xref: /freebsd/sys/i386/i386/mp_machdep.c (revision bdd1243d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1996, by Steve Passe
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. The name of the developer may NOT be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_acpi.h"
32 #include "opt_apic.h"
33 #include "opt_cpu.h"
34 #include "opt_kstack_pages.h"
35 #include "opt_pmap.h"
36 #include "opt_sched.h"
37 #include "opt_smp.h"
38 
39 #if !defined(lint)
40 #if !defined(SMP)
41 #error How did you get here?
42 #endif
43 
44 #ifndef DEV_APIC
45 #error The apic device is required for SMP, add "device apic" to your config file.
46 #endif
47 #endif /* not lint */
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/bus.h>
52 #include <sys/cons.h>	/* cngetc() */
53 #include <sys/cpuset.h>
54 #include <sys/kdb.h>
55 #include <sys/kernel.h>
56 #include <sys/ktr.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/memrange.h>
60 #include <sys/mutex.h>
61 #include <sys/pcpu.h>
62 #include <sys/proc.h>
63 #include <sys/sched.h>
64 #include <sys/smp.h>
65 #include <sys/sysctl.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_kern.h>
71 #include <vm/vm_extern.h>
72 
73 #include <x86/apicreg.h>
74 #include <machine/clock.h>
75 #include <machine/cpu.h>
76 #include <machine/cputypes.h>
77 #include <x86/mca.h>
78 #include <machine/md_var.h>
79 #include <machine/pcb.h>
80 #include <machine/psl.h>
81 #include <machine/smp.h>
82 #include <machine/specialreg.h>
83 #include <x86/ucode.h>
84 
85 #ifdef DEV_ACPI
86 #include <contrib/dev/acpica/include/acpi.h>
87 #include <dev/acpica/acpivar.h>
88 #endif
89 
90 #define WARMBOOT_TARGET		0
91 #define WARMBOOT_OFF		(PMAP_MAP_LOW + 0x0467)
92 #define WARMBOOT_SEG		(PMAP_MAP_LOW + 0x0469)
93 
94 #define CMOS_REG		(0x70)
95 #define CMOS_DATA		(0x71)
96 #define BIOS_RESET		(0x0f)
97 #define BIOS_WARM		(0x0a)
98 
99 /*
100  * this code MUST be enabled here and in mpboot.s.
101  * it follows the very early stages of AP boot by placing values in CMOS ram.
102  * it NORMALLY will never be needed and thus the primitive method for enabling.
103  *
104 #define CHECK_POINTS
105  */
106 
107 #if defined(CHECK_POINTS)
108 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
109 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
110 
111 #define CHECK_INIT(D);				\
112 	CHECK_WRITE(0x34, (D));			\
113 	CHECK_WRITE(0x35, (D));			\
114 	CHECK_WRITE(0x36, (D));			\
115 	CHECK_WRITE(0x37, (D));			\
116 	CHECK_WRITE(0x38, (D));			\
117 	CHECK_WRITE(0x39, (D));
118 
119 #define CHECK_PRINT(S);				\
120 	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
121 	   (S),					\
122 	   CHECK_READ(0x34),			\
123 	   CHECK_READ(0x35),			\
124 	   CHECK_READ(0x36),			\
125 	   CHECK_READ(0x37),			\
126 	   CHECK_READ(0x38),			\
127 	   CHECK_READ(0x39));
128 
129 #else				/* CHECK_POINTS */
130 
131 #define CHECK_INIT(D)
132 #define CHECK_PRINT(S)
133 #define CHECK_WRITE(A, D)
134 
135 #endif				/* CHECK_POINTS */
136 
137 /*
138  * Local data and functions.
139  */
140 
141 static void	install_ap_tramp(void);
142 static int	start_all_aps(void);
143 static int	start_ap(int apic_id);
144 
145 static char *ap_copyout_buf;
146 static char *ap_tramp_stack_base;
147 
148 unsigned int boot_address;
149 
150 #define MiB(v)	(v ## ULL << 20)
151 
152 /* Allocate memory for the AP trampoline. */
153 void
154 alloc_ap_trampoline(vm_paddr_t *physmap, unsigned int *physmap_idx)
155 {
156 	unsigned int i;
157 	bool allocated;
158 
159 	allocated = false;
160 	for (i = *physmap_idx; i <= *physmap_idx; i -= 2) {
161 		/*
162 		 * Find a memory region big enough and below the 1MB boundary
163 		 * for the trampoline code.
