xref: /freebsd/sys/geom/raid/g_raid.c (revision 5b9c547c)
1 /*-
2  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/limits.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/bio.h>
38 #include <sys/sbuf.h>
39 #include <sys/sysctl.h>
40 #include <sys/malloc.h>
41 #include <sys/eventhandler.h>
42 #include <vm/uma.h>
43 #include <geom/geom.h>
44 #include <sys/proc.h>
45 #include <sys/kthread.h>
46 #include <sys/sched.h>
47 #include <geom/raid/g_raid.h>
48 #include "g_raid_md_if.h"
49 #include "g_raid_tr_if.h"
50 
51 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
52 
53 SYSCTL_DECL(_kern_geom);
54 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW, 0, "GEOM_RAID stuff");
55 int g_raid_enable = 1;
56 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN,
57     &g_raid_enable, 0, "Enable on-disk metadata taste");
58 u_int g_raid_aggressive_spare = 0;
59 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN,
60     &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
61 u_int g_raid_debug = 0;
62 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0,
63     "Debug level");
64 int g_raid_read_err_thresh = 10;
65 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN,
66     &g_raid_read_err_thresh, 0,
67     "Number of read errors equated to disk failure");
68 u_int g_raid_start_timeout = 30;
69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN,
70     &g_raid_start_timeout, 0,
71     "Time to wait for all array components");
72 static u_int g_raid_clean_time = 5;
73 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN,
74     &g_raid_clean_time, 0, "Mark volume as clean when idling");
75 static u_int g_raid_disconnect_on_failure = 1;
76 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
77     &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
78 static u_int g_raid_name_format = 0;
79 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN,
80     &g_raid_name_format, 0, "Providers name format.");
81 static u_int g_raid_idle_threshold = 1000000;
82 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN,
83     &g_raid_idle_threshold, 1000000,
84     "Time in microseconds to consider a volume idle.");
85 static u_int ar_legacy_aliases = 1;
86 SYSCTL_INT(_kern_geom_raid, OID_AUTO, legacy_aliases, CTLFLAG_RWTUN,
87            &ar_legacy_aliases, 0, "Create aliases named as the legacy ataraid style.");
88 
89 
90 #define	MSLEEP(rv, ident, mtx, priority, wmesg, timeout)	do {	\
91 	G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));		\
92 	rv = msleep((ident), (mtx), (priority), (wmesg), (timeout));	\
93 	G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident));		\
94 } while (0)
95 
96 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
97     LIST_HEAD_INITIALIZER(g_raid_md_classes);
98 
99 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
100     LIST_HEAD_INITIALIZER(g_raid_tr_classes);
101 
102 LIST_HEAD(, g_raid_volume) g_raid_volumes =
103     LIST_HEAD_INITIALIZER(g_raid_volumes);
104 
105 static eventhandler_tag g_raid_post_sync = NULL;
106 static int g_raid_started = 0;
107 static int g_raid_shutdown = 0;
108 
109 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
110     struct g_geom *gp);
111 static g_taste_t g_raid_taste;
112 static void g_raid_init(struct g_class *mp);
113 static void g_raid_fini(struct g_class *mp);
114 
115 struct g_class g_raid_class = {
116 	.name = G_RAID_CLASS_NAME,
117 	.version = G_VERSION,
118 	.ctlreq = g_raid_ctl,
119 	.taste = g_raid_taste,
120 	.destroy_geom = g_raid_destroy_geom,
121 	.init = g_raid_init,
122 	.fini = g_raid_fini
123 };
124 
125 static void g_raid_destroy_provider(struct g_raid_volume *vol);
126 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
127 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
128 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
129 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
130 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
131     struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
132 static void g_raid_start(struct bio *bp);
133 static void g_raid_start_request(struct bio *bp);
134 static void g_raid_disk_done(struct bio *bp);
135 static void g_raid_poll(struct g_raid_softc *sc);
136 
137 static const char *
138 g_raid_node_event2str(int event)
139 {
140 
141 	switch (event) {
142 	case G_RAID_NODE_E_WAKE:
143 		return ("WAKE");
144 	case G_RAID_NODE_E_START:
145 		return ("START");
146 	default:
147 		return ("INVALID");
148 	}
149 }
150 
151 const char *
152 g_raid_disk_state2str(int state)
153 {
154 
155 	switch (state) {
156 	case G_RAID_DISK_S_NONE:
157 		return ("NONE");
158 	case G_RAID_DISK_S_OFFLINE:
159 		return ("OFFLINE");
160 	case G_RAID_DISK_S_DISABLED:
161 		return ("DISABLED");
162 	case G_RAID_DISK_S_FAILED:
163 		return ("FAILED");
164 	case G_RAID_DISK_S_STALE_FAILED:
165 		return ("STALE_FAILED");
166 	case G_RAID_DISK_S_SPARE:
167 		return ("SPARE");
168 	case G_RAID_DISK_S_STALE:
169 		return ("STALE");
170 	case G_RAID_DISK_S_ACTIVE:
171 		return ("ACTIVE");
172 	default:
173 		return ("INVALID");
174 	}
175 }
176 
177 static const char *
178 g_raid_disk_event2str(int event)
179 {
180 
181 	switch (event) {
182 	case G_RAID_DISK_E_DISCONNECTED:
183 		return ("DISCONNECTED");
184 	default:
185 		return ("INVALID");
186 	}
187 }
188 
189 const char *
190 g_raid_subdisk_state2str(int state)
191 {
192 
193 	switch (state) {
194 	case G_RAID_SUBDISK_S_NONE:
195 		return ("NONE");
196 	case G_RAID_SUBDISK_S_FAILED:
197 		return ("FAILED");
198 	case G_RAID_SUBDISK_S_NEW:
199 		return ("NEW");
200 	case G_RAID_SUBDISK_S_REBUILD:
201 		return ("REBUILD");
202 	case G_RAID_SUBDISK_S_UNINITIALIZED:
203 		return ("UNINITIALIZED");
204 	case G_RAID_SUBDISK_S_STALE:
205 		return ("STALE");
206 	case G_RAID_SUBDISK_S_RESYNC:
207 		return ("RESYNC");
208 	case G_RAID_SUBDISK_S_ACTIVE:
209 		return ("ACTIVE");
210 	default:
211 		return ("INVALID");
212 	}
213 }
214 
215 static const char *
216 g_raid_subdisk_event2str(int event)
217 {
218 
219 	switch (event) {
220 	case G_RAID_SUBDISK_E_NEW:
221 		return ("NEW");
222 	case G_RAID_SUBDISK_E_FAILED:
223 		return ("FAILED");
224 	case G_RAID_SUBDISK_E_DISCONNECTED:
225 		return ("DISCONNECTED");
226 	default:
227 		return ("INVALID");
228 	}
229 }
230 
231 const char *
232 g_raid_volume_state2str(int state)
233 {
234 
235 	switch (state) {
236 	case G_RAID_VOLUME_S_STARTING:
237 		return ("STARTING");
238 	case G_RAID_VOLUME_S_BROKEN:
239 		return ("BROKEN");
240 	case G_RAID_VOLUME_S_DEGRADED:
241 		return ("DEGRADED");
242 	case G_RAID_VOLUME_S_SUBOPTIMAL:
243 		return ("SUBOPTIMAL");
244 	case G_RAID_VOLUME_S_OPTIMAL:
245 		return ("OPTIMAL");
246 	case G_RAID_VOLUME_S_UNSUPPORTED:
247 		return ("UNSUPPORTED");
248 	case G_RAID_VOLUME_S_STOPPED:
249 		return ("STOPPED");
250 	default:
251 		return ("INVALID");
252 	}
253 }
254 
255 static const char *
256 g_raid_volume_event2str(int event)
257 {
258 
259 	switch (event) {
260 	case G_RAID_VOLUME_E_UP:
261 		return ("UP");
262 	case G_RAID_VOLUME_E_DOWN:
263 		return ("DOWN");
264 	case G_RAID_VOLUME_E_START:
265 		return ("START");
266 	case G_RAID_VOLUME_E_STARTMD:
267 		return ("STARTMD");
268 	default:
269 		return ("INVALID");
270 	}
271 }
272 
273 const char *
274 g_raid_volume_level2str(int level, int qual)
275 {
276 
277 	switch (level) {
278 	case G_RAID_VOLUME_RL_RAID0:
279 		return ("RAID0");
280 	case G_RAID_VOLUME_RL_RAID1:
281 		return ("RAID1");
282 	case G_RAID_VOLUME_RL_RAID3:
283 		if (qual == G_RAID_VOLUME_RLQ_R3P0)
284 			return ("RAID3-P0");
285 		if (qual == G_RAID_VOLUME_RLQ_R3PN)
286 			return ("RAID3-PN");
287 		return ("RAID3");
288 	case G_RAID_VOLUME_RL_RAID4:
289 		if (qual == G_RAID_VOLUME_RLQ_R4P0)
290 			return ("RAID4-P0");
291 		if (qual == G_RAID_VOLUME_RLQ_R4PN)
292 			return ("RAID4-PN");
293 		return ("RAID4");
294 	case G_RAID_VOLUME_RL_RAID5:
295 		if (qual == G_RAID_VOLUME_RLQ_R5RA)
296 			return ("RAID5-RA");
297 		if (qual == G_RAID_VOLUME_RLQ_R5RS)
298 			return ("RAID5-RS");
299 		if (qual == G_RAID_VOLUME_RLQ_R5LA)
300 			return ("RAID5-LA");
301 		if (qual == G_RAID_VOLUME_RLQ_R5LS)
302 			return ("RAID5-LS");
303 		return ("RAID5");
304 	case G_RAID_VOLUME_RL_RAID6:
305 		if (qual == G_RAID_VOLUME_RLQ_R6RA)
306 			return ("RAID6-RA");
307 		if (qual == G_RAID_VOLUME_RLQ_R6RS)
308 			return ("RAID6-RS");
309 		if (qual == G_RAID_VOLUME_RLQ_R6LA)
310 			return ("RAID6-LA");
311 		if (qual == G_RAID_VOLUME_RLQ_R6LS)
312 			return ("RAID6-LS");
313 		return ("RAID6");
314 	case G_RAID_VOLUME_RL_RAIDMDF:
315 		if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
316 			return ("RAIDMDF-RA");
317 		if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
318 			return ("RAIDMDF-RS");
319 		if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
320 			return ("RAIDMDF-LA");
321 		if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
322 			return ("RAIDMDF-LS");
323 		return ("RAIDMDF");
324 	case G_RAID_VOLUME_RL_RAID1E:
325 		if (qual == G_RAID_VOLUME_RLQ_R1EA)
326 			return ("RAID1E-A");
327 		if (qual == G_RAID_VOLUME_RLQ_R1EO)
328 			return ("RAID1E-O");
329 		return ("RAID1E");
330 	case G_RAID_VOLUME_RL_SINGLE:
331 		return ("SINGLE");
332 	case G_RAID_VOLUME_RL_CONCAT:
333 		return ("CONCAT");
334 	case G_RAID_VOLUME_RL_RAID5E:
335 		if (qual == G_RAID_VOLUME_RLQ_R5ERA)
336 			return ("RAID5E-RA");
337 		if (qual == G_RAID_VOLUME_RLQ_R5ERS)
338 			return ("RAID5E-RS");
