xref: /freebsd/sys/i386/i386/npx.c (revision 315ee00f)
1 /*-
2  * Copyright (c) 1990 William Jolitz.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31  */
32 
33 #include <sys/cdefs.h>
34 #include "opt_cpu.h"
35 #include "opt_isa.h"
36 #include "opt_npx.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/mutex.h>
46 #include <sys/mutex.h>
47 #include <sys/proc.h>
48 #include <sys/smp.h>
49 #include <sys/sysctl.h>
50 #include <machine/bus.h>
51 #include <sys/rman.h>
52 #ifdef NPX_DEBUG
53 #include <sys/syslog.h>
54 #endif
55 #include <sys/signalvar.h>
56 #include <vm/uma.h>
57 
58 #include <machine/asmacros.h>
59 #include <machine/cputypes.h>
60 #include <machine/frame.h>
61 #include <machine/md_var.h>
62 #include <machine/pcb.h>
63 #include <machine/psl.h>
64 #include <machine/resource.h>
65 #include <machine/specialreg.h>
66 #include <machine/segments.h>
67 #include <machine/ucontext.h>
68 #include <x86/ifunc.h>
69 
70 #include <machine/intr_machdep.h>
71 
72 #ifdef DEV_ISA
73 #include <isa/isavar.h>
74 #endif
75 
76 /*
77  * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
78  */
79 
80 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
81 #define	fnclex()		__asm __volatile("fnclex")
82 #define	fninit()		__asm __volatile("fninit")
83 #define	fnsave(addr)		__asm __volatile("fnsave %0" : "=m" (*(addr)))
84 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
85 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
86 #define	fp_divide_by_0()	__asm __volatile( \
87 				    "fldz; fld1; fdiv %st,%st(1); fnop")
88 #define	frstor(addr)		__asm __volatile("frstor %0" : : "m" (*(addr)))
89 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
90 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
91 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
92 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
93 
94 static __inline void
95 xrstor(char *addr, uint64_t mask)
96 {
97 	uint32_t low, hi;
98 
99 	low = mask;
100 	hi = mask >> 32;
101 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
102 }
103 
104 static __inline void
105 xsave(char *addr, uint64_t mask)
106 {
107 	uint32_t low, hi;
108 
109 	low = mask;
110 	hi = mask >> 32;
111 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
112 	    "memory");
113 }
114 
115 static __inline void
116 xsaveopt(char *addr, uint64_t mask)
117 {
118 	uint32_t low, hi;
119 
120 	low = mask;
121 	hi = mask >> 32;
122 	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
123 	    "memory");
124 }
125 
126 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
127 #define	stop_emulating()	clts()
128 
129 #define GET_FPU_CW(thread) \
130 	(cpu_fxsr ? \
131 		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
132 		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
133 #define GET_FPU_SW(thread) \
134 	(cpu_fxsr ? \
135 		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
136 		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
137 #define SET_FPU_CW(savefpu, value) do { \
138 	if (cpu_fxsr) \
139 		(savefpu)->sv_xmm.sv_env.en_cw = (value); \
140 	else \
141 		(savefpu)->sv_87.sv_env.en_cw = (value); \
142 } while (0)
143 
144 CTASSERT(sizeof(union savefpu) == 512);
145 CTASSERT(sizeof(struct xstate_hdr) == 64);
146 CTASSERT(sizeof(struct savefpu_ymm) == 832);
147 
148 /*
149  * This requirement is to make it easier for asm code to calculate
150  * offset of the fpu save area from the pcb address. FPU save area
151  * must be 64-byte aligned.
152  */
153 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
154 
155 /*
156  * Ensure the copy of XCR0 saved in a core is contained in the padding
157  * area.
