xref: /freebsd/sys/i386/i386/mp_machdep.c (revision f05cddf9)
1 /*-
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include "opt_apic.h"
30 #include "opt_cpu.h"
31 #include "opt_kstack_pages.h"
32 #include "opt_pmap.h"
33 #include "opt_sched.h"
34 #include "opt_smp.h"
35 
36 #if !defined(lint)
37 #if !defined(SMP)
38 #error How did you get here?
39 #endif
40 
41 #ifndef DEV_APIC
42 #error The apic device is required for SMP, add "device apic" to your config file.
43 #endif
44 #if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
45 #error SMP not supported with CPU_DISABLE_CMPXCHG
46 #endif
47 #endif /* not lint */
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/bus.h>
52 #include <sys/cons.h>	/* cngetc() */
53 #include <sys/cpuset.h>
54 #ifdef GPROF
55 #include <sys/gmon.h>
56 #endif
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/memrange.h>
62 #include <sys/mutex.h>
63 #include <sys/pcpu.h>
64 #include <sys/proc.h>
65 #include <sys/sched.h>
66 #include <sys/smp.h>
67 #include <sys/sysctl.h>
68 
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_kern.h>
73 #include <vm/vm_extern.h>
74 
75 #include <x86/apicreg.h>
76 #include <machine/clock.h>
77 #include <machine/cputypes.h>
78 #include <x86/mca.h>
79 #include <machine/md_var.h>
80 #include <machine/pcb.h>
81 #include <machine/psl.h>
82 #include <machine/smp.h>
83 #include <machine/specialreg.h>
84 
85 #define WARMBOOT_TARGET		0
86 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
87 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
88 
89 #define CMOS_REG		(0x70)
90 #define CMOS_DATA		(0x71)
91 #define BIOS_RESET		(0x0f)
92 #define BIOS_WARM		(0x0a)
93 
94 /*
95  * this code MUST be enabled here and in mpboot.s.
96  * it follows the very early stages of AP boot by placing values in CMOS ram.
97  * it NORMALLY will never be needed and thus the primitive method for enabling.
98  *
99 #define CHECK_POINTS
100  */
101 
102 #if defined(CHECK_POINTS) && !defined(PC98)
103 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
104 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
105 
106 #define CHECK_INIT(D);				\
107 	CHECK_WRITE(0x34, (D));			\
108 	CHECK_WRITE(0x35, (D));			\
109 	CHECK_WRITE(0x36, (D));			\
110 	CHECK_WRITE(0x37, (D));			\
111 	CHECK_WRITE(0x38, (D));			\
112 	CHECK_WRITE(0x39, (D));
113 
114 #define CHECK_PRINT(S);				\
115 	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
116 	   (S),					\
117 	   CHECK_READ(0x34),			\
118 	   CHECK_READ(0x35),			\
119 	   CHECK_READ(0x36),			\
120 	   CHECK_READ(0x37),			\
121 	   CHECK_READ(0x38),			\
122 	   CHECK_READ(0x39));
123 
124 #else				/* CHECK_POINTS */
125 
126 #define CHECK_INIT(D)
127 #define CHECK_PRINT(S)
128 #define CHECK_WRITE(A, D)
129 
130 #endif				/* CHECK_POINTS */
131 
132 /* lock region used by kernel profiling */
133 int	mcount_lock;
134 
135 int	mp_naps;		/* # of Applications processors */
136 int	boot_cpu_id = -1;	/* designated BSP */
137 
138 extern	struct pcpu __pcpu[];
139 
140 /* AP uses this during bootstrap.  Do not staticize.  */
141 char *bootSTK;
142 static int bootAP;
143 
144 /* Free these after use */
145 void *bootstacks[MAXCPU];
146 static void *dpcpu;
147 
148 struct pcb stoppcbs[MAXCPU];
149 struct pcb **susppcbs = NULL;
150 
151 /* Variables needed for SMP tlb shootdown. */
152 vm_offset_t smp_tlb_addr1;
153 vm_offset_t smp_tlb_addr2;
154 volatile int smp_tlb_wait;
155 
156 #ifdef COUNT_IPIS
157 /* Interrupt counts. */
158 static u_long *ipi_preempt_counts[MAXCPU];
159 static u_long *ipi_ast_counts[MAXCPU];
160 u_long *ipi_invltlb_counts[MAXCPU];
161 u_long *ipi_invlrng_counts[MAXCPU];
162 u_long *ipi_invlpg_counts[MAXCPU];
163 u_long *ipi_invlcache_counts[MAXCPU];
164 u_long *ipi_rendezvous_counts[MAXCPU];
165 u_long *ipi_lazypmap_counts[MAXCPU];
166 static u_long *ipi_hardclock_counts[MAXCPU];
167 #endif
168 
169 /*
170  * Local data and functions.
171  */
172 
173 static volatile cpuset_t ipi_nmi_pending;
174 
175 /* used to hold the AP's until we are ready to release them */
176 static struct mtx ap_boot_mtx;
177 
178 /* Set to 1 once we're ready to let the APs out of the pen. */
179 static volatile int aps_ready = 0;
180 
181 /*
182  * Store data from cpu_add() until later in the boot when we actually setup
183  * the APs.
