xref: /freebsd/sys/i386/i386/machdep.c (revision c697fb7f)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2018 The FreeBSD Foundation
5  * Copyright (c) 1992 Terrence R. Lambert.
6  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * William Jolitz.
11  *
12  * Portions of this software were developed by A. Joseph Koshy under
13  * sponsorship from the FreeBSD Foundation and Google, Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include "opt_apic.h"
50 #include "opt_atpic.h"
51 #include "opt_cpu.h"
52 #include "opt_ddb.h"
53 #include "opt_inet.h"
54 #include "opt_isa.h"
55 #include "opt_kstack_pages.h"
56 #include "opt_maxmem.h"
57 #include "opt_mp_watchdog.h"
58 #include "opt_perfmon.h"
59 #include "opt_platform.h"
60 
61 #include <sys/param.h>
62 #include <sys/proc.h>
63 #include <sys/systm.h>
64 #include <sys/bio.h>
65 #include <sys/buf.h>
66 #include <sys/bus.h>
67 #include <sys/callout.h>
68 #include <sys/cons.h>
69 #include <sys/cpu.h>
70 #include <sys/eventhandler.h>
71 #include <sys/exec.h>
72 #include <sys/imgact.h>
73 #include <sys/kdb.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/memrange.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/pcpu.h>
83 #include <sys/ptrace.h>
84 #include <sys/reboot.h>
85 #include <sys/rwlock.h>
86 #include <sys/sched.h>
87 #include <sys/signalvar.h>
88 #include <sys/smp.h>
89 #include <sys/syscallsubr.h>
90 #include <sys/sysctl.h>
91 #include <sys/sysent.h>
92 #include <sys/sysproto.h>
93 #include <sys/ucontext.h>
94 #include <sys/vmmeter.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_kern.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_map.h>
101 #include <vm/vm_object.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_param.h>
104 #include <vm/vm_phys.h>
105 
106 #ifdef DDB
107 #ifndef KDB
108 #error KDB must be enabled in order for DDB to work!
109 #endif
110 #include <ddb/ddb.h>
111 #include <ddb/db_sym.h>
112 #endif
113 
114 #include <isa/rtc.h>
115 
116 #include <net/netisr.h>
117 
118 #include <machine/bootinfo.h>
119 #include <machine/clock.h>
120 #include <machine/cpu.h>
121 #include <machine/cputypes.h>
122 #include <machine/intr_machdep.h>
123 #include <x86/mca.h>
124 #include <machine/md_var.h>
125 #include <machine/metadata.h>
126 #include <machine/mp_watchdog.h>
127 #include <machine/pc/bios.h>
128 #include <machine/pcb.h>
129 #include <machine/pcb_ext.h>
130 #include <machine/proc.h>
131 #include <machine/reg.h>
132 #include <machine/sigframe.h>
133 #include <machine/specialreg.h>
134 #include <machine/sysarch.h>
135 #include <machine/trap.h>
136 #include <x86/ucode.h>
137 #include <machine/vm86.h>
138 #include <x86/init.h>
139 #ifdef PERFMON
140 #include <machine/perfmon.h>
141 #endif
142 #ifdef SMP
143 #include <machine/smp.h>
144 #endif
145 #ifdef FDT
146 #include <x86/fdt.h>
147 #endif
148 
149 #ifdef DEV_APIC
150 #include <x86/apicvar.h>
151 #endif
152 
153 #ifdef DEV_ISA
154 #include <x86/isa/icu.h>
155 #endif
156 
157 /* Sanity check for __curthread() */
158 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
159 
160 register_t init386(int first);
161 void dblfault_handler(void);
162 void identify_cpu(void);
163 
164 static void cpu_startup(void *);
165 static void fpstate_drop(struct thread *td);
166 static void get_fpcontext(struct thread *td, mcontext_t *mcp,
167     char *xfpusave, size_t xfpusave_len);
168 static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
169     char *xfpustate, size_t xfpustate_len);
170 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
171 
172 /* Intel ICH registers */
173 #define ICH_PMBASE	0x400
174 #define ICH_SMI_EN	ICH_PMBASE + 0x30
175 
176 int	_udatasel, _ucodesel;
177 u_int	basemem;
178 static int above4g_allow = 1;
179 static int above24g_allow = 0;
180 
181 int cold = 1;
182 
183 #ifdef COMPAT_43
184 static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
185 #endif
186 #ifdef COMPAT_FREEBSD4
187 static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
188 #endif
189 
190 long Maxmem = 0;
191 long realmem = 0;
192 
193 #ifdef PAE
194 FEATURE(pae, "Physical Address Extensions");
195 #endif
196 
197 struct kva_md_info kmi;
198 
199 static struct trapframe proc0_tf;
200 struct pcpu __pcpu[MAXCPU];
201 
202 struct mtx icu_lock;
203 
204 struct mem_range_softc mem_range_softc;
205 
206 extern char start_exceptions[], end_exceptions[];
207 
208 extern struct sysentvec elf32_freebsd_sysvec;
209 
210 /* Default init_ops implementation. */
211 struct init_ops init_ops = {
212 	.early_clock_source_init =	i8254_init,
213 	.early_delay =			i8254_delay,
214 #ifdef DEV_APIC
215 	.msi_init =			msi_init,
216 #endif
217 };
218 
219 static void
220 cpu_startup(dummy)
221 	void *dummy;
222 {
223 	uintmax_t memsize;
224 	char *sysenv;
225 
226 	/*
227 	 * On MacBooks, we need to disallow the legacy USB circuit to
228 	 * generate an SMI# because this can cause several problems,
229 	 * namely: incorrect CPU frequency detection and failure to
230 	 * start the APs.
231 	 * We do this by disabling a bit in the SMI_EN (SMI Control and
232 	 * Enable register) of the Intel ICH LPC Interface Bridge.
233 	 */
234 	sysenv = kern_getenv("smbios.system.product");
235 	if (sysenv != NULL) {
236 		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
237 		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
238 		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
239 		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
240 		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
241 		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
242 		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
243 		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
244 			if (bootverbose)
245 				printf("Disabling LEGACY_USB_EN bit on "
246 				    "Intel ICH.\n");
247 			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
248 		}
249 		freeenv(sysenv);
250 	}
251 
252 	/*
253 	 * Good {morning,afternoon,evening,night}.
254 	 */
255 	startrtclock();
256 	printcpuinfo();
257 	panicifcpuunsupported();
258 #ifdef PERFMON
259 	perfmon_init();
260 #endif
261 
262 	/*
263 	 * Display physical memory if SMBIOS reports reasonable amount.
264 	 */
265 	memsize = 0;
266 	sysenv = kern_getenv("smbios.memory.enabled");
267 	if (sysenv != NULL) {
268 		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
269 		freeenv(sysenv);
270 	}
271 	if (memsize < ptoa((uintmax_t)vm_free_count()))
272 		memsize = ptoa((uintmax_t)Maxmem);
273 	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
274 	realmem = atop(memsize);
275 
276 	/*
277 	 * Display any holes after the first chunk of extended memory.
278 	 */
279 	if (bootverbose) {
280 		int indx;
281 
282 		printf("Physical memory chunk(s):\n");
283 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
284 			vm_paddr_t size;
285 
286 			size = phys_avail[indx + 1] - phys_avail[indx];
287 			printf(
288 			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
289 			    (uintmax_t)phys_avail[indx],
290 			    (uintmax_t)phys_avail[indx + 1] - 1,
291 			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
292 		}
293 	}
294 
295 	vm_ksubmap_init(&kmi);
296 
297 	printf("avail memory = %ju (%ju MB)\n",
298 	    ptoa((uintmax_t)vm_free_count()),
299 	    ptoa((uintmax_t)vm_free_count()) / 1048576);
300 
301 	/*
302 	 * Set up buffers, so they can be used to read disk labels.
303 	 */
304 	bufinit();
305 	vm_pager_bufferinit();
306 	cpu_setregs();
307 }
308 
309 /*
310  * Send an interrupt to process.
311  *
312  * Stack is set up to allow sigcode stored
313  * at top to call routine, followed by call
314  * to sigreturn routine below.  After sigreturn
315  * resets the signal mask, the stack, and the
316  * frame pointer, it returns to the user
317  * specified pc, psl.
318  */
319 #ifdef COMPAT_43
320 static void
321 osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
322 {
323 	struct osigframe sf, *fp;
324 	struct proc *p;
325 	struct thread *td;
326 	struct sigacts *psp;
327 	struct trapframe *regs;
328 	int sig;
329 	int oonstack;
330 
331 	td = curthread;
332 	p = td->td_proc;
333 	PROC_LOCK_ASSERT(p, MA_OWNED);
334 	sig = ksi->ksi_signo;
335 	psp = p->p_sigacts;
336 	mtx_assert(&psp->ps_mtx, MA_OWNED);
337 	regs = td->td_frame;
338 	oonstack = sigonstack(regs->tf_esp);
339 
340 	/* Allocate space for the signal handler context. */
341 	if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
342 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
343 		fp = (struct osigframe *)((uintptr_t)td->td_sigstk.ss_sp +
344 		    td->td_sigstk.ss_size - sizeof(struct osigframe));
345 #if defined(COMPAT_43)
346 		td->td_sigstk.ss_flags |= SS_ONSTACK;
347 #endif
348 	} else
349 		fp = (struct osigframe *)regs->tf_esp - 1;
350 
351 	/* Build the argument list for the signal handler. */
352 	sf.sf_signum = sig;
353 	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
354 	bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
355 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
356 		/* Signal handler installed with SA_SIGINFO. */
357 		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
358 		sf.sf_siginfo.si_signo = sig;
359 		sf.sf_siginfo.si_code = ksi->ksi_code;
360 		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
361 		sf.sf_addr = 0;
362 	} else {
363 		/* Old FreeBSD-style arguments. */
364 		sf.sf_arg2 = ksi->ksi_code;
365 		sf.sf_addr = (register_t)ksi->ksi_addr;
366 		sf.sf_ahu.sf_handler = catcher;
367 	}
368 	mtx_unlock(&psp->ps_mtx);
369 	PROC_UNLOCK(p);
370 
371 	/* Save most if not all of trap frame. */
372 	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
373 	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
374 	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
375 	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
376 	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
377 	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
378 	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
379 	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
380 	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
381 	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
382 	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
383 	sf.sf_siginfo.si_sc.sc_gs = rgs();
384 	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
385 
386 	/* Build the signal context to be used by osigreturn(). */
387 	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
388 	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
389 	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
390 	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
391 	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
392 	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
393 	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
394 	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
395 
396 	/*
397 	 * If we're a vm86 process, we want to save the segment registers.
398 	 * We also change eflags to be our emulated eflags, not the actual
399 	 * eflags.
400 	 */
401 	if (regs->tf_eflags & PSL_VM) {
402 		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
403 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
404 		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
405 
406 		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
407 		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
408 		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
409 		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
410 
411 		if (vm86->vm86_has_vme == 0)
412 			sf.sf_siginfo.si_sc.sc_ps =
413 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
414 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
415 
416 		/* See sendsig() for comments. */
417 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
418 	}
419 
420 	/*
421 	 * Copy the sigframe out to the user's stack.
422 	 */
423 	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
424 		PROC_LOCK(p);
425 		sigexit(td, SIGILL);
426 	}
427 
428 	regs->tf_esp = (int)fp;
429 	if (p->p_sysent->sv_sigcode_base != 0) {
430 		regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
431 		    szosigcode;
432 	} else {
433 		/* a.out sysentvec does not use shared page */
434 		regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
435 	}
436 	regs->tf_eflags &= ~(PSL_T | PSL_D);
437 	regs->tf_cs = _ucodesel;
438 	regs->tf_ds = _udatasel;
439 	regs->tf_es = _udatasel;
440 	regs->tf_fs = _udatasel;
441 	load_gs(_udatasel);
442 	regs->tf_ss = _udatasel;
443 	PROC_LOCK(p);
444 	mtx_lock(&psp->ps_mtx);
445 }
446 #endif /* COMPAT_43 */
447 
448 #ifdef COMPAT_FREEBSD4
449 static void
450 freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
451 {
452 	struct sigframe4 sf, *sfp;
453 	struct proc *p;
454 	struct thread *td;
455 	struct sigacts *psp;
456 	struct trapframe *regs;
457 	int sig;
458 	int oonstack;
459 
460 	td = curthread;
461 	p = td->td_proc;
462 	PROC_LOCK_ASSERT(p, MA_OWNED);
463 	sig = ksi->ksi_signo;
464 	psp = p->p_sigacts;
465 	mtx_assert(&psp->ps_mtx, MA_OWNED);
466 	regs = td->td_frame;
467 	oonstack = sigonstack(regs->tf_esp);
468 
469 	/* Save user context. */
470 	bzero(&sf, sizeof(sf));
471 	sf.sf_uc.uc_sigmask = *mask;
472 	sf.sf_uc.uc_stack = td->td_sigstk;
473 	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
474 	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
475 	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
476 	sf.sf_uc.uc_mcontext.mc_gs = rgs();
477 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
478 	bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
479 	    sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
480 	bzero(sf.sf_uc.uc_mcontext.__spare__,
481 	    sizeof(sf.sf_uc.uc_mcontext.__spare__));
482 	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
483 
484 	/* Allocate space for the signal handler context. */
485 	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
486 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
487 		sfp = (struct sigframe4 *)((uintptr_t)td->td_sigstk.ss_sp +
488 		    td->td_sigstk.ss_size - sizeof(struct sigframe4));
489 #if defined(COMPAT_43)
490 		td->td_sigstk.ss_flags |= SS_ONSTACK;
491 #endif
492 	} else
493 		sfp = (struct sigframe4 *)regs->tf_esp - 1;
494 
495 	/* Build the argument list for the signal handler. */
496 	sf.sf_signum = sig;
497 	sf.sf_ucontext = (register_t)&sfp->sf_uc;
498 	bzero(&sf.sf_si, sizeof(sf.sf_si));
499 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
500 		/* Signal handler installed with SA_SIGINFO. */
501 		sf.sf_siginfo = (register_t)&sfp->sf_si;
502 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
503 
504 		/* Fill in POSIX parts */
505 		sf.sf_si.si_signo = sig;
506 		sf.sf_si.si_code = ksi->ksi_code;
507 		sf.sf_si.si_addr = ksi->ksi_addr;
508 	} else {
509 		/* Old FreeBSD-style arguments. */
510 		sf.sf_siginfo = ksi->ksi_code;
511 		sf.sf_addr = (register_t)ksi->ksi_addr;
512 		sf.sf_ahu.sf_handler = catcher;
513 	}
514 	mtx_unlock(&psp->ps_mtx);
515 	PROC_UNLOCK(p);
516 
517 	/*
518 	 * If we're a vm86 process, we want to save the segment registers.
519 	 * We also change eflags to be our emulated eflags, not the actual
520 	 * eflags.