158  */
159 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savexmm, sv_pad) &&
160     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savexmm));
161 
162 static	void	fpu_clean_state(void);
163 
164 static	void	fpurstor(union savefpu *);
165 
166 int	hw_float;
167 
168 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
169     &hw_float, 0, "Floating point instructions executed in hardware");
170 
171 int lazy_fpu_switch = 0;
172 SYSCTL_INT(_hw, OID_AUTO, lazy_fpu_switch, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
173     &lazy_fpu_switch, 0,
174     "Lazily load FPU context after context switch");
175 
176 u_int cpu_fxsr;		/* SSE enabled */
177 int use_xsave;
178 uint64_t xsave_mask;
179 static	uma_zone_t fpu_save_area_zone;
180 static	union savefpu *npx_initialstate;
181 
182 static struct xsave_area_elm_descr {
183 	u_int	offset;
184 	u_int	size;
185 } *xsave_area_desc;
186 
187 static	volatile u_int		npx_traps_while_probing;
188 
189 alias_for_inthand_t probetrap;
190 __asm("								\n\
191 	.text							\n\
192 	.p2align 2,0x90						\n\
193 	.type	" __XSTRING(CNAME(probetrap)) ",@function	\n\
194 " __XSTRING(CNAME(probetrap)) ":				\n\
195 	ss							\n\
196 	incl	" __XSTRING(CNAME(npx_traps_while_probing)) "	\n\
197 	fnclex							\n\
198 	iret							\n\
199 ");
200 
201 /*
202  * Determine if an FPU is present and how to use it.
203  */
204 static int
205 npx_probe(void)
206 {
207 	struct gate_descriptor save_idt_npxtrap;
208 	u_short control, status;
209 
210 	/*
211 	 * Modern CPUs all have an FPU that uses the INT16 interface
212 	 * and provide a simple way to verify that, so handle the
213 	 * common case right away.
214 	 */
215 	if (cpu_feature & CPUID_FPU) {
216 		hw_float = 1;
217 		return (1);
218 	}
219 
220 	save_idt_npxtrap = idt[IDT_MF];
221 	setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
222 	    GSEL(GCODE_SEL, SEL_KPL));
223 
224 	/*
225 	 * Don't trap while we're probing.
226 	 */
227 	stop_emulating();
228 
229 	/*
230 	 * Finish resetting the coprocessor, if any.  If there is an error
231 	 * pending, then we may get a bogus IRQ13, but npx_intr() will handle
232 	 * it OK.  Bogus halts have never been observed, but we enabled
233 	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
234 	 */
235 	fninit();
236 
237 	/*
238 	 * Don't use fwait here because it might hang.
239 	 * Don't use fnop here because it usually hangs if there is no FPU.
240 	 */
241 	DELAY(1000);		/* wait for any IRQ13 */
242 #ifdef DIAGNOSTIC
243 	if (npx_traps_while_probing != 0)
244 		printf("fninit caused %u bogus npx trap(s)\n",
245 		       npx_traps_while_probing);
246 #endif
247 	/*
248 	 * Check for a status of mostly zero.
249 	 */
250 	status = 0x5a5a;
251 	fnstsw(&status);
252 	if ((status & 0xb8ff) == 0) {
253 		/*
254 		 * Good, now check for a proper control word.
255 		 */
256 		control = 0x5a5a;
257 		fnstcw(&control);
258 		if ((control & 0x1f3f) == 0x033f) {
259 			/*
260 			 * We have an npx, now divide by 0 to see if exception
261 			 * 16 works.
262 			 */
263 			control &= ~(1 << 2);	/* enable divide by 0 trap */
264 			fldcw(control);
265 			npx_traps_while_probing = 0;
266 			fp_divide_by_0();
267 			if (npx_traps_while_probing != 0) {
268 				/*
269 				 * Good, exception 16 works.
270 				 */
271 				hw_float = 1;
272 				goto cleanup;
273 			}
274 			printf(
275 	"FPU does not use exception 16 for error reporting\n");
276 			goto cleanup;
277 		}
278 	}
279 
280 	/*
281 	 * Probe failed.  Floating point simply won't work.
282 	 * Notify user and disable FPU/MMX/SSE instruction execution.
283 	 */
284 	printf("WARNING: no FPU!\n");
285 	__asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
286 	    "n" (CR0_EM | CR0_MP) : "ax");
287 
288 cleanup:
289 	idt[IDT_MF] = save_idt_npxtrap;
290 	return (hw_float);
291 }
292 
293 static void
294 fpusave_xsaveopt(union savefpu *addr)
295 {
296 
297 	xsaveopt((char *)addr, xsave_mask);
298 }
299 
300 static void
301 fpusave_xsave(union savefpu *addr)
302 {
303 
304 	xsave((char *)addr, xsave_mask);
305 }
306 
307 static void
308 fpusave_fxsave(union savefpu *addr)
309 {
310 
311 	fxsave((char *)addr);
312 }
313 
314 static void
315 fpusave_fnsave(union savefpu *addr)
316 {
317 
318 	fnsave((char *)addr);
319 }
320 
321 DEFINE_IFUNC(, void, fpusave, (union savefpu *))
322 {
323 	if (use_xsave)
324 		return ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0 ?