184  */
185 struct cpu_info {
186 	int	cpu_present:1;
187 	int	cpu_bsp:1;
188 	int	cpu_disabled:1;
189 	int	cpu_hyperthread:1;
190 } static cpu_info[MAX_APIC_ID + 1];
191 int cpu_apic_ids[MAXCPU];
192 int apic_cpuids[MAX_APIC_ID + 1];
193 
194 /* Holds pending bitmap based IPIs per CPU */
195 static volatile u_int cpu_ipi_pending[MAXCPU];
196 
197 static u_int boot_address;
198 static int cpu_logical;			/* logical cpus per core */
199 static int cpu_cores;			/* cores per package */
200 
201 static void	assign_cpu_ids(void);
202 static void	install_ap_tramp(void);
203 static void	set_interrupt_apic_ids(void);
204 static int	start_all_aps(void);
205 static int	start_ap(int apic_id);
206 static void	release_aps(void *dummy);
207 
208 static u_int	hyperthreading_cpus;	/* logical cpus sharing L1 cache */
209 static int	hyperthreading_allowed = 1;
210 
211 static void
212 mem_range_AP_init(void)
213 {
214 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
215 		mem_range_softc.mr_op->initAP(&mem_range_softc);
216 }
217 
218 static void
219 topo_probe_amd(void)
220 {
221 	int core_id_bits;
222 	int id;
223 
224 	/* AMD processors do not support HTT. */
225 	cpu_logical = 1;
226 
227 	if ((amd_feature2 & AMDID2_CMP) == 0) {
228 		cpu_cores = 1;
229 		return;
230 	}
231 
232 	core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
233 	    AMDID_COREID_SIZE_SHIFT;
234 	if (core_id_bits == 0) {
235 		cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
236 		return;
237 	}
238 
239 	/* Fam 10h and newer should get here. */
240 	for (id = 0; id <= MAX_APIC_ID; id++) {
241 		/* Check logical CPU availability. */
242 		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
243 			continue;
244 		/* Check if logical CPU has the same package ID. */
245 		if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
246 			continue;
247 		cpu_cores++;
248 	}
249 }
250 
251 /*
252  * Round up to the next power of two, if necessary, and then
253  * take log2.
254  * Returns -1 if argument is zero.
255  */
256 static __inline int
257 mask_width(u_int x)
258 {
259 
260 	return (fls(x << (1 - powerof2(x))) - 1);
261 }
262 
263 static void
264 topo_probe_0x4(void)
265 {
266 	u_int p[4];
267 	int pkg_id_bits;
268 	int core_id_bits;
269 	int max_cores;
270 	int max_logical;
271 	int id;
272 
273 	/* Both zero and one here mean one logical processor per package. */
274 	max_logical = (cpu_feature & CPUID_HTT) != 0 ?
275 	    (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
276 	if (max_logical <= 1)
277 		return;
278 
279 	/*
280 	 * Because of uniformity assumption we examine only
281 	 * those logical processors that belong to the same
282 	 * package as BSP.  Further, we count number of
283 	 * logical processors that belong to the same core
284 	 * as BSP thus deducing number of threads per core.
285 	 */
286 	if (cpu_high >= 0x4) {
287 		cpuid_count(0x04, 0, p);
288 		max_cores = ((p[0] >> 26) & 0x3f) + 1;
289 	} else
290 		max_cores = 1;
291 	core_id_bits = mask_width(max_logical/max_cores);
292 	if (core_id_bits < 0)
293 		return;
294 	pkg_id_bits = core_id_bits + mask_width(max_cores);
295 
296 	for (id = 0; id <= MAX_APIC_ID; id++) {
297 		/* Check logical CPU availability. */
298 		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
299 			continue;
300 		/* Check if logical CPU has the same package ID. */
301 		if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
302 			continue;
303 		cpu_cores++;
304 		/* Check if logical CPU has the same package and core IDs. */
305 		if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
306 			cpu_logical++;
307 	}
308 
309 	KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
310 	    ("topo_probe_0x4 couldn't find BSP"));
311 
312 	cpu_cores /= cpu_logical;
313 	hyperthreading_cpus = cpu_logical;
314 }
315 
316 static void
317 topo_probe_0xb(void)
318 {
319 	u_int p[4];
320 	int bits;
321 	int cnt;
322 	int i;
323 	int logical;
324 	int type;
325 	int x;
326 
327 	/* We only support three levels for now. */
328 	for (i = 0; i < 3; i++) {
329 		cpuid_count(0x0b, i, p);
330 
331 		/* Fall back if CPU leaf 11 doesn't really exist. */
332 		if (i == 0 && p[1] == 0) {
333 			topo_probe_0x4();
334 			return;
335 		}
336 
337 		bits = p[0] & 0x1f;
338 		logical = p[1] &= 0xffff;
339 		type = (p[2] >> 8) & 0xff;
340 		if (type == 0 || logical == 0)
341 			break;
342 		/*
343 		 * Because of uniformity assumption we examine only
344 		 * those logical processors that belong to the same
345 		 * package as BSP.
346 		 */
347 		for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
348 			if (!cpu_info[x].cpu_present ||
349 			    cpu_info[x].cpu_disabled)
350 				continue;
351 			if (x >> bits == boot_cpu_id >> bits)
352 				cnt++;
353 		}
354 		if (type == CPUID_TYPE_SMT)
355 			cpu_logical = cnt;
356 		else if (type == CPUID_TYPE_CORE)
357 			cpu_cores = cnt;
358 	}
359 	if (cpu_logical == 0)
360 		cpu_logical = 1;
361 	cpu_cores /= cpu_logical;
362 }
363 
364 /*
365  * Both topology discovery code and code that consumes topology
366  * information assume top-down uniformity of the topology.
367  * That is, all physical packages must be identical and each
368  * core in a package must have the same number of threads.
369  * Topology information is queried only on BSP, on which this
370  * code runs and for which it can query CPUID information.
371  * Then topology is extrapolated on all packages using the
372  * uniformity assumption.
373  */
374 static void
375 topo_probe(void)
376 {
377 	static int cpu_topo_probed = 0;
378 
379 	if (cpu_topo_probed)
380 		return;
381 
382 	CPU_ZERO(&logical_cpus_mask);
383 	if (mp_ncpus <= 1)
384 		cpu_cores = cpu_logical = 1;
385 	else if (cpu_vendor_id == CPU_VENDOR_AMD)
386 		topo_probe_amd();
387 	else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
388 		/*
389 		 * See Intel(R) 64 Architecture Processor
390 		 * Topology Enumeration article for details.
391 		 *
392 		 * Note that 0x1 <= cpu_high < 4 case should be
393 		 * compatible with topo_probe_0x4() logic when
394 		 * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
395 		 * or it should trigger the fallback otherwise.
396 		 */
397 		if (cpu_high >= 0xb)
398 			topo_probe_0xb();
399 		else if (cpu_high >= 0x1)
400 			topo_probe_0x4();
401 	}
402 
403 	/*
404 	 * Fallback: assume each logical CPU is in separate
405 	 * physical package.  That is, no multi-core, no SMT.
