xref: /freebsd/sys/i386/i386/machdep.c (revision 716fd348)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2018 The FreeBSD Foundation
5  * Copyright (c) 1992 Terrence R. Lambert.
6  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * William Jolitz.
11  *
12  * Portions of this software were developed by A. Joseph Koshy under
13  * sponsorship from the FreeBSD Foundation and Google, Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include "opt_apic.h"
50 #include "opt_atpic.h"
51 #include "opt_cpu.h"
52 #include "opt_ddb.h"
53 #include "opt_inet.h"
54 #include "opt_isa.h"
55 #include "opt_kstack_pages.h"
56 #include "opt_maxmem.h"
57 #include "opt_mp_watchdog.h"
58 #include "opt_perfmon.h"
59 #include "opt_platform.h"
60 
61 #include <sys/param.h>
62 #include <sys/proc.h>
63 #include <sys/systm.h>
64 #include <sys/bio.h>
65 #include <sys/buf.h>
66 #include <sys/bus.h>
67 #include <sys/callout.h>
68 #include <sys/cons.h>
69 #include <sys/cpu.h>
70 #include <sys/eventhandler.h>
71 #include <sys/exec.h>
72 #include <sys/imgact.h>
73 #include <sys/kdb.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/memrange.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/pcpu.h>
83 #include <sys/ptrace.h>
84 #include <sys/reboot.h>
85 #include <sys/reg.h>
86 #include <sys/rwlock.h>
87 #include <sys/sched.h>
88 #include <sys/signalvar.h>
89 #include <sys/smp.h>
90 #include <sys/syscallsubr.h>
91 #include <sys/sysctl.h>
92 #include <sys/sysent.h>
93 #include <sys/sysproto.h>
94 #include <sys/ucontext.h>
95 #include <sys/vmmeter.h>
96 
97 #include <vm/vm.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_extern.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_pager.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_dumpset.h>
107 
108 #ifdef DDB
109 #ifndef KDB
110 #error KDB must be enabled in order for DDB to work!
111 #endif
112 #include <ddb/ddb.h>
113 #include <ddb/db_sym.h>
114 #endif
115 
116 #include <isa/rtc.h>
117 
118 #include <net/netisr.h>
119 
120 #include <machine/bootinfo.h>
121 #include <machine/clock.h>
122 #include <machine/cpu.h>
123 #include <machine/cputypes.h>
124 #include <machine/intr_machdep.h>
125 #include <x86/mca.h>
126 #include <machine/md_var.h>
127 #include <machine/metadata.h>
128 #include <machine/mp_watchdog.h>
129 #include <machine/pc/bios.h>
130 #include <machine/pcb.h>
131 #include <machine/pcb_ext.h>
132 #include <machine/proc.h>
133 #include <machine/sigframe.h>
134 #include <machine/specialreg.h>
135 #include <machine/sysarch.h>
136 #include <machine/trap.h>
137 #include <x86/ucode.h>
138 #include <machine/vm86.h>
139 #include <x86/init.h>
140 #ifdef PERFMON
141 #include <machine/perfmon.h>
142 #endif
143 #ifdef SMP
144 #include <machine/smp.h>
145 #endif
146 #ifdef FDT
147 #include <x86/fdt.h>
148 #endif
149 
150 #ifdef DEV_APIC
151 #include <x86/apicvar.h>
152 #endif
153 
154 #ifdef DEV_ISA
155 #include <x86/isa/icu.h>
156 #endif
157 
158 /* Sanity check for __curthread() */
159 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
160 
161 register_t init386(int first);
162 void dblfault_handler(void);
163 void identify_cpu(void);
164 
165 static void cpu_startup(void *);
166 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
167 
168 /* Intel ICH registers */
169 #define ICH_PMBASE	0x400
170 #define ICH_SMI_EN	ICH_PMBASE + 0x30
171 
172 int	_udatasel, _ucodesel;
173 u_int	basemem;
174 static int above4g_allow = 1;
175 static int above24g_allow = 0;
176 
177 int cold = 1;
178 
179 long Maxmem = 0;
180 long realmem = 0;
181 
182 #ifdef PAE
183 FEATURE(pae, "Physical Address Extensions");
184 #endif
185 
186 struct kva_md_info kmi;
187 
188 static struct trapframe proc0_tf;
189 struct pcpu __pcpu[MAXCPU];
190 
191 static void i386_clock_source_init(void);
192 
193 struct mtx icu_lock;
194 
195 struct mem_range_softc mem_range_softc;
196 
197 extern char start_exceptions[], end_exceptions[];
198 
199 extern struct sysentvec elf32_freebsd_sysvec;
200 
201 /* Default init_ops implementation. */
202 struct init_ops init_ops = {
203 	.early_clock_source_init =	i386_clock_source_init,
204 	.early_delay =			i8254_delay,
205 };
206 
207 static void
208 i386_clock_source_init(void)
209 {
210 	i8254_init();
211 }
212 
213 static void
214 cpu_startup(dummy)
215 	void *dummy;
216 {
217 	uintmax_t memsize;
218 	char *sysenv;
219 
220 	/*
221 	 * On MacBooks, we need to disallow the legacy USB circuit to
222 	 * generate an SMI# because this can cause several problems,
223 	 * namely: incorrect CPU frequency detection and failure to
224 	 * start the APs.
225 	 * We do this by disabling a bit in the SMI_EN (SMI Control and
226 	 * Enable register) of the Intel ICH LPC Interface Bridge.
227 	 */
228 	sysenv = kern_getenv("smbios.system.product");
229 	if (sysenv != NULL) {
230 		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
231 		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
232 		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
233 		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
234 		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
235 		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
236 		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
237 		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
238 			if (bootverbose)
239 				printf("Disabling LEGACY_USB_EN bit on "
240 				    "Intel ICH.\n");
241 			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
242 		}
243 		freeenv(sysenv);
244 	}
245 
246 	/*
247 	 * Good {morning,afternoon,evening,night}.
248 	 */
249 	startrtclock();
250 	printcpuinfo();
251 	panicifcpuunsupported();
252 #ifdef PERFMON
253 	perfmon_init();
254 #endif
255 
256 	/*
257 	 * Display physical memory if SMBIOS reports reasonable amount.
258 	 */
259 	memsize = 0;
260 	sysenv = kern_getenv("smbios.memory.enabled");
261 	if (sysenv != NULL) {
262 		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
263 		freeenv(sysenv);
264 	}
265 	if (memsize < ptoa((uintmax_t)vm_free_count()))
266 		memsize = ptoa((uintmax_t)Maxmem);
267 	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
268 	realmem = atop(memsize);
269 
270 	/*
271 	 * Display any holes after the first chunk of extended memory.
272 	 */
273 	if (bootverbose) {
274 		int indx;
275 
276 		printf("Physical memory chunk(s):\n");
277 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
278 			vm_paddr_t size;
279 
280 			size = phys_avail[indx + 1] - phys_avail[indx];
281 			printf(
282 			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
283 			    (uintmax_t)phys_avail[indx],
284 			    (uintmax_t)phys_avail[indx + 1] - 1,
285 			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
286 		}
287 	}
288 
289 	vm_ksubmap_init(&kmi);
290 
291 	printf("avail memory = %ju (%ju MB)\n",
292 	    ptoa((uintmax_t)vm_free_count()),
293 	    ptoa((uintmax_t)vm_free_count()) / 1048576);
294 
295 	/*
296 	 * Set up buffers, so they can be used to read disk labels.
297 	 */
298 	bufinit();
299 	vm_pager_bufferinit();
300 	cpu_setregs();
301 }
302 
303 void
304 cpu_setregs(void)
305 {
306 	unsigned int cr0;
307 
308 	cr0 = rcr0();
309 
310 	/*
311 	 * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
312 	 *
313 	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
314 	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
315 	 * bit to control the trap, because setting the CR0_EM bit does
316 	 * not cause WAIT instructions to trap.  It's important to trap
317 	 * WAIT instructions - otherwise the "wait" variants of no-wait
318 	 * control instructions would degenerate to the "no-wait" variants
319 	 * after FP context switches but work correctly otherwise.  It's
320 	 * particularly important to trap WAITs when there is no NPX -
321 	 * otherwise the "wait" variants would always degenerate.
322 	 *
323 	 * Try setting CR0_NE to get correct error reporting on 486DX's.
324 	 * Setting it should fail or do nothing on lesser processors.