521 	 */
522 	if (regs->tf_eflags & PSL_VM) {
523 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
524 		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
525 
526 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
527 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
528 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
529 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
530 
531 		if (vm86->vm86_has_vme == 0)
532 			sf.sf_uc.uc_mcontext.mc_eflags =
533 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
534 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
535 
536 		/*
537 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
538 		 * syscalls made by the signal handler.  This just avoids
539 		 * wasting time for our lazy fixup of such faults.  PSL_NT
540 		 * does nothing in vm86 mode, but vm86 programs can set it
541 		 * almost legitimately in probes for old cpu types.
542 		 */
543 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
544 	}
545 
546 	/*
547 	 * Copy the sigframe out to the user's stack.
548 	 */
549 	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
550 		PROC_LOCK(p);
551 		sigexit(td, SIGILL);
552 	}
553 
554 	regs->tf_esp = (int)sfp;
555 	regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
556 	    szfreebsd4_sigcode;
557 	regs->tf_eflags &= ~(PSL_T | PSL_D);
558 	regs->tf_cs = _ucodesel;
559 	regs->tf_ds = _udatasel;
560 	regs->tf_es = _udatasel;
561 	regs->tf_fs = _udatasel;
562 	regs->tf_ss = _udatasel;
563 	PROC_LOCK(p);
564 	mtx_lock(&psp->ps_mtx);
565 }
566 #endif	/* COMPAT_FREEBSD4 */
567 
568 void
569 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
570 {
571 	struct sigframe sf, *sfp;
572 	struct proc *p;
573 	struct thread *td;
574 	struct sigacts *psp;
575 	char *sp;
576 	struct trapframe *regs;
577 	struct segment_descriptor *sdp;
578 	char *xfpusave;
579 	size_t xfpusave_len;
580 	int sig;
581 	int oonstack;
582 
583 	td = curthread;
584 	p = td->td_proc;
585 	PROC_LOCK_ASSERT(p, MA_OWNED);
586 	sig = ksi->ksi_signo;
587 	psp = p->p_sigacts;
588 	mtx_assert(&psp->ps_mtx, MA_OWNED);
589 #ifdef COMPAT_FREEBSD4
590 	if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
591 		freebsd4_sendsig(catcher, ksi, mask);
592 		return;
593 	}
594 #endif
595 #ifdef COMPAT_43
596 	if (SIGISMEMBER(psp->ps_osigset, sig)) {
597 		osendsig(catcher, ksi, mask);
598 		return;
599 	}
600 #endif
601 	regs = td->td_frame;
602 	oonstack = sigonstack(regs->tf_esp);
603 
604 	if (cpu_max_ext_state_size > sizeof(union savefpu) && use_xsave) {
605 		xfpusave_len = cpu_max_ext_state_size - sizeof(union savefpu);
606 		xfpusave = __builtin_alloca(xfpusave_len);
607 	} else {
608 		xfpusave_len = 0;
609 		xfpusave = NULL;
610 	}
611 
612 	/* Save user context. */
613 	bzero(&sf, sizeof(sf));
614 	sf.sf_uc.uc_sigmask = *mask;
615 	sf.sf_uc.uc_stack = td->td_sigstk;
616 	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
617 	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
618 	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
619 	sf.sf_uc.uc_mcontext.mc_gs = rgs();
620 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
621 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
622 	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
623 	fpstate_drop(td);
624 	/*
625 	 * Unconditionally fill the fsbase and gsbase into the mcontext.
626 	 */
627 	sdp = &td->td_pcb->pcb_fsd;
628 	sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
629 	    sdp->sd_lobase;
630 	sdp = &td->td_pcb->pcb_gsd;
631 	sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
632 	    sdp->sd_lobase;
633 	bzero(sf.sf_uc.uc_mcontext.mc_spare2,
634 	    sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
635 
636 	/* Allocate space for the signal handler context. */
637 	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
638 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
639 		sp = (char *)td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
640 #if defined(COMPAT_43)
641 		td->td_sigstk.ss_flags |= SS_ONSTACK;
642 #endif
643 	} else
644 		sp = (char *)regs->tf_esp - 128;
645 	if (xfpusave != NULL) {
646 		sp -= xfpusave_len;
647 		sp = (char *)((unsigned int)sp & ~0x3F);
648 		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
649 	}
650 	sp -= sizeof(struct sigframe);
651 
652 	/* Align to 16 bytes. */
653 	sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
654 
655 	/* Build the argument list for the signal handler. */
656 	sf.sf_signum = sig;
657 	sf.sf_ucontext = (register_t)&sfp->sf_uc;
658 	bzero(&sf.sf_si, sizeof(sf.sf_si));
659 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
660 		/* Signal handler installed with SA_SIGINFO. */
661 		sf.sf_siginfo = (register_t)&sfp->sf_si;
662 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
663 
664 		/* Fill in POSIX parts */
665 		sf.sf_si = ksi->ksi_info;
666 		sf.sf_si.si_signo = sig; /* maybe a translated signal */
667 	} else {
668 		/* Old FreeBSD-style arguments. */
669 		sf.sf_siginfo = ksi->ksi_code;
670 		sf.sf_addr = (register_t)ksi->ksi_addr;
671 		sf.sf_ahu.sf_handler = catcher;
672 	}
673 	mtx_unlock(&psp->ps_mtx);
674 	PROC_UNLOCK(p);
675 
676 	/*
677 	 * If we're a vm86 process, we want to save the segment registers.
678 	 * We also change eflags to be our emulated eflags, not the actual
679 	 * eflags.
680 	 */
681 	if (regs->tf_eflags & PSL_VM) {
682 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
683 		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
684 
685 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
686 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
687 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
688 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
689 
690 		if (vm86->vm86_has_vme == 0)
691 			sf.sf_uc.uc_mcontext.mc_eflags =
692 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
693 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
694 
695 		/*
696 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
697 		 * syscalls made by the signal handler.  This just avoids
698 		 * wasting time for our lazy fixup of such faults.  PSL_NT
699 		 * does nothing in vm86 mode, but vm86 programs can set it
700 		 * almost legitimately in probes for old cpu types.
701 		 */
702 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
703 	}
704 
705 	/*
706 	 * Copy the sigframe out to the user's stack.
707 	 */
708 	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
709 	    (xfpusave != NULL && copyout(xfpusave,
710 	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
711 	    != 0)) {
712 		PROC_LOCK(p);
713 		sigexit(td, SIGILL);
714 	}
715 
716 	regs->tf_esp = (int)sfp;
717 	regs->tf_eip = p->p_sysent->sv_sigcode_base;
718 	if (regs->tf_eip == 0)
719 		regs->tf_eip = p->p_sysent->sv_psstrings - szsigcode;
720 	regs->tf_eflags &= ~(PSL_T | PSL_D);
721 	regs->tf_cs = _ucodesel;
722 	regs->tf_ds = _udatasel;
723 	regs->tf_es = _udatasel;
724 	regs->tf_fs = _udatasel;
725 	regs->tf_ss = _udatasel;
726 	PROC_LOCK(p);
727 	mtx_lock(&psp->ps_mtx);
728 }
729 
730 /*
731  * System call to cleanup state after a signal
732  * has been taken.  Reset signal mask and
733  * stack state from context left by sendsig (above).
734  * Return to previous pc and psl as specified by
735  * context left by sendsig. Check carefully to
736  * make sure that the user has not modified the
737  * state to gain improper privileges.
738  *
739  * MPSAFE
740  */
741 #ifdef COMPAT_43
742 int
743 osigreturn(td, uap)
744 	struct thread *td;
745 	struct osigreturn_args /* {
746 		struct osigcontext *sigcntxp;
747 	} */ *uap;
748 {
749 	struct osigcontext sc;
750 	struct trapframe *regs;
751 	struct osigcontext *scp;
752 	int eflags, error;
753 	ksiginfo_t ksi;
754 
755 	regs = td->td_frame;
756 	error = copyin(uap->sigcntxp, &sc, sizeof(sc));
757 	if (error != 0)
758 		return (error);
759 	scp = &sc;
760 	eflags = scp->sc_ps;
761 	if (eflags & PSL_VM) {
762 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
763 		struct vm86_kernel *vm86;
764 
765 		/*
766 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
767 		 * set up the vm86 area, and we can't enter vm86 mode.
768 		 */
769 		if (td->td_pcb->pcb_ext == 0)
770 			return (EINVAL);
771 		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
772 		if (vm86->vm86_inited == 0)
773 			return (EINVAL);
774 
775 		/* Go back to user mode if both flags are set. */
776 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
777 			ksiginfo_init_trap(&ksi);
778 			ksi.ksi_signo = SIGBUS;
779 			ksi.ksi_code = BUS_OBJERR;
780 			ksi.ksi_addr = (void *)regs->tf_eip;
781 			trapsignal(td, &ksi);
782 		}
783 
784 		if (vm86->vm86_has_vme) {
785 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
786 			    (eflags & VME_USERCHANGE) | PSL_VM;
787 		} else {
788 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
789 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
790 			    (eflags & VM_USERCHANGE) | PSL_VM;
791 		}
792 		tf->tf_vm86_ds = scp->sc_ds;
793 		tf->tf_vm86_es = scp->sc_es;
794 		tf->tf_vm86_fs = scp->sc_fs;
795 		tf->tf_vm86_gs = scp->sc_gs;
796 		tf->tf_ds = _udatasel;
797 		tf->tf_es = _udatasel;
798 		tf->tf_fs = _udatasel;
799 	} else {
800 		/*
801 		 * Don't allow users to change privileged or reserved flags.
802 		 */
803 		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
804 	    		return (EINVAL);
805 		}
806 
807 		/*
808 		 * Don't allow users to load a valid privileged %cs.  Let the
809 		 * hardware check for invalid selectors, excess privilege in
810 		 * other selectors, invalid %eip's and invalid %esp's.
811 		 */
812 		if (!CS_SECURE(scp->sc_cs)) {
813 			ksiginfo_init_trap(&ksi);
814 			ksi.ksi_signo = SIGBUS;
815 			ksi.ksi_code = BUS_OBJERR;
816 			ksi.ksi_trapno = T_PROTFLT;
817 			ksi.ksi_addr = (void *)regs->tf_eip;
818 			trapsignal(td, &ksi);
819 			return (EINVAL);
820 		}
821 		regs->tf_ds = scp->sc_ds;
822 		regs->tf_es = scp->sc_es;
823 		regs->tf_fs = scp->sc_fs;
824 	}
825 
826 	/* Restore remaining registers. */
827 	regs->tf_eax = scp->sc_eax;
828 	regs->tf_ebx = scp->sc_ebx;
829 	regs->tf_ecx = scp->sc_ecx;
830 	regs->tf_edx = scp->sc_edx;
831 	regs->tf_esi = scp->sc_esi;
832 	regs->tf_edi = scp->sc_edi;
833 	regs->tf_cs = scp->sc_cs;
834 	regs->tf_ss = scp->sc_ss;
835 	regs->tf_isp = scp->sc_isp;
836 	regs->tf_ebp = scp->sc_fp;
837 	regs->tf_esp = scp->sc_sp;
838 	regs->tf_eip = scp->sc_pc;
839 	regs->tf_eflags = eflags;
840 
841 #if defined(COMPAT_43)
842 	if (scp->sc_onstack & 1)
843 		td->td_sigstk.ss_flags |= SS_ONSTACK;
844 	else
845 		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
846 #endif
847 	kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
848 	    SIGPROCMASK_OLD);
849 	return (EJUSTRETURN);
850 }
851 #endif /* COMPAT_43 */
852 
853 #ifdef COMPAT_FREEBSD4
854 /*
855  * MPSAFE
856  */
857 int
858 freebsd4_sigreturn(td, uap)
859 	struct thread *td;
860 	struct freebsd4_sigreturn_args /* {
861 		const ucontext4 *sigcntxp;
862 	} */ *uap;
863 {
864 	struct ucontext4 uc;
865 	struct trapframe *regs;
866 	struct ucontext4 *ucp;
867 	int cs, eflags, error;
868 	ksiginfo_t ksi;
869 
870 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
871 	if (error != 0)
872 		return (error);
873 	ucp = &uc;
874 	regs = td->td_frame;
875 	eflags = ucp->uc_mcontext.mc_eflags;
876 	if (eflags & PSL_VM) {
877 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
878 		struct vm86_kernel *vm86;
879 
880 		/*
881 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
882 		 * set up the vm86 area, and we can't enter vm86 mode.
883 		 */
884 		if (td->td_pcb->pcb_ext == 0)
885 			return (EINVAL);
886 		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
887 		if (vm86->vm86_inited == 0)
888 			return (EINVAL);
889 
890 		/* Go back to user mode if both flags are set. */
891 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
892 			ksiginfo_init_trap(&ksi);
893 			ksi.ksi_signo = SIGBUS;
894 			ksi.ksi_code = BUS_OBJERR;
895 			ksi.ksi_addr = (void *)regs->tf_eip;
896 			trapsignal(td, &ksi);
897 		}
898 		if (vm86->vm86_has_vme) {
899 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
900 			    (eflags & VME_USERCHANGE) | PSL_VM;
901 		} else {
902 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
903 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
904 			    (eflags & VM_USERCHANGE) | PSL_VM;
905 		}
906 		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
907 		tf->tf_eflags = eflags;
908 		tf->tf_vm86_ds = tf->tf_ds;
909 		tf->tf_vm86_es = tf->tf_es;
910 		tf->tf_vm86_fs = tf->tf_fs;
911 		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
912 		tf->tf_ds = _udatasel;
913 		tf->tf_es = _udatasel;
914 		tf->tf_fs = _udatasel;
915 	} else {
916 		/*
917 		 * Don't allow users to change privileged or reserved flags.
918 		 */
919 		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
920 			uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
921 			    td->td_proc->p_pid, td->td_name, eflags);
922 	    		return (EINVAL);
923 		}
924 
925 		/*
926 		 * Don't allow users to load a valid privileged %cs.  Let the
927 		 * hardware check for invalid selectors, excess privilege in
928 		 * other selectors, invalid %eip's and invalid %esp's.