406 	 */
407 	if (cpu_cores == 0 || cpu_logical == 0)
408 		cpu_cores = cpu_logical = 1;
409 	cpu_topo_probed = 1;
410 }
411 
412 struct cpu_group *
413 cpu_topo(void)
414 {
415 	int cg_flags;
416 
417 	/*
418 	 * Determine whether any threading flags are
419 	 * necessry.
420 	 */
421 	topo_probe();
422 	if (cpu_logical > 1 && hyperthreading_cpus)
423 		cg_flags = CG_FLAG_HTT;
424 	else if (cpu_logical > 1)
425 		cg_flags = CG_FLAG_SMT;
426 	else
427 		cg_flags = 0;
428 	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
429 		printf("WARNING: Non-uniform processors.\n");
430 		printf("WARNING: Using suboptimal topology.\n");
431 		return (smp_topo_none());
432 	}
433 	/*
434 	 * No multi-core or hyper-threaded.
435 	 */
436 	if (cpu_logical * cpu_cores == 1)
437 		return (smp_topo_none());
438 	/*
439 	 * Only HTT no multi-core.
440 	 */
441 	if (cpu_logical > 1 && cpu_cores == 1)
442 		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
443 	/*
444 	 * Only multi-core no HTT.
445 	 */
446 	if (cpu_cores > 1 && cpu_logical == 1)
447 		return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
448 	/*
449 	 * Both HTT and multi-core.
450 	 */
451 	return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
452 	    CG_SHARE_L1, cpu_logical, cg_flags));
453 }
454 
455 
456 /*
457  * Calculate usable address in base memory for AP trampoline code.
458  */
459 u_int
460 mp_bootaddress(u_int basemem)
461 {
462 
463 	boot_address = trunc_page(basemem);	/* round down to 4k boundary */
464 	if ((basemem - boot_address) < bootMP_size)
465 		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
466 
467 	return boot_address;
468 }
469 
470 void
471 cpu_add(u_int apic_id, char boot_cpu)
472 {
473 
474 	if (apic_id > MAX_APIC_ID) {
475 		panic("SMP: APIC ID %d too high", apic_id);
476 		return;
477 	}
478 	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
479 	    apic_id));
480 	cpu_info[apic_id].cpu_present = 1;
481 	if (boot_cpu) {
482 		KASSERT(boot_cpu_id == -1,
483 		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
484 		    boot_cpu_id));
485 		boot_cpu_id = apic_id;
486 		cpu_info[apic_id].cpu_bsp = 1;
487 	}
488 	if (mp_ncpus < MAXCPU) {
489 		mp_ncpus++;
490 		mp_maxid = mp_ncpus - 1;
491 	}
492 	if (bootverbose)
493 		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
494 		    "AP");
495 }
496 
497 void
498 cpu_mp_setmaxid(void)
499 {
500 
501 	/*
502 	 * mp_maxid should be already set by calls to cpu_add().
503 	 * Just sanity check its value here.
504 	 */
505 	if (mp_ncpus == 0)
506 		KASSERT(mp_maxid == 0,
507 		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
508 	else if (mp_ncpus == 1)
509 		mp_maxid = 0;
510 	else
511 		KASSERT(mp_maxid >= mp_ncpus - 1,
512 		    ("%s: counters out of sync: max %d, count %d", __func__,
513 			mp_maxid, mp_ncpus));
514 }
515 
516 int
517 cpu_mp_probe(void)
518 {
519 
520 	/*
521 	 * Always record BSP in CPU map so that the mbuf init code works
522 	 * correctly.
523 	 */
524 	CPU_SETOF(0, &all_cpus);
525 	if (mp_ncpus == 0) {
526 		/*
527 		 * No CPUs were found, so this must be a UP system.  Setup
528 		 * the variables to represent a system with a single CPU
529 		 * with an id of 0.
530 		 */
531 		mp_ncpus = 1;
532 		return (0);
533 	}
534 
535 	/* At least one CPU was found. */
536 	if (mp_ncpus == 1) {
537 		/*
538 		 * One CPU was found, so this must be a UP system with
539 		 * an I/O APIC.
540 		 */
541 		mp_maxid = 0;
542 		return (0);
543 	}
544 
545 	/* At least two CPUs were found. */
546 	return (1);
547 }
548 
549 /*
550  * Initialize the IPI handlers and start up the AP's.
551  */
552 void
553 cpu_mp_start(void)
554 {
555 	int i;
556 
557 	/* Initialize the logical ID to APIC ID table. */
558 	for (i = 0; i < MAXCPU; i++) {
559 		cpu_apic_ids[i] = -1;
560 		cpu_ipi_pending[i] = 0;
561 	}
562 
563 	/* Install an inter-CPU IPI for TLB invalidation */
564 	setidt(IPI_INVLTLB, IDTVEC(invltlb),
565 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
566 	setidt(IPI_INVLPG, IDTVEC(invlpg),
567 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
568 	setidt(IPI_INVLRNG, IDTVEC(invlrng),
569 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
570 
571 	/* Install an inter-CPU IPI for cache invalidation. */
572 	setidt(IPI_INVLCACHE, IDTVEC(invlcache),
573 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
574 
575 	/* Install an inter-CPU IPI for lazy pmap release */
576 	setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
577 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
578 
579 	/* Install an inter-CPU IPI for all-CPU rendezvous */
580 	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
581 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
582 
583 	/* Install generic inter-CPU IPI handler */
584 	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
585 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
586 
587 	/* Install an inter-CPU IPI for CPU stop/restart */
588 	setidt(IPI_STOP, IDTVEC(cpustop),
589 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
590 
591 	/* Install an inter-CPU IPI for CPU suspend/resume */
592 	setidt(IPI_SUSPEND, IDTVEC(cpususpend),
593 	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
594 
595 	/* Set boot_cpu_id if needed. */
596 	if (boot_cpu_id == -1) {
597 		boot_cpu_id = PCPU_GET(apic_id);
598 		cpu_info[boot_cpu_id].cpu_bsp = 1;
599 	} else
600 		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
601 		    ("BSP's APIC ID doesn't match boot_cpu_id"));
602 
603 	/* Probe logical/physical core configuration. */
604 	topo_probe();
605 
606 	assign_cpu_ids();
607 
608 	/* Start each Application Processor */
609 	start_all_aps();
610 
611 	set_interrupt_apic_ids();
612 }
613 
614 
615 /*
616  * Print various information about the SMP system hardware and setup.