339 		if (qual == G_RAID_VOLUME_RLQ_R5ELA)
340 			return ("RAID5E-LA");
341 		if (qual == G_RAID_VOLUME_RLQ_R5ELS)
342 			return ("RAID5E-LS");
343 		return ("RAID5E");
344 	case G_RAID_VOLUME_RL_RAID5EE:
345 		if (qual == G_RAID_VOLUME_RLQ_R5EERA)
346 			return ("RAID5EE-RA");
347 		if (qual == G_RAID_VOLUME_RLQ_R5EERS)
348 			return ("RAID5EE-RS");
349 		if (qual == G_RAID_VOLUME_RLQ_R5EELA)
350 			return ("RAID5EE-LA");
351 		if (qual == G_RAID_VOLUME_RLQ_R5EELS)
352 			return ("RAID5EE-LS");
353 		return ("RAID5EE");
354 	case G_RAID_VOLUME_RL_RAID5R:
355 		if (qual == G_RAID_VOLUME_RLQ_R5RRA)
356 			return ("RAID5R-RA");
357 		if (qual == G_RAID_VOLUME_RLQ_R5RRS)
358 			return ("RAID5R-RS");
359 		if (qual == G_RAID_VOLUME_RLQ_R5RLA)
360 			return ("RAID5R-LA");
361 		if (qual == G_RAID_VOLUME_RLQ_R5RLS)
362 			return ("RAID5R-LS");
363 		return ("RAID5E");
364 	default:
365 		return ("UNKNOWN");
366 	}
367 }
368 
369 int
370 g_raid_volume_str2level(const char *str, int *level, int *qual)
371 {
372 
373 	*level = G_RAID_VOLUME_RL_UNKNOWN;
374 	*qual = G_RAID_VOLUME_RLQ_NONE;
375 	if (strcasecmp(str, "RAID0") == 0)
376 		*level = G_RAID_VOLUME_RL_RAID0;
377 	else if (strcasecmp(str, "RAID1") == 0)
378 		*level = G_RAID_VOLUME_RL_RAID1;
379 	else if (strcasecmp(str, "RAID3-P0") == 0) {
380 		*level = G_RAID_VOLUME_RL_RAID3;
381 		*qual = G_RAID_VOLUME_RLQ_R3P0;
382 	} else if (strcasecmp(str, "RAID3-PN") == 0 ||
383 		   strcasecmp(str, "RAID3") == 0) {
384 		*level = G_RAID_VOLUME_RL_RAID3;
385 		*qual = G_RAID_VOLUME_RLQ_R3PN;
386 	} else if (strcasecmp(str, "RAID4-P0") == 0) {
387 		*level = G_RAID_VOLUME_RL_RAID4;
388 		*qual = G_RAID_VOLUME_RLQ_R4P0;
389 	} else if (strcasecmp(str, "RAID4-PN") == 0 ||
390 		   strcasecmp(str, "RAID4") == 0) {
391 		*level = G_RAID_VOLUME_RL_RAID4;
392 		*qual = G_RAID_VOLUME_RLQ_R4PN;
393 	} else if (strcasecmp(str, "RAID5-RA") == 0) {
394 		*level = G_RAID_VOLUME_RL_RAID5;
395 		*qual = G_RAID_VOLUME_RLQ_R5RA;
396 	} else if (strcasecmp(str, "RAID5-RS") == 0) {
397 		*level = G_RAID_VOLUME_RL_RAID5;
398 		*qual = G_RAID_VOLUME_RLQ_R5RS;
399 	} else if (strcasecmp(str, "RAID5") == 0 ||
400 		   strcasecmp(str, "RAID5-LA") == 0) {
401 		*level = G_RAID_VOLUME_RL_RAID5;
402 		*qual = G_RAID_VOLUME_RLQ_R5LA;
403 	} else if (strcasecmp(str, "RAID5-LS") == 0) {
404 		*level = G_RAID_VOLUME_RL_RAID5;
405 		*qual = G_RAID_VOLUME_RLQ_R5LS;
406 	} else if (strcasecmp(str, "RAID6-RA") == 0) {
407 		*level = G_RAID_VOLUME_RL_RAID6;
408 		*qual = G_RAID_VOLUME_RLQ_R6RA;
409 	} else if (strcasecmp(str, "RAID6-RS") == 0) {
410 		*level = G_RAID_VOLUME_RL_RAID6;
411 		*qual = G_RAID_VOLUME_RLQ_R6RS;
412 	} else if (strcasecmp(str, "RAID6") == 0 ||
413 		   strcasecmp(str, "RAID6-LA") == 0) {
414 		*level = G_RAID_VOLUME_RL_RAID6;
415 		*qual = G_RAID_VOLUME_RLQ_R6LA;
416 	} else if (strcasecmp(str, "RAID6-LS") == 0) {
417 		*level = G_RAID_VOLUME_RL_RAID6;
418 		*qual = G_RAID_VOLUME_RLQ_R6LS;
419 	} else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
420 		*level = G_RAID_VOLUME_RL_RAIDMDF;
421 		*qual = G_RAID_VOLUME_RLQ_RMDFRA;
422 	} else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
423 		*level = G_RAID_VOLUME_RL_RAIDMDF;
424 		*qual = G_RAID_VOLUME_RLQ_RMDFRS;
425 	} else if (strcasecmp(str, "RAIDMDF") == 0 ||
426 		   strcasecmp(str, "RAIDMDF-LA") == 0) {
427 		*level = G_RAID_VOLUME_RL_RAIDMDF;
428 		*qual = G_RAID_VOLUME_RLQ_RMDFLA;
429 	} else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
430 		*level = G_RAID_VOLUME_RL_RAIDMDF;
431 		*qual = G_RAID_VOLUME_RLQ_RMDFLS;
432 	} else if (strcasecmp(str, "RAID10") == 0 ||
433 		   strcasecmp(str, "RAID1E") == 0 ||
434 		   strcasecmp(str, "RAID1E-A") == 0) {
435 		*level = G_RAID_VOLUME_RL_RAID1E;
436 		*qual = G_RAID_VOLUME_RLQ_R1EA;
437 	} else if (strcasecmp(str, "RAID1E-O") == 0) {
438 		*level = G_RAID_VOLUME_RL_RAID1E;
439 		*qual = G_RAID_VOLUME_RLQ_R1EO;
440 	} else if (strcasecmp(str, "SINGLE") == 0)
441 		*level = G_RAID_VOLUME_RL_SINGLE;
442 	else if (strcasecmp(str, "CONCAT") == 0)
443 		*level = G_RAID_VOLUME_RL_CONCAT;
444 	else if (strcasecmp(str, "RAID5E-RA") == 0) {
445 		*level = G_RAID_VOLUME_RL_RAID5E;
446 		*qual = G_RAID_VOLUME_RLQ_R5ERA;
447 	} else if (strcasecmp(str, "RAID5E-RS") == 0) {
448 		*level = G_RAID_VOLUME_RL_RAID5E;
449 		*qual = G_RAID_VOLUME_RLQ_R5ERS;
450 	} else if (strcasecmp(str, "RAID5E") == 0 ||
451 		   strcasecmp(str, "RAID5E-LA") == 0) {
452 		*level = G_RAID_VOLUME_RL_RAID5E;
453 		*qual = G_RAID_VOLUME_RLQ_R5ELA;
454 	} else if (strcasecmp(str, "RAID5E-LS") == 0) {
455 		*level = G_RAID_VOLUME_RL_RAID5E;
456 		*qual = G_RAID_VOLUME_RLQ_R5ELS;
457 	} else if (strcasecmp(str, "RAID5EE-RA") == 0) {
458 		*level = G_RAID_VOLUME_RL_RAID5EE;
459 		*qual = G_RAID_VOLUME_RLQ_R5EERA;
460 	} else if (strcasecmp(str, "RAID5EE-RS") == 0) {
461 		*level = G_RAID_VOLUME_RL_RAID5EE;
462 		*qual = G_RAID_VOLUME_RLQ_R5EERS;
463 	} else if (strcasecmp(str, "RAID5EE") == 0 ||
464 		   strcasecmp(str, "RAID5EE-LA") == 0) {
465 		*level = G_RAID_VOLUME_RL_RAID5EE;
466 		*qual = G_RAID_VOLUME_RLQ_R5EELA;
467 	} else if (strcasecmp(str, "RAID5EE-LS") == 0) {
468 		*level = G_RAID_VOLUME_RL_RAID5EE;
469 		*qual = G_RAID_VOLUME_RLQ_R5EELS;
470 	} else if (strcasecmp(str, "RAID5R-RA") == 0) {
471 		*level = G_RAID_VOLUME_RL_RAID5R;
472 		*qual = G_RAID_VOLUME_RLQ_R5RRA;
473 	} else if (strcasecmp(str, "RAID5R-RS") == 0) {
474 		*level = G_RAID_VOLUME_RL_RAID5R;
475 		*qual = G_RAID_VOLUME_RLQ_R5RRS;
476 	} else if (strcasecmp(str, "RAID5R") == 0 ||
477 		   strcasecmp(str, "RAID5R-LA") == 0) {
478 		*level = G_RAID_VOLUME_RL_RAID5R;
479 		*qual = G_RAID_VOLUME_RLQ_R5RLA;
480 	} else if (strcasecmp(str, "RAID5R-LS") == 0) {
481 		*level = G_RAID_VOLUME_RL_RAID5R;
482 		*qual = G_RAID_VOLUME_RLQ_R5RLS;
483 	} else
484 		return (-1);
485 	return (0);
486 }
487 
488 const char *
489 g_raid_get_diskname(struct g_raid_disk *disk)
490 {
491 
492 	if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
493 		return ("[unknown]");
494 	return (disk->d_consumer->provider->name);
495 }
496 
497 void
498 g_raid_get_disk_info(struct g_raid_disk *disk)
499 {
500 	struct g_consumer *cp = disk->d_consumer;
501 	int error, len;
502 
503 	/* Read kernel dumping information. */
504 	disk->d_kd.offset = 0;
505 	disk->d_kd.length = OFF_MAX;
506 	len = sizeof(disk->d_kd);
507 	error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
508 	if (error)
509 		disk->d_kd.di.dumper = NULL;
510 	if (disk->d_kd.di.dumper == NULL)
511 		G_RAID_DEBUG1(2, disk->d_softc,
512 		    "Dumping not supported by %s: %d.",
513 		    cp->provider->name, error);
514 
515 	/* Read BIO_DELETE support. */
516 	error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
517 	if (error)
518 		disk->d_candelete = 0;
519 	if (!disk->d_candelete)
520 		G_RAID_DEBUG1(2, disk->d_softc,
521 		    "BIO_DELETE not supported by %s: %d.",
522 		    cp->provider->name, error);
523 }
524 
525 void
526 g_raid_report_disk_state(struct g_raid_disk *disk)
527 {
528 	struct g_raid_subdisk *sd;
529 	int len, state;
530 	uint32_t s;
531 
532 	if (disk->d_consumer == NULL)
533 		return;
534 	if (disk->d_state == G_RAID_DISK_S_DISABLED) {
535 		s = G_STATE_ACTIVE; /* XXX */
536 	} else if (disk->d_state == G_RAID_DISK_S_FAILED ||
537 	    disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
538 		s = G_STATE_FAILED;
539 	} else {
540 		state = G_RAID_SUBDISK_S_ACTIVE;
541 		TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
542 			if (sd->sd_state < state)
543 				state = sd->sd_state;
544 		}
545 		if (state == G_RAID_SUBDISK_S_FAILED)
546 			s = G_STATE_FAILED;
547 		else if (state == G_RAID_SUBDISK_S_NEW ||
548 		    state == G_RAID_SUBDISK_S_REBUILD)
549 			s = G_STATE_REBUILD;
550 		else if (state == G_RAID_SUBDISK_S_STALE ||
551 		    state == G_RAID_SUBDISK_S_RESYNC)
552 			s = G_STATE_RESYNC;
553 		else
554 			s = G_STATE_ACTIVE;
555 	}
556 	len = sizeof(s);
557 	g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
558 	G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
559 	    g_raid_get_diskname(disk), s);
560 }
561 
562 void
563 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
564 {
565 
566 	G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
567 	    g_raid_get_diskname(disk),
568 	    g_raid_disk_state2str(disk->d_state),
569 	    g_raid_disk_state2str(state));
570 	disk->d_state = state;
571 	g_raid_report_disk_state(disk);
572 }
573 
574 void
575 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
576 {
577 
578 	G_RAID_DEBUG1(0, sd->sd_softc,
579 	    "Subdisk %s:%d-%s state changed from %s to %s.",
580 	    sd->sd_volume->v_name, sd->sd_pos,
581 	    sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
582 	    g_raid_subdisk_state2str(sd->sd_state),
583 	    g_raid_subdisk_state2str(state));
584 	sd->sd_state = state;
585 	if (sd->sd_disk)
586 		g_raid_report_disk_state(sd->sd_disk);
587 }
588 
589 void
590 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
591 {
592 
593 	G_RAID_DEBUG1(0, vol->v_softc,
594 	    "Volume %s state changed from %s to %s.",
595 	    vol->v_name,
596 	    g_raid_volume_state2str(vol->v_state),
597 	    g_raid_volume_state2str(state));
598 	vol->v_state = state;
599 }
600 
601 /*
602  * --- Events handling functions ---
603  * Events in geom_raid are used to maintain subdisks and volumes status
604  * from one thread to simplify locking.