929 		 */
930 		cs = ucp->uc_mcontext.mc_cs;
931 		if (!CS_SECURE(cs)) {
932 			uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
933 			    td->td_proc->p_pid, td->td_name, cs);
934 			ksiginfo_init_trap(&ksi);
935 			ksi.ksi_signo = SIGBUS;
936 			ksi.ksi_code = BUS_OBJERR;
937 			ksi.ksi_trapno = T_PROTFLT;
938 			ksi.ksi_addr = (void *)regs->tf_eip;
939 			trapsignal(td, &ksi);
940 			return (EINVAL);
941 		}
942 
943 		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
944 	}
945 
946 #if defined(COMPAT_43)
947 	if (ucp->uc_mcontext.mc_onstack & 1)
948 		td->td_sigstk.ss_flags |= SS_ONSTACK;
949 	else
950 		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
951 #endif
952 	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
953 	return (EJUSTRETURN);
954 }
955 #endif	/* COMPAT_FREEBSD4 */
956 
957 /*
958  * MPSAFE
959  */
960 int
961 sys_sigreturn(td, uap)
962 	struct thread *td;
963 	struct sigreturn_args /* {
964 		const struct __ucontext *sigcntxp;
965 	} */ *uap;
966 {
967 	ucontext_t uc;
968 	struct proc *p;
969 	struct trapframe *regs;
970 	ucontext_t *ucp;
971 	char *xfpustate;
972 	size_t xfpustate_len;
973 	int cs, eflags, error, ret;
974 	ksiginfo_t ksi;
975 
976 	p = td->td_proc;
977 
978 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
979 	if (error != 0)
980 		return (error);
981 	ucp = &uc;
982 	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
983 		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
984 		    td->td_name, ucp->uc_mcontext.mc_flags);
985 		return (EINVAL);
986 	}
987 	regs = td->td_frame;
988 	eflags = ucp->uc_mcontext.mc_eflags;
989 	if (eflags & PSL_VM) {
990 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
991 		struct vm86_kernel *vm86;
992 
993 		/*
994 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
995 		 * set up the vm86 area, and we can't enter vm86 mode.
996 		 */
997 		if (td->td_pcb->pcb_ext == 0)
998 			return (EINVAL);
999 		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
1000 		if (vm86->vm86_inited == 0)
1001 			return (EINVAL);
1002 
1003 		/* Go back to user mode if both flags are set. */
1004 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
1005 			ksiginfo_init_trap(&ksi);
1006 			ksi.ksi_signo = SIGBUS;
1007 			ksi.ksi_code = BUS_OBJERR;
1008 			ksi.ksi_addr = (void *)regs->tf_eip;
1009 			trapsignal(td, &ksi);
1010 		}
1011 
1012 		if (vm86->vm86_has_vme) {
1013 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
1014 			    (eflags & VME_USERCHANGE) | PSL_VM;
1015 		} else {
1016 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
1017 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
1018 			    (eflags & VM_USERCHANGE) | PSL_VM;
1019 		}
1020 		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
1021 		tf->tf_eflags = eflags;
1022 		tf->tf_vm86_ds = tf->tf_ds;
1023 		tf->tf_vm86_es = tf->tf_es;
1024 		tf->tf_vm86_fs = tf->tf_fs;
1025 		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
1026 		tf->tf_ds = _udatasel;
1027 		tf->tf_es = _udatasel;
1028 		tf->tf_fs = _udatasel;
1029 	} else {
1030 		/*
1031 		 * Don't allow users to change privileged or reserved flags.
1032 		 */
1033 		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
1034 			uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
1035 			    td->td_proc->p_pid, td->td_name, eflags);
1036 	    		return (EINVAL);
1037 		}
1038 
1039 		/*
1040 		 * Don't allow users to load a valid privileged %cs.  Let the
1041 		 * hardware check for invalid selectors, excess privilege in
1042 		 * other selectors, invalid %eip's and invalid %esp's.
1043 		 */
1044 		cs = ucp->uc_mcontext.mc_cs;
1045 		if (!CS_SECURE(cs)) {
1046 			uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
1047 			    td->td_proc->p_pid, td->td_name, cs);
1048 			ksiginfo_init_trap(&ksi);
1049 			ksi.ksi_signo = SIGBUS;
1050 			ksi.ksi_code = BUS_OBJERR;
1051 			ksi.ksi_trapno = T_PROTFLT;
1052 			ksi.ksi_addr = (void *)regs->tf_eip;
1053 			trapsignal(td, &ksi);
1054 			return (EINVAL);
1055 		}
1056 
1057 		if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
1058 			xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
1059 			if (xfpustate_len > cpu_max_ext_state_size -
1060 			    sizeof(union savefpu)) {
1061 				uprintf(
1062 			    "pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
1063 				    p->p_pid, td->td_name, xfpustate_len);
1064 				return (EINVAL);
1065 			}
1066 			xfpustate = __builtin_alloca(xfpustate_len);
1067 			error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
1068 			    xfpustate, xfpustate_len);
1069 			if (error != 0) {
1070 				uprintf(
1071 	"pid %d (%s): sigreturn copying xfpustate failed\n",
1072 				    p->p_pid, td->td_name);
1073 				return (error);
1074 			}
1075 		} else {
1076 			xfpustate = NULL;
1077 			xfpustate_len = 0;
1078 		}
1079 		ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate,
1080 		    xfpustate_len);
1081 		if (ret != 0)
1082 			return (ret);
1083 		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
1084 	}
1085 
1086 #if defined(COMPAT_43)
1087 	if (ucp->uc_mcontext.mc_onstack & 1)
1088 		td->td_sigstk.ss_flags |= SS_ONSTACK;
1089 	else
1090 		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
1091 #endif
1092 
1093 	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
1094 	return (EJUSTRETURN);
1095 }
1096 
1097 #ifdef COMPAT_43
1098 static void
1099 setup_priv_lcall_gate(struct proc *p)
1100 {
1101 	struct i386_ldt_args uap;
1102 	union descriptor desc;
1103 	u_int lcall_addr;
1104 
1105 	bzero(&uap, sizeof(uap));
1106 	uap.start = 0;
1107 	uap.num = 1;
1108 	lcall_addr = p->p_sysent->sv_psstrings - sz_lcall_tramp;
1109 	bzero(&desc, sizeof(desc));
1110 	desc.sd.sd_type = SDT_MEMERA;
1111 	desc.sd.sd_dpl = SEL_UPL;
1112 	desc.sd.sd_p = 1;
1113 	desc.sd.sd_def32 = 1;
1114 	desc.sd.sd_gran = 1;
1115 	desc.sd.sd_lolimit = 0xffff;
1116 	desc.sd.sd_hilimit = 0xf;
1117 	desc.sd.sd_lobase = lcall_addr;
1118 	desc.sd.sd_hibase = lcall_addr >> 24;
1119 	i386_set_ldt(curthread, &uap, &desc);
1120 }
1121 #endif
1122 
1123 /*
1124  * Reset registers to default values on exec.
1125  */
1126 void
1127 exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack)
1128 {
1129 	struct trapframe *regs;
1130 	struct pcb *pcb;
1131 	register_t saved_eflags;
1132 
1133 	regs = td->td_frame;
1134 	pcb = td->td_pcb;
1135 
1136 	/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
1137 	pcb->pcb_gs = _udatasel;
1138 	load_gs(_udatasel);
1139 
1140 	mtx_lock_spin(&dt_lock);
1141 	if (td->td_proc->p_md.md_ldt != NULL)
1142 		user_ldt_free(td);
1143 	else
1144 		mtx_unlock_spin(&dt_lock);
1145 
1146 #ifdef COMPAT_43
1147 	if (td->td_proc->p_sysent->sv_psstrings !=
1148 	    elf32_freebsd_sysvec.sv_psstrings)
1149 		setup_priv_lcall_gate(td->td_proc);
1150 #endif
1151 
1152 	/*
1153 	 * Reset the fs and gs bases.  The values from the old address
1154 	 * space do not make sense for the new program.  In particular,
1155 	 * gsbase might be the TLS base for the old program but the new
1156 	 * program has no TLS now.
1157 	 */
1158 	set_fsbase(td, 0);
1159 	set_gsbase(td, 0);
1160 
1161 	/* Make sure edx is 0x0 on entry. Linux binaries depend on it. */
1162 	saved_eflags = regs->tf_eflags & PSL_T;
1163 	bzero((char *)regs, sizeof(struct trapframe));
1164 	regs->tf_eip = imgp->entry_addr;
1165 	regs->tf_esp = stack;
1166 	regs->tf_eflags = PSL_USER | saved_eflags;
1167 	regs->tf_ss = _udatasel;
1168 	regs->tf_ds = _udatasel;
1169 	regs->tf_es = _udatasel;
1170 	regs->tf_fs = _udatasel;
1171 	regs->tf_cs = _ucodesel;
1172 
1173 	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1174 	regs->tf_ebx = imgp->ps_strings;
1175 
1176         /*
1177          * Reset the hardware debug registers if they were in use.
1178          * They won't have any meaning for the newly exec'd process.
1179          */
1180         if (pcb->pcb_flags & PCB_DBREGS) {
1181                 pcb->pcb_dr0 = 0;
1182                 pcb->pcb_dr1 = 0;
1183                 pcb->pcb_dr2 = 0;
1184                 pcb->pcb_dr3 = 0;
1185                 pcb->pcb_dr6 = 0;
1186                 pcb->pcb_dr7 = 0;
1187                 if (pcb == curpcb) {
1188 		        /*
1189 			 * Clear the debug registers on the running
1190 			 * CPU, otherwise they will end up affecting
1191 			 * the next process we switch to.
1192 			 */
1193 		        reset_dbregs();
1194                 }
1195 		pcb->pcb_flags &= ~PCB_DBREGS;
1196         }
1197 
1198 	pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
1199 
1200 	/*
1201 	 * Drop the FP state if we hold it, so that the process gets a
1202 	 * clean FP state if it uses the FPU again.
1203 	 */
1204 	fpstate_drop(td);
1205 }
1206 
1207 void
1208 cpu_setregs(void)
1209 {
1210 	unsigned int cr0;
1211 
1212 	cr0 = rcr0();
1213 
1214 	/*
1215 	 * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
1216 	 *
1217 	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
1218 	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
1219 	 * bit to control the trap, because setting the CR0_EM bit does
1220 	 * not cause WAIT instructions to trap.  It's important to trap
1221 	 * WAIT instructions - otherwise the "wait" variants of no-wait
1222 	 * control instructions would degenerate to the "no-wait" variants
1223 	 * after FP context switches but work correctly otherwise.  It's
1224 	 * particularly important to trap WAITs when there is no NPX -
1225 	 * otherwise the "wait" variants would always degenerate.
1226 	 *
1227 	 * Try setting CR0_NE to get correct error reporting on 486DX's.
1228 	 * Setting it should fail or do nothing on lesser processors.
1229 	 */
1230 	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1231 	load_cr0(cr0);
1232 	load_gs(_udatasel);
1233 }
1234 
1235 u_long bootdev;		/* not a struct cdev *- encoding is different */
1236 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1237 	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
1238 
1239 static char bootmethod[16] = "BIOS";
1240 SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1241     "System firmware boot method");
1242 
1243 /*
1244  * Initialize 386 and configure to run kernel
1245  */
1246 
1247 /*
1248  * Initialize segments & interrupt table
1249  */
1250 
1251 int _default_ldt;
1252 
1253 struct mtx dt_lock;			/* lock for GDT and LDT */
1254 
1255 union descriptor gdt0[NGDT];	/* initial global descriptor table */
1256 union descriptor *gdt = gdt0;	/* global descriptor table */
1257 
1258 union descriptor *ldt;		/* local descriptor table */
1259 
1260 static struct gate_descriptor idt0[NIDT];
1261 struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1262 
1263 static struct i386tss *dblfault_tss;
1264 static char *dblfault_stack;
1265 
1266 static struct i386tss common_tss0;
1267 
1268 vm_offset_t proc0kstack;
1269 
1270 /*
1271  * software prototypes -- in more palatable form.