617  */
618 void
619 cpu_mp_announce(void)
620 {
621 	const char *hyperthread;
622 	int i;
623 
624 	printf("FreeBSD/SMP: %d package(s) x %d core(s)",
625 	    mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
626 	if (hyperthreading_cpus > 1)
627 	    printf(" x %d HTT threads", cpu_logical);
628 	else if (cpu_logical > 1)
629 	    printf(" x %d SMT threads", cpu_logical);
630 	printf("\n");
631 
632 	/* List active CPUs first. */
633 	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
634 	for (i = 1; i < mp_ncpus; i++) {
635 		if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
636 			hyperthread = "/HT";
637 		else
638 			hyperthread = "";
639 		printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
640 		    cpu_apic_ids[i]);
641 	}
642 
643 	/* List disabled CPUs last. */
644 	for (i = 0; i <= MAX_APIC_ID; i++) {
645 		if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
646 			continue;
647 		if (cpu_info[i].cpu_hyperthread)
648 			hyperthread = "/HT";
649 		else
650 			hyperthread = "";
651 		printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
652 		    i);
653 	}
654 }
655 
656 /*
657  * AP CPU's call this to initialize themselves.
658  */
659 void
660 init_secondary(void)
661 {
662 	struct pcpu *pc;
663 	vm_offset_t addr;
664 	int	gsel_tss;
665 	int	x, myid;
666 	u_int	cpuid, cr0;
667 
668 	/* bootAP is set in start_ap() to our ID. */
669 	myid = bootAP;
670 
671 	/* Get per-cpu data */
672 	pc = &__pcpu[myid];
673 
674 	/* prime data page for it to use */
675 	pcpu_init(pc, myid, sizeof(struct pcpu));
676 	dpcpu_init(dpcpu, myid);
677 	pc->pc_apic_id = cpu_apic_ids[myid];
678 	pc->pc_prvspace = pc;
679 	pc->pc_curthread = 0;
680 
681 	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
682 	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
683 
684 	for (x = 0; x < NGDT; x++) {
685 		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
686 	}
687 
688 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
689 	r_gdt.rd_base = (int) &gdt[myid * NGDT];
690 	lgdt(&r_gdt);			/* does magic intra-segment return */
691 
692 	lidt(&r_idt);
693 
694 	lldt(_default_ldt);
695 	PCPU_SET(currentldt, _default_ldt);
696 
697 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
698 	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
699 	PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
700 	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
701 	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
702 	PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
703 	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
704 	ltr(gsel_tss);
705 
706 	PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
707 
708 	/*
709 	 * Set to a known state:
710 	 * Set by mpboot.s: CR0_PG, CR0_PE
711 	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
712 	 */
713 	cr0 = rcr0();
714 	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
715 	load_cr0(cr0);
716 	CHECK_WRITE(0x38, 5);
717 
718 	/* Disable local APIC just to be sure. */
719 	lapic_disable();
720 
721 	/* signal our startup to the BSP. */
722 	mp_naps++;
723 	CHECK_WRITE(0x39, 6);
724 
725 	/* Spin until the BSP releases the AP's. */
726 	while (!aps_ready)
727 		ia32_pause();
728 
729 	/* BSP may have changed PTD while we were waiting */
730 	invltlb();
731 	for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
732 		invlpg(addr);
733 
734 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
735 	lidt(&r_idt);
736 #endif
737 
738 	/* Initialize the PAT MSR if present. */
739 	pmap_init_pat();
740 
741 	/* set up CPU registers and state */
742 	cpu_setregs();
743 
744 	/* set up FPU state on the AP */
745 	npxinit();
746 
747 	/* set up SSE registers */
748 	enable_sse();
749 
750 #ifdef PAE
751 	/* Enable the PTE no-execute bit. */
752 	if ((amd_feature & AMDID_NX) != 0) {
753 		uint64_t msr;
754 
755 		msr = rdmsr(MSR_EFER) | EFER_NXE;
756 		wrmsr(MSR_EFER, msr);
757 	}
758 #endif
759 
760 	/* A quick check from sanity claus */
761 	cpuid = PCPU_GET(cpuid);
762 	if (PCPU_GET(apic_id) != lapic_id()) {
763 		printf("SMP: cpuid = %d\n", cpuid);
764 		printf("SMP: actual apic_id = %d\n", lapic_id());
765 		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
766 		panic("cpuid mismatch! boom!!");
767 	}
768 
769 	/* Initialize curthread. */
770 	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
771 	PCPU_SET(curthread, PCPU_GET(idlethread));
772 
773 	mca_init();
774 
775 	mtx_lock_spin(&ap_boot_mtx);
776 
777 	/* Init local apic for irq's */
778 	lapic_setup(1);
779 
780 	/* Set memory range attributes for this CPU to match the BSP */
781 	mem_range_AP_init();
782 
783 	smp_cpus++;
784 
785 	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
786 	printf("SMP: AP CPU #%d Launched!\n", cpuid);
787 
788 	/* Determine if we are a logical CPU. */
789 	/* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
790 	if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
791 		CPU_SET(cpuid, &logical_cpus_mask);
792 
793 	if (bootverbose)
794 		lapic_dump("AP");
795 
796 	if (smp_cpus == mp_ncpus) {
797 		/* enable IPI's, tlb shootdown, freezes etc */
798 		atomic_store_rel_int(&smp_started, 1);
799 		smp_active = 1;	 /* historic */
800 	}
801 
802 	mtx_unlock_spin(&ap_boot_mtx);
803 
804 	/* Wait until all the AP's are up. */
805 	while (smp_started == 0)
806 		ia32_pause();
807 
808 	/* Start per-CPU event timers. */
809 	cpu_initclocks_ap();
810 
811 	/* Enter the scheduler. */
812 	sched_throw(NULL);
813 
814 	panic("scheduler returned us to %s", __func__);
815 	/* NOTREACHED */
816 }
817 
818 /*******************************************************************
819  * local functions and data
820  */
821 
822 /*
823  * We tell the I/O APIC code about all the CPUs we want to receive
824  * interrupts.  If we don't want certain CPUs to receive IRQs we
825  * can simply not tell the I/O APIC code about them in this function.