325 		    fpusave_xsaveopt : fpusave_xsave);
326 	if (cpu_fxsr)
327 		return (fpusave_fxsave);
328 	return (fpusave_fnsave);
329 }
330 
331 /*
332  * Enable XSAVE if supported and allowed by user.
333  * Calculate the xsave_mask.
334  */
335 static void
336 npxinit_bsp1(void)
337 {
338 	u_int cp[4];
339 	uint64_t xsave_mask_user;
340 
341 	TUNABLE_INT_FETCH("hw.lazy_fpu_switch", &lazy_fpu_switch);
342 	if (!use_xsave)
343 		return;
344 	cpuid_count(0xd, 0x0, cp);
345 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
346 	if ((cp[0] & xsave_mask) != xsave_mask)
347 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
348 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
349 	xsave_mask_user = xsave_mask;
350 	TUNABLE_QUAD_FETCH("hw.xsave_mask", &xsave_mask_user);
351 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
352 	xsave_mask &= xsave_mask_user;
353 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
354 		xsave_mask &= ~XFEATURE_AVX512;
355 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
356 		xsave_mask &= ~XFEATURE_MPX;
357 }
358 
359 /*
360  * Calculate the fpu save area size.
361  */
362 static void
363 npxinit_bsp2(void)
364 {
365 	u_int cp[4];
366 
367 	if (use_xsave) {
368 		cpuid_count(0xd, 0x0, cp);
369 		cpu_max_ext_state_size = cp[1];
370 
371 		/*
372 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
373 		 */
374 		do_cpuid(1, cp);
375 		cpu_feature2 = cp[2];
376 	} else
377 		cpu_max_ext_state_size = sizeof(union savefpu);
378 }
379 
380 /*
381  * Initialize floating point unit.
382  */
383 void
384 npxinit(bool bsp)
385 {
386 	static union savefpu dummy;
387 	register_t saveintr;
388 	u_int mxcsr;
389 	u_short control;
390 
391 	if (bsp) {
392 		if (!npx_probe())
393 			return;
394 		npxinit_bsp1();
395 	}
396 
397 	if (use_xsave) {
398 		load_cr4(rcr4() | CR4_XSAVE);
399 		load_xcr(XCR0, xsave_mask);
400 	}
401 
402 	/*
403 	 * XCR0 shall be set up before CPU can report the save area size.
404 	 */
405 	if (bsp)
406 		npxinit_bsp2();
407 
408 	/*
409 	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
410 	 * fnsave to throw away any junk in the fpu.  fpusave() initializes
411 	 * the fpu.
412 	 *
413 	 * It is too early for critical_enter() to work on AP.
414 	 */
415 	saveintr = intr_disable();
416 	stop_emulating();
417 	if (cpu_fxsr)
418 		fninit();
419 	else
420 		fnsave(&dummy);
421 	control = __INITIAL_NPXCW__;
422 	fldcw(control);
423 	if (cpu_fxsr) {
424 		mxcsr = __INITIAL_MXCSR__;
425 		ldmxcsr(mxcsr);
426 	}
427 	start_emulating();
428 	intr_restore(saveintr);
429 }
430 
431 /*
432  * On the boot CPU we generate a clean state that is used to
433  * initialize the floating point unit when it is first used by a
434  * process.