325 	 */
326 	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
327 	load_cr0(cr0);
328 	load_gs(_udatasel);
329 }
330 
331 u_long bootdev;		/* not a struct cdev *- encoding is different */
332 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
333 	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
334 
335 /*
336  * Initialize 386 and configure to run kernel
337  */
338 
339 /*
340  * Initialize segments & interrupt table
341  */
342 
343 int _default_ldt;
344 
345 struct mtx dt_lock;			/* lock for GDT and LDT */
346 
347 union descriptor gdt0[NGDT];	/* initial global descriptor table */
348 union descriptor *gdt = gdt0;	/* global descriptor table */
349 
350 union descriptor *ldt;		/* local descriptor table */
351 
352 static struct gate_descriptor idt0[NIDT];
353 struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
354 
355 static struct i386tss *dblfault_tss;
356 static char *dblfault_stack;
357 
358 static struct i386tss common_tss0;
359 
360 vm_offset_t proc0kstack;
361 
362 /*
363  * software prototypes -- in more palatable form.
364  *
365  * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
366  * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
367  */
368 struct soft_segment_descriptor gdt_segs[] = {
369 /* GNULL_SEL	0 Null Descriptor */
370 {	.ssd_base = 0x0,
371 	.ssd_limit = 0x0,
372 	.ssd_type = 0,
373 	.ssd_dpl = SEL_KPL,
374 	.ssd_p = 0,
375 	.ssd_xx = 0, .ssd_xx1 = 0,
376 	.ssd_def32 = 0,
377 	.ssd_gran = 0		},
378 /* GPRIV_SEL	1 SMP Per-Processor Private Data Descriptor */
379 {	.ssd_base = 0x0,
380 	.ssd_limit = 0xfffff,
381 	.ssd_type = SDT_MEMRWA,
382 	.ssd_dpl = SEL_KPL,
383 	.ssd_p = 1,
384 	.ssd_xx = 0, .ssd_xx1 = 0,
385 	.ssd_def32 = 1,
386 	.ssd_gran = 1		},
387 /* GUFS_SEL	2 %fs Descriptor for user */
388 {	.ssd_base = 0x0,
389 	.ssd_limit = 0xfffff,
390 	.ssd_type = SDT_MEMRWA,
391 	.ssd_dpl = SEL_UPL,
392 	.ssd_p = 1,
393 	.ssd_xx = 0, .ssd_xx1 = 0,
394 	.ssd_def32 = 1,
395 	.ssd_gran = 1		},
396 /* GUGS_SEL	3 %gs Descriptor for user */
397 {	.ssd_base = 0x0,
398 	.ssd_limit = 0xfffff,
399 	.ssd_type = SDT_MEMRWA,
400 	.ssd_dpl = SEL_UPL,
401 	.ssd_p = 1,
402 	.ssd_xx = 0, .ssd_xx1 = 0,
403 	.ssd_def32 = 1,
404 	.ssd_gran = 1		},
405 /* GCODE_SEL	4 Code Descriptor for kernel */
406 {	.ssd_base = 0x0,
407 	.ssd_limit = 0xfffff,
408 	.ssd_type = SDT_MEMERA,
409 	.ssd_dpl = SEL_KPL,
410 	.ssd_p = 1,
411 	.ssd_xx = 0, .ssd_xx1 = 0,
412 	.ssd_def32 = 1,
413 	.ssd_gran = 1		},
414 /* GDATA_SEL	5 Data Descriptor for kernel */
415 {	.ssd_base = 0x0,
416 	.ssd_limit = 0xfffff,
417 	.ssd_type = SDT_MEMRWA,
418 	.ssd_dpl = SEL_KPL,
419 	.ssd_p = 1,
420 	.ssd_xx = 0, .ssd_xx1 = 0,
421 	.ssd_def32 = 1,
422 	.ssd_gran = 1		},
423 /* GUCODE_SEL	6 Code Descriptor for user */
424 {	.ssd_base = 0x0,
425 	.ssd_limit = 0xfffff,
426 	.ssd_type = SDT_MEMERA,
427 	.ssd_dpl = SEL_UPL,
428 	.ssd_p = 1,
429 	.ssd_xx = 0, .ssd_xx1 = 0,
430 	.ssd_def32 = 1,
431 	.ssd_gran = 1		},
432 /* GUDATA_SEL	7 Data Descriptor for user */
433 {	.ssd_base = 0x0,
434 	.ssd_limit = 0xfffff,
435 	.ssd_type = SDT_MEMRWA,
436 	.ssd_dpl = SEL_UPL,
437 	.ssd_p = 1,
438 	.ssd_xx = 0, .ssd_xx1 = 0,
439 	.ssd_def32 = 1,
440 	.ssd_gran = 1		},
441 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
442 {	.ssd_base = 0x400,
443 	.ssd_limit = 0xfffff,
444 	.ssd_type = SDT_MEMRWA,
445 	.ssd_dpl = SEL_KPL,
446 	.ssd_p = 1,
447 	.ssd_xx = 0, .ssd_xx1 = 0,
448 	.ssd_def32 = 1,
449 	.ssd_gran = 1		},
450 /* GPROC0_SEL	9 Proc 0 Tss Descriptor */
451 {
452 	.ssd_base = 0x0,
453 	.ssd_limit = sizeof(struct i386tss)-1,
454 	.ssd_type = SDT_SYS386TSS,
455 	.ssd_dpl = 0,
456 	.ssd_p = 1,
457 	.ssd_xx = 0, .ssd_xx1 = 0,
458 	.ssd_def32 = 0,
459 	.ssd_gran = 0		},
460 /* GLDT_SEL	10 LDT Descriptor */
461 {	.ssd_base = 0,
462 	.ssd_limit = sizeof(union descriptor) * NLDT - 1,
463 	.ssd_type = SDT_SYSLDT,
464 	.ssd_dpl = SEL_UPL,
465 	.ssd_p = 1,
466 	.ssd_xx = 0, .ssd_xx1 = 0,
467 	.ssd_def32 = 0,
468 	.ssd_gran = 0		},
469 /* GUSERLDT_SEL	11 User LDT Descriptor per process */
470 {	.ssd_base = 0,
471 	.ssd_limit = (512 * sizeof(union descriptor)-1),
472 	.ssd_type = SDT_SYSLDT,
473 	.ssd_dpl = 0,
474 	.ssd_p = 1,
475 	.ssd_xx = 0, .ssd_xx1 = 0,
476 	.ssd_def32 = 0,
477 	.ssd_gran = 0		},
478 /* GPANIC_SEL	12 Panic Tss Descriptor */
479 {	.ssd_base = 0,
480 	.ssd_limit = sizeof(struct i386tss)-1,
481 	.ssd_type = SDT_SYS386TSS,
482 	.ssd_dpl = 0,
483 	.ssd_p = 1,
484 	.ssd_xx = 0, .ssd_xx1 = 0,
485 	.ssd_def32 = 0,
486 	.ssd_gran = 0		},
487 /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
488 {	.ssd_base = 0,
489 	.ssd_limit = 0xfffff,
490 	.ssd_type = SDT_MEMERA,
491 	.ssd_dpl = 0,
492 	.ssd_p = 1,
493 	.ssd_xx = 0, .ssd_xx1 = 0,
494 	.ssd_def32 = 0,
495 	.ssd_gran = 1		},
496 /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
497 {	.ssd_base = 0,
498 	.ssd_limit = 0xfffff,
499 	.ssd_type = SDT_MEMERA,
500 	.ssd_dpl = 0,
501 	.ssd_p = 1,
502 	.ssd_xx = 0, .ssd_xx1 = 0,
503 	.ssd_def32 = 0,
504 	.ssd_gran = 1		},
505 /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
506 {	.ssd_base = 0,
507 	.ssd_limit = 0xfffff,
508 	.ssd_type = SDT_MEMRWA,
509 	.ssd_dpl = 0,
510 	.ssd_p = 1,
511 	.ssd_xx = 0, .ssd_xx1 = 0,
512 	.ssd_def32 = 1,
513 	.ssd_gran = 1		},
514 /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
515 {	.ssd_base = 0,
516 	.ssd_limit = 0xfffff,
517 	.ssd_type = SDT_MEMRWA,
518 	.ssd_dpl = 0,
519 	.ssd_p = 1,
520 	.ssd_xx = 0, .ssd_xx1 = 0,
521 	.ssd_def32 = 0,
522 	.ssd_gran = 1		},
523 /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
524 {	.ssd_base = 0,
525 	.ssd_limit = 0xfffff,
526 	.ssd_type = SDT_MEMRWA,
527 	.ssd_dpl = 0,
528 	.ssd_p = 1,
529 	.ssd_xx = 0, .ssd_xx1 = 0,
530 	.ssd_def32 = 0,
531 	.ssd_gran = 1		},
532 /* GNDIS_SEL	18 NDIS Descriptor */
533 {	.ssd_base = 0x0,
534 	.ssd_limit = 0x0,
535 	.ssd_type = 0,
536 	.ssd_dpl = 0,
537 	.ssd_p = 0,
538 	.ssd_xx = 0, .ssd_xx1 = 0,
539 	.ssd_def32 = 0,
540 	.ssd_gran = 0		},
541 };
542 
543 static struct soft_segment_descriptor ldt_segs[] = {
544 	/* Null Descriptor - overwritten by call gate */
545 {	.ssd_base = 0x0,
546 	.ssd_limit = 0x0,
547 	.ssd_type = 0,
548 	.ssd_dpl = 0,
549 	.ssd_p = 0,
550 	.ssd_xx = 0, .ssd_xx1 = 0,
551 	.ssd_def32 = 0,
552 	.ssd_gran = 0		},
553 	/* Null Descriptor - overwritten by call gate */
554 {	.ssd_base = 0x0,
555 	.ssd_limit = 0x0,
556 	.ssd_type = 0,
557 	.ssd_dpl = 0,
558 	.ssd_p = 0,
559 	.ssd_xx = 0, .ssd_xx1 = 0,
560 	.ssd_def32 = 0,
561 	.ssd_gran = 0		},
562 	/* Null Descriptor - overwritten by call gate */
563 {	.ssd_base = 0x0,
564 	.ssd_limit = 0x0,
565 	.ssd_type = 0,