605  */
606 static void
607 g_raid_event_free(struct g_raid_event *ep)
608 {
609 
610 	free(ep, M_RAID);
611 }
612 
613 int
614 g_raid_event_send(void *arg, int event, int flags)
615 {
616 	struct g_raid_softc *sc;
617 	struct g_raid_event *ep;
618 	int error;
619 
620 	if ((flags & G_RAID_EVENT_VOLUME) != 0) {
621 		sc = ((struct g_raid_volume *)arg)->v_softc;
622 	} else if ((flags & G_RAID_EVENT_DISK) != 0) {
623 		sc = ((struct g_raid_disk *)arg)->d_softc;
624 	} else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
625 		sc = ((struct g_raid_subdisk *)arg)->sd_softc;
626 	} else {
627 		sc = arg;
628 	}
629 	ep = malloc(sizeof(*ep), M_RAID,
630 	    sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
631 	if (ep == NULL)
632 		return (ENOMEM);
633 	ep->e_tgt = arg;
634 	ep->e_event = event;
635 	ep->e_flags = flags;
636 	ep->e_error = 0;
637 	G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
638 	mtx_lock(&sc->sc_queue_mtx);
639 	TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
640 	mtx_unlock(&sc->sc_queue_mtx);
641 	wakeup(sc);
642 
643 	if ((flags & G_RAID_EVENT_WAIT) == 0)
644 		return (0);
645 
646 	sx_assert(&sc->sc_lock, SX_XLOCKED);
647 	G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
648 	sx_xunlock(&sc->sc_lock);
649 	while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
650 		mtx_lock(&sc->sc_queue_mtx);
651 		MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
652 		    hz * 5);
653 	}
654 	error = ep->e_error;
655 	g_raid_event_free(ep);
656 	sx_xlock(&sc->sc_lock);
657 	return (error);
658 }
659 
660 static void
661 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
662 {
663 	struct g_raid_event *ep, *tmpep;
664 
665 	sx_assert(&sc->sc_lock, SX_XLOCKED);
666 
667 	mtx_lock(&sc->sc_queue_mtx);
668 	TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
669 		if (ep->e_tgt != tgt)
670 			continue;
671 		TAILQ_REMOVE(&sc->sc_events, ep, e_next);
672 		if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
673 			g_raid_event_free(ep);
674 		else {
675 			ep->e_error = ECANCELED;
676 			wakeup(ep);
677 		}
678 	}
679 	mtx_unlock(&sc->sc_queue_mtx);
680 }
681 
682 static int
683 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
684 {
685 	struct g_raid_event *ep;
686 	int	res = 0;
687 
688 	sx_assert(&sc->sc_lock, SX_XLOCKED);
689 
690 	mtx_lock(&sc->sc_queue_mtx);
691 	TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
692 		if (ep->e_tgt != tgt)
693 			continue;
694 		res = 1;
695 		break;
696 	}
697 	mtx_unlock(&sc->sc_queue_mtx);
698 	return (res);
699 }
700 
701 /*
702  * Return the number of disks in given state.
703  * If state is equal to -1, count all connected disks.
704  */
705 u_int
706 g_raid_ndisks(struct g_raid_softc *sc, int state)
707 {
708 	struct g_raid_disk *disk;
709 	u_int n;
710 
711 	sx_assert(&sc->sc_lock, SX_LOCKED);
712 
713 	n = 0;
714 	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
715 		if (disk->d_state == state || state == -1)
716 			n++;
717 	}
718 	return (n);
719 }
720 
721 /*
722  * Return the number of subdisks in given state.
723  * If state is equal to -1, count all connected disks.
724  */
725 u_int
726 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
727 {
728 	struct g_raid_subdisk *subdisk;
729 	struct g_raid_softc *sc;
730 	u_int i, n ;
731 
732 	sc = vol->v_softc;
733 	sx_assert(&sc->sc_lock, SX_LOCKED);
734 
735 	n = 0;
736 	for (i = 0; i < vol->v_disks_count; i++) {
737 		subdisk = &vol->v_subdisks[i];
738 		if ((state == -1 &&
739 		     subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
740 		    subdisk->sd_state == state)
741 			n++;
742 	}
743 	return (n);
744 }
745 
746 /*
747  * Return the first subdisk in given state.
748  * If state is equal to -1, then the first connected disks.
749  */
750 struct g_raid_subdisk *
751 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
752 {
753 	struct g_raid_subdisk *sd;
754 	struct g_raid_softc *sc;
755 	u_int i;
756 
757 	sc = vol->v_softc;
758 	sx_assert(&sc->sc_lock, SX_LOCKED);
759 
760 	for (i = 0; i < vol->v_disks_count; i++) {
761 		sd = &vol->v_subdisks[i];
762 		if ((state == -1 &&
763 		     sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
764 		    sd->sd_state == state)
765 			return (sd);
766 	}
767 	return (NULL);
768 }
769 
770 struct g_consumer *
771 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
772 {
773 	struct g_consumer *cp;
774 	struct g_provider *pp;
775 
776 	g_topology_assert();
777 
778 	if (strncmp(name, "/dev/", 5) == 0)
779 		name += 5;
780 	pp = g_provider_by_name(name);
781 	if (pp == NULL)
782 		return (NULL);
783 	cp = g_new_consumer(sc->sc_geom);
784 	cp->flags |= G_CF_DIRECT_RECEIVE;
785 	if (g_attach(cp, pp) != 0) {
786 		g_destroy_consumer(cp);
787 		return (NULL);
788 	}
789 	if (g_access(cp, 1, 1, 1) != 0) {
790 		g_detach(cp);
791 		g_destroy_consumer(cp);
792 		return (NULL);
793 	}
794 	return (cp);
795 }
796 
797 static u_int
798 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
799 {
800 	struct bio *bp;
801 	u_int nreqs = 0;
802 
803 	mtx_lock(&sc->sc_queue_mtx);
804 	TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
805 		if (bp->bio_from == cp)
806 			nreqs++;
807 	}
808 	mtx_unlock(&sc->sc_queue_mtx);
809 	return (nreqs);
810 }
811 
812 u_int
813 g_raid_nopens(struct g_raid_softc *sc)
814 {
815 	struct g_raid_volume *vol;
816 	u_int opens;
817 
818 	opens = 0;
819 	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
820 		if (vol->v_provider_open != 0)
821 			opens++;
822 	}
823 	return (opens);
824 }
825 
826 static int
827 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
828 {
829 
830 	if (cp->index > 0) {
831 		G_RAID_DEBUG1(2, sc,
832 		    "I/O requests for %s exist, can't destroy it now.",
833 		    cp->provider->name);
834 		return (1);
835 	}
836 	if (g_raid_nrequests(sc, cp) > 0) {
837 		G_RAID_DEBUG1(2, sc,
838 		    "I/O requests for %s in queue, can't destroy it now.",
839 		    cp->provider->name);
840 		return (1);
841 	}
842 	return (0);
843 }
844 
845 static void
846 g_raid_destroy_consumer(void *arg, int flags __unused)
847 {
848 	struct g_consumer *cp;
849 
850 	g_topology_assert();
851 
852 	cp = arg;
853 	G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
854 	g_detach(cp);
855 	g_destroy_consumer(cp);
856 }
857 
858 void
859 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
860 {
861 	struct g_provider *pp;
862 	int retaste_wait;
863 
864 	g_topology_assert_not();
865 
866 	g_topology_lock();
867 	cp->private = NULL;
868 	if (g_raid_consumer_is_busy(sc, cp))
869 		goto out;
870 	pp = cp->provider;
871 	retaste_wait = 0;
872 	if (cp->acw == 1) {
873 		if ((pp->geom->flags & G_GEOM_WITHER) == 0)
874 			retaste_wait = 1;
875 	}
876 	if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
877 		g_access(cp, -cp->acr, -cp->acw, -cp->ace);
878 	if (retaste_wait) {
879 		/*
880 		 * After retaste event was send (inside g_access()), we can send
881 		 * event to detach and destroy consumer.
882 		 * A class, which has consumer to the given provider connected
883 		 * will not receive retaste event for the provider.
884 		 * This is the way how I ignore retaste events when I close
885 		 * consumers opened for write: I detach and destroy consumer
886 		 * after retaste event is sent.
887 		 */
888 		g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
889 		goto out;
890 	}
891 	G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
892 	g_detach(cp);
893 	g_destroy_consumer(cp);
894 out:
895 	g_topology_unlock();
896 }
897 
898 static void
899 g_raid_orphan(struct g_consumer *cp)
900 {
901 	struct g_raid_disk *disk;
902 
903 	g_topology_assert();
904 
905 	disk = cp->private;
906 	if (disk == NULL)
907 		return;
908 	g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
909 	    G_RAID_EVENT_DISK);
910 }
911 
912 static void
913 g_raid_clean(struct g_raid_volume *vol, int acw)
914 {
915 	struct g_raid_softc *sc;
916 	int timeout;
917 
918 	sc = vol->v_softc;
919 	g_topology_assert_not();
920 	sx_assert(&sc->sc_lock, SX_XLOCKED);
921 
922 //	if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
923 //		return;
924 	if (!vol->v_dirty)
925 		return;
926 	if (vol->v_writes > 0)
927 		return;
928 	if (acw > 0 || (acw == -1 &&
929 	    vol->v_provider != NULL && vol->v_provider->acw > 0)) {
930 		timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
931 		if (!g_raid_shutdown && timeout > 0)
932 			return;
933 	}
934 	vol->v_dirty = 0;
935 	G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
936 	    vol->v_name);
937 	g_raid_write_metadata(sc, vol, NULL, NULL);
938 }
939 
940 static void
941 g_raid_dirty(struct g_raid_volume *vol)
942 {
943 	struct g_raid_softc *sc;
944 
945 	sc = vol->v_softc;
946 	g_topology_assert_not();
947 	sx_assert(&sc->sc_lock, SX_XLOCKED);
948 
949 //	if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
950 //		return;
951 	vol->v_dirty = 1;
952 	G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
953 	    vol->v_name);
954 	g_raid_write_metadata(sc, vol, NULL, NULL);
955 }
956 
957 void
958 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
959 {
960 	struct g_raid_softc *sc;
961 	struct g_raid_volume *vol;
962 	struct g_raid_subdisk *sd;
963 	struct bio_queue_head queue;
964 	struct bio *cbp;
965 	int i;
966 
967 	vol = tr->tro_volume;
968 	sc = vol->v_softc;
969 
970 	/*
971 	 * Allocate all bios before sending any request, so we can return
972 	 * ENOMEM in nice and clean way.