435  */
436 static void
437 npxinitstate(void *arg __unused)
438 {
439 	uint64_t *xstate_bv;
440 	register_t saveintr;
441 	int cp[4], i, max_ext_n;
442 
443 	if (!hw_float)
444 		return;
445 
446 	/* Do potentially blocking operations before disabling interrupts. */
447 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
448 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
449 	    XSAVE_AREA_ALIGN - 1, 0);
450 	npx_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
451 	if (use_xsave) {
452 		if (xsave_mask >> 32 != 0)
453 			max_ext_n = fls(xsave_mask >> 32) + 32;
454 		else
455 			max_ext_n = fls(xsave_mask);
456 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
457 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
458 	}
459 
460 	saveintr = intr_disable();
461 	stop_emulating();
462 
463 	if (cpu_fxsr)
464 		fpusave_fxsave(npx_initialstate);
465 	else
466 		fpusave_fnsave(npx_initialstate);
467 	if (cpu_fxsr) {
468 		if (npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask)
469 			cpu_mxcsr_mask =
470 			    npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask;
471 		else
472 			cpu_mxcsr_mask = 0xFFBF;
473 
474 		/*
475 		 * The fninit instruction does not modify XMM
476 		 * registers or x87 registers (MM/ST).  The fpusave
477 		 * call dumped the garbage contained in the registers
478 		 * after reset to the initial state saved.  Clear XMM
479 		 * and x87 registers file image to make the startup
480 		 * program state and signal handler XMM/x87 register
481 		 * content predictable.
482 		 */
483 		bzero(npx_initialstate->sv_xmm.sv_fp,
484 		    sizeof(npx_initialstate->sv_xmm.sv_fp));
485 		bzero(npx_initialstate->sv_xmm.sv_xmm,
486 		    sizeof(npx_initialstate->sv_xmm.sv_xmm));
487 
488 	} else
489 		bzero(npx_initialstate->sv_87.sv_ac,
490 		    sizeof(npx_initialstate->sv_87.sv_ac));
491 
492 	/*
493 	 * Create a table describing the layout of the CPU Extended
494 	 * Save Area.  See Intel SDM rev. 075 Vol. 1 13.4.1 "Legacy
495 	 * Region of an XSAVE Area" for the source of offsets/sizes.
496 	 * Note that 32bit XSAVE does not use %xmm8-%xmm15, see
497 	 * 10.5.1.2 and 13.5.2 "SSE State".
498 	 */
499 	if (use_xsave) {
500 		xstate_bv = (uint64_t *)((char *)(npx_initialstate + 1) +
501 		    offsetof(struct xstate_hdr, xstate_bv));
502 		*xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
503 
504 		/* x87 state */
505 		xsave_area_desc[0].offset = 0;
506 		xsave_area_desc[0].size = 160;
507 		/* XMM */
508 		xsave_area_desc[1].offset = 160;
509 		xsave_area_desc[1].size = 288 - 160;
510 
511 		for (i = 2; i < max_ext_n; i++) {
512 			cpuid_count(0xd, i, cp);
513 			xsave_area_desc[i].offset = cp[1];
514 			xsave_area_desc[i].size = cp[0];
515 		}
516 	}
517 
518 	start_emulating();
519 	intr_restore(saveintr);
520 }
521 SYSINIT(npxinitstate, SI_SUB_CPU, SI_ORDER_ANY, npxinitstate, NULL);
522 
523 /*
524  * Free coprocessor (if we have it).
525  */
526 void
527 npxexit(struct thread *td)
528 {
529 
530 	critical_enter();
531 	if (curthread == PCPU_GET(fpcurthread)) {
532 		stop_emulating();
533 		fpusave(curpcb->pcb_save);
534 		start_emulating();
535 		PCPU_SET(fpcurthread, NULL);
536 	}
537 	critical_exit();
538 #ifdef NPX_DEBUG
539 	if (hw_float) {
540 		u_int	masked_exceptions;
541 
542 		masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
543 		/*
544 		 * Log exceptions that would have trapped with the old
545 		 * control word (overflow, divide by 0, and invalid operand).
546 		 */
547 		if (masked_exceptions & 0x0d)
548 			log(LOG_ERR,
549 	"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
550 			    td->td_proc->p_pid, td->td_proc->p_comm,
551 			    masked_exceptions);
552 	}
553 #endif
554 }
555 
556 int
557 npxformat(void)
558 {
559 
560 	if (!hw_float)
561 		return (_MC_FPFMT_NODEV);
562 	if (cpu_fxsr)
563 		return (_MC_FPFMT_XMM);
564 	return (_MC_FPFMT_387);
565 }
566 
567 /*
568  * The following mechanism is used to ensure that the FPE_... value
569  * that is passed as a trapcode to the signal handler of the user
570  * process does not have more than one bit set.