826  * We also do not tell it about the BSP since it tells itself about
827  * the BSP internally to work with UP kernels and on UP machines.
828  */
829 static void
830 set_interrupt_apic_ids(void)
831 {
832 	u_int i, apic_id;
833 
834 	for (i = 0; i < MAXCPU; i++) {
835 		apic_id = cpu_apic_ids[i];
836 		if (apic_id == -1)
837 			continue;
838 		if (cpu_info[apic_id].cpu_bsp)
839 			continue;
840 		if (cpu_info[apic_id].cpu_disabled)
841 			continue;
842 
843 		/* Don't let hyperthreads service interrupts. */
844 		if (hyperthreading_cpus > 1 &&
845 		    apic_id % hyperthreading_cpus != 0)
846 			continue;
847 
848 		intr_add_cpu(i);
849 	}
850 }
851 
852 /*
853  * Assign logical CPU IDs to local APICs.
854  */
855 static void
856 assign_cpu_ids(void)
857 {
858 	u_int i;
859 
860 	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
861 	    &hyperthreading_allowed);
862 
863 	/* Check for explicitly disabled CPUs. */
864 	for (i = 0; i <= MAX_APIC_ID; i++) {
865 		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
866 			continue;
867 
868 		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
869 			cpu_info[i].cpu_hyperthread = 1;
870 
871 			/*
872 			 * Don't use HT CPU if it has been disabled by a
873 			 * tunable.
874 			 */
875 			if (hyperthreading_allowed == 0) {
876 				cpu_info[i].cpu_disabled = 1;
877 				continue;
878 			}
879 		}
880 
881 		/* Don't use this CPU if it has been disabled by a tunable. */
882 		if (resource_disabled("lapic", i)) {
883 			cpu_info[i].cpu_disabled = 1;
884 			continue;
885 		}
886 	}
887 
888 	if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
889 		hyperthreading_cpus = 0;
890 		cpu_logical = 1;
891 	}
892 
893 	/*
894 	 * Assign CPU IDs to local APIC IDs and disable any CPUs
895 	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
896 	 *
897 	 * To minimize confusion for userland, we attempt to number
898 	 * CPUs such that all threads and cores in a package are
899 	 * grouped together.  For now we assume that the BSP is always
900 	 * the first thread in a package and just start adding APs
901 	 * starting with the BSP's APIC ID.
902 	 */
903 	mp_ncpus = 1;
904 	cpu_apic_ids[0] = boot_cpu_id;
905 	apic_cpuids[boot_cpu_id] = 0;
906 	for (i = boot_cpu_id + 1; i != boot_cpu_id;
907 	     i == MAX_APIC_ID ? i = 0 : i++) {
908 		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
909 		    cpu_info[i].cpu_disabled)
910 			continue;
911 
912 		if (mp_ncpus < MAXCPU) {
913 			cpu_apic_ids[mp_ncpus] = i;
914 			apic_cpuids[i] = mp_ncpus;
915 			mp_ncpus++;
916 		} else
917 			cpu_info[i].cpu_disabled = 1;
918 	}
919 	KASSERT(mp_maxid >= mp_ncpus - 1,
920 	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
921 	    mp_ncpus));
922 }
923 
924 /*
925  * start each AP in our list
926  */
927 /* Lowest 1MB is already mapped: don't touch*/
928 #define TMPMAP_START 1
929 static int
930 start_all_aps(void)
931 {
932 #ifndef PC98
933 	u_char mpbiosreason;
934 #endif
935 	u_int32_t mpbioswarmvec;
936 	int apic_id, cpu, i;
937 
938 	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
939 
940 	/* install the AP 1st level boot code */
941 	install_ap_tramp();
942 
943 	/* save the current value of the warm-start vector */
944 	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
945 #ifndef PC98
946 	outb(CMOS_REG, BIOS_RESET);
947 	mpbiosreason = inb(CMOS_DATA);
948 #endif
949 
950 	/* set up temporary P==V mapping for AP boot */
951 	/* XXX this is a hack, we should boot the AP on its own stack/PTD */
952 	for (i = TMPMAP_START; i < NKPT; i++)
953 		PTD[i] = PTD[KPTDI + i];
954 	invltlb();
955 
956 	/* start each AP */
957 	for (cpu = 1; cpu < mp_ncpus; cpu++) {
958 		apic_id = cpu_apic_ids[cpu];
959 
960 		/* allocate and set up a boot stack data page */
961 		bootstacks[cpu] =
962 		    (char *)kmem_alloc(kernel_map, KSTACK_PAGES * PAGE_SIZE);
963 		dpcpu = (void *)kmem_alloc(kernel_map, DPCPU_SIZE);
964 		/* setup a vector to our boot code */
965 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
966 		*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
967 #ifndef PC98
968 		outb(CMOS_REG, BIOS_RESET);
969 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
970 #endif
971 
972 		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 4;
973 		bootAP = cpu;
974 
975 		/* attempt to start the Application Processor */
976 		CHECK_INIT(99);	/* setup checkpoints */
977 		if (!start_ap(apic_id)) {
978 			printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
979 			CHECK_PRINT("trace");	/* show checkpoints */
980 			/* better panic as the AP may be running loose */
981 			printf("panic y/n? [y] ");
982 			if (cngetc() != 'n')
983 				panic("bye-bye");
984 		}
985 		CHECK_PRINT("trace");		/* show checkpoints */
986 
987 		CPU_SET(cpu, &all_cpus);	/* record AP in CPU map */
988 	}
989 
990 	/* restore the warmstart vector */
991 	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
992 
993 #ifndef PC98
994 	outb(CMOS_REG, BIOS_RESET);
995 	outb(CMOS_DATA, mpbiosreason);
996 #endif
997 
998 	/* Undo V==P hack from above */
999 	for (i = TMPMAP_START; i < NKPT; i++)
1000 		PTD[i] = 0;
1001 	pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
1002 
1003 	/* number of APs actually started */
1004 	return mp_naps;
1005 }
1006 
1007 /*
1008  * load the 1st level AP boot code into base memory.