164 		 * NB: needs to be page aligned.
165 		 */
166 		if (physmap[i] >= MiB(1) ||
167 		    (trunc_page(physmap[i + 1]) - round_page(physmap[i])) <
168 		    round_page(bootMP_size))
169 			continue;
170 
171 		allocated = true;
172 		/*
173 		 * Try to steal from the end of the region to mimic previous
174 		 * behaviour, else fallback to steal from the start.
175 		 */
176 		if (physmap[i + 1] < MiB(1)) {
177 			boot_address = trunc_page(physmap[i + 1]);
178 			if ((physmap[i + 1] - boot_address) < bootMP_size)
179 				boot_address -= round_page(bootMP_size);
180 			physmap[i + 1] = boot_address;
181 		} else {
182 			boot_address = round_page(physmap[i]);
183 			physmap[i] = boot_address + round_page(bootMP_size);
184 		}
185 		if (physmap[i] == physmap[i + 1] && *physmap_idx != 0) {
186 			memmove(&physmap[i], &physmap[i + 2],
187 			    sizeof(*physmap) * (*physmap_idx - i + 2));
188 			*physmap_idx -= 2;
189 		}
190 		break;
191 	}
192 
193 	if (!allocated) {
194 		boot_address = basemem * 1024 - bootMP_size;
195 		if (bootverbose)
196 			printf(
197 "Cannot find enough space for the boot trampoline, placing it at %#x",
198 			    boot_address);
199 	}
200 }
201 
202 /*
203  * Initialize the IPI handlers and start up the AP's.
204  */
205 void
206 cpu_mp_start(void)
207 {
208 	int i;
209 
210 	/* Initialize the logical ID to APIC ID table. */
211 	for (i = 0; i < MAXCPU; i++) {
212 		cpu_apic_ids[i] = -1;
213 	}
214 
215 	/* Install an inter-CPU IPI for TLB invalidation */
216 	setidt(IPI_INVLTLB, IDTVEC(invltlb),
217 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
218 	setidt(IPI_INVLPG, IDTVEC(invlpg),
219 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
220 	setidt(IPI_INVLRNG, IDTVEC(invlrng),
221 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
222 
223 	/* Install an inter-CPU IPI for cache invalidation. */
224 	setidt(IPI_INVLCACHE, IDTVEC(invlcache),
225 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
226 
227 	/* Install an inter-CPU IPI for all-CPU rendezvous */
228 	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
229 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
230 
231 	/* Install generic inter-CPU IPI handler */
232 	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
233 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
234 
235 	/* Install an inter-CPU IPI for CPU stop/restart */
236 	setidt(IPI_STOP, IDTVEC(cpustop),
237 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
238 
239 	/* Install an inter-CPU IPI for CPU suspend/resume */
240 	setidt(IPI_SUSPEND, IDTVEC(cpususpend),
241 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
242 
243 	/* Install an IPI for calling delayed SWI */
244 	setidt(IPI_SWI, IDTVEC(ipi_swi),
245 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
246 
247 	/* Set boot_cpu_id if needed. */
248 	if (boot_cpu_id == -1) {
249 		boot_cpu_id = PCPU_GET(apic_id);
250 		cpu_info[boot_cpu_id].cpu_bsp = 1;
251 	} else
252 		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
253 		    ("BSP's APIC ID doesn't match boot_cpu_id"));
254 
255 	/* Probe logical/physical core configuration. */
256 	topo_probe();
257 
258 	assign_cpu_ids();
259 
260 	/* Start each Application Processor */
261 	start_all_aps();
262 
263 	set_interrupt_apic_ids();
264 
265 #if defined(DEV_ACPI) && MAXMEMDOM > 1
266 	acpi_pxm_set_cpu_locality();
267 #endif
268 }
269 
270 /*
271  * AP CPU's call this to initialize themselves.