973 	 */
974 	bioq_init(&queue);
975 	for (i = 0; i < vol->v_disks_count; i++) {
976 		sd = &vol->v_subdisks[i];
977 		if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
978 		    sd->sd_state == G_RAID_SUBDISK_S_FAILED)
979 			continue;
980 		cbp = g_clone_bio(bp);
981 		if (cbp == NULL)
982 			goto failure;
983 		cbp->bio_caller1 = sd;
984 		bioq_insert_tail(&queue, cbp);
985 	}
986 	while ((cbp = bioq_takefirst(&queue)) != NULL) {
987 		sd = cbp->bio_caller1;
988 		cbp->bio_caller1 = NULL;
989 		g_raid_subdisk_iostart(sd, cbp);
990 	}
991 	return;
992 failure:
993 	while ((cbp = bioq_takefirst(&queue)) != NULL)
994 		g_destroy_bio(cbp);
995 	if (bp->bio_error == 0)
996 		bp->bio_error = ENOMEM;
997 	g_raid_iodone(bp, bp->bio_error);
998 }
999 
1000 static void
1001 g_raid_tr_kerneldump_common_done(struct bio *bp)
1002 {
1003 
1004 	bp->bio_flags |= BIO_DONE;
1005 }
1006 
1007 int
1008 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
1009     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1010 {
1011 	struct g_raid_softc *sc;
1012 	struct g_raid_volume *vol;
1013 	struct bio bp;
1014 
1015 	vol = tr->tro_volume;
1016 	sc = vol->v_softc;
1017 
1018 	bzero(&bp, sizeof(bp));
1019 	bp.bio_cmd = BIO_WRITE;
1020 	bp.bio_done = g_raid_tr_kerneldump_common_done;
1021 	bp.bio_attribute = NULL;
1022 	bp.bio_offset = offset;
1023 	bp.bio_length = length;
1024 	bp.bio_data = virtual;
1025 	bp.bio_to = vol->v_provider;
1026 
1027 	g_raid_start(&bp);
1028 	while (!(bp.bio_flags & BIO_DONE)) {
1029 		G_RAID_DEBUG1(4, sc, "Poll...");
1030 		g_raid_poll(sc);
1031 		DELAY(10);
1032 	}
1033 
1034 	return (bp.bio_error != 0 ? EIO : 0);
1035 }
1036 
1037 static int
1038 g_raid_dump(void *arg,
1039     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1040 {
1041 	struct g_raid_volume *vol;
1042 	int error;
1043 
1044 	vol = (struct g_raid_volume *)arg;
1045 	G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
1046 	    (long long unsigned)offset, (long long unsigned)length);
1047 
1048 	error = G_RAID_TR_KERNELDUMP(vol->v_tr,
1049 	    virtual, physical, offset, length);
1050 	return (error);
1051 }
1052 
1053 static void
1054 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
1055 {
1056 	struct g_kerneldump *gkd;
1057 	struct g_provider *pp;
1058 	struct g_raid_volume *vol;
1059 
1060 	gkd = (struct g_kerneldump*)bp->bio_data;
1061 	pp = bp->bio_to;
1062 	vol = pp->private;
1063 	g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
1064 		pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
1065 	gkd->di.dumper = g_raid_dump;
1066 	gkd->di.priv = vol;
1067 	gkd->di.blocksize = vol->v_sectorsize;
1068 	gkd->di.maxiosize = DFLTPHYS;
1069 	gkd->di.mediaoffset = gkd->offset;
1070 	if ((gkd->offset + gkd->length) > vol->v_mediasize)
1071 		gkd->length = vol->v_mediasize - gkd->offset;
1072 	gkd->di.mediasize = gkd->length;
1073 	g_io_deliver(bp, 0);
1074 }
1075 
1076 static void
1077 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
1078 {
1079 	struct g_provider *pp;
1080 	struct g_raid_volume *vol;
1081 	struct g_raid_subdisk *sd;
1082 	int *val;
1083 	int i;
1084 
1085 	val = (int *)bp->bio_data;
1086 	pp = bp->bio_to;
1087 	vol = pp->private;
1088 	*val = 0;
1089 	for (i = 0; i < vol->v_disks_count; i++) {
1090 		sd = &vol->v_subdisks[i];
1091 		if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1092 			continue;
1093 		if (sd->sd_disk->d_candelete) {
1094 			*val = 1;
1095 			break;
1096 		}
1097 	}
1098 	g_io_deliver(bp, 0);
1099 }
1100 
1101 static void
1102 g_raid_start(struct bio *bp)
1103 {
1104 	struct g_raid_softc *sc;
1105 
1106 	sc = bp->bio_to->geom->softc;
1107 	/*
1108 	 * If sc == NULL or there are no valid disks, provider's error
1109 	 * should be set and g_raid_start() should not be called at all.
1110 	 */
1111 //	KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
1112 //	    ("Provider's error should be set (error=%d)(mirror=%s).",
1113 //	    bp->bio_to->error, bp->bio_to->name));
1114 	G_RAID_LOGREQ(3, bp, "Request received.");
1115 
1116 	switch (bp->bio_cmd) {
1117 	case BIO_READ:
1118 	case BIO_WRITE:
1119 	case BIO_DELETE:
1120 	case BIO_FLUSH:
1121 		break;
1122 	case BIO_GETATTR:
1123 		if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
1124 			g_raid_candelete(sc, bp);
1125 		else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
1126 			g_raid_kerneldump(sc, bp);
1127 		else
1128 			g_io_deliver(bp, EOPNOTSUPP);
1129 		return;
1130 	default:
1131 		g_io_deliver(bp, EOPNOTSUPP);
1132 		return;
1133 	}
1134 	mtx_lock(&sc->sc_queue_mtx);
1135 	bioq_insert_tail(&sc->sc_queue, bp);
1136 	mtx_unlock(&sc->sc_queue_mtx);
1137 	if (!dumping) {
1138 		G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
1139 		wakeup(sc);
1140 	}
1141 }
1142 
1143 static int
1144 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
1145 {
1146 	/*
1147 	 * 5 cases:
1148 	 * (1) bp entirely below NO
1149 	 * (2) bp entirely above NO
1150 	 * (3) bp start below, but end in range YES
1151 	 * (4) bp entirely within YES
1152 	 * (5) bp starts within, ends above YES
1153 	 *
1154 	 * lock range 10-19 (offset 10 length 10)
1155 	 * (1) 1-5: first if kicks it out
1156 	 * (2) 30-35: second if kicks it out
1157 	 * (3) 5-15: passes both ifs
1158 	 * (4) 12-14: passes both ifs
1159 	 * (5) 19-20: passes both
1160 	 */
1161 	off_t lend = lstart + len - 1;
1162 	off_t bstart = bp->bio_offset;
1163 	off_t bend = bp->bio_offset + bp->bio_length - 1;
1164 
1165 	if (bend < lstart)
1166 		return (0);
1167 	if (lend < bstart)
1168 		return (0);
1169 	return (1);
1170 }
1171 
1172 static int
1173 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
1174 {
1175 	struct g_raid_lock *lp;
1176 
1177 	sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
1178 
1179 	LIST_FOREACH(lp, &vol->v_locks, l_next) {
1180 		if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
1181 			return (1);
1182 	}
1183 	return (0);
1184 }
1185 
1186 static void
1187 g_raid_start_request(struct bio *bp)
1188 {
1189 	struct g_raid_softc *sc;
1190 	struct g_raid_volume *vol;
1191 
1192 	sc = bp->bio_to->geom->softc;
1193 	sx_assert(&sc->sc_lock, SX_LOCKED);
1194 	vol = bp->bio_to->private;
1195 
1196 	/*
1197 	 * Check to see if this item is in a locked range.  If so,
1198 	 * queue it to our locked queue and return.  We'll requeue
1199 	 * it when the range is unlocked.  Internal I/O for the
1200 	 * rebuild/rescan/recovery process is excluded from this
1201 	 * check so we can actually do the recovery.
1202 	 */
1203 	if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
1204 	    g_raid_is_in_locked_range(vol, bp)) {
1205 		G_RAID_LOGREQ(3, bp, "Defer request.");
1206 		bioq_insert_tail(&vol->v_locked, bp);
1207 		return;
1208 	}
1209 
1210 	/*
1211 	 * If we're actually going to do the write/delete, then
1212 	 * update the idle stats for the volume.
1213 	 */
1214 	if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1215 		if (!vol->v_dirty)
1216 			g_raid_dirty(vol);
1217 		vol->v_writes++;
1218 	}
1219 
1220 	/*
1221 	 * Put request onto inflight queue, so we can check if new
1222 	 * synchronization requests don't collide with it.  Then tell
1223 	 * the transformation layer to start the I/O.
1224 	 */
1225 	bioq_insert_tail(&vol->v_inflight, bp);
1226 	G_RAID_LOGREQ(4, bp, "Request started");
1227 	G_RAID_TR_IOSTART(vol->v_tr, bp);
1228 }
1229 
1230 static void
1231 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
1232 {
1233 	off_t off, len;
1234 	struct bio *nbp;
1235 	struct g_raid_lock *lp;
1236 
1237 	vol->v_pending_lock = 0;
1238 	LIST_FOREACH(lp, &vol->v_locks, l_next) {
1239 		if (lp->l_pending) {
1240 			off = lp->l_offset;
1241 			len = lp->l_length;
1242 			lp->l_pending = 0;
1243 			TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
1244 				if (g_raid_bio_overlaps(nbp, off, len))
1245 					lp->l_pending++;
1246 			}
1247 			if (lp->l_pending) {
1248 				vol->v_pending_lock = 1;
1249 				G_RAID_DEBUG1(4, vol->v_softc,
1250 				    "Deferred lock(%jd, %jd) has %d pending",
1251 				    (intmax_t)off, (intmax_t)(off + len),
1252 				    lp->l_pending);
1253 				continue;
1254 			}
1255 			G_RAID_DEBUG1(4, vol->v_softc,
1256 			    "Deferred lock of %jd to %jd completed",
1257 			    (intmax_t)off, (intmax_t)(off + len));
1258 			G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1259 		}
1260 	}
1261 }
1262 
1263 void
1264 g_raid_iodone(struct bio *bp, int error)
1265 {
1266 	struct g_raid_softc *sc;
1267 	struct g_raid_volume *vol;
1268 
1269 	sc = bp->bio_to->geom->softc;
1270 	sx_assert(&sc->sc_lock, SX_LOCKED);
1271 	vol = bp->bio_to->private;
1272 	G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
1273 
1274 	/* Update stats if we done write/delete. */
1275 	if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1276 		vol->v_writes--;
1277 		vol->v_last_write = time_uptime;
1278 	}
1279 
1280 	bioq_remove(&vol->v_inflight, bp);
1281 	if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
1282 		g_raid_finish_with_locked_ranges(vol, bp);
1283 	getmicrouptime(&vol->v_last_done);
1284 	g_io_deliver(bp, error);
1285 }
1286 
1287 int
1288 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
1289     struct bio *ignore, void *argp)
1290 {
1291 	struct g_raid_softc *sc;
1292 	struct g_raid_lock *lp;
1293 	struct bio *bp;
1294 
1295 	sc = vol->v_softc;
1296 	lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
1297 	LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
1298 	lp->l_offset = off;
1299 	lp->l_length = len;
1300 	lp->l_callback_arg = argp;
1301 
1302 	lp->l_pending = 0;
1303 	TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
1304 		if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
1305 			lp->l_pending++;
1306 	}
1307 
1308 	/*
1309 	 * If there are any writes that are pending, we return EBUSY.  All
1310 	 * callers will have to wait until all pending writes clear.