1009  */
1010 
1011 /* targets for relocation */
1012 extern void bigJump(void);
1013 extern void bootCodeSeg(void);
1014 extern void bootDataSeg(void);
1015 extern void MPentry(void);
1016 extern u_int MP_GDT;
1017 extern u_int mp_gdtbase;
1018 
1019 static void
1020 install_ap_tramp(void)
1021 {
1022 	int     x;
1023 	int     size = *(int *) ((u_long) & bootMP_size);
1024 	vm_offset_t va = boot_address + KERNBASE;
1025 	u_char *src = (u_char *) ((u_long) bootMP);
1026 	u_char *dst = (u_char *) va;
1027 	u_int   boot_base = (u_int) bootMP;
1028 	u_int8_t *dst8;
1029 	u_int16_t *dst16;
1030 	u_int32_t *dst32;
1031 
1032 	KASSERT (size <= PAGE_SIZE,
1033 	    ("'size' do not fit into PAGE_SIZE, as expected."));
1034 	pmap_kenter(va, boot_address);
1035 	pmap_invalidate_page (kernel_pmap, va);
1036 	for (x = 0; x < size; ++x)
1037 		*dst++ = *src++;
1038 
1039 	/*
1040 	 * modify addresses in code we just moved to basemem. unfortunately we
1041 	 * need fairly detailed info about mpboot.s for this to work.  changes
1042 	 * to mpboot.s might require changes here.
1043 	 */
1044 
1045 	/* boot code is located in KERNEL space */
1046 	dst = (u_char *) va;
1047 
1048 	/* modify the lgdt arg */
1049 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
1050 	*dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
1051 
1052 	/* modify the ljmp target for MPentry() */
1053 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
1054 	*dst32 = ((u_int) MPentry - KERNBASE);
1055 
1056 	/* modify the target for boot code segment */
1057 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
1058 	dst8 = (u_int8_t *) (dst16 + 1);
1059 	*dst16 = (u_int) boot_address & 0xffff;
1060 	*dst8 = ((u_int) boot_address >> 16) & 0xff;
1061 
1062 	/* modify the target for boot data segment */
1063 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
1064 	dst8 = (u_int8_t *) (dst16 + 1);
1065 	*dst16 = (u_int) boot_address & 0xffff;
1066 	*dst8 = ((u_int) boot_address >> 16) & 0xff;
1067 }
1068 
1069 /*
1070  * This function starts the AP (application processor) identified
1071  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1072  * to accomplish this.  This is necessary because of the nuances
1073  * of the different hardware we might encounter.  It isn't pretty,
1074  * but it seems to work.
1075  */
1076 static int
1077 start_ap(int apic_id)
1078 {
1079 	int vector, ms;
1080 	int cpus;
1081 
1082 	/* calculate the vector */
1083 	vector = (boot_address >> 12) & 0xff;
1084 
1085 	/* used as a watchpoint to signal AP startup */
1086 	cpus = mp_naps;
1087 
1088 	ipi_startup(apic_id, vector);
1089 
1090 	/* Wait up to 5 seconds for it to start. */
1091 	for (ms = 0; ms < 5000; ms++) {
1092 		if (mp_naps > cpus)
1093 			return 1;	/* return SUCCESS */
1094 		DELAY(1000);
1095 	}
1096 	return 0;		/* return FAILURE */
1097 }
1098 
1099 #ifdef COUNT_XINVLTLB_HITS
1100 u_int xhits_gbl[MAXCPU];
1101 u_int xhits_pg[MAXCPU];
1102 u_int xhits_rng[MAXCPU];
1103 static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
1104 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
1105     sizeof(xhits_gbl), "IU", "");
1106 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
1107     sizeof(xhits_pg), "IU", "");
1108 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
1109     sizeof(xhits_rng), "IU", "");
1110 
1111 u_int ipi_global;
1112 u_int ipi_page;
1113 u_int ipi_range;
1114 u_int ipi_range_size;
1115 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
1116 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
1117 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
1118 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
1119     0, "");
1120 
1121 u_int ipi_masked_global;
1122 u_int ipi_masked_page;
1123 u_int ipi_masked_range;
1124 u_int ipi_masked_range_size;
1125 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
1126     &ipi_masked_global, 0, "");
1127 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
1128     &ipi_masked_page, 0, "");
1129 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
1130     &ipi_masked_range, 0, "");
1131 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
1132     &ipi_masked_range_size, 0, "");
1133 #endif /* COUNT_XINVLTLB_HITS */
1134 
1135 /*
1136  * Init and startup IPI.
1137  */
1138 void
1139 ipi_startup(int apic_id, int vector)
1140 {
1141 
1142 	/*
1143 	 * first we do an INIT IPI: this INIT IPI might be run, resetting
1144 	 * and running the target CPU. OR this INIT IPI might be latched (P5
1145 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1146 	 * ignored.
1147 	 */
1148 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1149 	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
1150 	lapic_ipi_wait(-1);
1151 	DELAY(10000);		/* wait ~10mS */
1152 
1153 	/*
1154 	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1155 	 * latched, (P5 bug) this 1st STARTUP would then terminate
1156 	 * immediately, and the previously started INIT IPI would continue. OR
1157 	 * the previous INIT IPI has already run. and this STARTUP IPI will
1158 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1159 	 * will run.
1160 	 */
1161 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1162 	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1163 	    vector, apic_id);
1164 	lapic_ipi_wait(-1);
1165 	DELAY(200);		/* wait ~200uS */
1166 
1167 	/*
1168 	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1169 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1170 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1171 	 * recognized after hardware RESET or INIT IPI.
1172 	 */
1173 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1174 	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1175 	    vector, apic_id);
1176 	lapic_ipi_wait(-1);
1177 	DELAY(200);		/* wait ~200uS */
1178 }
1179 
1180 /*
1181  * Send an IPI to specified CPU handling the bitmap logic.