571  *
572  * Multiple bits may be set if the user process modifies the control
573  * word while a status word bit is already set.  While this is a sign
574  * of bad coding, we have no choice than to narrow them down to one
575  * bit, since we must not send a trapcode that is not exactly one of
576  * the FPE_ macros.
577  *
578  * The mechanism has a static table with 127 entries.  Each combination
579  * of the 7 FPU status word exception bits directly translates to a
580  * position in this table, where a single FPE_... value is stored.
581  * This FPE_... value stored there is considered the "most important"
582  * of the exception bits and will be sent as the signal code.  The
583  * precedence of the bits is based upon Intel Document "Numerical
584  * Applications", Chapter "Special Computational Situations".
585  *
586  * The macro to choose one of these values does these steps: 1) Throw
587  * away status word bits that cannot be masked.  2) Throw away the bits
588  * currently masked in the control word, assuming the user isn't
589  * interested in them anymore.  3) Reinsert status word bit 7 (stack
590  * fault) if it is set, which cannot be masked but must be presered.
591  * 4) Use the remaining bits to point into the trapcode table.
592  *
593  * The 6 maskable bits in order of their preference, as stated in the
594  * above referenced Intel manual:
595  * 1  Invalid operation (FP_X_INV)
596  * 1a   Stack underflow
597  * 1b   Stack overflow
598  * 1c   Operand of unsupported format
599  * 1d   SNaN operand.
600  * 2  QNaN operand (not an exception, irrelavant here)
601  * 3  Any other invalid-operation not mentioned above or zero divide
602  *      (FP_X_INV, FP_X_DZ)
603  * 4  Denormal operand (FP_X_DNML)
604  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
605  * 6  Inexact result (FP_X_IMP)
606  */
607 static char fpetable[128] = {
608 	0,
609 	FPE_FLTINV,	/*  1 - INV */
610 	FPE_FLTUND,	/*  2 - DNML */
611 	FPE_FLTINV,	/*  3 - INV | DNML */
612 	FPE_FLTDIV,	/*  4 - DZ */
613 	FPE_FLTINV,	/*  5 - INV | DZ */
614 	FPE_FLTDIV,	/*  6 - DNML | DZ */
615 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
616 	FPE_FLTOVF,	/*  8 - OFL */
617 	FPE_FLTINV,	/*  9 - INV | OFL */
618 	FPE_FLTUND,	/*  A - DNML | OFL */
619 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
620 	FPE_FLTDIV,	/*  C - DZ | OFL */
621 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
622 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
623 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
624 	FPE_FLTUND,	/* 10 - UFL */
625 	FPE_FLTINV,	/* 11 - INV | UFL */
626 	FPE_FLTUND,	/* 12 - DNML | UFL */
627 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
628 	FPE_FLTDIV,	/* 14 - DZ | UFL */
629 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
630 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
631 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
632 	FPE_FLTOVF,	/* 18 - OFL | UFL */
633 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
634 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
635 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
636 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
637 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
638 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
639 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
640 	FPE_FLTRES,	/* 20 - IMP */
641 	FPE_FLTINV,	/* 21 - INV | IMP */
642 	FPE_FLTUND,	/* 22 - DNML | IMP */
643 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
644 	FPE_FLTDIV,	/* 24 - DZ | IMP */
645 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
646 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
647 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
648 	FPE_FLTOVF,	/* 28 - OFL | IMP */
649 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
650 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
651 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
652 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
653 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
654 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
655 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
656 	FPE_FLTUND,	/* 30 - UFL | IMP */
657 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
658 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
659 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
660 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
661 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
662 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
663 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
664 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
665 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
666 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
667 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
668 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
669 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
670 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
671 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
672 	FPE_FLTSUB,	/* 40 - STK */
673 	FPE_FLTSUB,	/* 41 - INV | STK */
674 	FPE_FLTUND,	/* 42 - DNML | STK */
675 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
676 	FPE_FLTDIV,	/* 44 - DZ | STK */
677 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
678 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
679 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
680 	FPE_FLTOVF,	/* 48 - OFL | STK */
681 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
682 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
683 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
684 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
685 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
686 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
687 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
688 	FPE_FLTUND,	/* 50 - UFL | STK */
689 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
690 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
691 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
692 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
693 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
694 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
695 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
696 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
697 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
698 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
699 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
700 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
701 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
702 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
703 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
704 	FPE_FLTRES,	/* 60 - IMP | STK */
705 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
706 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
707 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
708 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
709 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
710 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
711 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
712 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
713 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
714 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
715 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
716 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
717 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
718 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
719 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
720 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
721 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
722 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
723 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
724 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
725 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
726 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
727 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
728 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
729 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
730 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
731 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
732 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
733 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
734 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
735 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
736 };
737 
738 /*
739  * Read the FP status and control words, then generate si_code value
740  * for SIGFPE.  The error code chosen will be one of the
741  * FPE_... macros.  It will be sent as the second argument to old
742  * BSD-style signal handlers and as "siginfo_t->si_code" (second
743  * argument) to SA_SIGINFO signal handlers.
