf = g_read_data(cp, 0, v32, &error);
506 	if (buf == NULL)
507 		return (error);
508 
509 	dlp = (struct disklabel64 *)buf;
510 	basetable->gpt_entries = le32toh(dlp->d_npartitions);
511 	if (basetable->gpt_entries > MAXPARTITIONS64 ||
512 	    basetable->gpt_entries < 1)
513 		goto invalid_label;
514 	v32 = le32toh(dlp->d_crc);
515 	dlp->d_crc = 0;
516 	if (crc32(&dlp->d_magic, offsetof(struct disklabel64,
517 	    d_partitions[basetable->gpt_entries]) -
518 	    offsetof(struct disklabel64, d_magic)) != v32)
519 		goto invalid_label;
520 	table->d_align = le32toh(dlp->d_align);
521 	if (table->d_align == 0 || (table->d_align & (pp->sectorsize - 1)))
522 		goto invalid_label;
523 	if (le64toh(dlp->d_total_size) > pp->mediasize)
524 		goto invalid_label;
525 	v64 = le64toh(dlp->d_pbase);
526 	if (v64 % pp->sectorsize)
527 		goto invalid_label;
528 	basetable->gpt_first = v64 / pp->sectorsize;
529 	v64 = le64toh(dlp->d_pstop);
530 	if (v64 % pp->sectorsize)
531 		goto invalid_label;
532 	basetable->gpt_last = v64 / pp->sectorsize;
533 	basetable->gpt_isleaf = 1;
534 	v64 = le64toh(dlp->d_bbase);
535 	if (v64 % pp->sectorsize)
536 		goto invalid_label;
537 	table->d_bbase = v64 / pp->sectorsize;
538 	v64 = le64toh(dlp->d_abase);
539 	if (v64 % pp->sectorsize)
540 		goto invalid_label;
541 	table->d_abase = v64 / pp->sectorsize;
542 	le_uuid_dec(&dlp->d_stor_uuid, &table->d_stor_uuid);
543 	for (index = basetable->gpt_entries - 1; index >= 0; index--) {
544 		if (index == RAW_PART) {
545 			/* Skip 'c' partition. */
546 			baseentry = g_part_new_entry(basetable,
547 			    index + 1, 0, 0);
548 			baseentry->gpe_internal = 1;
549 			continue;
550 		}
551 		v64 = le64toh(dlp->d_partitions[index].p_boffset);
552 		sz = le64toh(dlp->d_partitions[index].p_bsize);
553 		if (sz == 0 && v64 == 0)
554 			continue;
555 		if (sz == 0 || (v64 % pp->sectorsize) || (sz % pp->sectorsize))
556 			goto invalid_label;
557 		baseentry = g_part_new_entry(basetable, index + 1,
558 		    v64 / pp->sectorsize, (v64 + sz) / pp->sectorsize - 1);
559 		entry = (struct g_part_bsd64_entry *)baseentry;
560 		le_uuid_dec(&dlp->d_partitions[index].p_type_uuid,
561 		    &entry->type_uuid);
562 		le_uuid_dec(&dlp->d_partitions[index].p_stor_uuid,
563 		    &entry->stor_uuid);
564 		entry->fstype = dlp->d_partitions[index].p_fstype;
565 	}
566 	bcopy(dlp->d_reserved0, table->d_reserved0,
567 	    sizeof(table->d_reserved0));
568 	bcopy(dlp->d_packname, table->d_packname, sizeof(table->d_packname));
569 	bcopy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved));
570 	g_free(buf);
571 	return (0);
572 
573 invalid_label:
574 	g_free(buf);
575 	return (EINVAL);
576 }
577 
578 static const char *
579 g_part_bsd64_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
580     char *buf, size_t bufsz)
581 {
582 	struct g_part_bsd64_entry *entry;
583 	struct bsd64_uuid_alias *uap;
584 
585 	entry = (struct g_part_bsd64_entry *)baseentry;
586 	if (entry->fstype != FS_OTHER) {