1311 	 */
1312 	if (lp->l_pending > 0) {
1313 		vol->v_pending_lock = 1;
1314 		G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
1315 		    (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
1316 		return (EBUSY);
1317 	}
1318 	G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
1319 	    (intmax_t)off, (intmax_t)(off+len));
1320 	G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1321 	return (0);
1322 }
1323 
1324 int
1325 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
1326 {
1327 	struct g_raid_lock *lp;
1328 	struct g_raid_softc *sc;
1329 	struct bio *bp;
1330 
1331 	sc = vol->v_softc;
1332 	LIST_FOREACH(lp, &vol->v_locks, l_next) {
1333 		if (lp->l_offset == off && lp->l_length == len) {
1334 			LIST_REMOVE(lp, l_next);
1335 			/* XXX
1336 			 * Right now we just put them all back on the queue
1337 			 * and hope for the best.  We hope this because any
1338 			 * locked ranges will go right back on this list
1339 			 * when the worker thread runs.
1340 			 * XXX
1341 			 */
1342 			G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
1343 			    (intmax_t)lp->l_offset,
1344 			    (intmax_t)(lp->l_offset+lp->l_length));
1345 			mtx_lock(&sc->sc_queue_mtx);
1346 			while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
1347 				bioq_insert_tail(&sc->sc_queue, bp);
1348 			mtx_unlock(&sc->sc_queue_mtx);
1349 			free(lp, M_RAID);
1350 			return (0);
1351 		}
1352 	}
1353 	return (EINVAL);
1354 }
1355 
1356 void
1357 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
1358 {
1359 	struct g_consumer *cp;
1360 	struct g_raid_disk *disk, *tdisk;
1361 
1362 	bp->bio_caller1 = sd;
1363 
1364 	/*
1365 	 * Make sure that the disk is present. Generally it is a task of
1366 	 * transformation layers to not send requests to absent disks, but
1367 	 * it is better to be safe and report situation then sorry.
1368 	 */
1369 	if (sd->sd_disk == NULL) {
1370 		G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
1371 nodisk:
1372 		bp->bio_from = NULL;
1373 		bp->bio_to = NULL;
1374 		bp->bio_error = ENXIO;
1375 		g_raid_disk_done(bp);
1376 		return;
1377 	}
1378 	disk = sd->sd_disk;
1379 	if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
1380 	    disk->d_state != G_RAID_DISK_S_FAILED) {
1381 		G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
1382 		    "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
1383 		goto nodisk;
1384 	}
1385 
1386 	cp = disk->d_consumer;
1387 	bp->bio_from = cp;
1388 	bp->bio_to = cp->provider;
1389 	cp->index++;
1390 
1391 	/* Update average disks load. */
1392 	TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
1393 		if (tdisk->d_consumer == NULL)
1394 			tdisk->d_load = 0;
1395 		else
1396 			tdisk->d_load = (tdisk->d_consumer->index *
1397 			    G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
1398 	}
1399 
1400 	disk->d_last_offset = bp->bio_offset + bp->bio_length;
1401 	if (dumping) {
1402 		G_RAID_LOGREQ(3, bp, "Sending dumping request.");
1403 		if (bp->bio_cmd == BIO_WRITE) {
1404 			bp->bio_error = g_raid_subdisk_kerneldump(sd,
1405 			    bp->bio_data, 0, bp->bio_offset, bp->bio_length);
1406 		} else
1407 			bp->bio_error = EOPNOTSUPP;
1408 		g_raid_disk_done(bp);
1409 	} else {
1410 		bp->bio_done = g_raid_disk_done;
1411 		bp->bio_offset += sd->sd_offset;
1412 		G_RAID_LOGREQ(3, bp, "Sending request.");
1413 		g_io_request(bp, cp);
1414 	}
1415 }
1416 
1417 int
1418 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd,
1419     void *virtual, vm_offset_t physical, off_t offset, size_t length)
1420 {
1421 
1422 	if (sd->sd_disk == NULL)
1423 		return (ENXIO);
1424 	if (sd->sd_disk->d_kd.di.dumper == NULL)
1425 		return (EOPNOTSUPP);
1426 	return (dump_write(&sd->sd_disk->d_kd.di,
1427 	    virtual, physical,
1428 	    sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset,
1429 	    length));
1430 }
1431 
1432 static void
1433 g_raid_disk_done(struct bio *bp)
1434 {
1435 	struct g_raid_softc *sc;
1436 	struct g_raid_subdisk *sd;
1437 
1438 	sd = bp->bio_caller1;
1439 	sc = sd->sd_softc;
1440 	mtx_lock(&sc->sc_queue_mtx);
1441 	bioq_insert_tail(&sc->sc_queue, bp);
1442 	mtx_unlock(&sc->sc_queue_mtx);
1443 	if (!dumping)
1444 		wakeup(sc);
1445 }
1446 
1447 static void
1448 g_raid_disk_done_request(struct bio *bp)
1449 {
1450 	struct g_raid_softc *sc;
1451 	struct g_raid_disk *disk;
1452 	struct g_raid_subdisk *sd;
1453 	struct g_raid_volume *vol;
1454 
1455 	g_topology_assert_not();
1456 
1457 	G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
1458 	sd = bp->bio_caller1;
1459 	sc = sd->sd_softc;
1460 	vol = sd->sd_volume;
1461 	if (bp->bio_from != NULL) {
1462 		bp->bio_from->index--;
1463 		disk = bp->bio_from->private;
1464 		if (disk == NULL)
1465 			g_raid_kill_consumer(sc, bp->bio_from);
1466 	}
1467 	bp->bio_offset -= sd->sd_offset;
1468 
1469 	G_RAID_TR_IODONE(vol->v_tr, sd, bp);
1470 }
1471 
1472 static void
1473 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
1474 {
1475 
1476 	if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
1477 		ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
1478 	else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
1479 		ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
1480 	else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
1481 		ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
1482 	else
1483 		ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
1484 	if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
1485 		KASSERT(ep->e_error == 0,
1486 		    ("Error cannot be handled."));
1487 		g_raid_event_free(ep);
1488 	} else {
1489 		ep->e_flags |= G_RAID_EVENT_DONE;
1490 		G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
1491 		mtx_lock(&sc->sc_queue_mtx);
1492 		wakeup(ep);
1493 		mtx_unlock(&sc->sc_queue_mtx);
1494 	}
1495 }
1496 
1497 /*
1498  * Worker thread.
1499  */
1500 static void
1501 g_raid_worker(void *arg)
1502 {
1503 	struct g_raid_softc *sc;
1504 	struct g_raid_event *ep;
1505 	struct g_raid_volume *vol;
1506 	struct bio *bp;
1507 	struct timeval now, t;
1508 	int timeout, rv;
1509 
1510 	sc = arg;
1511 	thread_lock(curthread);
1512 	sched_prio(curthread, PRIBIO);
1513 	thread_unlock(curthread);
1514 
1515 	sx_xlock(&sc->sc_lock);
1516 	for (;;) {
1517 		mtx_lock(&sc->sc_queue_mtx);
1518 		/*
1519 		 * First take a look at events.
1520 		 * This is important to handle events before any I/O requests.
1521 		 */
1522 		bp = NULL;
1523 		vol = NULL;
1524 		rv = 0;
1525 		ep = TAILQ_FIRST(&sc->sc_events);
1526 		if (ep != NULL)
1527 			TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1528 		else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
1529 			;
1530 		else {
1531 			getmicrouptime(&now);
1532 			t = now;
1533 			TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1534 				if (bioq_first(&vol->v_inflight) == NULL &&
1535 				    vol->v_tr &&
1536 				    timevalcmp(&vol->v_last_done, &t, < ))
1537 					t = vol->v_last_done;
1538 			}
1539 			timevalsub(&t, &now);
1540 			timeout = g_raid_idle_threshold +
1541 			    t.tv_sec * 1000000 + t.tv_usec;
1542 			if (timeout > 0) {
1543 				/*
1544 				 * Two steps to avoid overflows at HZ=1000
1545 				 * and idle timeouts > 2.1s.  Some rounding
1546 				 * errors can occur, but they are < 1tick,
1547 				 * which is deemed to be close enough for
1548 				 * this purpose.
1549 				 */
1550 				int micpertic = 1000000 / hz;
1551 				timeout = (timeout + micpertic - 1) / micpertic;
1552 				sx_xunlock(&sc->sc_lock);
1553 				MSLEEP(rv, sc, &sc->sc_queue_mtx,
1554 				    PRIBIO | PDROP, "-", timeout);
1555 				sx_xlock(&sc->sc_lock);
1556 				goto process;
1557 			} else
1558 				rv = EWOULDBLOCK;
1559 		}
1560 		mtx_unlock(&sc->sc_queue_mtx);
1561 process:
1562 		if (ep != NULL) {
1563 			g_raid_handle_event(sc, ep);
1564 		} else if (bp != NULL) {
1565 			if (bp->bio_to != NULL &&
1566 			    bp->bio_to->geom == sc->sc_geom)
1567 				g_raid_start_request(bp);
1568 			else
1569 				g_raid_disk_done_request(bp);
1570 		} else if (rv == EWOULDBLOCK) {
1571 			TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1572 				g_raid_clean(vol, -1);
1573 				if (bioq_first(&vol->v_inflight) == NULL &&
1574 				    vol->v_tr) {
1575 					t.tv_sec = g_raid_idle_threshold / 1000000;
1576 					t.tv_usec = g_raid_idle_threshold % 1000000;
1577 					timevaladd(&t, &vol->v_last_done);
1578 					getmicrouptime(&now);
1579 					if (timevalcmp(&t, &now, <= )) {
1580 						G_RAID_TR_IDLE(vol->v_tr);
1581 						vol->v_last_done = now;
1582 					}
1583 				}
1584 			}
1585 		}
1586 		if (sc->sc_stopping == G_RAID_DESTROY_HARD)
1587 			g_raid_destroy_node(sc, 1);	/* May not return. */
1588 	}
1589 }
1590 
1591 static void
1592 g_raid_poll(struct g_raid_softc *sc)
1593 {
1594 	struct g_raid_event *ep;
1595 	struct bio *bp;
1596 
1597 	sx_xlock(&sc->sc_lock);
1598 	mtx_lock(&sc->sc_queue_mtx);
1599 	/*
1600 	 * First take a look at events.
1601 	 * This is important to handle events before any I/O requests.