744  *
745  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
746  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
747  * usermode code which understands the FPU hardware enough to enable
748  * the exceptions, can also handle clearing the exception state in the
749  * handler.  The only consequence of not clearing the exception is the
750  * rethrow of the SIGFPE on return from the signal handler and
751  * reexecution of the corresponding instruction.
752  *
753  * For XMM traps, the exceptions were never cleared.
754  */
755 int
756 npxtrap_x87(void)
757 {
758 	u_short control, status;
759 
760 	if (!hw_float) {
761 		printf(
762 	"npxtrap_x87: fpcurthread = %p, curthread = %p, hw_float = %d\n",
763 		       PCPU_GET(fpcurthread), curthread, hw_float);
764 		panic("npxtrap from nowhere");
765 	}
766 	critical_enter();
767 
768 	/*
769 	 * Interrupt handling (for another interrupt) may have pushed the
770 	 * state to memory.  Fetch the relevant parts of the state from
771 	 * wherever they are.
772 	 */
773 	if (PCPU_GET(fpcurthread) != curthread) {
774 		control = GET_FPU_CW(curthread);
775 		status = GET_FPU_SW(curthread);
776 	} else {
777 		fnstcw(&control);
778 		fnstsw(&status);
779 	}
780 	critical_exit();
781 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
782 }
783 
784 int
785 npxtrap_sse(void)
786 {
787 	u_int mxcsr;
788 
789 	if (!hw_float) {
790 		printf(
791 	"npxtrap_sse: fpcurthread = %p, curthread = %p, hw_float = %d\n",
792 		       PCPU_GET(fpcurthread), curthread, hw_float);
793 		panic("npxtrap from nowhere");
794 	}
795 	critical_enter();
796 	if (PCPU_GET(fpcurthread) != curthread)
797 		mxcsr = curthread->td_pcb->pcb_save->sv_xmm.sv_env.en_mxcsr;
798 	else
799 		stmxcsr(&mxcsr);
800 	critical_exit();
801 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
802 }
803 
804 static void
805 restore_npx_curthread(struct thread *td, struct pcb *pcb)
806 {
807 
808 	/*
809 	 * Record new context early in case frstor causes a trap.
810 	 */
811 	PCPU_SET(fpcurthread, td);
812 
813 	stop_emulating();
814 	if (cpu_fxsr)
815 		fpu_clean_state();
816 
817 	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
818 		/*
819 		 * This is the first time this thread has used the FPU or
820 		 * the PCB doesn't contain a clean FPU state.  Explicitly
821 		 * load an initial state.
822 		 *
823 		 * We prefer to restore the state from the actual save
824 		 * area in PCB instead of directly loading from
825 		 * npx_initialstate, to ignite the XSAVEOPT
826 		 * tracking engine.
827 		 */
828 		bcopy(npx_initialstate, pcb->pcb_save, cpu_max_ext_state_size);
829 		fpurstor(pcb->pcb_save);
830 		if (pcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
831 			fldcw(pcb->pcb_initial_npxcw);
832 		pcb->pcb_flags |= PCB_NPXINITDONE;
833 		if (PCB_USER_FPU(pcb))
834 			pcb->pcb_flags |= PCB_NPXUSERINITDONE;
835 	} else {
836 		fpurstor(pcb->pcb_save);
837 	}
838 }
839 
840 /*
841  * Implement device not available (DNA) exception
842  *
843  * It would be better to switch FP context here (if curthread != fpcurthread)
844  * and not necessarily for every context switch, but it is too hard to
845  * access foreign pcb's.