566 	.ssd_dpl = 0,
567 	.ssd_p = 0,
568 	.ssd_xx = 0, .ssd_xx1 = 0,
569 	.ssd_def32 = 0,
570 	.ssd_gran = 0		},
571 	/* Code Descriptor for user */
572 {	.ssd_base = 0x0,
573 	.ssd_limit = 0xfffff,
574 	.ssd_type = SDT_MEMERA,
575 	.ssd_dpl = SEL_UPL,
576 	.ssd_p = 1,
577 	.ssd_xx = 0, .ssd_xx1 = 0,
578 	.ssd_def32 = 1,
579 	.ssd_gran = 1		},
580 	/* Null Descriptor - overwritten by call gate */
581 {	.ssd_base = 0x0,
582 	.ssd_limit = 0x0,
583 	.ssd_type = 0,
584 	.ssd_dpl = 0,
585 	.ssd_p = 0,
586 	.ssd_xx = 0, .ssd_xx1 = 0,
587 	.ssd_def32 = 0,
588 	.ssd_gran = 0		},
589 	/* Data Descriptor for user */
590 {	.ssd_base = 0x0,
591 	.ssd_limit = 0xfffff,
592 	.ssd_type = SDT_MEMRWA,
593 	.ssd_dpl = SEL_UPL,
594 	.ssd_p = 1,
595 	.ssd_xx = 0, .ssd_xx1 = 0,
596 	.ssd_def32 = 1,
597 	.ssd_gran = 1		},
598 };
599 
600 size_t setidt_disp;
601 
602 void
603 setidt(int idx, inthand_t *func, int typ, int dpl, int selec)
604 {
605 	uintptr_t off;
606 
607 	off = func != NULL ? (uintptr_t)func + setidt_disp : 0;
608 	setidt_nodisp(idx, off, typ, dpl, selec);
609 }
610 
611 void
612 setidt_nodisp(int idx, uintptr_t off, int typ, int dpl, int selec)
613 {
614 	struct gate_descriptor *ip;
615 
616 	ip = idt + idx;
617 	ip->gd_looffset = off;
618 	ip->gd_selector = selec;
619 	ip->gd_stkcpy = 0;
620 	ip->gd_xx = 0;
621 	ip->gd_type = typ;
622 	ip->gd_dpl = dpl;
623 	ip->gd_p = 1;
624 	ip->gd_hioffset = ((u_int)off) >> 16 ;
625 }
626 
627 extern inthand_t
628 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
629 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
630 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
631 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
632 	IDTVEC(xmm),
633 #ifdef KDTRACE_HOOKS
634 	IDTVEC(dtrace_ret),
635 #endif
636 #ifdef XENHVM
637 	IDTVEC(xen_intr_upcall),
638 #endif
639 	IDTVEC(int0x80_syscall);
640 
641 #ifdef DDB
642 /*
643  * Display the index and function name of any IDT entries that don't use
644  * the default 'rsvd' entry point.
645  */
646 DB_SHOW_COMMAND(idt, db_show_idt)
647 {
648 	struct gate_descriptor *ip;
649 	int idx;
650 	uintptr_t func, func_trm;
651 	bool trm;
652 
653 	ip = idt;
654 	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
655 		if (ip->gd_type == SDT_SYSTASKGT) {
656 			db_printf("%3d\t<TASK>\n", idx);
657 		} else {
658 			func = (ip->gd_hioffset << 16 | ip->gd_looffset);
659 			if (func >= PMAP_TRM_MIN_ADDRESS) {
660 				func_trm = func;
661 				func -= setidt_disp;
662 				trm = true;
663 			} else
664 				trm = false;
665 			if (func != (uintptr_t)&IDTVEC(rsvd)) {
666 				db_printf("%3d\t", idx);
667 				db_printsym(func, DB_STGY_PROC);
668 				if (trm)
669 					db_printf(" (trampoline %#x)",
670 					    func_trm);
671 				db_printf("\n");
672 			}
673 		}
674 		ip++;
675 	}
676 }
677 
678 /* Show privileged registers. */
679 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
680 {
681 	uint64_t idtr, gdtr;
682 
683 	idtr = ridt();
684 	db_printf("idtr\t0x%08x/%04x\n",
685 	    (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
686 	gdtr = rgdt();
687 	db_printf("gdtr\t0x%08x/%04x\n",
688 	    (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
689 	db_printf("ldtr\t0x%04x\n", rldt());
690 	db_printf("tr\t0x%04x\n", rtr());
691 	db_printf("cr0\t0x%08x\n", rcr0());
692 	db_printf("cr2\t0x%08x\n", rcr2());
693 	db_printf("cr3\t0x%08x\n", rcr3());
694 	db_printf("cr4\t0x%08x\n", rcr4());
695 	if (rcr4() & CR4_XSAVE)
696 		db_printf("xcr0\t0x%016llx\n", rxcr(0));
697 	if (amd_feature & (AMDID_NX | AMDID_LM))
698 		db_printf("EFER\t0x%016llx\n", rdmsr(MSR_EFER));
699 	if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX))
700 		db_printf("FEATURES_CTL\t0x%016llx\n",
701 		    rdmsr(MSR_IA32_FEATURE_CONTROL));
702 	if (((cpu_vendor_id == CPU_VENDOR_INTEL ||
703 	    cpu_vendor_id == CPU_VENDOR_AMD) && CPUID_TO_FAMILY(cpu_id) >= 6) ||
704 	    cpu_vendor_id == CPU_VENDOR_HYGON)
705 		db_printf("DEBUG_CTL\t0x%016llx\n", rdmsr(MSR_DEBUGCTLMSR));
706 	if (cpu_feature & CPUID_PAT)
707 		db_printf("PAT\t0x%016llx\n", rdmsr(MSR_PAT));
708 }
709 
710 DB_SHOW_COMMAND(dbregs, db_show_dbregs)
711 {
712 
713 	db_printf("dr0\t0x%08x\n", rdr0());
714 	db_printf("dr1\t0x%08x\n", rdr1());
715 	db_printf("dr2\t0x%08x\n", rdr2());
716 	db_printf("dr3\t0x%08x\n", rdr3());
717 	db_printf("dr6\t0x%08x\n", rdr6());
718 	db_printf("dr7\t0x%08x\n", rdr7());
719 }
720 
721 DB_SHOW_COMMAND(frame, db_show_frame)
722 {
723 	struct trapframe *frame;
724 
725 	frame = have_addr ? (struct trapframe *)addr : curthread->td_frame;
726 	printf("ss %#x esp %#x efl %#x cs %#x eip %#x\n",
727 	    frame->tf_ss, frame->tf_esp, frame->tf_eflags, frame->tf_cs,
728 	    frame->tf_eip);
729 	printf("err %#x trapno %d\n", frame->tf_err, frame->tf_trapno);
730 	printf("ds %#x es %#x fs %#x\n",
731 	    frame->tf_ds, frame->tf_es, frame->tf_fs);
732 	printf("eax %#x ecx %#x edx %#x ebx %#x\n",
733 	    frame->tf_eax, frame->tf_ecx, frame->tf_edx, frame->tf_ebx);
734 	printf("ebp %#x esi %#x edi %#x\n",
735 	    frame->tf_ebp, frame->tf_esi, frame->tf_edi);
736 
737 }
738 #endif
739 
740 void
741 sdtossd(sd, ssd)
742 	struct segment_descriptor *sd;
743 	struct soft_segment_descriptor *ssd;
744 {
745 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
746 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
747 	ssd->ssd_type  = sd->sd_type;
748 	ssd->ssd_dpl   = sd->sd_dpl;
749 	ssd->ssd_p     = sd->sd_p;
750 	ssd->ssd_def32 = sd->sd_def32;
751 	ssd->ssd_gran  = sd->sd_gran;
752 }
753 
754 static int
755 add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
756     int *physmap_idxp)
757 {
758 	uint64_t lim, ign;
759 	int i, insert_idx, physmap_idx;
760 
761 	physmap_idx = *physmap_idxp;
762 
763 	if (length == 0)
764 		return (1);
765 
766 	lim = 0x100000000;					/*  4G */
767 	if (pae_mode && above4g_allow)
768 		lim = above24g_allow ? -1ULL : 0x600000000;	/* 24G */
769 	if (base >= lim) {
770 		printf("%uK of memory above %uGB ignored, pae %d "
771 		    "above4g_allow %d above24g_allow %d\n",
772 		    (u_int)(length / 1024), (u_int)(lim >> 30), pae_mode,
773 		    above4g_allow, above24g_allow);
774 		return (1);
775 	}
776 	if (base + length >= lim) {
777 		ign = base + length - lim;
778 		length -= ign;
779 		printf("%uK of memory above %uGB ignored, pae %d "
780 		    "above4g_allow %d above24g_allow %d\n",
781 		    (u_int)(ign / 1024), (u_int)(lim >> 30), pae_mode,
782 		    above4g_allow, above24g_allow);
783 	}
784 
785 	/*
786 	 * Find insertion point while checking for overlap.  Start off by
787 	 * assuming the new entry will be added to the end.