272  */
273 void
274 init_secondary(void)
275 {
276 	struct pcpu *pc;
277 	struct i386tss *common_tssp;
278 	struct region_descriptor r_gdt, r_idt;
279 	int gsel_tss, myid, x;
280 	u_int cr0;
281 
282 	/* bootAP is set in start_ap() to our ID. */
283 	myid = bootAP;
284 
285 	/* Update microcode before doing anything else. */
286 	ucode_load_ap(myid);
287 
288 	/* Get per-cpu data */
289 	pc = &__pcpu[myid];
290 
291 	/* prime data page for it to use */
292 	pcpu_init(pc, myid, sizeof(struct pcpu));
293 	dpcpu_init(dpcpu, myid);
294 	pc->pc_apic_id = cpu_apic_ids[myid];
295 	pc->pc_prvspace = pc;
296 	pc->pc_curthread = 0;
297 	pc->pc_common_tssp = common_tssp = &(__pcpu[0].pc_common_tssp)[myid];
298 
299 	fix_cpuid();
300 
301 	gdt_segs[GPRIV_SEL].ssd_base = (int)pc;
302 	gdt_segs[GPROC0_SEL].ssd_base = (int)common_tssp;
303 	gdt_segs[GLDT_SEL].ssd_base = (int)ldt;
304 
305 	for (x = 0; x < NGDT; x++) {
306 		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
307 	}
308 
309 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
310 	r_gdt.rd_base = (int) &gdt[myid * NGDT];
311 	lgdt(&r_gdt);			/* does magic intra-segment return */
312 
313 	r_idt.rd_limit = sizeof(struct gate_descriptor) * NIDT - 1;
314 	r_idt.rd_base = (int)idt;
315 	lidt(&r_idt);
316 
317 	lldt(_default_ldt);
318 	PCPU_SET(currentldt, _default_ldt);
319 
320 	PCPU_SET(trampstk, (uintptr_t)ap_tramp_stack_base + TRAMP_STACK_SZ -
321 	    VM86_STACK_SPACE);
322 
323 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
324 	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
325 	common_tssp->tss_esp0 = PCPU_GET(trampstk);
326 	common_tssp->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
327 	common_tssp->tss_ioopt = sizeof(struct i386tss) << 16;
328 	PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
329 	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
330 	ltr(gsel_tss);
331 
332 	PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
333 	PCPU_SET(copyout_buf, ap_copyout_buf);
334 
335 	/*
336 	 * Set to a known state:
337 	 * Set by mpboot.s: CR0_PG, CR0_PE
338 	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
339 	 */
340 	cr0 = rcr0();
341 	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
342 	load_cr0(cr0);
343 	CHECK_WRITE(0x38, 5);
344 
345 	/* signal our startup to the BSP. */
346 	mp_naps++;
347 	CHECK_WRITE(0x39, 6);
348 
349 	/* Spin until the BSP releases the AP's. */
350 	while (atomic_load_acq_int(&aps_ready) == 0)
351 		ia32_pause();
352 
353 	/* BSP may have changed PTD while we were waiting */
354 	invltlb();
355 
356 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
357 	lidt(&r_idt);
358 #endif
359 
360 	init_secondary_tail();
361 }
362 
363 /*
364  * start each AP in our list
365  */
366 #define TMPMAP_START 1
367 static int
368 start_all_aps(void)
369 {
370 	u_char mpbiosreason;
371 	u_int32_t mpbioswarmvec;
372 	int apic_id, cpu;
373 
374 	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
375 
376 	pmap_remap_lower(true);
377 
378 	/* install the AP 1st level boot code */
379 	install_ap_tramp();
380 
381 	/* save the current value of the warm-start vector */
382 	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
383 	outb(CMOS_REG, BIOS_RESET);
384 	mpbiosreason = inb(CMOS_DATA);
385 
386 	/* take advantage of the P==V mapping for PTD[0] for AP boot */
387 
388 	/* start each AP */
389 	for (cpu = 1; cpu < mp_ncpus; cpu++) {
390 		apic_id = cpu_apic_ids[cpu];
391 
392 		/* allocate and set up a boot stack data page */
393 		bootstacks[cpu] = kmem_malloc(kstack_pages * PAGE_SIZE,
394 		    M_WAITOK | M_ZERO);
395 		dpcpu = kmem_malloc(DPCPU_SIZE, M_WAITOK | M_ZERO);