1182  */
1183 static void
1184 ipi_send_cpu(int cpu, u_int ipi)
1185 {
1186 	u_int bitmap, old_pending, new_pending;
1187 
1188 	KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
1189 
1190 	if (IPI_IS_BITMAPED(ipi)) {
1191 		bitmap = 1 << ipi;
1192 		ipi = IPI_BITMAP_VECTOR;
1193 		do {
1194 			old_pending = cpu_ipi_pending[cpu];
1195 			new_pending = old_pending | bitmap;
1196 		} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
1197 		    old_pending, new_pending));
1198 		if (old_pending)
1199 			return;
1200 	}
1201 	lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1202 }
1203 
1204 /*
1205  * Flush the TLB on all other CPU's
1206  */
1207 static void
1208 smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1209 {
1210 	u_int ncpu;
1211 
1212 	ncpu = mp_ncpus - 1;	/* does not shootdown self */
1213 	if (ncpu < 1)
1214 		return;		/* no other cpus */
1215 	if (!(read_eflags() & PSL_I))
1216 		panic("%s: interrupts disabled", __func__);
1217 	mtx_lock_spin(&smp_ipi_mtx);
1218 	smp_tlb_addr1 = addr1;
1219 	smp_tlb_addr2 = addr2;
1220 	atomic_store_rel_int(&smp_tlb_wait, 0);
1221 	ipi_all_but_self(vector);
1222 	while (smp_tlb_wait < ncpu)
1223 		ia32_pause();
1224 	mtx_unlock_spin(&smp_ipi_mtx);
1225 }
1226 
1227 static void
1228 smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1229 {
1230 	int cpu, ncpu, othercpus;
1231 
1232 	othercpus = mp_ncpus - 1;
1233 	if (CPU_ISFULLSET(&mask)) {
1234 		if (othercpus < 1)
1235 			return;
1236 	} else {
1237 		CPU_CLR(PCPU_GET(cpuid), &mask);
1238 		if (CPU_EMPTY(&mask))
1239 			return;
1240 	}
1241 	if (!(read_eflags() & PSL_I))
1242 		panic("%s: interrupts disabled", __func__);
1243 	mtx_lock_spin(&smp_ipi_mtx);
1244 	smp_tlb_addr1 = addr1;
1245 	smp_tlb_addr2 = addr2;
1246 	atomic_store_rel_int(&smp_tlb_wait, 0);
1247 	if (CPU_ISFULLSET(&mask)) {
1248 		ncpu = othercpus;
1249 		ipi_all_but_self(vector);
1250 	} else {
1251 		ncpu = 0;
1252 		while ((cpu = CPU_FFS(&mask)) != 0) {
1253 			cpu--;
1254 			CPU_CLR(cpu, &mask);
1255 			CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu,
1256 			    vector);
1257 			ipi_send_cpu(cpu, vector);
1258 			ncpu++;
1259 		}
1260 	}
1261 	while (smp_tlb_wait < ncpu)
1262 		ia32_pause();
1263 	mtx_unlock_spin(&smp_ipi_mtx);
1264 }
1265 
1266 void
1267 smp_cache_flush(void)
1268 {
1269 
1270 	if (smp_started)
1271 		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
1272 }
1273 
1274 void
1275 smp_invltlb(void)
1276 {
1277 
1278 	if (smp_started) {
1279 		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
1280 #ifdef COUNT_XINVLTLB_HITS
1281 		ipi_global++;
1282 #endif
1283 	}
1284 }
1285 
1286 void
1287 smp_invlpg(vm_offset_t addr)
1288 {
1289 
1290 	if (smp_started) {
1291 		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
1292 #ifdef COUNT_XINVLTLB_HITS
1293 		ipi_page++;
1294 #endif
1295 	}
1296 }
1297 
1298 void
1299 smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
1300 {
1301 
1302 	if (smp_started) {
1303 		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
1304 #ifdef COUNT_XINVLTLB_HITS
1305 		ipi_range++;
1306 		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1307 #endif
1308 	}
1309 }
1310 
1311 void
1312 smp_masked_invltlb(cpuset_t mask)
1313 {
1314 
1315 	if (smp_started) {
1316 		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
1317 #ifdef COUNT_XINVLTLB_HITS
1318 		ipi_masked_global++;
1319 #endif
1320 	}
1321 }
1322 
1323 void
1324 smp_masked_invlpg(cpuset_t mask, vm_offset_t addr)
1325 {
1326 
1327 	if (smp_started) {
1328 		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
1329 #ifdef COUNT_XINVLTLB_HITS
1330 		ipi_masked_page++;
1331 #endif
1332 	}
1333 }
1334 
1335 void
1336 smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2)
1337 {
1338 
1339 	if (smp_started) {
1340 		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
1341 #ifdef COUNT_XINVLTLB_HITS
1342 		ipi_masked_range++;
1343 		ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
1344 #endif
1345 	}
1346 }
1347 
1348 void
1349 ipi_bitmap_handler(struct trapframe frame)
1350 {
1351 	struct trapframe *oldframe;
1352 	struct thread *td;
1353 	int cpu = PCPU_GET(cpuid);
1354 	u_int ipi_bitmap;
1355 
1356 	critical_enter();
1357 	td = curthread;
1358 	td->td_intr_nesting_level++;
1359 	oldframe = td->td_intr_frame;
1360 	td->td_intr_frame = &frame;
1361 	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1362 	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
1363 #ifdef COUNT_IPIS
1364 		(*ipi_preempt_counts[cpu])++;
1365 #endif
1366 		sched_preempt(td);
1367 	}
1368 	if (ipi_bitmap & (1 << IPI_AST)) {
1369 #ifdef COUNT_IPIS
1370 		(*ipi_ast_counts[cpu])++;
1371 #endif
1372 		/* Nothing to do for AST */
1373 	}
1374 	if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
1375 #ifdef COUNT_IPIS
1376 		(*ipi_hardclock_counts[cpu])++;
1377 #endif
1378 		hardclockintr();
1379 	}
1380 	td->td_intr_frame = oldframe;
1381 	td->td_intr_nesting_level--;
1382 	critical_exit();
1383 }
1384 
1385 /*
1386  * send an IPI to a set of cpus.
1387  */
1388 void
1389 ipi_selected(cpuset_t cpus, u_int ipi)
1390 {
1391 	int cpu;
1392 
1393 	/*
1394 	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1395 	 * of help in order to understand what is the source.
1396 	 * Set the mask of receiving CPUs for this purpose.