788 	 */
789 	insert_idx = physmap_idx + 2;
790 	for (i = 0; i <= physmap_idx; i += 2) {
791 		if (base < physmap[i + 1]) {
792 			if (base + length <= physmap[i]) {
793 				insert_idx = i;
794 				break;
795 			}
796 			if (boothowto & RB_VERBOSE)
797 				printf(
798 		    "Overlapping memory regions, ignoring second region\n");
799 			return (1);
800 		}
801 	}
802 
803 	/* See if we can prepend to the next entry. */
804 	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
805 		physmap[insert_idx] = base;
806 		return (1);
807 	}
808 
809 	/* See if we can append to the previous entry. */
810 	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
811 		physmap[insert_idx - 1] += length;
812 		return (1);
813 	}
814 
815 	physmap_idx += 2;
816 	*physmap_idxp = physmap_idx;
817 	if (physmap_idx == PHYS_AVAIL_ENTRIES) {
818 		printf(
819 		"Too many segments in the physical address map, giving up\n");
820 		return (0);
821 	}
822 
823 	/*
824 	 * Move the last 'N' entries down to make room for the new
825 	 * entry if needed.
826 	 */
827 	for (i = physmap_idx; i > insert_idx; i -= 2) {
828 		physmap[i] = physmap[i - 2];
829 		physmap[i + 1] = physmap[i - 1];
830 	}
831 
832 	/* Insert the new entry. */
833 	physmap[insert_idx] = base;
834 	physmap[insert_idx + 1] = base + length;
835 	return (1);
836 }
837 
838 static int
839 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
840 {
841 	if (boothowto & RB_VERBOSE)
842 		printf("SMAP type=%02x base=%016llx len=%016llx\n",
843 		    smap->type, smap->base, smap->length);
844 
845 	if (smap->type != SMAP_TYPE_MEMORY)
846 		return (1);
847 
848 	return (add_physmap_entry(smap->base, smap->length, physmap,
849 	    physmap_idxp));
850 }
851 
852 static void
853 add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap,
854     int *physmap_idxp)
855 {
856 	struct bios_smap *smap, *smapend;
857 	u_int32_t smapsize;
858 	/*
859 	 * Memory map from INT 15:E820.
860 	 *
861 	 * subr_module.c says:
862 	 * "Consumer may safely assume that size value precedes data."
863 	 * ie: an int32_t immediately precedes SMAP.
864 	 */
865 	smapsize = *((u_int32_t *)smapbase - 1);
866 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
867 
868 	for (smap = smapbase; smap < smapend; smap++)
869 		if (!add_smap_entry(smap, physmap, physmap_idxp))
870 			break;
871 }
872 
873 static void
874 basemem_setup(void)
875 {
876 
877 	if (basemem > 640) {
878 		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
879 			basemem);
880 		basemem = 640;
881 	}
882 
883 	pmap_basemem_setup(basemem);
884 }
885 
886 /*
887  * Populate the (physmap) array with base/bound pairs describing the
888  * available physical memory in the system, then test this memory and
889  * build the phys_avail array describing the actually-available memory.
890  *
891  * If we cannot accurately determine the physical memory map, then use
892  * value from the 0xE801 call, and failing that, the RTC.
893  *
894  * Total memory size may be set by the kernel environment variable
895  * hw.physmem or the compile-time define MAXMEM.
896  *
897  * XXX first should be vm_paddr_t.
898  */
899 static void
900 getmemsize(int first)
901 {
902 	int has_smap, off, physmap_idx, pa_indx, da_indx;
903 	u_long memtest;
904 	vm_paddr_t physmap[PHYS_AVAIL_ENTRIES];
905 	quad_t dcons_addr, dcons_size, physmem_tunable;
906 	int hasbrokenint12, i, res __diagused;
907 	u_int extmem;
908 	struct vm86frame vmf;
909 	struct vm86context vmc;
910 	vm_paddr_t pa;
911 	struct bios_smap *smap, *smapbase;
912 	caddr_t kmdp;
913 
914 	has_smap = 0;
915 	bzero(&vmf, sizeof(vmf));
916 	bzero(physmap, sizeof(physmap));
917 	basemem = 0;
918 
919 	/*
920 	 * Tell the physical memory allocator about pages used to store
921 	 * the kernel and preloaded data.  See kmem_bootstrap_free().
922 	 */
923 	vm_phys_early_add_seg((vm_paddr_t)KERNLOAD, trunc_page(first));
924 
925 	TUNABLE_INT_FETCH("hw.above4g_allow", &above4g_allow);
926 	TUNABLE_INT_FETCH("hw.above24g_allow", &above24g_allow);
927 
928 	/*
929 	 * Check if the loader supplied an SMAP memory map.  If so,
930 	 * use that and do not make any VM86 calls.
931 	 */
932 	physmap_idx = 0;
933 	kmdp = preload_search_by_type("elf kernel");
934 	if (kmdp == NULL)
935 		kmdp = preload_search_by_type("elf32 kernel");
936 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
937 	    MODINFO_METADATA | MODINFOMD_SMAP);
938 	if (smapbase != NULL) {
939 		add_smap_entries(smapbase, physmap, &physmap_idx);
940 		has_smap = 1;
941 		goto have_smap;
942 	}
943 
944 	/*
945 	 * Some newer BIOSes have a broken INT 12H implementation
946 	 * which causes a kernel panic immediately.  In this case, we
947 	 * need use the SMAP to determine the base memory size.
948 	 */
949 	hasbrokenint12 = 0;
950 	TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
951 	if (hasbrokenint12 == 0) {
952 		/* Use INT12 to determine base memory size. */
953 		vm86_intcall(0x12, &vmf);
954 		basemem = vmf.vmf_ax;
955 		basemem_setup();
956 	}
957 
958 	/*
959 	 * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
960 	 * the kernel page table so we can use it as a buffer.  The
961 	 * kernel will unmap this page later.
962 	 */
963 	vmc.npages = 0;
964 	smap = (void *)vm86_addpage(&vmc, 1, PMAP_MAP_LOW + ptoa(1));
965 	res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
966 	KASSERT(res != 0, ("vm86_getptr() failed: address not found"));
967 
968 	vmf.vmf_ebx = 0;
969 	do {
970 		vmf.vmf_eax = 0xE820;
971 		vmf.vmf_edx = SMAP_SIG;
972 		vmf.vmf_ecx = sizeof(struct bios_smap);
973 		i = vm86_datacall(0x15, &vmf, &vmc);
974 		if (i || vmf.vmf_eax != SMAP_SIG)
975 			break;
976 		has_smap = 1;
977 		if (!add_smap_entry(smap, physmap, &physmap_idx))
978 			break;
979 	} while (vmf.vmf_ebx != 0);
980 
981 have_smap:
982 	/*
983 	 * If we didn't fetch the "base memory" size from INT12,
984 	 * figure it out from the SMAP (or just guess).