1272  *
1273  * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
1274  * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
1275  */
1276 struct soft_segment_descriptor gdt_segs[] = {
1277 /* GNULL_SEL	0 Null Descriptor */
1278 {	.ssd_base = 0x0,
1279 	.ssd_limit = 0x0,
1280 	.ssd_type = 0,
1281 	.ssd_dpl = SEL_KPL,
1282 	.ssd_p = 0,
1283 	.ssd_xx = 0, .ssd_xx1 = 0,
1284 	.ssd_def32 = 0,
1285 	.ssd_gran = 0		},
1286 /* GPRIV_SEL	1 SMP Per-Processor Private Data Descriptor */
1287 {	.ssd_base = 0x0,
1288 	.ssd_limit = 0xfffff,
1289 	.ssd_type = SDT_MEMRWA,
1290 	.ssd_dpl = SEL_KPL,
1291 	.ssd_p = 1,
1292 	.ssd_xx = 0, .ssd_xx1 = 0,
1293 	.ssd_def32 = 1,
1294 	.ssd_gran = 1		},
1295 /* GUFS_SEL	2 %fs Descriptor for user */
1296 {	.ssd_base = 0x0,
1297 	.ssd_limit = 0xfffff,
1298 	.ssd_type = SDT_MEMRWA,
1299 	.ssd_dpl = SEL_UPL,
1300 	.ssd_p = 1,
1301 	.ssd_xx = 0, .ssd_xx1 = 0,
1302 	.ssd_def32 = 1,
1303 	.ssd_gran = 1		},
1304 /* GUGS_SEL	3 %gs Descriptor for user */
1305 {	.ssd_base = 0x0,
1306 	.ssd_limit = 0xfffff,
1307 	.ssd_type = SDT_MEMRWA,
1308 	.ssd_dpl = SEL_UPL,
1309 	.ssd_p = 1,
1310 	.ssd_xx = 0, .ssd_xx1 = 0,
1311 	.ssd_def32 = 1,
1312 	.ssd_gran = 1		},
1313 /* GCODE_SEL	4 Code Descriptor for kernel */
1314 {	.ssd_base = 0x0,
1315 	.ssd_limit = 0xfffff,
1316 	.ssd_type = SDT_MEMERA,
1317 	.ssd_dpl = SEL_KPL,
1318 	.ssd_p = 1,
1319 	.ssd_xx = 0, .ssd_xx1 = 0,
1320 	.ssd_def32 = 1,
1321 	.ssd_gran = 1		},
1322 /* GDATA_SEL	5 Data Descriptor for kernel */
1323 {	.ssd_base = 0x0,
1324 	.ssd_limit = 0xfffff,
1325 	.ssd_type = SDT_MEMRWA,
1326 	.ssd_dpl = SEL_KPL,
1327 	.ssd_p = 1,
1328 	.ssd_xx = 0, .ssd_xx1 = 0,
1329 	.ssd_def32 = 1,
1330 	.ssd_gran = 1		},
1331 /* GUCODE_SEL	6 Code Descriptor for user */
1332 {	.ssd_base = 0x0,
1333 	.ssd_limit = 0xfffff,
1334 	.ssd_type = SDT_MEMERA,
1335 	.ssd_dpl = SEL_UPL,
1336 	.ssd_p = 1,
1337 	.ssd_xx = 0, .ssd_xx1 = 0,
1338 	.ssd_def32 = 1,
1339 	.ssd_gran = 1		},
1340 /* GUDATA_SEL	7 Data Descriptor for user */
1341 {	.ssd_base = 0x0,
1342 	.ssd_limit = 0xfffff,
1343 	.ssd_type = SDT_MEMRWA,
1344 	.ssd_dpl = SEL_UPL,
1345 	.ssd_p = 1,
1346 	.ssd_xx = 0, .ssd_xx1 = 0,
1347 	.ssd_def32 = 1,
1348 	.ssd_gran = 1		},
1349 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1350 {	.ssd_base = 0x400,
1351 	.ssd_limit = 0xfffff,
1352 	.ssd_type = SDT_MEMRWA,
1353 	.ssd_dpl = SEL_KPL,
1354 	.ssd_p = 1,
1355 	.ssd_xx = 0, .ssd_xx1 = 0,
1356 	.ssd_def32 = 1,
1357 	.ssd_gran = 1		},
1358 /* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1359 {
1360 	.ssd_base = 0x0,
1361 	.ssd_limit = sizeof(struct i386tss)-1,
1362 	.ssd_type = SDT_SYS386TSS,
1363 	.ssd_dpl = 0,
1364 	.ssd_p = 1,
1365 	.ssd_xx = 0, .ssd_xx1 = 0,
1366 	.ssd_def32 = 0,
1367 	.ssd_gran = 0		},
1368 /* GLDT_SEL	10 LDT Descriptor */
1369 {	.ssd_base = 0,
1370 	.ssd_limit = sizeof(union descriptor) * NLDT - 1,
1371 	.ssd_type = SDT_SYSLDT,
1372 	.ssd_dpl = SEL_UPL,
1373 	.ssd_p = 1,
1374 	.ssd_xx = 0, .ssd_xx1 = 0,
1375 	.ssd_def32 = 0,
1376 	.ssd_gran = 0		},
1377 /* GUSERLDT_SEL	11 User LDT Descriptor per process */
1378 {	.ssd_base = 0,
1379 	.ssd_limit = (512 * sizeof(union descriptor)-1),
1380 	.ssd_type = SDT_SYSLDT,
1381 	.ssd_dpl = 0,
1382 	.ssd_p = 1,
1383 	.ssd_xx = 0, .ssd_xx1 = 0,
1384 	.ssd_def32 = 0,
1385 	.ssd_gran = 0		},
1386 /* GPANIC_SEL	12 Panic Tss Descriptor */
1387 {	.ssd_base = 0,
1388 	.ssd_limit = sizeof(struct i386tss)-1,
1389 	.ssd_type = SDT_SYS386TSS,
1390 	.ssd_dpl = 0,
1391 	.ssd_p = 1,
1392 	.ssd_xx = 0, .ssd_xx1 = 0,
1393 	.ssd_def32 = 0,
1394 	.ssd_gran = 0		},
1395 /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
1396 {	.ssd_base = 0,
1397 	.ssd_limit = 0xfffff,
1398 	.ssd_type = SDT_MEMERA,
1399 	.ssd_dpl = 0,
1400 	.ssd_p = 1,
1401 	.ssd_xx = 0, .ssd_xx1 = 0,
1402 	.ssd_def32 = 0,
1403 	.ssd_gran = 1		},
1404 /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
1405 {	.ssd_base = 0,
1406 	.ssd_limit = 0xfffff,
1407 	.ssd_type = SDT_MEMERA,
1408 	.ssd_dpl = 0,
1409 	.ssd_p = 1,
1410 	.ssd_xx = 0, .ssd_xx1 = 0,
1411 	.ssd_def32 = 0,
1412 	.ssd_gran = 1		},
1413 /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
1414 {	.ssd_base = 0,
1415 	.ssd_limit = 0xfffff,
1416 	.ssd_type = SDT_MEMRWA,
1417 	.ssd_dpl = 0,
1418 	.ssd_p = 1,
1419 	.ssd_xx = 0, .ssd_xx1 = 0,
1420 	.ssd_def32 = 1,
1421 	.ssd_gran = 1		},
1422 /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
1423 {	.ssd_base = 0,
1424 	.ssd_limit = 0xfffff,
1425 	.ssd_type = SDT_MEMRWA,
1426 	.ssd_dpl = 0,
1427 	.ssd_p = 1,
1428 	.ssd_xx = 0, .ssd_xx1 = 0,
1429 	.ssd_def32 = 0,
1430 	.ssd_gran = 1		},
1431 /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
1432 {	.ssd_base = 0,
1433 	.ssd_limit = 0xfffff,
1434 	.ssd_type = SDT_MEMRWA,
1435 	.ssd_dpl = 0,
1436 	.ssd_p = 1,
1437 	.ssd_xx = 0, .ssd_xx1 = 0,
1438 	.ssd_def32 = 0,
1439 	.ssd_gran = 1		},
1440 /* GNDIS_SEL	18 NDIS Descriptor */
1441 {	.ssd_base = 0x0,
1442 	.ssd_limit = 0x0,
1443 	.ssd_type = 0,
1444 	.ssd_dpl = 0,
1445 	.ssd_p = 0,
1446 	.ssd_xx = 0, .ssd_xx1 = 0,
1447 	.ssd_def32 = 0,
1448 	.ssd_gran = 0		},
1449 };
1450 
1451 static struct soft_segment_descriptor ldt_segs[] = {
1452 	/* Null Descriptor - overwritten by call gate */
1453 {	.ssd_base = 0x0,
1454 	.ssd_limit = 0x0,
1455 	.ssd_type = 0,
1456 	.ssd_dpl = 0,
1457 	.ssd_p = 0,
1458 	.ssd_xx = 0, .ssd_xx1 = 0,
1459 	.ssd_def32 = 0,
1460 	.ssd_gran = 0		},
1461 	/* Null Descriptor - overwritten by call gate */
1462 {	.ssd_base = 0x0,
1463 	.ssd_limit = 0x0,
1464 	.ssd_type = 0,
1465 	.ssd_dpl = 0,
1466 	.ssd_p = 0,
1467 	.ssd_xx = 0, .ssd_xx1 = 0,
1468 	.ssd_def32 = 0,
1469 	.ssd_gran = 0		},
1470 	/* Null Descriptor - overwritten by call gate */
1471 {	.ssd_base = 0x0,
1472 	.ssd_limit = 0x0,
1473 	.ssd_type = 0,
1474 	.ssd_dpl = 0,
1475 	.ssd_p = 0,
1476 	.ssd_xx = 0, .ssd_xx1 = 0,
1477 	.ssd_def32 = 0,
1478 	.ssd_gran = 0		},
1479 	/* Code Descriptor for user */
1480 {	.ssd_base = 0x0,
1481 	.ssd_limit = 0xfffff,
1482 	.ssd_type = SDT_MEMERA,
1483 	.ssd_dpl = SEL_UPL,
1484 	.ssd_p = 1,
1485 	.ssd_xx = 0, .ssd_xx1 = 0,
1486 	.ssd_def32 = 1,
1487 	.ssd_gran = 1		},
1488 	/* Null Descriptor - overwritten by call gate */
1489 {	.ssd_base = 0x0,
1490 	.ssd_limit = 0x0,
1491 	.ssd_type = 0,
1492 	.ssd_dpl = 0,
1493 	.ssd_p = 0,
1494 	.ssd_xx = 0, .ssd_xx1 = 0,
1495 	.ssd_def32 = 0,
1496 	.ssd_gran = 0		},
1497 	/* Data Descriptor for user */
1498 {	.ssd_base = 0x0,
1499 	.ssd_limit = 0xfffff,
1500 	.ssd_type = SDT_MEMRWA,
1501 	.ssd_dpl = SEL_UPL,
1502 	.ssd_p = 1,
1503 	.ssd_xx = 0, .ssd_xx1 = 0,
1504 	.ssd_def32 = 1,
1505 	.ssd_gran = 1		},
1506 };
1507 
1508 uintptr_t setidt_disp;
1509 
1510 void
1511 setidt(int idx, inthand_t *func, int typ, int dpl, int selec)
1512 {
1513 	uintptr_t off;
1514 
1515 	off = func != NULL ? (uintptr_t)func + setidt_disp : 0;
1516 	setidt_nodisp(idx, off, typ, dpl, selec);
1517 }
1518 
1519 void
1520 setidt_nodisp(int idx, uintptr_t off, int typ, int dpl, int selec)
1521 {
1522 	struct gate_descriptor *ip;
1523 
1524 	ip = idt + idx;
1525 	ip->gd_looffset = off;
1526 	ip->gd_selector = selec;
1527 	ip->gd_stkcpy = 0;
1528 	ip->gd_xx = 0;
1529 	ip->gd_type = typ;
1530 	ip->gd_dpl = dpl;
1531 	ip->gd_p = 1;
1532 	ip->gd_hioffset = ((u_int)off) >> 16 ;
1533 }
1534 
1535 extern inthand_t
1536 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1537 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1538 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1539 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1540 	IDTVEC(xmm),
1541 #ifdef KDTRACE_HOOKS
1542 	IDTVEC(dtrace_ret),
1543 #endif
1544 #ifdef XENHVM
1545 	IDTVEC(xen_intr_upcall),
1546 #endif
1547 	IDTVEC(int0x80_syscall);
1548 
1549 #ifdef DDB
1550 /*
1551  * Display the index and function name of any IDT entries that don't use
1552  * the default 'rsvd' entry point.
1553  */
1554 DB_SHOW_COMMAND(idt, db_show_idt)
1555 {
1556 	struct gate_descriptor *ip;
1557 	int idx;
1558 	uintptr_t func, func_trm;
1559 	bool trm;
1560 
1561 	ip = idt;
1562 	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1563 		if (ip->gd_type == SDT_SYSTASKGT) {
1564 			db_printf("%3d\t<TASK>\n", idx);
1565 		} else {
1566 			func = (ip->gd_hioffset << 16 | ip->gd_looffset);
1567 			if (func >= PMAP_TRM_MIN_ADDRESS) {
1568 				func_trm = func;
1569 				func -= setidt_disp;
1570 				trm = true;
1571 			} else
1572 				trm = false;
1573 			if (func != (uintptr_t)&IDTVEC(rsvd)) {
1574 				db_printf("%3d\t", idx);
1575 				db_printsym(func, DB_STGY_PROC);
1576 				if (trm)
1577 					db_printf(" (trampoline %#x)",
1578 					    func_trm);
1579 				db_printf("\n");
1580 			}
1581 		}
1582 		ip++;
1583 	}
1584 }
1585 
1586 /* Show privileged registers. */
1587 DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1588 {
1589 	uint64_t idtr, gdtr;
1590 
1591 	idtr = ridt();
1592 	db_printf("idtr\t0x%08x/%04x\n",
1593 	    (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
1594 	gdtr = rgdt();
1595 	db_printf("gdtr\t0x%08x/%04x\n",
1596 	    (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
1597 	db_printf("ldtr\t0x%04x\n", rldt());
1598 	db_printf("tr\t0x%04x\n", rtr());
1599 	db_printf("cr0\t0x%08x\n", rcr0());
1600 	db_printf("cr2\t0x%08x\n", rcr2());
1601 	db_printf("cr3\t0x%08x\n", rcr3());
1602 	db_printf("cr4\t0x%08x\n", rcr4());
1603 	if (rcr4() & CR4_XSAVE)
1604 		db_printf("xcr0\t0x%016llx\n", rxcr(0));
1605 	if (amd_feature & (AMDID_NX | AMDID_LM))
1606 		db_printf("EFER\t0x%016llx\n", rdmsr(MSR_EFER));
1607 	if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX))
1608 		db_printf("FEATURES_CTL\t0x%016llx\n",
1609 		    rdmsr(MSR_IA32_FEATURE_CONTROL));
1610 	if (((cpu_vendor_id == CPU_VENDOR_INTEL ||
1611 	    cpu_vendor_id == CPU_VENDOR_AMD) && CPUID_TO_FAMILY(cpu_id) >= 6) ||
1612 	    cpu_vendor_id == CPU_VENDOR_HYGON)
1613 		db_printf("DEBUG_CTL\t0x%016llx\n", rdmsr(MSR_DEBUGCTLMSR));
1614 	if (cpu_feature & CPUID_PAT)
1615 		db_printf("PAT\t0x%016llx\n", rdmsr(MSR_PAT));
1616 }
1617 
1618 DB_SHOW_COMMAND(dbregs, db_show_dbregs)
1619 {
1620 
1621 	db_printf("dr0\t0x%08x\n", rdr0());
1622 	db_printf("dr1\t0x%08x\n", rdr1());
1623 	db_printf("dr2\t0x%08x\n", rdr2());
1624 	db_printf("dr3\t0x%08x\n", rdr3());
1625 	db_printf("dr6\t0x%08x\n", rdr6());
1626 	db_printf("dr7\t0x%08x\n", rdr7());
1627 }
1628 
1629 DB_SHOW_COMMAND(frame, db_show_frame)
1630 {
1631 	struct trapframe *frame;
1632 
1633 	frame = have_addr ? (struct trapframe *)addr : curthread->td_frame;
1634 	printf("ss %#x esp %#x efl %#x cs %#x eip %#x\n",
1635 	    frame->tf_ss, frame->tf_esp, frame->tf_eflags, frame->tf_cs,
1636 	    frame->tf_eip);
1637 	printf("err %#x trapno %d\n", frame->tf_err, frame->tf_trapno);
1638 	printf("ds %#x es %#x fs %#x\n",
1639 	    frame->tf_ds, frame->tf_es, frame->tf_fs);
1640 	printf("eax %#x ecx %#x edx %#x ebx %#x\n",
1641 	    frame->tf_eax, frame->tf_ecx, frame->tf_edx, frame->tf_ebx);
1642 	printf("ebp %#x esi %#x edi %#x\n",
1643 	    frame->tf_ebp, frame->tf_esi, frame->tf_edi);
1644 
1645 }
1646 #endif
1647 
1648 void
1649 sdtossd(sd, ssd)
1650 	struct segment_descriptor *sd;
1651 	struct soft_segment_descriptor *ssd;
1652 {
1653 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1654 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1655 	ssd->ssd_type  = sd->sd_type;
1656 	ssd->ssd_dpl   = sd->sd_dpl;
1657 	ssd->ssd_p     = sd->sd_p;
1658 	ssd->ssd_def32 = sd->sd_def32;
1659 	ssd->ssd_gran  = sd->sd_gran;
1660 }
1661 
1662 static int
1663 add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
1664     int *physmap_idxp)
1665 {
1666 	uint64_t lim, ign;
1667 	int i, insert_idx, physmap_idx;
1668 
1669 	physmap_idx = *physmap_idxp;
1670 
1671 	if (length == 0)
1672 		return (1);
1673 
1674 	lim = 0x100000000;					/*  4G */
1675 	if (pae_mode && above4g_allow)
1676 		lim = above24g_allow ? -1ULL : 0x600000000;	/* 24G */
1677 	if (base >= lim) {
1678 		printf("%uK of memory above %uGB ignored, pae %d "
1679 		    "above4g_allow %d above24g_allow %d\n",
1680 		    (u_int)(length / 1024), (u_int)(lim >> 30), pae_mode,
1681 		    above4g_allow, above24g_allow);
1682 		return (1);
1683 	}
1684 	if (base + length >= lim) {
1685 		ign = base + length - lim;
1686 		length -= ign;
1687 		printf("%uK of memory above %uGB ignored, pae %d "
1688 		    "above4g_allow %d above24g_allow %d\n",
1689 		    (u_int)(ign / 1024), (u_int)(lim >> 30), pae_mode,
1690 		    above4g_allow, above24g_allow);
1691 	}
1692 
1693 	/*
1694 	 * Find insertion point while checking for overlap.  Start off by
1695 	 * assuming the new entry will be added to the end.