396 		/* setup a vector to our boot code */
397 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
398 		*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
399 		outb(CMOS_REG, BIOS_RESET);
400 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
401 
402 		bootSTK = (char *)bootstacks[cpu] + kstack_pages *
403 		    PAGE_SIZE - 4;
404 		bootAP = cpu;
405 
406 		ap_tramp_stack_base = pmap_trm_alloc(TRAMP_STACK_SZ, M_NOWAIT);
407 		ap_copyout_buf = pmap_trm_alloc(TRAMP_COPYOUT_SZ, M_NOWAIT);
408 
409 		/* attempt to start the Application Processor */
410 		CHECK_INIT(99);	/* setup checkpoints */
411 		if (!start_ap(apic_id)) {
412 			printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
413 			CHECK_PRINT("trace");	/* show checkpoints */
414 			/* better panic as the AP may be running loose */
415 			printf("panic y/n? [y] ");
416 			if (cngetc() != 'n')
417 				panic("bye-bye");
418 		}
419 		CHECK_PRINT("trace");		/* show checkpoints */
420 
421 		CPU_SET(cpu, &all_cpus);	/* record AP in CPU map */
422 	}
423 
424 	pmap_remap_lower(false);
425 
426 	/* restore the warmstart vector */
427 	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
428 
429 	outb(CMOS_REG, BIOS_RESET);
430 	outb(CMOS_DATA, mpbiosreason);
431 
432 	/* number of APs actually started */
433 	return mp_naps;
434 }
435 
436 /*
437  * load the 1st level AP boot code into base memory.
438  */
439 
440 /* targets for relocation */
441 extern void bigJump(void);
442 extern void bootCodeSeg(void);
443 extern void bootDataSeg(void);
444 extern void MPentry(void);
445 extern u_int MP_GDT;
446 extern u_int mp_gdtbase;
447 
448 static void
449 install_ap_tramp(void)
450 {
451 	int     x;
452 	int     size = *(int *) ((u_long) & bootMP_size);
453 	vm_offset_t va = boot_address;
454 	u_char *src = (u_char *) ((u_long) bootMP);
455 	u_char *dst = (u_char *) va;
456 	u_int   boot_base = (u_int) bootMP;
457 	u_int8_t *dst8;
458 	u_int16_t *dst16;
459 	u_int32_t *dst32;
460 
461 	KASSERT (size <= PAGE_SIZE,
462 	    ("'size' do not fit into PAGE_SIZE, as expected."));
463 	pmap_kenter(va, boot_address);
464 	pmap_invalidate_page (kernel_pmap, va);
465 	for (x = 0; x < size; ++x)
466 		*dst++ = *src++;
467 
468 	/*
469 	 * modify addresses in code we just moved to basemem. unfortunately we
470 	 * need fairly detailed info about mpboot.s for this to work.  changes
471 	 * to mpboot.s might require changes here.
472 	 */
473 
474 	/* boot code is located in KERNEL space */
475 	dst = (u_char *) va;
476 
477 	/* modify the lgdt arg */
478 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
479 	*dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
480 
481 	/* modify the ljmp target for MPentry() */
482 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
483 	*dst32 = (u_int)MPentry;
484 
485 	/* modify the target for boot code segment */
486 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
487 	dst8 = (u_int8_t *) (dst16 + 1);
488 	*dst16 = (u_int) boot_address & 0xffff;
489 	*dst8 = ((u_int) boot_address >> 16) & 0xff;
490 
491 	/* modify the target for boot data segment */
492 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
493 	dst8 = (u_int8_t *) (dst16 + 1);
494 	*dst16 = (u_int) boot_address & 0xffff;
495 	*dst8 = ((u_int) boot_address >> 16) & 0xff;
496 }
497 
498 /*
499  * This function starts the AP (application processor) identified
500  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
501  * to accomplish this.  This is necessary because of the nuances
502  * of the different hardware we might encounter.  It isn't pretty,
503  * but it seems to work.