985 	 */
986 	if (basemem == 0) {
987 		for (i = 0; i <= physmap_idx; i += 2) {
988 			if (physmap[i] == 0x00000000) {
989 				basemem = physmap[i + 1] / 1024;
990 				break;
991 			}
992 		}
993 
994 		/* XXX: If we couldn't find basemem from SMAP, just guess. */
995 		if (basemem == 0)
996 			basemem = 640;
997 		basemem_setup();
998 	}
999 
1000 	if (physmap[1] != 0)
1001 		goto physmap_done;
1002 
1003 	/*
1004 	 * If we failed to find an SMAP, figure out the extended
1005 	 * memory size.  We will then build a simple memory map with
1006 	 * two segments, one for "base memory" and the second for
1007 	 * "extended memory".  Note that "extended memory" starts at a
1008 	 * physical address of 1MB and that both basemem and extmem
1009 	 * are in units of 1KB.
1010 	 *
1011 	 * First, try to fetch the extended memory size via INT 15:E801.
1012 	 */
1013 	vmf.vmf_ax = 0xE801;
1014 	if (vm86_intcall(0x15, &vmf) == 0) {
1015 		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1016 	} else {
1017 		/*
1018 		 * If INT15:E801 fails, this is our last ditch effort
1019 		 * to determine the extended memory size.  Currently
1020 		 * we prefer the RTC value over INT15:88.
1021 		 */
1022 #if 0
1023 		vmf.vmf_ah = 0x88;
1024 		vm86_intcall(0x15, &vmf);
1025 		extmem = vmf.vmf_ax;
1026 #else
1027 		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1028 #endif
1029 	}
1030 
1031 	/*
1032 	 * Special hack for chipsets that still remap the 384k hole when
1033 	 * there's 16MB of memory - this really confuses people that
1034 	 * are trying to use bus mastering ISA controllers with the
1035 	 * "16MB limit"; they only have 16MB, but the remapping puts
1036 	 * them beyond the limit.
1037 	 *
1038 	 * If extended memory is between 15-16MB (16-17MB phys address range),
1039 	 *	chop it to 15MB.
1040 	 */
1041 	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1042 		extmem = 15 * 1024;
1043 
1044 	physmap[0] = 0;
1045 	physmap[1] = basemem * 1024;
1046 	physmap_idx = 2;
1047 	physmap[physmap_idx] = 0x100000;
1048 	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1049 
1050 physmap_done:
1051 	/*
1052 	 * Now, physmap contains a map of physical memory.
1053 	 */
1054 
1055 #ifdef SMP
1056 	/* make hole for AP bootstrap code */
1057 	alloc_ap_trampoline(physmap, &physmap_idx);
1058 #endif
1059 
1060 	/*
1061 	 * Maxmem isn't the "maximum memory", it's one larger than the
1062 	 * highest page of the physical address space.  It should be
1063 	 * called something like "Maxphyspage".  We may adjust this
1064 	 * based on ``hw.physmem'' and the results of the memory test.
1065 	 *
1066 	 * This is especially confusing when it is much larger than the
1067 	 * memory size and is displayed as "realmem".
1068 	 */
1069 	Maxmem = atop(physmap[physmap_idx + 1]);
1070 
1071 #ifdef MAXMEM
1072 	Maxmem = MAXMEM / 4;
1073 #endif
1074 
1075 	if (TUNABLE_QUAD_FETCH("hw.physmem", &physmem_tunable))
1076 		Maxmem = atop(physmem_tunable);
1077 
1078 	/*
1079 	 * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
1080 	 * the amount of memory in the system.
1081 	 */
1082 	if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
1083 		Maxmem = atop(physmap[physmap_idx + 1]);
1084 
1085 	/*
1086 	 * The boot memory test is disabled by default, as it takes a
1087 	 * significant amount of time on large-memory systems, and is
1088 	 * unfriendly to virtual machines as it unnecessarily touches all
1089 	 * pages.
1090 	 *
1091 	 * A general name is used as the code may be extended to support
1092 	 * additional tests beyond the current "page present" test.
1093 	 */
1094 	memtest = 0;
1095 	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1096 
1097 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1098 	    (boothowto & RB_VERBOSE))
1099 		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1100 
1101 	/*
1102 	 * If Maxmem has been increased beyond what the system has detected,
1103 	 * extend the last memory segment to the new limit.
1104 	 */
1105 	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1106 		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
1107 
1108 	/* call pmap initialization to make new kernel address space */
1109 	pmap_bootstrap(first);
1110 
1111 	/*
1112 	 * Size up each available chunk of physical memory.
1113 	 */
1114 	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1115 	pa_indx = 0;
1116 	da_indx = 1;
1117 	phys_avail[pa_indx++] = physmap[0];
1118 	phys_avail[pa_indx] = physmap[0];
1119 	dump_avail[da_indx] = physmap[0];
1120 
1121 	/*
1122 	 * Get dcons buffer address
1123 	 */
1124 	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1125 	    getenv_quad("dcons.size", &dcons_size) == 0)
1126 		dcons_addr = 0;
1127 
1128 	/*
1129 	 * physmap is in bytes, so when converting to page boundaries,
1130 	 * round up the start address and round down the end address.
1131 	 */
1132 	for (i = 0; i <= physmap_idx; i += 2) {
1133 		vm_paddr_t end;
1134 
1135 		end = ptoa((vm_paddr_t)Maxmem);
1136 		if (physmap[i + 1] < end)
1137 			end = trunc_page(physmap[i + 1]);
1138 		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1139 			int tmp, page_bad, full;
1140 			int *ptr;
1141 
1142 			full = FALSE;
1143 			/*
1144 			 * block out kernel memory as not available.
1145 			 */
1146 			if (pa >= KERNLOAD && pa < first)
1147 				goto do_dump_avail;
1148 
1149 			/*
1150 			 * block out dcons buffer
1151 			 */
1152 			if (dcons_addr > 0
1153 			    && pa >= trunc_page(dcons_addr)
1154 			    && pa < dcons_addr + dcons_size)
1155 				goto do_dump_avail;
1156 
1157 			page_bad = FALSE;
1158 			if (memtest == 0)
1159 				goto skip_memtest;
1160 
1161 			/*
1162 			 * map page into kernel: valid, read/write,non-cacheable
1163 			 */
1164 			ptr = (int *)pmap_cmap3(pa, PG_V | PG_RW | PG_N);
1165 
1166 			tmp = *(int *)ptr;
1167 			/*
1168 			 * Test for alternating 1's and 0's
1169 			 */
1170 			*(volatile int *)ptr = 0xaaaaaaaa;
1171 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1172 				page_bad = TRUE;
1173 			/*
1174 			 * Test for alternating 0's and 1's
1175 			 */
1176 			*(volatile int *)ptr = 0x55555555;
1177 			if (*(volatile int *)ptr != 0x55555555)
1178 				page_bad = TRUE;
1179 			/*
1180 			 * Test for all 1's
1181 			 */
1182 			*(volatile int *)ptr = 0xffffffff;
1183 			if (*(volatile int *)ptr != 0xffffffff)
1184 				page_bad = TRUE;
1185 			/*
1186 			 * Test for all 0's
1187 			 */
1188 			*(volatile int *)ptr = 0x0;
1189 			if (*(volatile int *)ptr != 0x0)
1190 				page_bad = TRUE;
1191 			/*
1192 			 * Restore original value.
1193 			 */
1194 			*(int *)ptr = tmp;
1195 
1196 skip_memtest:
1197 			/*
1198 			 * Adjust array of valid/good pages.
1199 			 */
1200 			if (page_bad == TRUE)
1201 				continue;
1202 			/*
1203 			 * If this good page is a continuation of the
1204 			 * previous set of good pages, then just increase
1205 			 * the end pointer. Otherwise start a new chunk.
1206 			 * Note that "end" points one higher than end,
1207 			 * making the range >= start and < end.
1208 			 * If we're also doing a speculative memory
1209 			 * test and we at or past the end, bump up Maxmem
1210 			 * so that we keep going. The first bad page
1211 			 * will terminate the loop.
1212 			 */
1213 			if (phys_avail[pa_indx] == pa) {
1214 				phys_avail[pa_indx] += PAGE_SIZE;
1215 			} else {
1216 				pa_indx++;
1217 				if (pa_indx == PHYS_AVAIL_ENTRIES) {
1218 					printf(
1219 		"Too many holes in the physical address space, giving up\n");
1220 					pa_indx--;
1221 					full = TRUE;
1222 					goto do_dump_avail;
1223 				}
1224 				phys_avail[pa_indx++] = pa;	/* start */
1225 				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1226 			}
1227 			physmem++;
1228 do_dump_avail:
1229 			if (dump_avail[da_indx] == pa) {
1230 				dump_avail[da_indx] += PAGE_SIZE;
1231 			} else {
1232 				da_indx++;
1233 				if (da_indx == PHYS_AVAIL_ENTRIES) {
1234 					da_indx--;
1235 					goto do_next;
1236 				}
1237 				dump_avail[da_indx++] = pa;	/* start */
1238 				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1239 			}
1240 do_next:
1241 			if (full)
1242 				break;
1243 		}
1244 	}
1245 	pmap_cmap3(0, 0);
1246 
1247 	/*
1248 	 * XXX
1249 	 * The last chunk must contain at least one page plus the message
1250 	 * buffer to avoid complicating other code (message buffer address
1251 	 * calculation, etc.).