1696 	 */
1697 	insert_idx = physmap_idx + 2;
1698 	for (i = 0; i <= physmap_idx; i += 2) {
1699 		if (base < physmap[i + 1]) {
1700 			if (base + length <= physmap[i]) {
1701 				insert_idx = i;
1702 				break;
1703 			}
1704 			if (boothowto & RB_VERBOSE)
1705 				printf(
1706 		    "Overlapping memory regions, ignoring second region\n");
1707 			return (1);
1708 		}
1709 	}
1710 
1711 	/* See if we can prepend to the next entry. */
1712 	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
1713 		physmap[insert_idx] = base;
1714 		return (1);
1715 	}
1716 
1717 	/* See if we can append to the previous entry. */
1718 	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1719 		physmap[insert_idx - 1] += length;
1720 		return (1);
1721 	}
1722 
1723 	physmap_idx += 2;
1724 	*physmap_idxp = physmap_idx;
1725 	if (physmap_idx == PHYS_AVAIL_ENTRIES) {
1726 		printf(
1727 		"Too many segments in the physical address map, giving up\n");
1728 		return (0);
1729 	}
1730 
1731 	/*
1732 	 * Move the last 'N' entries down to make room for the new
1733 	 * entry if needed.
1734 	 */
1735 	for (i = physmap_idx; i > insert_idx; i -= 2) {
1736 		physmap[i] = physmap[i - 2];
1737 		physmap[i + 1] = physmap[i - 1];
1738 	}
1739 
1740 	/* Insert the new entry. */
1741 	physmap[insert_idx] = base;
1742 	physmap[insert_idx + 1] = base + length;
1743 	return (1);
1744 }
1745 
1746 static int
1747 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1748 {
1749 	if (boothowto & RB_VERBOSE)
1750 		printf("SMAP type=%02x base=%016llx len=%016llx\n",
1751 		    smap->type, smap->base, smap->length);
1752 
1753 	if (smap->type != SMAP_TYPE_MEMORY)
1754 		return (1);
1755 
1756 	return (add_physmap_entry(smap->base, smap->length, physmap,
1757 	    physmap_idxp));
1758 }
1759 
1760 static void
1761 add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap,
1762     int *physmap_idxp)
1763 {
1764 	struct bios_smap *smap, *smapend;
1765 	u_int32_t smapsize;
1766 	/*
1767 	 * Memory map from INT 15:E820.
1768 	 *
1769 	 * subr_module.c says:
1770 	 * "Consumer may safely assume that size value precedes data."
1771 	 * ie: an int32_t immediately precedes SMAP.
1772 	 */
1773 	smapsize = *((u_int32_t *)smapbase - 1);
1774 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1775 
1776 	for (smap = smapbase; smap < smapend; smap++)
1777 		if (!add_smap_entry(smap, physmap, physmap_idxp))
1778 			break;
1779 }
1780 
1781 static void
1782 basemem_setup(void)
1783 {
1784 
1785 	if (basemem > 640) {
1786 		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1787 			basemem);
1788 		basemem = 640;
1789 	}
1790 
1791 	pmap_basemem_setup(basemem);
1792 }
1793 
1794 /*
1795  * Populate the (physmap) array with base/bound pairs describing the
1796  * available physical memory in the system, then test this memory and
1797  * build the phys_avail array describing the actually-available memory.
1798  *
1799  * If we cannot accurately determine the physical memory map, then use
1800  * value from the 0xE801 call, and failing that, the RTC.
1801  *
1802  * Total memory size may be set by the kernel environment variable
1803  * hw.physmem or the compile-time define MAXMEM.
1804  *
1805  * XXX first should be vm_paddr_t.
1806  */
1807 static void
1808 getmemsize(int first)
1809 {
1810 	int has_smap, off, physmap_idx, pa_indx, da_indx;
1811 	u_long memtest;
1812 	vm_paddr_t physmap[PHYS_AVAIL_ENTRIES];
1813 	quad_t dcons_addr, dcons_size, physmem_tunable;
1814 	int hasbrokenint12, i, res;
1815 	u_int extmem;
1816 	struct vm86frame vmf;
1817 	struct vm86context vmc;
1818 	vm_paddr_t pa;
1819 	struct bios_smap *smap, *smapbase;
1820 	caddr_t kmdp;
1821 
1822 	has_smap = 0;
1823 	bzero(&vmf, sizeof(vmf));
1824 	bzero(physmap, sizeof(physmap));
1825 	basemem = 0;
1826 
1827 	/*
1828 	 * Tell the physical memory allocator about pages used to store
1829 	 * the kernel and preloaded data.  See kmem_bootstrap_free().
1830 	 */
1831 	vm_phys_add_seg((vm_paddr_t)KERNLOAD, trunc_page(first));
1832 
1833 	TUNABLE_INT_FETCH("hw.above4g_allow", &above4g_allow);
1834 	TUNABLE_INT_FETCH("hw.above24g_allow", &above24g_allow);
1835 
1836 	/*
1837 	 * Check if the loader supplied an SMAP memory map.  If so,
1838 	 * use that and do not make any VM86 calls.
1839 	 */
1840 	physmap_idx = 0;
1841 	kmdp = preload_search_by_type("elf kernel");
1842 	if (kmdp == NULL)
1843 		kmdp = preload_search_by_type("elf32 kernel");
1844 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1845 	    MODINFO_METADATA | MODINFOMD_SMAP);
1846 	if (smapbase != NULL) {
1847 		add_smap_entries(smapbase, physmap, &physmap_idx);
1848 		has_smap = 1;
1849 		goto have_smap;
1850 	}
1851 
1852 	/*
1853 	 * Some newer BIOSes have a broken INT 12H implementation
1854 	 * which causes a kernel panic immediately.  In this case, we
1855 	 * need use the SMAP to determine the base memory size.
1856 	 */
1857 	hasbrokenint12 = 0;
1858 	TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
1859 	if (hasbrokenint12 == 0) {
1860 		/* Use INT12 to determine base memory size. */
1861 		vm86_intcall(0x12, &vmf);
1862 		basemem = vmf.vmf_ax;
1863 		basemem_setup();
1864 	}
1865 
1866 	/*
1867 	 * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
1868 	 * the kernel page table so we can use it as a buffer.  The
1869 	 * kernel will unmap this page later.
1870 	 */
1871 	vmc.npages = 0;
1872 	smap = (void *)vm86_addpage(&vmc, 1, PMAP_MAP_LOW + ptoa(1));
1873 	res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1874 	KASSERT(res != 0, ("vm86_getptr() failed: address not found"));
1875 
1876 	vmf.vmf_ebx = 0;
1877 	do {
1878 		vmf.vmf_eax = 0xE820;
1879 		vmf.vmf_edx = SMAP_SIG;
1880 		vmf.vmf_ecx = sizeof(struct bios_smap);
1881 		i = vm86_datacall(0x15, &vmf, &vmc);
1882 		if (i || vmf.vmf_eax != SMAP_SIG)
1883 			break;
1884 		has_smap = 1;
1885 		if (!add_smap_entry(smap, physmap, &physmap_idx))
1886 			break;
1887 	} while (vmf.vmf_ebx != 0);
1888 
1889 have_smap:
1890 	/*
1891 	 * If we didn't fetch the "base memory" size from INT12,
1892 	 * figure it out from the SMAP (or just guess).
1893 	 */
1894 	if (basemem == 0) {
1895 		for (i = 0; i <= physmap_idx; i += 2) {
1896 			if (physmap[i] == 0x00000000) {
1897 				basemem = physmap[i + 1] / 1024;
1898 				break;
1899 			}
1900 		}
1901 
1902 		/* XXX: If we couldn't find basemem from SMAP, just guess. */
1903 		if (basemem == 0)
1904 			basemem = 640;
1905 		basemem_setup();
1906 	}
1907 
1908 	if (physmap[1] != 0)
1909 		goto physmap_done;
1910 
1911 	/*
1912 	 * If we failed to find an SMAP, figure out the extended
1913 	 * memory size.  We will then build a simple memory map with
1914 	 * two segments, one for "base memory" and the second for
1915 	 * "extended memory".  Note that "extended memory" starts at a
1916 	 * physical address of 1MB and that both basemem and extmem
1917 	 * are in units of 1KB.
1918 	 *
1919 	 * First, try to fetch the extended memory size via INT 15:E801.
1920 	 */
1921 	vmf.vmf_ax = 0xE801;
1922 	if (vm86_intcall(0x15, &vmf) == 0) {
1923 		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1924 	} else {
1925 		/*
1926 		 * If INT15:E801 fails, this is our last ditch effort
1927 		 * to determine the extended memory size.  Currently
1928 		 * we prefer the RTC value over INT15:88.
1929 		 */
1930 #if 0
1931 		vmf.vmf_ah = 0x88;
1932 		vm86_intcall(0x15, &vmf);
1933 		extmem = vmf.vmf_ax;
1934 #else
1935 		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1936 #endif
1937 	}
1938 
1939 	/*
1940 	 * Special hack for chipsets that still remap the 384k hole when
1941 	 * there's 16MB of memory - this really confuses people that
1942 	 * are trying to use bus mastering ISA controllers with the
1943 	 * "16MB limit"; they only have 16MB, but the remapping puts
1944 	 * them beyond the limit.
1945 	 *
1946 	 * If extended memory is between 15-16MB (16-17MB phys address range),
1947 	 *	chop it to 15MB.
1948 	 */
1949 	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1950 		extmem = 15 * 1024;
1951 
1952 	physmap[0] = 0;
1953 	physmap[1] = basemem * 1024;
1954 	physmap_idx = 2;
1955 	physmap[physmap_idx] = 0x100000;
1956 	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1957 
1958 physmap_done:
1959 	/*
1960 	 * Now, physmap contains a map of physical memory.
1961 	 */
1962 
1963 #ifdef SMP
1964 	/* make hole for AP bootstrap code */
1965 	alloc_ap_trampoline(physmap, &physmap_idx);
1966 #endif
1967 
1968 	/*
1969 	 * Maxmem isn't the "maximum memory", it's one larger than the
1970 	 * highest page of the physical address space.  It should be
1971 	 * called something like "Maxphyspage".  We may adjust this
1972 	 * based on ``hw.physmem'' and the results of the memory test.
1973 	 *
1974 	 * This is especially confusing when it is much larger than the
1975 	 * memory size and is displayed as "realmem".
1976 	 */
1977 	Maxmem = atop(physmap[physmap_idx + 1]);
1978 
1979 #ifdef MAXMEM
1980 	Maxmem = MAXMEM / 4;
1981 #endif
1982 
1983 	if (TUNABLE_QUAD_FETCH("hw.physmem", &physmem_tunable))
1984 		Maxmem = atop(physmem_tunable);
1985 
1986 	/*
1987 	 * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
1988 	 * the amount of memory in the system.
1989 	 */
1990 	if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
1991 		Maxmem = atop(physmap[physmap_idx + 1]);
1992 
1993 	/*
1994 	 * The boot memory test is disabled by default, as it takes a
1995 	 * significant amount of time on large-memory systems, and is
1996 	 * unfriendly to virtual machines as it unnecessarily touches all
1997 	 * pages.
1998 	 *
1999 	 * A general name is used as the code may be extended to support
2000 	 * additional tests beyond the current "page present" test.
2001 	 */
2002 	memtest = 0;
2003 	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
2004 
2005 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2006 	    (boothowto & RB_VERBOSE))
2007 		printf("Physical memory use set to %ldK\n", Maxmem * 4);
2008 
2009 	/*
2010 	 * If Maxmem has been increased beyond what the system has detected,
2011 	 * extend the last memory segment to the new limit.
2012 	 */
2013 	if (atop(physmap[physmap_idx + 1]) < Maxmem)
2014 		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
2015 
2016 	/* call pmap initialization to make new kernel address space */
2017 	pmap_bootstrap(first);
2018 
2019 	/*
2020 	 * Size up each available chunk of physical memory.
2021 	 */
2022 	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
2023 	pa_indx = 0;
2024 	da_indx = 1;
2025 	phys_avail[pa_indx++] = physmap[0];
2026 	phys_avail[pa_indx] = physmap[0];
2027 	dump_avail[da_indx] = physmap[0];
2028 
2029 	/*
2030 	 * Get dcons buffer address
2031 	 */
2032 	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
2033 	    getenv_quad("dcons.size", &dcons_size) == 0)
2034 		dcons_addr = 0;
2035 
2036 	/*
2037 	 * physmap is in bytes, so when converting to page boundaries,
2038 	 * round up the start address and round down the end address.
2039 	 */
2040 	for (i = 0; i <= physmap_idx; i += 2) {
2041 		vm_paddr_t end;
2042 
2043 		end = ptoa((vm_paddr_t)Maxmem);
2044 		if (physmap[i + 1] < end)
2045 			end = trunc_page(physmap[i + 1]);
2046 		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
2047 			int tmp, page_bad, full;
2048 			int *ptr;
2049 
2050 			full = FALSE;
2051 			/*
2052 			 * block out kernel memory as not available.
2053 			 */
2054 			if (pa >= KERNLOAD && pa < first)
2055 				goto do_dump_avail;
2056 
2057 			/*
2058 			 * block out dcons buffer
2059 			 */
2060 			if (dcons_addr > 0
2061 			    && pa >= trunc_page(dcons_addr)
2062 			    && pa < dcons_addr + dcons_size)
2063 				goto do_dump_avail;
2064 
2065 			page_bad = FALSE;
2066 			if (memtest == 0)
2067 				goto skip_memtest;
2068 
2069 			/*
2070 			 * map page into kernel: valid, read/write,non-cacheable
2071 			 */
2072 			ptr = (int *)pmap_cmap3(pa, PG_V | PG_RW | PG_N);
2073 
2074 			tmp = *(int *)ptr;
2075 			/*
2076 			 * Test for alternating 1's and 0's
2077 			 */
2078 			*(volatile int *)ptr = 0xaaaaaaaa;
2079 			if (*(volatile int *)ptr != 0xaaaaaaaa)
2080 				page_bad = TRUE;
2081 			/*
2082 			 * Test for alternating 0's and 1's
2083 			 */
2084 			*(volatile int *)ptr = 0x55555555;
2085 			if (*(volatile int *)ptr != 0x55555555)
2086 				page_bad = TRUE;
2087 			/*
2088 			 * Test for all 1's
2089 			 */
2090 			*(volatile int *)ptr = 0xffffffff;
2091 			if (*(volatile int *)ptr != 0xffffffff)
2092 				page_bad = TRUE;
2093 			/*
2094 			 * Test for all 0's
2095 			 */
2096 			*(volatile int *)ptr = 0x0;
2097 			if (*(volatile int *)ptr != 0x0)
2098 				page_bad = TRUE;
2099 			/*
2100 			 * Restore original value.