1602 	 */
1603 	ep = TAILQ_FIRST(&sc->sc_events);
1604 	if (ep != NULL) {
1605 		TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1606 		mtx_unlock(&sc->sc_queue_mtx);
1607 		g_raid_handle_event(sc, ep);
1608 		goto out;
1609 	}
1610 	bp = bioq_takefirst(&sc->sc_queue);
1611 	if (bp != NULL) {
1612 		mtx_unlock(&sc->sc_queue_mtx);
1613 		if (bp->bio_from == NULL ||
1614 		    bp->bio_from->geom != sc->sc_geom)
1615 			g_raid_start_request(bp);
1616 		else
1617 			g_raid_disk_done_request(bp);
1618 	}
1619 out:
1620 	sx_xunlock(&sc->sc_lock);
1621 }
1622 
1623 static void
1624 g_raid_launch_provider(struct g_raid_volume *vol)
1625 {
1626 	struct g_raid_disk *disk;
1627 	struct g_raid_subdisk *sd;
1628 	struct g_raid_softc *sc;
1629 	struct g_provider *pp;
1630 	char name[G_RAID_MAX_VOLUMENAME];
1631 	char   announce_buf[80], buf1[32];
1632 	off_t off;
1633 	int i;
1634 
1635 	sc = vol->v_softc;
1636 	sx_assert(&sc->sc_lock, SX_LOCKED);
1637 
1638 	g_topology_lock();
1639 	/* Try to name provider with volume name. */
1640 	snprintf(name, sizeof(name), "raid/%s", vol->v_name);
1641 	if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
1642 	    g_provider_by_name(name) != NULL) {
1643 		/* Otherwise use sequential volume number. */
1644 		snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
1645 	}
1646 
1647 	/*
1648 	 * Create a /dev/ar%d that the old ataraid(4) stack once
1649 	 * created as an alias for /dev/raid/r%d if requested.
1650 	 * This helps going from stable/7 ataraid devices to newer
1651 	 * FreeBSD releases. sbruno 07 MAY 2013
1652 	 */
1653 
1654         if (ar_legacy_aliases) {
1655 		snprintf(announce_buf, sizeof(announce_buf),
1656                         "kern.devalias.%s", name);
1657                 snprintf(buf1, sizeof(buf1),
1658                         "ar%d", vol->v_global_id);
1659                 kern_setenv(announce_buf, buf1);
1660         }
1661 
1662 	pp = g_new_providerf(sc->sc_geom, "%s", name);
1663 	pp->flags |= G_PF_DIRECT_RECEIVE;
1664 	if (vol->v_tr->tro_class->trc_accept_unmapped) {
1665 		pp->flags |= G_PF_ACCEPT_UNMAPPED;
1666 		for (i = 0; i < vol->v_disks_count; i++) {
1667 			sd = &vol->v_subdisks[i];
1668 			if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1669 				continue;
1670 			if ((sd->sd_disk->d_consumer->provider->flags &
1671 			    G_PF_ACCEPT_UNMAPPED) == 0)
1672 				pp->flags &= ~G_PF_ACCEPT_UNMAPPED;
1673 		}
1674 	}
1675 	pp->private = vol;
1676 	pp->mediasize = vol->v_mediasize;
1677 	pp->sectorsize = vol->v_sectorsize;
1678 	pp->stripesize = 0;
1679 	pp->stripeoffset = 0;
1680 	if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
1681 	    vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
1682 	    vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
1683 	    vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
1684 		if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
1685 		    disk->d_consumer != NULL &&
1686 		    disk->d_consumer->provider != NULL) {
1687 			pp->stripesize = disk->d_consumer->provider->stripesize;
1688 			off = disk->d_consumer->provider->stripeoffset;
1689 			pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
1690 			if (off > 0)
1691 				pp->stripeoffset %= off;
1692 		}
1693 		if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
1694 			pp->stripesize *= (vol->v_disks_count - 1);
1695 			pp->stripeoffset *= (vol->v_disks_count - 1);
1696 		}
1697 	} else
1698 		pp->stripesize = vol->v_strip_size;
1699 	vol->v_provider = pp;
1700 	g_error_provider(pp, 0);
1701 	g_topology_unlock();
1702 	G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
1703 	    pp->name, vol->v_name);
1704 }
1705 
1706 static void
1707 g_raid_destroy_provider(struct g_raid_volume *vol)
1708 {
1709 	struct g_raid_softc *sc;
1710 	struct g_provider *pp;
1711 	struct bio *bp, *tmp;
1712 
1713 	g_topology_assert_not();
1714 	sc = vol->v_softc;
1715 	pp = vol->v_provider;
1716 	KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
1717 
1718 	g_topology_lock();
1719 	g_error_provider(pp, ENXIO);
1720 	mtx_lock(&sc->sc_queue_mtx);
1721 	TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
1722 		if (bp->bio_to != pp)
1723 			continue;
1724 		bioq_remove(&sc->sc_queue, bp);
1725 		g_io_deliver(bp, ENXIO);
1726 	}
1727 	mtx_unlock(&sc->sc_queue_mtx);
1728 	G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
1729 	    pp->name, vol->v_name);
1730 	g_wither_provider(pp, ENXIO);
1731 	g_topology_unlock();
1732 	vol->v_provider = NULL;
1733 }
1734 
1735 /*
1736  * Update device state.
1737  */
1738 static int
1739 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
1740 {
1741 	struct g_raid_softc *sc;
1742 
1743 	sc = vol->v_softc;
1744 	sx_assert(&sc->sc_lock, SX_XLOCKED);
1745 
1746 	G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
1747 	    g_raid_volume_event2str(event),
1748 	    vol->v_name);
1749 	switch (event) {
1750 	case G_RAID_VOLUME_E_DOWN:
1751 		if (vol->v_provider != NULL)
1752 			g_raid_destroy_provider(vol);
1753 		break;
1754 	case G_RAID_VOLUME_E_UP:
1755 		if (vol->v_provider == NULL)
1756 			g_raid_launch_provider(vol);
1757 		break;
1758 	case G_RAID_VOLUME_E_START:
1759 		if (vol->v_tr)
1760 			G_RAID_TR_START(vol->v_tr);
1761 		return (0);
1762 	default:
1763 		if (sc->sc_md)
1764 			G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
1765 		return (0);
1766 	}
1767 
1768 	/* Manage root mount release. */
1769 	if (vol->v_starting) {
1770 		vol->v_starting = 0;
1771 		G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
1772 		root_mount_rel(vol->v_rootmount);
1773 		vol->v_rootmount = NULL;
1774 	}
1775 	if (vol->v_stopping && vol->v_provider_open == 0)
1776 		g_raid_destroy_volume(vol);
1777 	return (0);
1778 }
1779 
1780 /*
1781  * Update subdisk state.
1782  */
1783 static int
1784 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
1785 {
1786 	struct g_raid_softc *sc;
1787 	struct g_raid_volume *vol;
1788 
1789 	sc = sd->sd_softc;
1790 	vol = sd->sd_volume;
1791 	sx_assert(&sc->sc_lock, SX_XLOCKED);
1792 
1793 	G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
1794 	    g_raid_subdisk_event2str(event),
1795 	    vol->v_name, sd->sd_pos,
1796 	    sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
1797 	if (vol->v_tr)
1798 		G_RAID_TR_EVENT(vol->v_tr, sd, event);
1799 
1800 	return (0);
1801 }
1802 
1803 /*
1804  * Update disk state.
1805  */
1806 static int
1807 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
1808 {
1809 	struct g_raid_softc *sc;
1810 
1811 	sc = disk->d_softc;
1812 	sx_assert(&sc->sc_lock, SX_XLOCKED);
1813 
1814 	G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
1815 	    g_raid_disk_event2str(event),
1816 	    g_raid_get_diskname(disk));
1817 
1818 	if (sc->sc_md)
1819 		G_RAID_MD_EVENT(sc->sc_md, disk, event);
1820 	return (0);
1821 }
1822 
1823 /*
1824  * Node event.
1825  */
1826 static int
1827 g_raid_update_node(struct g_raid_softc *sc, u_int event)
1828 {
1829 	sx_assert(&sc->sc_lock, SX_XLOCKED);
1830 
1831 	G_RAID_DEBUG1(2, sc, "Event %s for the array.",
1832 	    g_raid_node_event2str(event));
1833 
1834 	if (event == G_RAID_NODE_E_WAKE)
1835 		return (0);
1836 	if (sc->sc_md)
1837 		G_RAID_MD_EVENT(sc->sc_md, NULL, event);
1838 	return (0);
1839 }
1840 
1841 static int
1842 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
1843 {
1844 	struct g_raid_volume *vol;
1845 	struct g_raid_softc *sc;
1846 	int dcw, opens, error = 0;
1847 
1848 	g_topology_assert();
1849 	sc = pp->geom->softc;
1850 	vol = pp->private;
1851 	KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
1852 	KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
1853 
1854 	G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
1855 	    acr, acw, ace);
1856 	dcw = pp->acw + acw;
1857 
1858 	g_topology_unlock();
1859 	sx_xlock(&sc->sc_lock);
1860 	/* Deny new opens while dying. */
1861 	if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
1862 		error = ENXIO;
1863 		goto out;
1864 	}
1865 	/* Deny write opens for read-only volumes. */
1866 	if (vol->v_read_only && acw > 0) {
1867 		error = EROFS;
1868 		goto out;
1869 	}
1870 	if (dcw == 0)
1871 		g_raid_clean(vol, dcw);
1872 	vol->v_provider_open += acr + acw + ace;
1873 	/* Handle delayed node destruction. */
1874 	if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
1875 	    vol->v_provider_open == 0) {
1876 		/* Count open volumes. */
1877 		opens = g_raid_nopens(sc);
1878 		if (opens == 0) {
1879 			sc->sc_stopping = G_RAID_DESTROY_HARD;
1880 			/* Wake up worker to make it selfdestruct. */
1881 			g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
1882 		}
1883 	}
1884 	/* Handle open volume destruction. */
1885 	if (vol->v_stopping && vol->v_provider_open == 0)
1886 		g_raid_destroy_volume(vol);
1887 out:
1888 	sx_xunlock(&sc->sc_lock);
1889 	g_topology_lock();
1890 	return (error);
1891 }
1892 
1893 struct g_raid_softc *
1894 g_raid_create_node(struct g_class *mp,
1895     const char *name, struct g_raid_md_object *md)
1896 {
1897 	struct g_raid_softc *sc;
1898 	struct g_geom *gp;
1899 	int error;
1900 
1901 	g_topology_assert();
1902 	G_RAID_DEBUG(1, "Creating array %s.", name);
1903 
1904 	gp = g_new_geomf(mp, "%s", name);
1905 	sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
1906 	gp->start = g_raid_start;
1907 	gp->orphan = g_raid_orphan;
1908 	gp->access = g_raid_access;
1909 	gp->dumpconf = g_raid_dumpconf;
1910 
1911 	sc->sc_md = md;
1912 	sc->sc_geom = gp;
1913 	sc->sc_flags = 0;
1914 	TAILQ_INIT(&sc->sc_volumes);
1915 	TAILQ_INIT(&sc->sc_disks);
1916 	sx_init(&sc->sc_lock, "graid:lock");
1917 	mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
1918 	TAILQ_INIT(&sc->sc_events);
1919 	bioq_init(&sc->sc_queue);
1920 	gp->softc = sc;
1921 	error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
1922 	    "g_raid %s", name);
1923 	if (error != 0) {
1924 		G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
1925 		mtx_destroy(&sc->sc_queue_mtx);