1252 	 */
1253 	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1254 	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1255 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1256 		phys_avail[pa_indx--] = 0;
1257 		phys_avail[pa_indx--] = 0;
1258 	}
1259 
1260 	Maxmem = atop(phys_avail[pa_indx]);
1261 
1262 	/* Trim off space for the message buffer. */
1263 	phys_avail[pa_indx] -= round_page(msgbufsize);
1264 
1265 	/* Map the message buffer. */
1266 	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
1267 		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
1268 		    off);
1269 }
1270 
1271 static void
1272 i386_kdb_init(void)
1273 {
1274 #ifdef DDB
1275 	db_fetch_ksymtab(bootinfo.bi_symtab, bootinfo.bi_esymtab, 0);
1276 #endif
1277 	kdb_init();
1278 #ifdef KDB
1279 	if (boothowto & RB_KDB)
1280 		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
1281 #endif
1282 }
1283 
1284 static void
1285 fixup_idt(void)
1286 {
1287 	struct gate_descriptor *ip;
1288 	uintptr_t off;
1289 	int x;
1290 
1291 	for (x = 0; x < NIDT; x++) {
1292 		ip = &idt[x];
1293 		if (ip->gd_type != SDT_SYS386IGT &&
1294 		    ip->gd_type != SDT_SYS386TGT)
1295 			continue;
1296 		off = ip->gd_looffset + (((u_int)ip->gd_hioffset) << 16);
1297 		KASSERT(off >= (uintptr_t)start_exceptions &&
1298 		    off < (uintptr_t)end_exceptions,
1299 		    ("IDT[%d] type %d off %#x", x, ip->gd_type, off));
1300 		off += setidt_disp;
1301 		MPASS(off >= PMAP_TRM_MIN_ADDRESS &&
1302 		    off < PMAP_TRM_MAX_ADDRESS);
1303 		ip->gd_looffset = off;
1304 		ip->gd_hioffset = off >> 16;
1305 	}
1306 }
1307 
1308 static void
1309 i386_setidt1(void)
1310 {
1311 	int x;
1312 
1313 	/* exceptions */
1314 	for (x = 0; x < NIDT; x++)
1315 		setidt(x, &IDTVEC(rsvd), SDT_SYS386IGT, SEL_KPL,
1316 		    GSEL(GCODE_SEL, SEL_KPL));
1317 	setidt(IDT_DE, &IDTVEC(div), SDT_SYS386IGT, SEL_KPL,
1318 	    GSEL(GCODE_SEL, SEL_KPL));
1319 	setidt(IDT_DB, &IDTVEC(dbg), SDT_SYS386IGT, SEL_KPL,
1320 	    GSEL(GCODE_SEL, SEL_KPL));
1321 	setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYS386IGT, SEL_KPL,
1322 	    GSEL(GCODE_SEL, SEL_KPL));
1323 	setidt(IDT_BP, &IDTVEC(bpt), SDT_SYS386IGT, SEL_UPL,
1324 	    GSEL(GCODE_SEL, SEL_KPL));
1325 	setidt(IDT_OF, &IDTVEC(ofl), SDT_SYS386IGT, SEL_UPL,
1326 	    GSEL(GCODE_SEL, SEL_KPL));
1327 	setidt(IDT_BR, &IDTVEC(bnd), SDT_SYS386IGT, SEL_KPL,
1328 	    GSEL(GCODE_SEL, SEL_KPL));
1329 	setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL,
1330 	    GSEL(GCODE_SEL, SEL_KPL));
1331 	setidt(IDT_NM, &IDTVEC(dna), SDT_SYS386IGT, SEL_KPL,
1332 	    GSEL(GCODE_SEL, SEL_KPL));
1333 	setidt(IDT_DF, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL,
1334 	    SEL_KPL));
1335 	setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYS386IGT,
1336 	    SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1337 	setidt(IDT_TS, &IDTVEC(tss), SDT_SYS386IGT, SEL_KPL,
1338 	    GSEL(GCODE_SEL, SEL_KPL));
1339 	setidt(IDT_NP, &IDTVEC(missing), SDT_SYS386IGT, SEL_KPL,
1340 	    GSEL(GCODE_SEL, SEL_KPL));
1341 	setidt(IDT_SS, &IDTVEC(stk), SDT_SYS386IGT, SEL_KPL,
1342 	    GSEL(GCODE_SEL, SEL_KPL));
1343 	setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL,
1344 	    GSEL(GCODE_SEL, SEL_KPL));
1345 	setidt(IDT_PF, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL,
1346 	    GSEL(GCODE_SEL, SEL_KPL));
1347 	setidt(IDT_MF, &IDTVEC(fpu), SDT_SYS386IGT, SEL_KPL,
1348 	    GSEL(GCODE_SEL, SEL_KPL));
1349 	setidt(IDT_AC, &IDTVEC(align), SDT_SYS386IGT, SEL_KPL,
1350 	    GSEL(GCODE_SEL, SEL_KPL));
1351 	setidt(IDT_MC, &IDTVEC(mchk), SDT_SYS386IGT, SEL_KPL,
1352 	    GSEL(GCODE_SEL, SEL_KPL));
1353 	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386IGT, SEL_KPL,
1354 	    GSEL(GCODE_SEL, SEL_KPL));
1355 	setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall),
1356 	    SDT_SYS386IGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1357 #ifdef KDTRACE_HOOKS
1358 	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret),
1359 	    SDT_SYS386IGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1360 #endif
1361 #ifdef XENHVM
1362 	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall),
1363 	    SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1364 #endif
1365 }
1366 
1367 static void
1368 i386_setidt2(void)
1369 {
1370 
1371 	setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL,
1372 	    GSEL(GCODE_SEL, SEL_KPL));
1373 	setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL,
1374 	    GSEL(GCODE_SEL, SEL_KPL));
1375 }
1376 
1377 #if defined(DEV_ISA) && !defined(DEV_ATPIC)
1378 static void
1379 i386_setidt3(void)
1380 {
1381 
1382 	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint),
1383 	    SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1384 	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint),
1385 	    SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1386 }
1387 #endif
1388 
1389 register_t
1390 init386(int first)
1391 {
1392 	struct region_descriptor r_gdt, r_idt;	/* table descriptors */
1393 	int gsel_tss, metadata_missing, x, pa;
1394 	struct pcpu *pc;
1395 	struct xstate_hdr *xhdr;
1396 	caddr_t kmdp;
1397 	vm_offset_t addend;
1398 	size_t ucode_len;
1399 	int late_console;
1400 
1401 	thread0.td_kstack = proc0kstack;
1402 	thread0.td_kstack_pages = TD0_KSTACK_PAGES;
1403 
1404 	/*
1405  	 * This may be done better later if it gets more high level
1406  	 * components in it. If so just link td->td_proc here.
1407 	 */
1408 	proc_linkup0(&proc0, &thread0);
1409 
1410 	if (bootinfo.bi_modulep) {
1411 		metadata_missing = 0;
1412 		addend = (vm_paddr_t)bootinfo.bi_modulep < KERNBASE ?
1413 		    PMAP_MAP_LOW : 0;
1414 		preload_metadata = (caddr_t)bootinfo.bi_modulep + addend;
1415 		preload_bootstrap_relocate(addend);
1416 	} else {
1417 		metadata_missing = 1;
1418 	}
1419 
1420 	if (bootinfo.bi_envp != 0) {
1421 		addend = (vm_paddr_t)bootinfo.bi_envp < KERNBASE ?
1422 		    PMAP_MAP_LOW : 0;
1423 		init_static_kenv((char *)bootinfo.bi_envp + addend, 0);
1424 	} else {
1425 		init_static_kenv(NULL, 0);
1426 	}
1427 
1428 	/*
1429 	 * Re-evaluate CPU features if we loaded a microcode update.
1430 	 */
1431 	ucode_len = ucode_load_bsp(first);
1432 	if (ucode_len != 0) {
1433 		identify_cpu();
1434 		first = roundup2(first + ucode_len, PAGE_SIZE);
1435 	}
1436 
1437 	identify_hypervisor();
1438 
1439 	/* Init basic tunables, hz etc */
1440 	init_param1();
1441 
1442 	/* Set bootmethod to BIOS: it's the only supported on i386. */
1443 	strlcpy(bootmethod, "BIOS", sizeof(bootmethod));
1444 
1445 	/*
1446 	 * Make gdt memory segments.  All segments cover the full 4GB
1447 	 * of address space and permissions are enforced at page level.