2101 			 */
2102 			*(int *)ptr = tmp;
2103 
2104 skip_memtest:
2105 			/*
2106 			 * Adjust array of valid/good pages.
2107 			 */
2108 			if (page_bad == TRUE)
2109 				continue;
2110 			/*
2111 			 * If this good page is a continuation of the
2112 			 * previous set of good pages, then just increase
2113 			 * the end pointer. Otherwise start a new chunk.
2114 			 * Note that "end" points one higher than end,
2115 			 * making the range >= start and < end.
2116 			 * If we're also doing a speculative memory
2117 			 * test and we at or past the end, bump up Maxmem
2118 			 * so that we keep going. The first bad page
2119 			 * will terminate the loop.
2120 			 */
2121 			if (phys_avail[pa_indx] == pa) {
2122 				phys_avail[pa_indx] += PAGE_SIZE;
2123 			} else {
2124 				pa_indx++;
2125 				if (pa_indx == PHYS_AVAIL_ENTRIES) {
2126 					printf(
2127 		"Too many holes in the physical address space, giving up\n");
2128 					pa_indx--;
2129 					full = TRUE;
2130 					goto do_dump_avail;
2131 				}
2132 				phys_avail[pa_indx++] = pa;	/* start */
2133 				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
2134 			}
2135 			physmem++;
2136 do_dump_avail:
2137 			if (dump_avail[da_indx] == pa) {
2138 				dump_avail[da_indx] += PAGE_SIZE;
2139 			} else {
2140 				da_indx++;
2141 				if (da_indx == PHYS_AVAIL_ENTRIES) {
2142 					da_indx--;
2143 					goto do_next;
2144 				}
2145 				dump_avail[da_indx++] = pa;	/* start */
2146 				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
2147 			}
2148 do_next:
2149 			if (full)
2150 				break;
2151 		}
2152 	}
2153 	pmap_cmap3(0, 0);
2154 
2155 	/*
2156 	 * XXX
2157 	 * The last chunk must contain at least one page plus the message
2158 	 * buffer to avoid complicating other code (message buffer address
2159 	 * calculation, etc.).
2160 	 */
2161 	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
2162 	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
2163 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2164 		phys_avail[pa_indx--] = 0;
2165 		phys_avail[pa_indx--] = 0;
2166 	}
2167 
2168 	Maxmem = atop(phys_avail[pa_indx]);
2169 
2170 	/* Trim off space for the message buffer. */
2171 	phys_avail[pa_indx] -= round_page(msgbufsize);
2172 
2173 	/* Map the message buffer. */
2174 	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
2175 		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
2176 		    off);
2177 }
2178 
2179 static void
2180 i386_kdb_init(void)
2181 {
2182 #ifdef DDB
2183 	db_fetch_ksymtab(bootinfo.bi_symtab, bootinfo.bi_esymtab);
2184 #endif
2185 	kdb_init();
2186 #ifdef KDB
2187 	if (boothowto & RB_KDB)
2188 		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
2189 #endif
2190 }
2191 
2192 static void
2193 fixup_idt(void)
2194 {
2195 	struct gate_descriptor *ip;
2196 	uintptr_t off;
2197 	int x;
2198 
2199 	for (x = 0; x < NIDT; x++) {
2200 		ip = &idt[x];
2201 		if (ip->gd_type != SDT_SYS386IGT &&
2202 		    ip->gd_type != SDT_SYS386TGT)
2203 			continue;
2204 		off = ip->gd_looffset + (((u_int)ip->gd_hioffset) << 16);
2205 		KASSERT(off >= (uintptr_t)start_exceptions &&
2206 		    off < (uintptr_t)end_exceptions,
2207 		    ("IDT[%d] type %d off %#x", x, ip->gd_type, off));
2208 		off += setidt_disp;
2209 		MPASS(off >= PMAP_TRM_MIN_ADDRESS &&
2210 		    off < PMAP_TRM_MAX_ADDRESS);
2211 		ip->gd_looffset = off;
2212 		ip->gd_hioffset = off >> 16;
2213 	}
2214 }
2215 
2216 static void
2217 i386_setidt1(void)
2218 {
2219 	int x;
2220 
2221 	/* exceptions */
2222 	for (x = 0; x < NIDT; x++)
2223 		setidt(x, &IDTVEC(rsvd), SDT_SYS386IGT, SEL_KPL,
2224 		    GSEL(GCODE_SEL, SEL_KPL));
2225 	setidt(IDT_DE, &IDTVEC(div), SDT_SYS386IGT, SEL_KPL,
2226 	    GSEL(GCODE_SEL, SEL_KPL));
2227 	setidt(IDT_DB, &IDTVEC(dbg), SDT_SYS386IGT, SEL_KPL,
2228 	    GSEL(GCODE_SEL, SEL_KPL));
2229 	setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYS386IGT, SEL_KPL,
2230 	    GSEL(GCODE_SEL, SEL_KPL));
2231 	setidt(IDT_BP, &IDTVEC(bpt), SDT_SYS386IGT, SEL_UPL,
2232 	    GSEL(GCODE_SEL, SEL_KPL));
2233 	setidt(IDT_OF, &IDTVEC(ofl), SDT_SYS386IGT, SEL_UPL,
2234 	    GSEL(GCODE_SEL, SEL_KPL));
2235 	setidt(IDT_BR, &IDTVEC(bnd), SDT_SYS386IGT, SEL_KPL,
2236 	    GSEL(GCODE_SEL, SEL_KPL));
2237 	setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL,
2238 	    GSEL(GCODE_SEL, SEL_KPL));
2239 	setidt(IDT_NM, &IDTVEC(dna), SDT_SYS386IGT, SEL_KPL,
2240 	    GSEL(GCODE_SEL, SEL_KPL));
2241 	setidt(IDT_DF, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL,
2242 	    SEL_KPL));
2243 	setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYS386IGT,
2244 	    SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2245 	setidt(IDT_TS, &IDTVEC(tss), SDT_SYS386IGT, SEL_KPL,
2246 	    GSEL(GCODE_SEL, SEL_KPL));
2247 	setidt(IDT_NP, &IDTVEC(missing), SDT_SYS386IGT, SEL_KPL,
2248 	    GSEL(GCODE_SEL, SEL_KPL));
2249 	setidt(IDT_SS, &IDTVEC(stk), SDT_SYS386IGT, SEL_KPL,
2250 	    GSEL(GCODE_SEL, SEL_KPL));
2251 	setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL,
2252 	    GSEL(GCODE_SEL, SEL_KPL));
2253 	setidt(IDT_PF, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL,
2254 	    GSEL(GCODE_SEL, SEL_KPL));
2255 	setidt(IDT_MF, &IDTVEC(fpu), SDT_SYS386IGT, SEL_KPL,
2256 	    GSEL(GCODE_SEL, SEL_KPL));
2257 	setidt(IDT_AC, &IDTVEC(align), SDT_SYS386IGT, SEL_KPL,
2258 	    GSEL(GCODE_SEL, SEL_KPL));
2259 	setidt(IDT_MC, &IDTVEC(mchk), SDT_SYS386IGT, SEL_KPL,
2260 	    GSEL(GCODE_SEL, SEL_KPL));
2261 	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386IGT, SEL_KPL,
2262 	    GSEL(GCODE_SEL, SEL_KPL));
2263 	setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall),
2264 	    SDT_SYS386IGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
2265 #ifdef KDTRACE_HOOKS
2266 	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret),
2267 	    SDT_SYS386IGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
2268 #endif
2269 #ifdef XENHVM
2270 	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall),
2271 	    SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2272 #endif
2273 }
2274 
2275 static void
2276 i386_setidt2(void)
2277 {
2278 
2279 	setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL,
2280 	    GSEL(GCODE_SEL, SEL_KPL));
2281 	setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL,
2282 	    GSEL(GCODE_SEL, SEL_KPL));
2283 }
2284 
2285 #if defined(DEV_ISA) && !defined(DEV_ATPIC)
2286 static void
2287 i386_setidt3(void)
2288 {
2289 
2290 	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint),
2291 	    SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2292 	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint),
2293 	    SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2294 }
2295 #endif
2296 
2297 register_t
2298 init386(int first)
2299 {
2300 	struct region_descriptor r_gdt, r_idt;	/* table descriptors */
2301 	int gsel_tss, metadata_missing, x, pa;
2302 	struct pcpu *pc;
2303 	struct xstate_hdr *xhdr;
2304 	caddr_t kmdp;
2305 	vm_offset_t addend;
2306 	size_t ucode_len;
2307 	int late_console;
2308 
2309 	thread0.td_kstack = proc0kstack;
2310 	thread0.td_kstack_pages = TD0_KSTACK_PAGES;
2311 
2312 	/*
2313  	 * This may be done better later if it gets more high level
2314  	 * components in it. If so just link td->td_proc here.
2315 	 */
2316 	proc_linkup0(&proc0, &thread0);
2317 
2318 	if (bootinfo.bi_modulep) {
2319 		metadata_missing = 0;
2320 		addend = (vm_paddr_t)bootinfo.bi_modulep < KERNBASE ?
2321 		    PMAP_MAP_LOW : 0;
2322 		preload_metadata = (caddr_t)bootinfo.bi_modulep + addend;
2323 		preload_bootstrap_relocate(addend);
2324 	} else {
2325 		metadata_missing = 1;
2326 	}
2327 
2328 	if (bootinfo.bi_envp != 0) {
2329 		addend = (vm_paddr_t)bootinfo.bi_envp < KERNBASE ?
2330 		    PMAP_MAP_LOW : 0;
2331 		init_static_kenv((char *)bootinfo.bi_envp + addend, 0);
2332 	} else {
2333 		init_static_kenv(NULL, 0);
2334 	}
2335 
2336 	/*
2337 	 * Re-evaluate CPU features if we loaded a microcode update.
2338 	 */
2339 	ucode_len = ucode_load_bsp(first);
2340 	if (ucode_len != 0) {
2341 		identify_cpu();
2342 		first = roundup2(first + ucode_len, PAGE_SIZE);
2343 	}
2344 
2345 	identify_hypervisor();
2346 
2347 	/* Init basic tunables, hz etc */
2348 	init_param1();
2349 
2350 	/*
2351 	 * Make gdt memory segments.  All segments cover the full 4GB
2352 	 * of address space and permissions are enforced at page level.
2353 	 */
2354 	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
2355 	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
2356 	gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
2357 	gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
2358 	gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
2359 	gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
2360 
2361 	pc = &__pcpu[0];
2362 	gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
2363 	gdt_segs[GPRIV_SEL].ssd_base = (int)pc;
2364 	gdt_segs[GPROC0_SEL].ssd_base = (int)&common_tss0;
2365 
2366 	for (x = 0; x < NGDT; x++)
2367 		ssdtosd(&gdt_segs[x], &gdt0[x].sd);
2368 
2369 	r_gdt.rd_limit = NGDT * sizeof(gdt0[0]) - 1;
2370 	r_gdt.rd_base =  (int)gdt0;
2371 	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
2372 	lgdt(&r_gdt);
2373 
2374 	pcpu_init(pc, 0, sizeof(struct pcpu));
2375 	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
2376 		pmap_kenter(pa, pa);
2377 	dpcpu_init((void *)first, 0);
2378 	first += DPCPU_SIZE;
2379 	PCPU_SET(prvspace, pc);
2380 	PCPU_SET(curthread, &thread0);
2381 	/* Non-late cninit() and printf() can be moved up to here. */
2382 
2383 	/*
2384 	 * Initialize mutexes.
2385 	 *
2386 	 * icu_lock: in order to allow an interrupt to occur in a critical
2387 	 * 	     section, to set pcpu->ipending (etc...) properly, we
2388 	 *	     must be able to get the icu lock, so it can't be
2389 	 *	     under witness.
2390 	 */
2391 	mutex_init();
2392 	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
2393 
2394 	i386_setidt1();
2395 
2396 	r_idt.rd_limit = sizeof(idt0) - 1;
2397 	r_idt.rd_base = (int) idt;
2398 	lidt(&r_idt);
2399 
2400 	/*
2401 	 * Initialize the clock before the console so that console
2402 	 * initialization can use DELAY().
2403 	 */
2404 	clock_init();
2405 
2406 	finishidentcpu();	/* Final stage of CPU initialization */
2407 	i386_setidt2();
2408 	pmap_set_nx();
2409 	initializecpu();	/* Initialize CPU registers */
2410 	initializecpucache();
2411 
2412 	/* pointer to selector slot for %fs/%gs */
2413 	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
2414 
2415 	/* Initialize the tss (except for the final esp0) early for vm86. */
2416 	common_tss0.tss_esp0 = thread0.td_kstack + thread0.td_kstack_pages *
2417 	    PAGE_SIZE - VM86_STACK_SPACE;
2418 	common_tss0.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
2419 	common_tss0.tss_ioopt = sizeof(struct i386tss) << 16;
2420 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2421 	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
2422 	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
2423 	ltr(gsel_tss);
2424 
2425 	/* Initialize the PIC early for vm86 calls. */
2426 #ifdef DEV_ISA
2427 #ifdef DEV_ATPIC
2428 	elcr_probe();
2429 	atpic_startup();
2430 #else
2431 	/* Reset and mask the atpics and leave them shut down. */
2432 	atpic_reset();
2433 
2434 	/*
2435 	 * Point the ICU spurious interrupt vectors at the APIC spurious
2436 	 * interrupt handler.
2437 	 */
2438 	i386_setidt3();
2439 #endif
2440 #endif
2441 
2442 	/*
2443 	 * The console and kdb should be initialized even earlier than here,
2444 	 * but some console drivers don't work until after getmemsize().
2445 	 * Default to late console initialization to support these drivers.
2446 	 * This loses mainly printf()s in getmemsize() and early debugging.
2447 	 */
2448 	late_console = 1;
2449 	TUNABLE_INT_FETCH("debug.late_console", &late_console);
2450 	if (!late_console) {
2451 		cninit();
2452 		i386_kdb_init();
2453 	}
2454 
2455 	kmdp = preload_search_by_type("elf kernel");
2456 	link_elf_ireloc(kmdp);
2457 
2458 	vm86_initialize();
2459 	getmemsize(first);
2460 	init_param2(physmem);
2461 
2462 	/* now running on new page tables, configured,and u/iom is accessible */
2463 
2464 	if (late_console)
2465 		cninit();
2466 
2467 	if (metadata_missing)
2468 		printf("WARNING: loader(8) metadata is missing!\n");
2469 
2470 	if (late_console)
2471 		i386_kdb_init();
2472 
2473 	msgbufinit(msgbufp, msgbufsize);
2474 	npxinit(true);
2475 	/*
2476 	 * Set up thread0 pcb after npxinit calculated pcb + fpu save
2477 	 * area size.  Zero out the extended state header in fpu save
2478 	 * area.