504  */
505 static int
506 start_ap(int apic_id)
507 {
508 	int vector, ms;
509 	int cpus;
510 
511 	/* calculate the vector */
512 	vector = (boot_address >> 12) & 0xff;
513 
514 	/* used as a watchpoint to signal AP startup */
515 	cpus = mp_naps;
516 
517 	ipi_startup(apic_id, vector);
518 
519 	/* Wait up to 5 seconds for it to start. */
520 	for (ms = 0; ms < 5000; ms++) {
521 		if (mp_naps > cpus)
522 			return 1;	/* return SUCCESS */
523 		DELAY(1000);
524 	}
525 	return 0;		/* return FAILURE */
526 }
527 
528 /*
529  * Flush the TLB on other CPU's
530  */
531 
532 /* Variables needed for SMP tlb shootdown. */
533 vm_offset_t smp_tlb_addr1, smp_tlb_addr2;
534 pmap_t smp_tlb_pmap;
535 volatile uint32_t smp_tlb_generation;
536 
537 /*
538  * Used by pmap to request cache or TLB invalidation on local and
539  * remote processors.  Mask provides the set of remote CPUs which are
540  * to be signalled with the invalidation IPI.  Vector specifies which
541  * invalidation IPI is used.  As an optimization, the curcpu_cb
542  * callback is invoked on the calling CPU while waiting for remote
543  * CPUs to complete the operation.
544  *
545  * The callback function is called unconditionally on the caller's
546  * underlying processor, even when this processor is not set in the
547  * mask.  So, the callback function must be prepared to handle such
548  * spurious invocations.
549  */
550 static void
551 smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, pmap_t pmap,
552     vm_offset_t addr1, vm_offset_t addr2, smp_invl_cb_t curcpu_cb)
553 {
554 	cpuset_t other_cpus;
555 	volatile uint32_t *p_cpudone;
556 	uint32_t generation;
557 	int cpu;
558 
559 	/*
560 	 * It is not necessary to signal other CPUs while booting or
561 	 * when in the debugger.
562 	 */
563 	if (kdb_active || KERNEL_PANICKED() || !smp_started) {
564 		curcpu_cb(pmap, addr1, addr2);
565 		return;
566 	}
567 
568 	sched_pin();
569 
570 	/*
571 	 * Check for other cpus.  Return if none.
572 	 */
573 	if (CPU_ISFULLSET(&mask)) {
574 		if (mp_ncpus <= 1)
575 			goto nospinexit;
576 	} else {
577 		CPU_CLR(PCPU_GET(cpuid), &mask);
578 		if (CPU_EMPTY(&mask))
579 			goto nospinexit;
580 	}
581 
582 	KASSERT((read_eflags() & PSL_I) != 0,
583 	    ("smp_targeted_tlb_shootdown: interrupts disabled"));
584 	mtx_lock_spin(&smp_ipi_mtx);
585 	smp_tlb_addr1 = addr1;
586 	smp_tlb_addr2 = addr2;
587 	smp_tlb_pmap = pmap;
588 	generation = ++smp_tlb_generation;
589 	if (CPU_ISFULLSET(&mask)) {
590 		ipi_all_but_self(vector);
591 		other_cpus = all_cpus;
592 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
593 	} else {
594 		other_cpus = mask;
595 		ipi_selected(mask, vector);
596 	}
597 	curcpu_cb(pmap, addr1, addr2);
598 	CPU_FOREACH_ISSET(cpu, &other_cpus) {
599 		p_cpudone = &cpuid_to_pcpu[cpu]->pc_smp_tlb_done;
600 		while (*p_cpudone != generation)
601 			ia32_pause();
602 	}
603 	mtx_unlock_spin(&smp_ipi_mtx);
604 	sched_unpin();
605 	return;
606 
607 nospinexit:
608 	curcpu_cb(pmap, addr1, addr2);
609 	sched_unpin();
610 }
611 
612 void
613 smp_masked_invltlb(cpuset_t mask, pmap_t pmap, smp_invl_cb_t curcpu_cb)
614 {
615 	smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, pmap, 0, 0, curcpu_cb);
616 #ifdef COUNT_XINVLTLB_HITS
617 	ipi_global++;