1448 	 */
1449 	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
1450 	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
1451 	gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
1452 	gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
1453 	gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
1454 	gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
1455 
1456 	pc = &__pcpu[0];
1457 	gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
1458 	gdt_segs[GPRIV_SEL].ssd_base = (int)pc;
1459 	gdt_segs[GPROC0_SEL].ssd_base = (int)&common_tss0;
1460 
1461 	for (x = 0; x < NGDT; x++)
1462 		ssdtosd(&gdt_segs[x], &gdt0[x].sd);
1463 
1464 	r_gdt.rd_limit = NGDT * sizeof(gdt0[0]) - 1;
1465 	r_gdt.rd_base =  (int)gdt0;
1466 	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
1467 	lgdt(&r_gdt);
1468 
1469 	pcpu_init(pc, 0, sizeof(struct pcpu));
1470 	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
1471 		pmap_kenter(pa, pa);
1472 	dpcpu_init((void *)first, 0);
1473 	first += DPCPU_SIZE;
1474 	PCPU_SET(prvspace, pc);
1475 	PCPU_SET(curthread, &thread0);
1476 	/* Non-late cninit() and printf() can be moved up to here. */
1477 
1478 	/*
1479 	 * Initialize mutexes.
1480 	 *
1481 	 * icu_lock: in order to allow an interrupt to occur in a critical
1482 	 * 	     section, to set pcpu->ipending (etc...) properly, we
1483 	 *	     must be able to get the icu lock, so it can't be
1484 	 *	     under witness.
1485 	 */
1486 	mutex_init();
1487 	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
1488 
1489 	i386_setidt1();
1490 
1491 	r_idt.rd_limit = sizeof(idt0) - 1;
1492 	r_idt.rd_base = (int) idt;
1493 	lidt(&r_idt);
1494 
1495 	finishidentcpu();	/* Final stage of CPU initialization */
1496 
1497 	/*
1498 	 * Initialize the clock before the console so that console
1499 	 * initialization can use DELAY().
1500 	 */
1501 	clock_init();
1502 
1503 	i386_setidt2();
1504 	pmap_set_nx();
1505 	initializecpu();	/* Initialize CPU registers */
1506 	initializecpucache();
1507 
1508 	/* pointer to selector slot for %fs/%gs */
1509 	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
1510 
1511 	/* Initialize the tss (except for the final esp0) early for vm86. */
1512 	common_tss0.tss_esp0 = thread0.td_kstack + thread0.td_kstack_pages *
1513 	    PAGE_SIZE - VM86_STACK_SPACE;
1514 	common_tss0.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
1515 	common_tss0.tss_ioopt = sizeof(struct i386tss) << 16;
1516 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1517 	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
1518 	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
1519 	ltr(gsel_tss);
1520 
1521 	/* Initialize the PIC early for vm86 calls. */
1522 #ifdef DEV_ISA
1523 #ifdef DEV_ATPIC
1524 	elcr_probe();
1525 	atpic_startup();
1526 #else
1527 	/* Reset and mask the atpics and leave them shut down. */
1528 	atpic_reset();
1529 
1530 	/*
1531 	 * Point the ICU spurious interrupt vectors at the APIC spurious
1532 	 * interrupt handler.
1533 	 */
1534 	i386_setidt3();
1535 #endif
1536 #endif
1537 
1538 	/*
1539 	 * The console and kdb should be initialized even earlier than here,
1540 	 * but some console drivers don't work until after getmemsize().
1541 	 * Default to late console initialization to support these drivers.
1542 	 * This loses mainly printf()s in getmemsize() and early debugging.
1543 	 */
1544 	late_console = 1;
1545 	TUNABLE_INT_FETCH("debug.late_console", &late_console);
1546 	if (!late_console) {
1547 		cninit();
1548 		i386_kdb_init();
1549 	}
1550 
1551 	kmdp = preload_search_by_type("elf kernel");
1552 	link_elf_ireloc(kmdp);
1553 
1554 	vm86_initialize();
1555 	getmemsize(first);
1556 	init_param2(physmem);
1557 
1558 	/* now running on new page tables, configured,and u/iom is accessible */
1559 
1560 	if (late_console)
1561 		cninit();
1562 
1563 	if (metadata_missing)
1564 		printf("WARNING: loader(8) metadata is missing!\n");
1565 
1566 	if (late_console)
1567 		i386_kdb_init();
1568 
1569 	msgbufinit(msgbufp, msgbufsize);
1570 	npxinit(true);
1571 	/*
1572 	 * Set up thread0 pcb after npxinit calculated pcb + fpu save
1573 	 * area size.  Zero out the extended state header in fpu save
1574 	 * area.
1575 	 */
1576 	thread0.td_pcb = get_pcb_td(&thread0);
1577 	thread0.td_pcb->pcb_save = get_pcb_user_save_td(&thread0);
1578 	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
1579 	if (use_xsave) {
1580 		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1581 		    1);
1582 		xhdr->xstate_bv = xsave_mask;
1583 	}
1584 	PCPU_SET(curpcb, thread0.td_pcb);
1585 	/* Move esp0 in the tss to its final place. */
1586 	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
1587 	common_tss0.tss_esp0 = (vm_offset_t)thread0.td_pcb - VM86_STACK_SPACE;
1588 	PCPU_SET(kesp0, common_tss0.tss_esp0);
1589 	gdt[GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;	/* clear busy bit */
1590 	ltr(gsel_tss);
1591 
1592 	/* transfer to user mode */
1593 
1594 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1595 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1596 
1597 	/* setup proc 0's pcb */
1598 	thread0.td_pcb->pcb_flags = 0;
1599 	thread0.td_pcb->pcb_cr3 = pmap_get_kcr3();
1600 	thread0.td_pcb->pcb_ext = 0;
1601 	thread0.td_frame = &proc0_tf;
1602 
1603 #ifdef FDT
1604 	x86_init_fdt();
1605 #endif
1606 
1607 	/* Location of kernel stack for locore */
1608 	return ((register_t)thread0.td_pcb);
1609 }
1610 
1611 static void
1612 machdep_init_trampoline(void)
1613 {
1614 	struct region_descriptor r_gdt, r_idt;
1615 	struct i386tss *tss;
1616 	char *copyout_buf, *trampoline, *tramp_stack_base;
1617 	int x;
1618 
1619 	gdt = pmap_trm_alloc(sizeof(union descriptor) * NGDT * mp_ncpus,
1620 	    M_NOWAIT | M_ZERO);
1621 	bcopy(gdt0, gdt, sizeof(union descriptor) * NGDT);
1622 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1623 	r_gdt.rd_base = (int)gdt;
1624 	lgdt(&r_gdt);
1625 
1626 	tss = pmap_trm_alloc(sizeof(struct i386tss) * mp_ncpus,
1627 	    M_NOWAIT | M_ZERO);
1628 	bcopy(&common_tss0, tss, sizeof(struct i386tss));
1629 	gdt[GPROC0_SEL].sd.sd_lobase = (int)tss;
1630 	gdt[GPROC0_SEL].sd.sd_hibase = (u_int)tss >> 24;
1631 	gdt[GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
1632 
1633 	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
1634 	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
1635 	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
1636 	PCPU_SET(common_tssp, tss);
1637 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1638 
1639 	trampoline = pmap_trm_alloc(end_exceptions - start_exceptions,
1640 	    M_NOWAIT);
1641 	bcopy(start_exceptions, trampoline, end_exceptions - start_exceptions);
1642 	tramp_stack_base = pmap_trm_alloc(TRAMP_STACK_SZ, M_NOWAIT);
1643 	PCPU_SET(trampstk, (uintptr_t)tramp_stack_base + TRAMP_STACK_SZ -
1644 	    VM86_STACK_SPACE);
1645 	tss[0].tss_esp0 = PCPU_GET(trampstk);
1646 
1647 	idt = pmap_trm_alloc(sizeof(idt0), M_NOWAIT | M_ZERO);
1648 	bcopy(idt0, idt, sizeof(idt0));
1649 
1650 	/* Re-initialize new IDT since the handlers were relocated */
1651 	setidt_disp = trampoline - start_exceptions;
1652 	fixup_idt();
1653 
1654 	r_idt.rd_limit = sizeof(struct gate_descriptor) * NIDT - 1;