1926 		sx_destroy(&sc->sc_lock);
1927 		g_destroy_geom(sc->sc_geom);
1928 		free(sc, M_RAID);
1929 		return (NULL);
1930 	}
1931 
1932 	G_RAID_DEBUG1(0, sc, "Array %s created.", name);
1933 	return (sc);
1934 }
1935 
1936 struct g_raid_volume *
1937 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
1938 {
1939 	struct g_raid_volume	*vol, *vol1;
1940 	int i;
1941 
1942 	G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
1943 	vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
1944 	vol->v_softc = sc;
1945 	strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
1946 	vol->v_state = G_RAID_VOLUME_S_STARTING;
1947 	vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
1948 	vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
1949 	vol->v_rotate_parity = 1;
1950 	bioq_init(&vol->v_inflight);
1951 	bioq_init(&vol->v_locked);
1952 	LIST_INIT(&vol->v_locks);
1953 	for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
1954 		vol->v_subdisks[i].sd_softc = sc;
1955 		vol->v_subdisks[i].sd_volume = vol;
1956 		vol->v_subdisks[i].sd_pos = i;
1957 		vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
1958 	}
1959 
1960 	/* Find free ID for this volume. */
1961 	g_topology_lock();
1962 	vol1 = vol;
1963 	if (id >= 0) {
1964 		LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1965 			if (vol1->v_global_id == id)
1966 				break;
1967 		}
1968 	}
1969 	if (vol1 != NULL) {
1970 		for (id = 0; ; id++) {
1971 			LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1972 				if (vol1->v_global_id == id)
1973 					break;
1974 			}
1975 			if (vol1 == NULL)
1976 				break;
1977 		}
1978 	}
1979 	vol->v_global_id = id;
1980 	LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
1981 	g_topology_unlock();
1982 
1983 	/* Delay root mounting. */
1984 	vol->v_rootmount = root_mount_hold("GRAID");
1985 	G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
1986 	vol->v_starting = 1;
1987 	TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
1988 	return (vol);
1989 }
1990 
1991 struct g_raid_disk *
1992 g_raid_create_disk(struct g_raid_softc *sc)
1993 {
1994 	struct g_raid_disk	*disk;
1995 
1996 	G_RAID_DEBUG1(1, sc, "Creating disk.");
1997 	disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
1998 	disk->d_softc = sc;
1999 	disk->d_state = G_RAID_DISK_S_NONE;
2000 	TAILQ_INIT(&disk->d_subdisks);
2001 	TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
2002 	return (disk);
2003 }
2004 
2005 int g_raid_start_volume(struct g_raid_volume *vol)
2006 {
2007 	struct g_raid_tr_class *class;
2008 	struct g_raid_tr_object *obj;
2009 	int status;
2010 
2011 	G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
2012 	LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
2013 		if (!class->trc_enable)
2014 			continue;
2015 		G_RAID_DEBUG1(2, vol->v_softc,
2016 		    "Tasting volume %s for %s transformation.",
2017 		    vol->v_name, class->name);
2018 		obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2019 		    M_WAITOK);
2020 		obj->tro_class = class;
2021 		obj->tro_volume = vol;
2022 		status = G_RAID_TR_TASTE(obj, vol);
2023 		if (status != G_RAID_TR_TASTE_FAIL)
2024 			break;
2025 		kobj_delete((kobj_t)obj, M_RAID);
2026 	}
2027 	if (class == NULL) {
2028 		G_RAID_DEBUG1(0, vol->v_softc,
2029 		    "No transformation module found for %s.",
2030 		    vol->v_name);
2031 		vol->v_tr = NULL;
2032 		g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
2033 		g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
2034 		    G_RAID_EVENT_VOLUME);
2035 		return (-1);
2036 	}
2037 	G_RAID_DEBUG1(2, vol->v_softc,
2038 	    "Transformation module %s chosen for %s.",
2039 	    class->name, vol->v_name);
2040 	vol->v_tr = obj;
2041 	return (0);
2042 }
2043 
2044 int
2045 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
2046 {
2047 	struct g_raid_volume *vol, *tmpv;
2048 	struct g_raid_disk *disk, *tmpd;
2049 	int error = 0;
2050 
2051 	sc->sc_stopping = G_RAID_DESTROY_HARD;
2052 	TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
2053 		if (g_raid_destroy_volume(vol))
2054 			error = EBUSY;
2055 	}
2056 	if (error)
2057 		return (error);
2058 	TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
2059 		if (g_raid_destroy_disk(disk))
2060 			error = EBUSY;
2061 	}
2062 	if (error)
2063 		return (error);
2064 	if (sc->sc_md) {
2065 		G_RAID_MD_FREE(sc->sc_md);
2066 		kobj_delete((kobj_t)sc->sc_md, M_RAID);
2067 		sc->sc_md = NULL;
2068 	}
2069 	if (sc->sc_geom != NULL) {
2070 		G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
2071 		g_topology_lock();
2072 		sc->sc_geom->softc = NULL;
2073 		g_wither_geom(sc->sc_geom, ENXIO);
2074 		g_topology_unlock();
2075 		sc->sc_geom = NULL;
2076 	} else
2077 		G_RAID_DEBUG(1, "Array destroyed.");
2078 	if (worker) {
2079 		g_raid_event_cancel(sc, sc);
2080 		mtx_destroy(&sc->sc_queue_mtx);
2081 		sx_xunlock(&sc->sc_lock);
2082 		sx_destroy(&sc->sc_lock);
2083 		wakeup(&sc->sc_stopping);
2084 		free(sc, M_RAID);
2085 		curthread->td_pflags &= ~TDP_GEOM;
2086 		G_RAID_DEBUG(1, "Thread exiting.");
2087 		kproc_exit(0);
2088 	} else {
2089 		/* Wake up worker to make it selfdestruct. */
2090 		g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2091 	}
2092 	return (0);
2093 }
2094 
2095 int
2096 g_raid_destroy_volume(struct g_raid_volume *vol)
2097 {
2098 	struct g_raid_softc *sc;
2099 	struct g_raid_disk *disk;
2100 	int i;
2101 
2102 	sc = vol->v_softc;
2103 	G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
2104 	vol->v_stopping = 1;
2105 	if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
2106 		if (vol->v_tr) {
2107 			G_RAID_TR_STOP(vol->v_tr);
2108 			return (EBUSY);
2109 		} else
2110 			vol->v_state = G_RAID_VOLUME_S_STOPPED;
2111 	}
2112 	if (g_raid_event_check(sc, vol) != 0)
2113 		return (EBUSY);
2114 	if (vol->v_provider != NULL)
2115 		return (EBUSY);
2116 	if (vol->v_provider_open != 0)
2117 		return (EBUSY);
2118 	if (vol->v_tr) {
2119 		G_RAID_TR_FREE(vol->v_tr);
2120 		kobj_delete((kobj_t)vol->v_tr, M_RAID);
2121 		vol->v_tr = NULL;
2122 	}
2123 	if (vol->v_rootmount)
2124 		root_mount_rel(vol->v_rootmount);
2125 	g_topology_lock();
2126 	LIST_REMOVE(vol, v_global_next);
2127 	g_topology_unlock();
2128 	TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
2129 	for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
2130 		g_raid_event_cancel(sc, &vol->v_subdisks[i]);
2131 		disk = vol->v_subdisks[i].sd_disk;
2132 		if (disk == NULL)
2133 			continue;
2134 		TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
2135 	}
2136 	G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
2137 	if (sc->sc_md)
2138 		G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
2139 	g_raid_event_cancel(sc, vol);
2140 	free(vol, M_RAID);
2141 	if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
2142 		/* Wake up worker to let it selfdestruct. */
2143 		g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2144 	}
2145 	return (0);
2146 }
2147 
2148 int
2149 g_raid_destroy_disk(struct g_raid_disk *disk)
2150 {
2151 	struct g_raid_softc *sc;
2152 	struct g_raid_subdisk *sd, *tmp;
2153 
2154 	sc = disk->d_softc;
2155 	G_RAID_DEBUG1(2, sc, "Destroying disk.");
2156 	if (disk->d_consumer) {
2157 		g_raid_kill_consumer(sc, disk->d_consumer);
2158 		disk->d_consumer = NULL;
2159 	}
2160 	TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
2161 		g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
2162 		g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
2163 		    G_RAID_EVENT_SUBDISK);
2164 		TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
2165 		sd->sd_disk = NULL;
2166 	}
2167 	TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
2168 	if (sc->sc_md)
2169 		G_RAID_MD_FREE_DISK(sc->sc_md, disk);
2170 	g_raid_event_cancel(sc, disk);
2171 	free(disk, M_RAID);
2172 	return (0);
2173 }
2174 
2175 int
2176 g_raid_destroy(struct g_raid_softc *sc, int how)
2177 {
2178 	int error, opens;
2179 
2180 	g_topology_assert_not();
2181 	if (sc == NULL)
2182 		return (ENXIO);
2183 	sx_assert(&sc->sc_lock, SX_XLOCKED);
2184 
2185 	/* Count open volumes. */
2186 	opens = g_raid_nopens(sc);
2187 
2188 	/* React on some opened volumes. */
2189 	if (opens > 0) {
2190 		switch (how) {
2191 		case G_RAID_DESTROY_SOFT:
2192 			G_RAID_DEBUG1(1, sc,
2193 			    "%d volumes are still open.",
2194 			    opens);
2195 			sx_xunlock(&sc->sc_lock);
2196 			return (EBUSY);
2197 		case G_RAID_DESTROY_DELAYED:
2198 			G_RAID_DEBUG1(1, sc,
2199 			    "Array will be destroyed on last close.");
2200 			sc->sc_stopping = G_RAID_DESTROY_DELAYED;
2201 			sx_xunlock(&sc->sc_lock);
2202 			return (EBUSY);
2203 		case G_RAID_DESTROY_HARD:
2204 			G_RAID_DEBUG1(1, sc,
2205 			    "%d volumes are still open.",
2206 			    opens);
2207 		}
2208 	}
2209 
2210 	/* Mark node for destruction. */
2211 	sc->sc_stopping = G_RAID_DESTROY_HARD;
2212 	/* Wake up worker to let it selfdestruct. */
2213 	g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2214 	/* Sleep until node destroyed. */
2215 	error = sx_sleep(&sc->sc_stopping, &sc->sc_lock,
2216 	    PRIBIO | PDROP, "r:destroy", hz * 3);
2217 	return (error == EWOULDBLOCK ? EBUSY : 0);
2218 }
2219 
2220 static void
2221 g_raid_taste_orphan(struct g_consumer *cp)
2222 {
2223 
2224 	KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
2225 	    cp->provider->name));
2226 }
2227 
2228 static struct g_geom *
2229 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
2230 {
2231 	struct g_consumer *cp;
2232 	struct g_geom *gp, *geom;
2233 	struct g_raid_md_class *class;
2234 	struct g_raid_md_object *obj;
2235 	int status;
2236 
2237 	g_topology_assert();
2238 	g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
2239 	if (!g_raid_enable)
2240 		return (NULL);
2241 	G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
2242 
2243 	geom = NULL;
2244 	status = G_RAID_MD_TASTE_FAIL;
2245 	gp = g_new_geomf(mp, "raid:taste");
2246 	/*
2247 	 * This orphan function should be never called.