618 #endif
619 }
620 
621 void
622 smp_masked_invlpg(cpuset_t mask, vm_offset_t addr, pmap_t pmap,
623     smp_invl_cb_t curcpu_cb)
624 {
625 	smp_targeted_tlb_shootdown(mask, IPI_INVLPG, pmap, addr, 0, curcpu_cb);
626 #ifdef COUNT_XINVLTLB_HITS
627 	ipi_page++;
628 #endif
629 }
630 
631 void
632 smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2,
633     pmap_t pmap, smp_invl_cb_t curcpu_cb)
634 {
635 	smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, pmap, addr1, addr2,
636 	    curcpu_cb);
637 #ifdef COUNT_XINVLTLB_HITS
638 	ipi_range++;
639 	ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
640 #endif
641 }
642 
643 void
644 smp_cache_flush(smp_invl_cb_t curcpu_cb)
645 {
646 	smp_targeted_tlb_shootdown(all_cpus, IPI_INVLCACHE, NULL, 0, 0,
647 	    curcpu_cb);
648 }
649 
650 /*
651  * Handlers for TLB related IPIs
652  */
653 void
654 invltlb_handler(void)
655 {
656 	uint32_t generation;
657 
658 	trap_check_kstack();
659 #ifdef COUNT_XINVLTLB_HITS
660 	xhits_gbl[PCPU_GET(cpuid)]++;
661 #endif /* COUNT_XINVLTLB_HITS */
662 #ifdef COUNT_IPIS
663 	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
664 #endif /* COUNT_IPIS */
665 
666 	/*
667 	 * Reading the generation here allows greater parallelism
668 	 * since invalidating the TLB is a serializing operation.
669 	 */
670 	generation = smp_tlb_generation;
671 	if (smp_tlb_pmap == kernel_pmap)
672 		invltlb_glob();
673 	PCPU_SET(smp_tlb_done, generation);
674 }
675 
676 void
677 invlpg_handler(void)
678 {
679 	uint32_t generation;
680 
681 	trap_check_kstack();
682 #ifdef COUNT_XINVLTLB_HITS
683 	xhits_pg[PCPU_GET(cpuid)]++;
684 #endif /* COUNT_XINVLTLB_HITS */
685 #ifdef COUNT_IPIS
686 	(*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
687 #endif /* COUNT_IPIS */
688 
689 	generation = smp_tlb_generation;	/* Overlap with serialization */
690 	if (smp_tlb_pmap == kernel_pmap)
691 		invlpg(smp_tlb_addr1);
692 	PCPU_SET(smp_tlb_done, generation);
693 }
694 
695 void
696 invlrng_handler(void)
697 {
698 	vm_offset_t addr, addr2;
699 	uint32_t generation;
700 
701 	trap_check_kstack();
702 #ifdef COUNT_XINVLTLB_HITS
703 	xhits_rng[PCPU_GET(cpuid)]++;
704 #endif /* COUNT_XINVLTLB_HITS */
705 #ifdef COUNT_IPIS
706 	(*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
707 #endif /* COUNT_IPIS */
708 
709 	addr = smp_tlb_addr1;
710 	addr2 = smp_tlb_addr2;
711 	generation = smp_tlb_generation;	/* Overlap with serialization */
712 	if (smp_tlb_pmap == kernel_pmap) {
713 		do {
714 			invlpg(addr);
715 			addr += PAGE_SIZE;
716 		} while (addr < addr2);
717 	}
718 
719 	PCPU_SET(smp_tlb_done, generation);
720 }
721 
722 void
723 invlcache_handler(void)
724 {
725 	uint32_t generation;
726 
727 	trap_check_kstack();
728 #ifdef COUNT_IPIS
729 	(*ipi_invlcache_counts[PCPU_GET(cpuid)])++;
730 #endif /* COUNT_IPIS */
731 
732 	/*
733 	 * Reading the generation here allows greater parallelism
734 	 * since wbinvd is a serializing instruction.  Without the
735 	 * temporary, we'd wait for wbinvd to complete, then the read
736 	 * would execute, then the dependent write, which must then
737 	 * complete before return from interrupt.
738 	 */
739 	generation = smp_tlb_generation;
740 	wbinvd();
741 	PCPU_SET(smp_tlb_done, generation);
742 }
743