1655 	r_idt.rd_base = (int)idt;
1656 	lidt(&r_idt);
1657 
1658 	/* dblfault TSS */
1659 	dblfault_tss = pmap_trm_alloc(sizeof(struct i386tss), M_NOWAIT | M_ZERO);
1660 	dblfault_stack = pmap_trm_alloc(PAGE_SIZE, M_NOWAIT);
1661 	dblfault_tss->tss_esp = dblfault_tss->tss_esp0 =
1662 	    dblfault_tss->tss_esp1 = dblfault_tss->tss_esp2 =
1663 	    (int)dblfault_stack + PAGE_SIZE;
1664 	dblfault_tss->tss_ss = dblfault_tss->tss_ss0 = dblfault_tss->tss_ss1 =
1665 	    dblfault_tss->tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1666 	dblfault_tss->tss_cr3 = pmap_get_kcr3();
1667 	dblfault_tss->tss_eip = (int)dblfault_handler;
1668 	dblfault_tss->tss_eflags = PSL_KERNEL;
1669 	dblfault_tss->tss_ds = dblfault_tss->tss_es =
1670 	    dblfault_tss->tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1671 	dblfault_tss->tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1672 	dblfault_tss->tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1673 	dblfault_tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1674 	gdt[GPANIC_SEL].sd.sd_lobase = (int)dblfault_tss;
1675 	gdt[GPANIC_SEL].sd.sd_hibase = (u_int)dblfault_tss >> 24;
1676 
1677 	/* make ldt memory segments */
1678 	ldt = pmap_trm_alloc(sizeof(union descriptor) * NLDT,
1679 	    M_NOWAIT | M_ZERO);
1680 	gdt[GLDT_SEL].sd.sd_lobase = (int)ldt;
1681 	gdt[GLDT_SEL].sd.sd_hibase = (u_int)ldt >> 24;
1682 	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
1683 	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
1684 	for (x = 0; x < nitems(ldt_segs); x++)
1685 		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1686 
1687 	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1688 	lldt(_default_ldt);
1689 	PCPU_SET(currentldt, _default_ldt);
1690 
1691 	copyout_buf = pmap_trm_alloc(TRAMP_COPYOUT_SZ, M_NOWAIT);
1692 	PCPU_SET(copyout_buf, copyout_buf);
1693 	copyout_init_tramp();
1694 }
1695 SYSINIT(vm_mem, SI_SUB_VM, SI_ORDER_SECOND, machdep_init_trampoline, NULL);
1696 
1697 #ifdef COMPAT_43
1698 static void
1699 i386_setup_lcall_gate(void)
1700 {
1701 	struct sysentvec *sv;
1702 	struct user_segment_descriptor desc;
1703 	u_int lcall_addr;
1704 
1705 	sv = &elf32_freebsd_sysvec;
1706 	lcall_addr = (uintptr_t)sv->sv_psstrings - sz_lcall_tramp;
1707 
1708 	bzero(&desc, sizeof(desc));
1709 	desc.sd_type = SDT_MEMERA;
1710 	desc.sd_dpl = SEL_UPL;
1711 	desc.sd_p = 1;
1712 	desc.sd_def32 = 1;
1713 	desc.sd_gran = 1;
1714 	desc.sd_lolimit = 0xffff;
1715 	desc.sd_hilimit = 0xf;
1716 	desc.sd_lobase = lcall_addr;
1717 	desc.sd_hibase = lcall_addr >> 24;
1718 	bcopy(&desc, &ldt[LSYS5CALLS_SEL], sizeof(desc));
1719 }
1720 SYSINIT(elf32, SI_SUB_EXEC, SI_ORDER_ANY, i386_setup_lcall_gate, NULL);
1721 #endif
1722 
1723 void
1724 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1725 {
1726 
1727 	pcpu->pc_acpi_id = 0xffffffff;
1728 }
1729 
1730 static int
1731 smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
1732 {
1733 	struct bios_smap *smapbase;
1734 	struct bios_smap_xattr smap;
1735 	caddr_t kmdp;
1736 	uint32_t *smapattr;
1737 	int count, error, i;
1738 
1739 	/* Retrieve the system memory map from the loader. */
1740 	kmdp = preload_search_by_type("elf kernel");
1741 	if (kmdp == NULL)
1742 		kmdp = preload_search_by_type("elf32 kernel");
1743 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1744 	    MODINFO_METADATA | MODINFOMD_SMAP);
1745 	if (smapbase == NULL)
1746 		return (0);
1747 	smapattr = (uint32_t *)preload_search_info(kmdp,
1748 	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
1749 	count = *((u_int32_t *)smapbase - 1) / sizeof(*smapbase);
1750 	error = 0;
1751 	for (i = 0; i < count; i++) {
1752 		smap.base = smapbase[i].base;
1753 		smap.length = smapbase[i].length;
1754 		smap.type = smapbase[i].type;
1755 		if (smapattr != NULL)
1756 			smap.xattr = smapattr[i];
1757 		else
1758 			smap.xattr = 0;
1759 		error = SYSCTL_OUT(req, &smap, sizeof(smap));
1760 	}
1761 	return (error);
1762 }
1763 SYSCTL_PROC(_machdep, OID_AUTO, smap,
1764     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
1765     smap_sysctl_handler, "S,bios_smap_xattr",
1766     "Raw BIOS SMAP data");
1767 
1768 void
1769 spinlock_enter(void)
1770 {
1771 	struct thread *td;
1772 	register_t flags;
1773 
1774 	td = curthread;
1775 	if (td->td_md.md_spinlock_count == 0) {
1776 		flags = intr_disable();
1777 		td->td_md.md_spinlock_count = 1;
1778 		td->td_md.md_saved_flags = flags;
1779 		critical_enter();
1780 	} else
1781 		td->td_md.md_spinlock_count++;
1782 }
1783 
1784 void
1785 spinlock_exit(void)
1786 {
1787 	struct thread *td;
1788 	register_t flags;
1789 
1790 	td = curthread;
1791 	flags = td->td_md.md_saved_flags;
1792 	td->td_md.md_spinlock_count--;
1793 	if (td->td_md.md_spinlock_count == 0) {
1794 		critical_exit();
1795 		intr_restore(flags);
1796 	}
1797 }
1798 
1799 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1800 static void f00f_hack(void *unused);
1801 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1802 
1803 static void
1804 f00f_hack(void *unused)
1805 {
1806 	struct region_descriptor r_idt;
1807 	struct gate_descriptor *new_idt;
1808 	vm_offset_t tmp;
1809 
1810 	if (!has_f00f_bug)
1811 		return;
1812 
1813 	printf("Intel Pentium detected, installing workaround for F00F bug\n");
1814 
1815 	tmp = (vm_offset_t)pmap_trm_alloc(PAGE_SIZE * 3, M_NOWAIT | M_ZERO);
1816 	if (tmp == 0)
1817 		panic("kmem_malloc returned 0");
1818 	tmp = round_page(tmp);
1819 
1820 	/* Put the problematic entry (#6) at the end of the lower page. */
1821 	new_idt = (struct gate_descriptor *)
1822 	    (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
1823 	bcopy(idt, new_idt, sizeof(idt0));
1824 	r_idt.rd_base = (u_int)new_idt;
1825 	r_idt.rd_limit = sizeof(idt0) - 1;
1826 	lidt(&r_idt);
1827 	/* SMP machines do not need the F00F hack. */
1828 	idt = new_idt;
1829 	pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
1830 }
1831 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
1832 
1833 /*
1834  * Construct a PCB from a trapframe. This is called from kdb_trap() where
1835  * we want to start a backtrace from the function that caused us to enter
1836  * the debugger. We have the context in the trapframe, but base the trace
1837  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1838  * enough for a backtrace.
1839  */
1840 void
1841 makectx(struct trapframe *tf, struct pcb *pcb)
1842 {
1843 
1844 	pcb->pcb_edi = tf->tf_edi;
1845 	pcb->pcb_esi = tf->tf_esi;
1846 	pcb->pcb_ebp = tf->tf_ebp;
1847 	pcb->pcb_ebx = tf->tf_ebx;
1848 	pcb->pcb_eip = tf->tf_eip;
1849 	pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
1850 	pcb->pcb_gs = rgs();
1851 }
1852 
1853 #ifdef KDB
1854 
1855 /*
1856  * Provide inb() and outb() as functions.  They are normally only available as
1857  * inline functions, thus cannot be called from the debugger.
1858  */
1859 
1860 /* silence compiler warnings */
1861 u_char inb_(u_short);
1862 void outb_(u_short, u_char);
1863 
1864 u_char
1865 inb_(u_short port)
1866 {
1867 	return inb(port);
1868 }
1869 
1870 void
1871 outb_(u_short port, u_char data)
1872 {
1873 	outb(port, data);
1874 }
1875 
1876 #endif /* KDB */
1877