587 		for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++)
588 			if (uap->fstype == entry->fstype)
589 				return (g_part_alias_name(uap->alias));
590 	} else {
591 		for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++)
592 			if (EQUUID(uap->uuid, &entry->type_uuid))
593 				return (g_part_alias_name(uap->alias));
594 		for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++)
595 			if (EQUUID(uap->uuid, &entry->type_uuid))
596 				return (g_part_alias_name(uap->alias));
597 	}
598 	if (EQUUID(&bsd64_uuid_unused, &entry->type_uuid))
599 		snprintf(buf, bufsz, "!%d", entry->fstype);
600 	else {
601 		buf[0] = '!';
602 		snprintf_uuid(buf + 1, bufsz - 1, &entry->type_uuid);
603 	}
604 	return (buf);
605 }
606 
607 static int
608 g_part_bsd64_write(struct g_part_table *basetable, struct g_consumer *cp)
609 {
610 	struct g_provider *pp;
611 	struct g_part_entry *baseentry;
612 	struct g_part_bsd64_entry *entry;
613 	struct g_part_bsd64_table *table;
614 	struct disklabel64 *dlp;
615 	uint32_t v, sz;
616 	int error, index;
617 
618 	pp = cp->provider;
619 	table = (struct g_part_bsd64_table *)basetable;
620 	sz = roundup2(sizeof(struct disklabel64), pp->sectorsize);
621 	dlp = g_malloc(sz, M_WAITOK | M_ZERO);
622 
623 	memcpy(dlp->d_reserved0, table->d_reserved0,
624 	    sizeof(table->d_reserved0));
625 	memcpy(dlp->d_packname, table->d_packname, sizeof(table->d_packname));
626 	memcpy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved));
627 	le32enc(&dlp->d_magic, DISKMAGIC64);
628 	le32enc(&dlp->d_align, table->d_align);
629 	le32enc(&dlp->d_npartitions, basetable->gpt_entries);
630 	le_uuid_enc(&dlp->d_stor_uuid, &table->d_stor_uuid);
631 	le64enc(&dlp->d_total_size, pp->mediasize);
632 	le64enc(&dlp->d_bbase, table->d_bbase * pp->sectorsize);
633 	le64enc(&dlp->d_pbase, basetable->gpt_first * pp->sectorsize);
634 	le64enc(&dlp->d_pstop, basetable->gpt_last * pp->sectorsize);
635 	le64enc(&dlp->d_abase, table->d_abase * pp->sectorsize);
636 
637 	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
638 		if (baseentry->gpe_deleted)
639 			continue;
640 		index = baseentry->gpe_index - 1;
641 		entry = (struct g_part_bsd64_entry *)baseentry;
642 		if (index == RAW_PART)
643 			continue;
644 		le64enc(&dlp->d_partitions[index].p_boffset,
645 		    baseentry->gpe_start * pp->sectorsize);
646 		le64enc(&dlp->d_partitions[index].p_bsize, pp->sectorsize *
647 		    (baseentry->gpe_end - baseentry->gpe_start + 1));
648 		dlp->d_partitions[index].p_fstype = entry->fstype;
649 		le_uuid_enc(&dlp->d_partitions[index].p_type_uuid,
650 		    &entry->type_uuid);
651 		le_uuid_enc(&dlp->d_partitions[index].p_stor_uuid,
652 		    &entry->stor_uuid);
653 	}
654 	/* Calculate checksum. */
655 	v = offsetof(struct disklabel64,
656 	    d_partitions[basetable->gpt_entries]) -
657 	    offsetof(struct disklabel64, d_magic);
658 	le32enc(&dlp->d_crc, crc32(&dlp->d_magic, v));
659 	error = g_write_data(cp, 0, dlp, sz);
660 	g_free(dlp);
661 	return (error);
662 }
663