2479 	 */
2480 	thread0.td_pcb = get_pcb_td(&thread0);
2481 	thread0.td_pcb->pcb_save = get_pcb_user_save_td(&thread0);
2482 	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
2483 	if (use_xsave) {
2484 		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
2485 		    1);
2486 		xhdr->xstate_bv = xsave_mask;
2487 	}
2488 	PCPU_SET(curpcb, thread0.td_pcb);
2489 	/* Move esp0 in the tss to its final place. */
2490 	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
2491 	common_tss0.tss_esp0 = (vm_offset_t)thread0.td_pcb - VM86_STACK_SPACE;
2492 	PCPU_SET(kesp0, common_tss0.tss_esp0);
2493 	gdt[GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;	/* clear busy bit */
2494 	ltr(gsel_tss);
2495 
2496 	/* transfer to user mode */
2497 
2498 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2499 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2500 
2501 	/* setup proc 0's pcb */
2502 	thread0.td_pcb->pcb_flags = 0;
2503 	thread0.td_pcb->pcb_cr3 = pmap_get_kcr3();
2504 	thread0.td_pcb->pcb_ext = 0;
2505 	thread0.td_frame = &proc0_tf;
2506 
2507 	cpu_probe_amdc1e();
2508 
2509 #ifdef FDT
2510 	x86_init_fdt();
2511 #endif
2512 
2513 	/* Location of kernel stack for locore */
2514 	return ((register_t)thread0.td_pcb);
2515 }
2516 
2517 static void
2518 machdep_init_trampoline(void)
2519 {
2520 	struct region_descriptor r_gdt, r_idt;
2521 	struct i386tss *tss;
2522 	char *copyout_buf, *trampoline, *tramp_stack_base;
2523 	int x;
2524 
2525 	gdt = pmap_trm_alloc(sizeof(union descriptor) * NGDT * mp_ncpus,
2526 	    M_NOWAIT | M_ZERO);
2527 	bcopy(gdt0, gdt, sizeof(union descriptor) * NGDT);
2528 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2529 	r_gdt.rd_base = (int)gdt;
2530 	lgdt(&r_gdt);
2531 
2532 	tss = pmap_trm_alloc(sizeof(struct i386tss) * mp_ncpus,
2533 	    M_NOWAIT | M_ZERO);
2534 	bcopy(&common_tss0, tss, sizeof(struct i386tss));
2535 	gdt[GPROC0_SEL].sd.sd_lobase = (int)tss;
2536 	gdt[GPROC0_SEL].sd.sd_hibase = (u_int)tss >> 24;
2537 	gdt[GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
2538 
2539 	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
2540 	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
2541 	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
2542 	PCPU_SET(common_tssp, tss);
2543 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2544 
2545 	trampoline = pmap_trm_alloc(end_exceptions - start_exceptions,
2546 	    M_NOWAIT);
2547 	bcopy(start_exceptions, trampoline, end_exceptions - start_exceptions);
2548 	tramp_stack_base = pmap_trm_alloc(TRAMP_STACK_SZ, M_NOWAIT);
2549 	PCPU_SET(trampstk, (uintptr_t)tramp_stack_base + TRAMP_STACK_SZ -
2550 	    VM86_STACK_SPACE);
2551 	tss[0].tss_esp0 = PCPU_GET(trampstk);
2552 
2553 	idt = pmap_trm_alloc(sizeof(idt0), M_NOWAIT | M_ZERO);
2554 	bcopy(idt0, idt, sizeof(idt0));
2555 
2556 	/* Re-initialize new IDT since the handlers were relocated */
2557 	setidt_disp = trampoline - start_exceptions;
2558 	fixup_idt();
2559 
2560 	r_idt.rd_limit = sizeof(struct gate_descriptor) * NIDT - 1;
2561 	r_idt.rd_base = (int)idt;
2562 	lidt(&r_idt);
2563 
2564 	/* dblfault TSS */
2565 	dblfault_tss = pmap_trm_alloc(sizeof(struct i386tss), M_NOWAIT | M_ZERO);
2566 	dblfault_stack = pmap_trm_alloc(PAGE_SIZE, M_NOWAIT);
2567 	dblfault_tss->tss_esp = dblfault_tss->tss_esp0 =
2568 	    dblfault_tss->tss_esp1 = dblfault_tss->tss_esp2 =
2569 	    (int)dblfault_stack + PAGE_SIZE;
2570 	dblfault_tss->tss_ss = dblfault_tss->tss_ss0 = dblfault_tss->tss_ss1 =
2571 	    dblfault_tss->tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2572 	dblfault_tss->tss_cr3 = pmap_get_kcr3();
2573 	dblfault_tss->tss_eip = (int)dblfault_handler;
2574 	dblfault_tss->tss_eflags = PSL_KERNEL;
2575 	dblfault_tss->tss_ds = dblfault_tss->tss_es =
2576 	    dblfault_tss->tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2577 	dblfault_tss->tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2578 	dblfault_tss->tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2579 	dblfault_tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2580 	gdt[GPANIC_SEL].sd.sd_lobase = (int)dblfault_tss;
2581 	gdt[GPANIC_SEL].sd.sd_hibase = (u_int)dblfault_tss >> 24;
2582 
2583 	/* make ldt memory segments */
2584 	ldt = pmap_trm_alloc(sizeof(union descriptor) * NLDT,
2585 	    M_NOWAIT | M_ZERO);
2586 	gdt[GLDT_SEL].sd.sd_lobase = (int)ldt;
2587 	gdt[GLDT_SEL].sd.sd_hibase = (u_int)ldt >> 24;
2588 	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
2589 	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
2590 	for (x = 0; x < nitems(ldt_segs); x++)
2591 		ssdtosd(&ldt_segs[x], &ldt[x].sd);
2592 
2593 	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
2594 	lldt(_default_ldt);
2595 	PCPU_SET(currentldt, _default_ldt);
2596 
2597 	copyout_buf = pmap_trm_alloc(TRAMP_COPYOUT_SZ, M_NOWAIT);
2598 	PCPU_SET(copyout_buf, copyout_buf);
2599 	copyout_init_tramp();
2600 }
2601 SYSINIT(vm_mem, SI_SUB_VM, SI_ORDER_SECOND, machdep_init_trampoline, NULL);
2602 
2603 #ifdef COMPAT_43
2604 static void
2605 i386_setup_lcall_gate(void)
2606 {
2607 	struct sysentvec *sv;
2608 	struct user_segment_descriptor desc;
2609 	u_int lcall_addr;
2610 
2611 	sv = &elf32_freebsd_sysvec;
2612 	lcall_addr = (uintptr_t)sv->sv_psstrings - sz_lcall_tramp;
2613 
2614 	bzero(&desc, sizeof(desc));
2615 	desc.sd_type = SDT_MEMERA;
2616 	desc.sd_dpl = SEL_UPL;
2617 	desc.sd_p = 1;
2618 	desc.sd_def32 = 1;
2619 	desc.sd_gran = 1;
2620 	desc.sd_lolimit = 0xffff;
2621 	desc.sd_hilimit = 0xf;
2622 	desc.sd_lobase = lcall_addr;
2623 	desc.sd_hibase = lcall_addr >> 24;
2624 	bcopy(&desc, &ldt[LSYS5CALLS_SEL], sizeof(desc));
2625 }
2626 SYSINIT(elf32, SI_SUB_EXEC, SI_ORDER_ANY, i386_setup_lcall_gate, NULL);
2627 #endif
2628 
2629 void
2630 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
2631 {
2632 
2633 	pcpu->pc_acpi_id = 0xffffffff;
2634 }
2635 
2636 static int
2637 smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
2638 {
2639 	struct bios_smap *smapbase;
2640 	struct bios_smap_xattr smap;
2641 	caddr_t kmdp;
2642 	uint32_t *smapattr;
2643 	int count, error, i;
2644 
2645 	/* Retrieve the system memory map from the loader. */
2646 	kmdp = preload_search_by_type("elf kernel");
2647 	if (kmdp == NULL)
2648 		kmdp = preload_search_by_type("elf32 kernel");
2649 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
2650 	    MODINFO_METADATA | MODINFOMD_SMAP);
2651 	if (smapbase == NULL)
2652 		return (0);
2653 	smapattr = (uint32_t *)preload_search_info(kmdp,
2654 	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
2655 	count = *((u_int32_t *)smapbase - 1) / sizeof(*smapbase);
2656 	error = 0;
2657 	for (i = 0; i < count; i++) {
2658 		smap.base = smapbase[i].base;
2659 		smap.length = smapbase[i].length;
2660 		smap.type = smapbase[i].type;
2661 		if (smapattr != NULL)
2662 			smap.xattr = smapattr[i];
2663 		else
2664 			smap.xattr = 0;
2665 		error = SYSCTL_OUT(req, &smap, sizeof(smap));
2666 	}
2667 	return (error);
2668 }
2669 SYSCTL_PROC(_machdep, OID_AUTO, smap,
2670     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
2671     smap_sysctl_handler, "S,bios_smap_xattr",
2672     "Raw BIOS SMAP data");
2673 
2674 void
2675 spinlock_enter(void)
2676 {
2677 	struct thread *td;
2678 	register_t flags;
2679 
2680 	td = curthread;
2681 	if (td->td_md.md_spinlock_count == 0) {
2682 		flags = intr_disable();
2683 		td->td_md.md_spinlock_count = 1;
2684 		td->td_md.md_saved_flags = flags;
2685 		critical_enter();
2686 	} else
2687 		td->td_md.md_spinlock_count++;
2688 }
2689 
2690 void
2691 spinlock_exit(void)
2692 {
2693 	struct thread *td;
2694 	register_t flags;
2695 
2696 	td = curthread;
2697 	flags = td->td_md.md_saved_flags;
2698 	td->td_md.md_spinlock_count--;
2699 	if (td->td_md.md_spinlock_count == 0) {
2700 		critical_exit();
2701 		intr_restore(flags);
2702 	}
2703 }
2704 
2705 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
2706 static void f00f_hack(void *unused);
2707 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2708 
2709 static void
2710 f00f_hack(void *unused)
2711 {
2712 	struct region_descriptor r_idt;
2713 	struct gate_descriptor *new_idt;
2714 	vm_offset_t tmp;
2715 
2716 	if (!has_f00f_bug)
2717 		return;
2718 
2719 	GIANT_REQUIRED;
2720 
2721 	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2722 
2723 	tmp = (vm_offset_t)pmap_trm_alloc(PAGE_SIZE * 3, M_NOWAIT | M_ZERO);
2724 	if (tmp == 0)
2725 		panic("kmem_malloc returned 0");
2726 	tmp = round_page(tmp);
2727 
2728 	/* Put the problematic entry (#6) at the end of the lower page. */
2729 	new_idt = (struct gate_descriptor *)
2730 	    (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
2731 	bcopy(idt, new_idt, sizeof(idt0));
2732 	r_idt.rd_base = (u_int)new_idt;
2733 	r_idt.rd_limit = sizeof(idt0) - 1;
2734 	lidt(&r_idt);
2735 	/* SMP machines do not need the F00F hack. */
2736 	idt = new_idt;
2737 	pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
2738 }
2739 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
2740 
2741 /*
2742  * Construct a PCB from a trapframe. This is called from kdb_trap() where
2743  * we want to start a backtrace from the function that caused us to enter
2744  * the debugger. We have the context in the trapframe, but base the trace
2745  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
2746  * enough for a backtrace.
2747  */
2748 void
2749 makectx(struct trapframe *tf, struct pcb *pcb)
2750 {
2751 
2752 	pcb->pcb_edi = tf->tf_edi;
2753 	pcb->pcb_esi = tf->tf_esi;
2754 	pcb->pcb_ebp = tf->tf_ebp;
2755 	pcb->pcb_ebx = tf->tf_ebx;
2756 	pcb->pcb_eip = tf->tf_eip;
2757 	pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
2758 	pcb->pcb_gs = rgs();
2759 }
2760 
2761 int
2762 ptrace_set_pc(struct thread *td, u_long addr)
2763 {
2764 
2765 	td->td_frame->tf_eip = addr;
2766 	return (0);
2767 }
2768 
2769 int
2770 ptrace_single_step(struct thread *td)
2771 {
2772 
2773 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
2774 	if ((td->td_frame->tf_eflags & PSL_T) == 0) {
2775 		td->td_frame->tf_eflags |= PSL_T;
2776 		td->td_dbgflags |= TDB_STEP;
2777 	}
2778 	return (0);
2779 }
2780 
2781 int
2782 ptrace_clear_single_step(struct thread *td)
2783 {
2784 
2785 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
2786 	td->td_frame->tf_eflags &= ~PSL_T;
2787 	td->td_dbgflags &= ~TDB_STEP;
2788 	return (0);
2789 }
2790 
2791 int
2792 fill_regs(struct thread *td, struct reg *regs)
2793 {
2794 	struct pcb *pcb;
2795 	struct trapframe *tp;
2796 
2797 	tp = td->td_frame;
2798 	pcb = td->td_pcb;
2799 	regs->r_gs = pcb->pcb_gs;
2800 	return (fill_frame_regs(tp, regs));
2801 }
2802 
2803 int
2804 fill_frame_regs(struct trapframe *tp, struct reg *regs)
2805 {
2806 
2807 	regs->r_fs = tp->tf_fs;
2808 	regs->r_es = tp->tf_es;
2809 	regs->r_ds = tp->tf_ds;
2810 	regs->r_edi = tp->tf_edi;
2811 	regs->r_esi = tp->tf_esi;
2812 	regs->r_ebp = tp->tf_ebp;
2813 	regs->r_ebx = tp->tf_ebx;
2814 	regs->r_edx = tp->tf_edx;
2815 	regs->r_ecx = tp->tf_ecx;
2816 	regs->r_eax = tp->tf_eax;
2817 	regs->r_eip = tp->tf_eip;
2818 	regs->r_cs = tp->tf_cs;
2819 	regs->r_eflags = tp->tf_eflags;
2820 	regs->r_esp = tp->tf_esp;
2821 	regs->r_ss = tp->tf_ss;
2822 	regs->r_err = 0;
2823 	regs->r_trapno = 0;
2824 	return (0);
2825 }
2826 
2827 int
2828 set_regs(struct thread *td, struct reg *regs)
2829 {
2830 	struct pcb *pcb;
2831 	struct trapframe *tp;
2832 
2833 	tp = td->td_frame;
2834 	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2835 	    !CS_SECURE(regs->r_cs))
2836 		return (EINVAL);
2837 	pcb = td->td_pcb;
2838 	tp->tf_fs = regs->r_fs;
2839 	tp->tf_es = regs->r_es;
2840 	tp->tf_ds = regs->r_ds;
2841 	tp->tf_edi = regs->r_edi;
2842 	tp->tf_esi = regs->r_esi;
2843 	tp->tf_ebp = regs->r_ebp;
2844 	tp->tf_ebx = regs->r_ebx;
2845 	tp->tf_edx = regs->r_edx;
2846 	tp->tf_ecx = regs->r_ecx;
2847 	tp->tf_eax = regs->r_eax;
2848 	tp->tf_eip = regs->r_eip;
2849 	tp->tf_cs = regs->r_cs;
2850 	tp->tf_eflags = regs->r_eflags;
2851 	tp->tf_esp = regs->r_esp;
2852 	tp->tf_ss = regs->r_ss;
2853 	pcb->pcb_gs = regs->r_gs;
2854 	return (0);
2855 }
2856 
2857 int
2858 fill_fpregs(struct thread *td, struct fpreg *fpregs)
2859 {
2860 
2861 	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2862 	    P_SHOULDSTOP(td->td_proc),
2863 	    ("not suspended thread %p", td));
2864 	npxgetregs(td);
2865 	if (cpu_fxsr)
2866 		npx_fill_fpregs_xmm(&get_pcb_user_save_td(td)->sv_xmm,
2867 		    (struct save87 *)fpregs);
2868 	else
2869 		bcopy(&get_pcb_user_save_td(td)->sv_87, fpregs,
2870 		    sizeof(*fpregs));
2871 	return (0);
2872 }
2873 
2874 int
2875 set_fpregs(struct thread *td, struct fpreg *fpregs)
2876 {
2877 
2878 	critical_enter();
2879 	if (cpu_fxsr)
2880 		npx_set_fpregs_xmm((struct save87 *)fpregs,
2881 		    &get_pcb_user_save_td(td)->sv_xmm);
2882 	else
2883 		bcopy(fpregs, &get_pcb_user_save_td(td)->sv_87,
2884 		    sizeof(*fpregs));
2885 	npxuserinited(td);
2886 	critical_exit();
2887 	return (0);
2888 }
2889 
2890 /*
2891  * Get machine context.