1397 	 */
1398 	if (ipi == IPI_STOP_HARD)
1399 		CPU_OR_ATOMIC(&ipi_nmi_pending, &cpus);
1400 
1401 	while ((cpu = CPU_FFS(&cpus)) != 0) {
1402 		cpu--;
1403 		CPU_CLR(cpu, &cpus);
1404 		CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1405 		ipi_send_cpu(cpu, ipi);
1406 	}
1407 }
1408 
1409 /*
1410  * send an IPI to a specific CPU.
1411  */
1412 void
1413 ipi_cpu(int cpu, u_int ipi)
1414 {
1415 
1416 	/*
1417 	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1418 	 * of help in order to understand what is the source.
1419 	 * Set the mask of receiving CPUs for this purpose.
1420 	 */
1421 	if (ipi == IPI_STOP_HARD)
1422 		CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);
1423 
1424 	CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1425 	ipi_send_cpu(cpu, ipi);
1426 }
1427 
1428 /*
1429  * send an IPI to all CPUs EXCEPT myself
1430  */
1431 void
1432 ipi_all_but_self(u_int ipi)
1433 {
1434 	cpuset_t other_cpus;
1435 
1436 	other_cpus = all_cpus;
1437 	CPU_CLR(PCPU_GET(cpuid), &other_cpus);
1438 	if (IPI_IS_BITMAPED(ipi)) {
1439 		ipi_selected(other_cpus, ipi);
1440 		return;
1441 	}
1442 
1443 	/*
1444 	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1445 	 * of help in order to understand what is the source.
1446 	 * Set the mask of receiving CPUs for this purpose.
1447 	 */
1448 	if (ipi == IPI_STOP_HARD)
1449 		CPU_OR_ATOMIC(&ipi_nmi_pending, &other_cpus);
1450 
1451 	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1452 	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1453 }
1454 
1455 int
1456 ipi_nmi_handler()
1457 {
1458 	u_int cpuid;
1459 
1460 	/*
1461 	 * As long as there is not a simple way to know about a NMI's
1462 	 * source, if the bitmask for the current CPU is present in
1463 	 * the global pending bitword an IPI_STOP_HARD has been issued
1464 	 * and should be handled.
1465 	 */
1466 	cpuid = PCPU_GET(cpuid);
1467 	if (!CPU_ISSET(cpuid, &ipi_nmi_pending))
1468 		return (1);
1469 
1470 	CPU_CLR_ATOMIC(cpuid, &ipi_nmi_pending);
1471 	cpustop_handler();
1472 	return (0);
1473 }
1474 
1475 /*
1476  * Handle an IPI_STOP by saving our current context and spinning until we
1477  * are resumed.
1478  */
1479 void
1480 cpustop_handler(void)
1481 {
1482 	u_int cpu;
1483 
1484 	cpu = PCPU_GET(cpuid);
1485 
1486 	savectx(&stoppcbs[cpu]);
1487 
1488 	/* Indicate that we are stopped */
1489 	CPU_SET_ATOMIC(cpu, &stopped_cpus);
1490 
1491 	/* Wait for restart */
1492 	while (!CPU_ISSET(cpu, &started_cpus))
1493 	    ia32_pause();
1494 
1495 	CPU_CLR_ATOMIC(cpu, &started_cpus);
1496 	CPU_CLR_ATOMIC(cpu, &stopped_cpus);
1497 
1498 	if (cpu == 0 && cpustop_restartfunc != NULL) {
1499 		cpustop_restartfunc();
1500 		cpustop_restartfunc = NULL;
1501 	}
1502 }
1503 
1504 /*
1505  * Handle an IPI_SUSPEND by saving our current context and spinning until we
1506  * are resumed.
1507  */
1508 void
1509 cpususpend_handler(void)
1510 {
1511 	u_int cpu;
1512 
1513 	cpu = PCPU_GET(cpuid);
1514 
1515 	if (savectx(susppcbs[cpu])) {
1516 		wbinvd();
1517 		CPU_SET_ATOMIC(cpu, &suspended_cpus);
1518 	} else {
1519 		pmap_init_pat();
1520 		PCPU_SET(switchtime, 0);
1521 		PCPU_SET(switchticks, ticks);
1522 
1523 		/* Indicate that we are resumed */
1524 		CPU_CLR_ATOMIC(cpu, &suspended_cpus);
1525 	}
1526 
1527 	/* Wait for resume */
1528 	while (!CPU_ISSET(cpu, &started_cpus))
1529 		ia32_pause();
1530 
1531 	/* Resume MCA and local APIC */
1532 	mca_resume();
1533 	lapic_setup(0);
1534 
1535 	CPU_CLR_ATOMIC(cpu, &started_cpus);
1536 }
1537 /*
1538  * This is called once the rest of the system is up and running and we're
1539  * ready to let the AP's out of the pen.
1540  */
1541 static void
1542 release_aps(void *dummy __unused)
1543 {
1544 
1545 	if (mp_ncpus == 1)
1546 		return;
1547 	atomic_store_rel_int(&aps_ready, 1);
1548 	while (smp_started == 0)
1549 		ia32_pause();
1550 }
1551 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1552 
1553 #ifdef COUNT_IPIS
1554 /*
1555  * Setup interrupt counters for IPI handlers.
1556  */
1557 static void
1558 mp_ipi_intrcnt(void *dummy)
1559 {
1560 	char buf[64];
1561 	int i;
1562 
1563 	CPU_FOREACH(i) {
1564 		snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
1565 		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1566 		snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
1567 		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1568 		snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
1569 		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1570 		snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
1571 		intrcnt_add(buf, &ipi_invlcache_counts[i]);
1572 		snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
1573 		intrcnt_add(buf, &ipi_preempt_counts[i]);
1574 		snprintf(buf, sizeof(buf), "cpu%d:ast", i);
1575 		intrcnt_add(buf, &ipi_ast_counts[i]);
1576 		snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
1577 		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1578 		snprintf(buf, sizeof(buf), "cpu%d:lazypmap", i);
1579 		intrcnt_add(buf, &ipi_lazypmap_counts[i]);
1580 		snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
1581 		intrcnt_add(buf, &ipi_hardclock_counts[i]);
1582 	}
1583 }
1584 SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
1585 #endif
1586