2248 	 */
2249 	gp->orphan = g_raid_taste_orphan;
2250 	cp = g_new_consumer(gp);
2251 	cp->flags |= G_CF_DIRECT_RECEIVE;
2252 	g_attach(cp, pp);
2253 	if (g_access(cp, 1, 0, 0) != 0)
2254 		goto ofail;
2255 
2256 	LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2257 		if (!class->mdc_enable)
2258 			continue;
2259 		G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
2260 		    pp->name, class->name);
2261 		obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2262 		    M_WAITOK);
2263 		obj->mdo_class = class;
2264 		status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
2265 		if (status != G_RAID_MD_TASTE_NEW)
2266 			kobj_delete((kobj_t)obj, M_RAID);
2267 		if (status != G_RAID_MD_TASTE_FAIL)
2268 			break;
2269 	}
2270 
2271 	if (status == G_RAID_MD_TASTE_FAIL)
2272 		(void)g_access(cp, -1, 0, 0);
2273 ofail:
2274 	g_detach(cp);
2275 	g_destroy_consumer(cp);
2276 	g_destroy_geom(gp);
2277 	G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
2278 	return (geom);
2279 }
2280 
2281 int
2282 g_raid_create_node_format(const char *format, struct gctl_req *req,
2283     struct g_geom **gp)
2284 {
2285 	struct g_raid_md_class *class;
2286 	struct g_raid_md_object *obj;
2287 	int status;
2288 
2289 	G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
2290 	LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2291 		if (strcasecmp(class->name, format) == 0)
2292 			break;
2293 	}
2294 	if (class == NULL) {
2295 		G_RAID_DEBUG(1, "No support for %s metadata.", format);
2296 		return (G_RAID_MD_TASTE_FAIL);
2297 	}
2298 	obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2299 	    M_WAITOK);
2300 	obj->mdo_class = class;
2301 	status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
2302 	if (status != G_RAID_MD_TASTE_NEW)
2303 		kobj_delete((kobj_t)obj, M_RAID);
2304 	return (status);
2305 }
2306 
2307 static int
2308 g_raid_destroy_geom(struct gctl_req *req __unused,
2309     struct g_class *mp __unused, struct g_geom *gp)
2310 {
2311 	struct g_raid_softc *sc;
2312 	int error;
2313 
2314 	g_topology_unlock();
2315 	sc = gp->softc;
2316 	sx_xlock(&sc->sc_lock);
2317 	g_cancel_event(sc);
2318 	error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
2319 	g_topology_lock();
2320 	return (error);
2321 }
2322 
2323 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
2324     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2325 {
2326 
2327 	if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2328 		return;
2329 	if (sc->sc_md)
2330 		G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
2331 }
2332 
2333 void g_raid_fail_disk(struct g_raid_softc *sc,
2334     struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2335 {
2336 
2337 	if (disk == NULL)
2338 		disk = sd->sd_disk;
2339 	if (disk == NULL) {
2340 		G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
2341 		return;
2342 	}
2343 	if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2344 		G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
2345 		    "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
2346 		return;
2347 	}
2348 	if (sc->sc_md)
2349 		G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
2350 }
2351 
2352 static void
2353 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
2354     struct g_consumer *cp, struct g_provider *pp)
2355 {
2356 	struct g_raid_softc *sc;
2357 	struct g_raid_volume *vol;
2358 	struct g_raid_subdisk *sd;
2359 	struct g_raid_disk *disk;
2360 	int i, s;
2361 
2362 	g_topology_assert();
2363 
2364 	sc = gp->softc;
2365 	if (sc == NULL)
2366 		return;
2367 	if (pp != NULL) {
2368 		vol = pp->private;
2369 		g_topology_unlock();
2370 		sx_xlock(&sc->sc_lock);
2371 		sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent,
2372 		    sc->sc_md->mdo_class->name,
2373 		    g_raid_volume_level2str(vol->v_raid_level,
2374 		    vol->v_raid_level_qualifier));
2375 		sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
2376 		    vol->v_name);
2377 		sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
2378 		    g_raid_volume_level2str(vol->v_raid_level,
2379 		    vol->v_raid_level_qualifier));
2380 		sbuf_printf(sb,
2381 		    "%s<Transformation>%s</Transformation>\n", indent,
2382 		    vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
2383 		sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
2384 		    vol->v_disks_count);
2385 		sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
2386 		    vol->v_strip_size);
2387 		sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2388 		    g_raid_volume_state2str(vol->v_state));
2389 		sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
2390 		    vol->v_dirty ? "Yes" : "No");
2391 		sbuf_printf(sb, "%s<Subdisks>", indent);
2392 		for (i = 0; i < vol->v_disks_count; i++) {
2393 			sd = &vol->v_subdisks[i];
2394 			if (sd->sd_disk != NULL &&
2395 			    sd->sd_disk->d_consumer != NULL) {
2396 				sbuf_printf(sb, "%s ",
2397 				    g_raid_get_diskname(sd->sd_disk));
2398 			} else {
2399 				sbuf_printf(sb, "NONE ");
2400 			}
2401 			sbuf_printf(sb, "(%s",
2402 			    g_raid_subdisk_state2str(sd->sd_state));
2403 			if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2404 			    sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2405 				sbuf_printf(sb, " %d%%",
2406 				    (int)(sd->sd_rebuild_pos * 100 /
2407 				     sd->sd_size));
2408 			}
2409 			sbuf_printf(sb, ")");
2410 			if (i + 1 < vol->v_disks_count)
2411 				sbuf_printf(sb, ", ");
2412 		}
2413 		sbuf_printf(sb, "</Subdisks>\n");
2414 		sx_xunlock(&sc->sc_lock);
2415 		g_topology_lock();
2416 	} else if (cp != NULL) {
2417 		disk = cp->private;
2418 		if (disk == NULL)
2419 			return;
2420 		g_topology_unlock();
2421 		sx_xlock(&sc->sc_lock);
2422 		sbuf_printf(sb, "%s<State>%s", indent,
2423 		    g_raid_disk_state2str(disk->d_state));
2424 		if (!TAILQ_EMPTY(&disk->d_subdisks)) {
2425 			sbuf_printf(sb, " (");
2426 			TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2427 				sbuf_printf(sb, "%s",
2428 				    g_raid_subdisk_state2str(sd->sd_state));
2429 				if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2430 				    sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2431 					sbuf_printf(sb, " %d%%",
2432 					    (int)(sd->sd_rebuild_pos * 100 /
2433 					     sd->sd_size));
2434 				}
2435 				if (TAILQ_NEXT(sd, sd_next))
2436 					sbuf_printf(sb, ", ");
2437 			}
2438 			sbuf_printf(sb, ")");
2439 		}
2440 		sbuf_printf(sb, "</State>\n");
2441 		sbuf_printf(sb, "%s<Subdisks>", indent);
2442 		TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2443 			sbuf_printf(sb, "r%d(%s):%d@%ju",
2444 			    sd->sd_volume->v_global_id,
2445 			    sd->sd_volume->v_name,
2446 			    sd->sd_pos, sd->sd_offset);
2447 			if (TAILQ_NEXT(sd, sd_next))
2448 				sbuf_printf(sb, ", ");
2449 		}
2450 		sbuf_printf(sb, "</Subdisks>\n");
2451 		sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
2452 		    disk->d_read_errs);
2453 		sx_xunlock(&sc->sc_lock);
2454 		g_topology_lock();
2455 	} else {
2456 		g_topology_unlock();
2457 		sx_xlock(&sc->sc_lock);
2458 		if (sc->sc_md) {
2459 			sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
2460 			    sc->sc_md->mdo_class->name);
2461 		}
2462 		if (!TAILQ_EMPTY(&sc->sc_volumes)) {
2463 			s = 0xff;
2464 			TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2465 				if (vol->v_state < s)
2466 					s = vol->v_state;
2467 			}
2468 			sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2469 			    g_raid_volume_state2str(s));
2470 		}
2471 		sx_xunlock(&sc->sc_lock);
2472 		g_topology_lock();
2473 	}
2474 }
2475 
2476 static void
2477 g_raid_shutdown_post_sync(void *arg, int howto)
2478 {
2479 	struct g_class *mp;
2480 	struct g_geom *gp, *gp2;
2481 	struct g_raid_softc *sc;
2482 	struct g_raid_volume *vol;
2483 
2484 	mp = arg;
2485 	DROP_GIANT();
2486 	g_topology_lock();
2487 	g_raid_shutdown = 1;
2488 	LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
2489 		if ((sc = gp->softc) == NULL)
2490 			continue;
2491 		g_topology_unlock();
2492 		sx_xlock(&sc->sc_lock);
2493 		TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
2494 			g_raid_clean(vol, -1);
2495 		g_cancel_event(sc);
2496 		g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
2497 		g_topology_lock();
2498 	}
2499 	g_topology_unlock();
2500 	PICKUP_GIANT();
2501 }
2502 
2503 static void
2504 g_raid_init(struct g_class *mp)
2505 {
2506 
2507 	g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
2508 	    g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
2509 	if (g_raid_post_sync == NULL)
2510 		G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
2511 	g_raid_started = 1;
2512 }
2513 
2514 static void
2515 g_raid_fini(struct g_class *mp)
2516 {
2517 
2518 	if (g_raid_post_sync != NULL)
2519 		EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
2520 	g_raid_started = 0;
2521 }
2522 
2523 int
2524 g_raid_md_modevent(module_t mod, int type, void *arg)
2525 {
2526 	struct g_raid_md_class *class, *c, *nc;
2527 	int error;
2528 
2529 	error = 0;
2530 	class = arg;
2531 	switch (type) {
2532 	case MOD_LOAD:
2533 		c = LIST_FIRST(&g_raid_md_classes);
2534 		if (c == NULL || c->mdc_priority > class->mdc_priority)
2535 			LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
2536 		else {
2537 			while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
2538 			    nc->mdc_priority < class->mdc_priority)
2539 				c = nc;
2540 			LIST_INSERT_AFTER(c, class, mdc_list);
2541 		}
2542 		if (g_raid_started)
2543 			g_retaste(&g_raid_class);
2544 		break;
2545 	case MOD_UNLOAD:
2546 		LIST_REMOVE(class, mdc_list);
2547 		break;
2548 	default:
2549 		error = EOPNOTSUPP;
2550 		break;
2551 	}
2552 
2553 	return (error);
2554 }
2555 
2556 int
2557 g_raid_tr_modevent(module_t mod, int type, void *arg)
2558 {
2559 	struct g_raid_tr_class *class, *c, *nc;
2560 	int error;
2561 
2562 	error = 0;
2563 	class = arg;
2564 	switch (type) {
2565 	case MOD_LOAD:
2566 		c = LIST_FIRST(&g_raid_tr_classes);
2567 		if (c == NULL || c->trc_priority > class->trc_priority)
2568 			LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
2569 		else {
2570 			while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
2571 			    nc->trc_priority < class->trc_priority)
2572 				c = nc;
2573 			LIST_INSERT_AFTER(c, class, trc_list);
2574 		}
2575 		break;
2576 	case MOD_UNLOAD:
2577 		LIST_REMOVE(class, trc_list);
2578 		break;
2579 	default:
2580 		error = EOPNOTSUPP;
2581 		break;
2582 	}
2583 
2584 	return (error);
2585 }
2586 
2587 /*
2588  * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
2589  * to reduce module priority, allowing submodules to register them first.
2590  */
2591 static moduledata_t g_raid_mod = {
2592 	"g_raid",
2593 	g_modevent,
2594 	&g_raid_class
2595 };
2596 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
2597 MODULE_VERSION(geom_raid, 0);
2598