2892  */
2893 int
2894 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2895 {
2896 	struct trapframe *tp;
2897 	struct segment_descriptor *sdp;
2898 
2899 	tp = td->td_frame;
2900 
2901 	PROC_LOCK(curthread->td_proc);
2902 	mcp->mc_onstack = sigonstack(tp->tf_esp);
2903 	PROC_UNLOCK(curthread->td_proc);
2904 	mcp->mc_gs = td->td_pcb->pcb_gs;
2905 	mcp->mc_fs = tp->tf_fs;
2906 	mcp->mc_es = tp->tf_es;
2907 	mcp->mc_ds = tp->tf_ds;
2908 	mcp->mc_edi = tp->tf_edi;
2909 	mcp->mc_esi = tp->tf_esi;
2910 	mcp->mc_ebp = tp->tf_ebp;
2911 	mcp->mc_isp = tp->tf_isp;
2912 	mcp->mc_eflags = tp->tf_eflags;
2913 	if (flags & GET_MC_CLEAR_RET) {
2914 		mcp->mc_eax = 0;
2915 		mcp->mc_edx = 0;
2916 		mcp->mc_eflags &= ~PSL_C;
2917 	} else {
2918 		mcp->mc_eax = tp->tf_eax;
2919 		mcp->mc_edx = tp->tf_edx;
2920 	}
2921 	mcp->mc_ebx = tp->tf_ebx;
2922 	mcp->mc_ecx = tp->tf_ecx;
2923 	mcp->mc_eip = tp->tf_eip;
2924 	mcp->mc_cs = tp->tf_cs;
2925 	mcp->mc_esp = tp->tf_esp;
2926 	mcp->mc_ss = tp->tf_ss;
2927 	mcp->mc_len = sizeof(*mcp);
2928 	get_fpcontext(td, mcp, NULL, 0);
2929 	sdp = &td->td_pcb->pcb_fsd;
2930 	mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
2931 	sdp = &td->td_pcb->pcb_gsd;
2932 	mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
2933 	mcp->mc_flags = 0;
2934 	mcp->mc_xfpustate = 0;
2935 	mcp->mc_xfpustate_len = 0;
2936 	bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
2937 	return (0);
2938 }
2939 
2940 /*
2941  * Set machine context.
2942  *
2943  * However, we don't set any but the user modifiable flags, and we won't
2944  * touch the cs selector.
2945  */
2946 int
2947 set_mcontext(struct thread *td, mcontext_t *mcp)
2948 {
2949 	struct trapframe *tp;
2950 	char *xfpustate;
2951 	int eflags, ret;
2952 
2953 	tp = td->td_frame;
2954 	if (mcp->mc_len != sizeof(*mcp) ||
2955 	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2956 		return (EINVAL);
2957 	eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
2958 	    (tp->tf_eflags & ~PSL_USERCHANGE);
2959 	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2960 		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2961 		    sizeof(union savefpu))
2962 			return (EINVAL);
2963 		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2964 		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2965 		    mcp->mc_xfpustate_len);
2966 		if (ret != 0)
2967 			return (ret);
2968 	} else
2969 		xfpustate = NULL;
2970 	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2971 	if (ret != 0)
2972 		return (ret);
2973 	tp->tf_fs = mcp->mc_fs;
2974 	tp->tf_es = mcp->mc_es;
2975 	tp->tf_ds = mcp->mc_ds;
2976 	tp->tf_edi = mcp->mc_edi;
2977 	tp->tf_esi = mcp->mc_esi;
2978 	tp->tf_ebp = mcp->mc_ebp;
2979 	tp->tf_ebx = mcp->mc_ebx;
2980 	tp->tf_edx = mcp->mc_edx;
2981 	tp->tf_ecx = mcp->mc_ecx;
2982 	tp->tf_eax = mcp->mc_eax;
2983 	tp->tf_eip = mcp->mc_eip;
2984 	tp->tf_eflags = eflags;
2985 	tp->tf_esp = mcp->mc_esp;
2986 	tp->tf_ss = mcp->mc_ss;
2987 	td->td_pcb->pcb_gs = mcp->mc_gs;
2988 	return (0);
2989 }
2990 
2991 static void
2992 get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2993     size_t xfpusave_len)
2994 {
2995 	size_t max_len, len;
2996 
2997 	mcp->mc_ownedfp = npxgetregs(td);
2998 	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2999 	    sizeof(mcp->mc_fpstate));
3000 	mcp->mc_fpformat = npxformat();
3001 	if (!use_xsave || xfpusave_len == 0)
3002 		return;
3003 	max_len = cpu_max_ext_state_size - sizeof(union savefpu);
3004 	len = xfpusave_len;
3005 	if (len > max_len) {
3006 		len = max_len;
3007 		bzero(xfpusave + max_len, len - max_len);
3008 	}
3009 	mcp->mc_flags |= _MC_HASFPXSTATE;
3010 	mcp->mc_xfpustate_len = len;
3011 	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
3012 }
3013 
3014 static int
3015 set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
3016     size_t xfpustate_len)
3017 {
3018 	int error;
3019 
3020 	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
3021 		return (0);
3022 	else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
3023 	    mcp->mc_fpformat != _MC_FPFMT_XMM)
3024 		return (EINVAL);
3025 	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
3026 		/* We don't care what state is left in the FPU or PCB. */
3027 		fpstate_drop(td);
3028 		error = 0;
3029 	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
3030 	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
3031 		error = npxsetregs(td, (union savefpu *)&mcp->mc_fpstate,
3032 		    xfpustate, xfpustate_len);
3033 	} else
3034 		return (EINVAL);
3035 	return (error);
3036 }
3037 
3038 static void
3039 fpstate_drop(struct thread *td)
3040 {
3041 
3042 	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
3043 	critical_enter();
3044 	if (PCPU_GET(fpcurthread) == td)
3045 		npxdrop();
3046 	/*
3047 	 * XXX force a full drop of the npx.  The above only drops it if we
3048 	 * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
3049 	 *
3050 	 * XXX I don't much like npxgetregs()'s semantics of doing a full
3051 	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
3052 	 * We only need to drop to !PCB_INITDONE in sendsig().  But
3053 	 * sendsig() is the only caller of npxgetregs()... perhaps we just
3054 	 * have too many layers.
3055 	 */
3056 	curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
3057 	    PCB_NPXUSERINITDONE);
3058 	critical_exit();
3059 }
3060 
3061 int
3062 fill_dbregs(struct thread *td, struct dbreg *dbregs)
3063 {
3064 	struct pcb *pcb;
3065 
3066 	if (td == NULL) {
3067 		dbregs->dr[0] = rdr0();
3068 		dbregs->dr[1] = rdr1();
3069 		dbregs->dr[2] = rdr2();
3070 		dbregs->dr[3] = rdr3();
3071 		dbregs->dr[6] = rdr6();
3072 		dbregs->dr[7] = rdr7();
3073 	} else {
3074 		pcb = td->td_pcb;
3075 		dbregs->dr[0] = pcb->pcb_dr0;
3076 		dbregs->dr[1] = pcb->pcb_dr1;
3077 		dbregs->dr[2] = pcb->pcb_dr2;
3078 		dbregs->dr[3] = pcb->pcb_dr3;
3079 		dbregs->dr[6] = pcb->pcb_dr6;
3080 		dbregs->dr[7] = pcb->pcb_dr7;
3081 	}
3082 	dbregs->dr[4] = 0;
3083 	dbregs->dr[5] = 0;
3084 	return (0);
3085 }
3086 
3087 int
3088 set_dbregs(struct thread *td, struct dbreg *dbregs)
3089 {
3090 	struct pcb *pcb;
3091 	int i;
3092 
3093 	if (td == NULL) {
3094 		load_dr0(dbregs->dr[0]);
3095 		load_dr1(dbregs->dr[1]);
3096 		load_dr2(dbregs->dr[2]);
3097 		load_dr3(dbregs->dr[3]);
3098 		load_dr6(dbregs->dr[6]);
3099 		load_dr7(dbregs->dr[7]);
3100 	} else {
3101 		/*
3102 		 * Don't let an illegal value for dr7 get set.	Specifically,
3103 		 * check for undefined settings.  Setting these bit patterns
3104 		 * result in undefined behaviour and can lead to an unexpected
3105 		 * TRCTRAP.
3106 		 */
3107 		for (i = 0; i < 4; i++) {
3108 			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
3109 				return (EINVAL);
3110 			if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
3111 				return (EINVAL);
3112 		}
3113 
3114 		pcb = td->td_pcb;
3115 
3116 		/*
3117 		 * Don't let a process set a breakpoint that is not within the
3118 		 * process's address space.  If a process could do this, it
3119 		 * could halt the system by setting a breakpoint in the kernel
3120 		 * (if ddb was enabled).  Thus, we need to check to make sure
3121 		 * that no breakpoints are being enabled for addresses outside
3122 		 * process's address space.
3123 		 *
3124 		 * XXX - what about when the watched area of the user's
3125 		 * address space is written into from within the kernel
3126 		 * ... wouldn't that still cause a breakpoint to be generated
3127 		 * from within kernel mode?
3128 		 */
3129 
3130 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
3131 			/* dr0 is enabled */
3132 			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
3133 				return (EINVAL);
3134 		}
3135 
3136 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
3137 			/* dr1 is enabled */
3138 			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
3139 				return (EINVAL);
3140 		}
3141 
3142 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
3143 			/* dr2 is enabled */
3144 			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
3145 				return (EINVAL);
3146 		}
3147 
3148 		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
3149 			/* dr3 is enabled */
3150 			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
3151 				return (EINVAL);
3152 		}
3153 
3154 		pcb->pcb_dr0 = dbregs->dr[0];
3155 		pcb->pcb_dr1 = dbregs->dr[1];
3156 		pcb->pcb_dr2 = dbregs->dr[2];
3157 		pcb->pcb_dr3 = dbregs->dr[3];
3158 		pcb->pcb_dr6 = dbregs->dr[6];
3159 		pcb->pcb_dr7 = dbregs->dr[7];
3160 
3161 		pcb->pcb_flags |= PCB_DBREGS;
3162 	}
3163 
3164 	return (0);
3165 }
3166 
3167 /*
3168  * Return > 0 if a hardware breakpoint has been hit, and the
3169  * breakpoint was in user space.  Return 0, otherwise.
3170  */
3171 int
3172 user_dbreg_trap(register_t dr6)
3173 {
3174         u_int32_t dr7;
3175         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
3176         int nbp;            /* number of breakpoints that triggered */
3177         caddr_t addr[4];    /* breakpoint addresses */
3178         int i;
3179 
3180         bp = dr6 & DBREG_DR6_BMASK;
3181         if (bp == 0) {
3182                 /*
3183                  * None of the breakpoint bits are set meaning this
3184                  * trap was not caused by any of the debug registers
3185                  */
3186                 return 0;
3187         }
3188 
3189         dr7 = rdr7();
3190         if ((dr7 & 0x000000ff) == 0) {
3191                 /*
3192                  * all GE and LE bits in the dr7 register are zero,
3193                  * thus the trap couldn't have been caused by the
3194                  * hardware debug registers
3195                  */
3196                 return 0;
3197         }
3198 
3199         nbp = 0;
3200 
3201         /*
3202          * at least one of the breakpoints were hit, check to see
3203          * which ones and if any of them are user space addresses
3204          */
3205 
3206         if (bp & 0x01) {
3207                 addr[nbp++] = (caddr_t)rdr0();
3208         }
3209         if (bp & 0x02) {
3210                 addr[nbp++] = (caddr_t)rdr1();
3211         }
3212         if (bp & 0x04) {
3213                 addr[nbp++] = (caddr_t)rdr2();
3214         }
3215         if (bp & 0x08) {
3216                 addr[nbp++] = (caddr_t)rdr3();
3217         }
3218 
3219         for (i = 0; i < nbp; i++) {
3220                 if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
3221                         /*
3222                          * addr[i] is in user space
3223                          */
3224                         return nbp;
3225                 }
3226         }
3227 
3228         /*
3229          * None of the breakpoints are in user space.
3230          */
3231         return 0;
3232 }
3233 
3234 #ifdef KDB
3235 
3236 /*
3237  * Provide inb() and outb() as functions.  They are normally only available as
3238  * inline functions, thus cannot be called from the debugger.
3239  */
3240 
3241 /* silence compiler warnings */
3242 u_char inb_(u_short);
3243 void outb_(u_short, u_char);
3244 
3245 u_char
3246 inb_(u_short port)
3247 {
3248 	return inb(port);
3249 }
3250 
3251 void
3252 outb_(u_short port, u_char data)
3253 {
3254 	outb(port, data);
3255 }
3256 
3257 #endif /* KDB */
3258