846  */
847 int
848 npxdna(void)
849 {
850 	struct thread *td;
851 
852 	if (!hw_float)
853 		return (0);
854 	td = curthread;
855 	critical_enter();
856 
857 	KASSERT((curpcb->pcb_flags & PCB_NPXNOSAVE) == 0,
858 	    ("npxdna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
859 	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
860 		/*
861 		 * Some virtual machines seems to set %cr0.TS at
862 		 * arbitrary moments.  Silently clear the TS bit
863 		 * regardless of the eager/lazy FPU context switch
864 		 * mode.
865 		 */
866 		stop_emulating();
867 	} else {
868 		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
869 			printf(
870 		    "npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
871 			    PCPU_GET(fpcurthread),
872 			    PCPU_GET(fpcurthread)->td_proc->p_pid,
873 			    td, td->td_proc->p_pid);
874 			panic("npxdna");
875 		}
876 		restore_npx_curthread(td, td->td_pcb);
877 	}
878 	critical_exit();
879 	return (1);
880 }
881 
882 /*
883  * Wrapper for fpusave() called from context switch routines.
884  *
885  * npxsave() must be called with interrupts disabled, so that it clears
886  * fpcurthread atomically with saving the state.  We require callers to do the
887  * disabling, since most callers need to disable interrupts anyway to call
888  * npxsave() atomically with checking fpcurthread.
889  */
890 void
891 npxsave(union savefpu *addr)
892 {
893 
894 	stop_emulating();
895 	fpusave(addr);
896 }
897 
898 void npxswitch(struct thread *td, struct pcb *pcb);
899 void
900 npxswitch(struct thread *td, struct pcb *pcb)
901 {
902 
903 	if (lazy_fpu_switch || (td->td_pflags & TDP_KTHREAD) != 0 ||
904 	    !PCB_USER_FPU(pcb)) {
905 		start_emulating();
906 		PCPU_SET(fpcurthread, NULL);
907 	} else if (PCPU_GET(fpcurthread) != td) {
908 		restore_npx_curthread(td, pcb);
909 	}
910 }
911 
912 /*
913  * Unconditionally save the current co-processor state across suspend and
914  * resume.
915  */
916 void
917 npxsuspend(union savefpu *addr)
918 {
919 	register_t cr0;
920 
921 	if (!hw_float)
922 		return;
923 	if (PCPU_GET(fpcurthread) == NULL) {
924 		bcopy(npx_initialstate, addr, cpu_max_ext_state_size);
925 		return;
926 	}
927 	cr0 = rcr0();
928 	stop_emulating();
929 	fpusave(addr);
930 	load_cr0(cr0);
931 }
932 
933 void
934 npxresume(union savefpu *addr)
935 {
936 	register_t cr0;
937 
938 	if (!hw_float)
939 		return;
940 
941 	cr0 = rcr0();
942 	npxinit(false);
943 	stop_emulating();
944 	fpurstor(addr);
945 	load_cr0(cr0);
946 }
947 
948 void
949 npxdrop(void)
950 {
951 	struct thread *td;
952 
953 	/*
954 	 * Discard pending exceptions in the !cpu_fxsr case so that unmasked
955 	 * ones don't cause a panic on the next frstor.
956 	 */
957 	if (!cpu_fxsr)
958 		fnclex();
959 
960 	td = PCPU_GET(fpcurthread);
961 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
962 	CRITICAL_ASSERT(td);
963 	PCPU_SET(fpcurthread, NULL);
964 	td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
965 	start_emulating();
966 }
967 
968 /*
969  * Get the user state of the FPU into pcb->pcb_user_save without
970  * dropping ownership (if possible).  It returns the FPU ownership
971  * status.
972  */
973 int
974 npxgetregs(struct thread *td)
975 {
976 	struct pcb *pcb;
977 	uint64_t *xstate_bv, bit;
978 	char *sa;
979 	int max_ext_n, i;
980 	int owned;
981 
982 	if (!hw_float)
983 		return (_MC_FPOWNED_NONE);
984 
985 	pcb = td->td_pcb;
986 	critical_enter();
987 	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
988 		bcopy(npx_initialstate, get_pcb_user_save_pcb(pcb),
989 		    cpu_max_ext_state_size);
990 		SET_FPU_CW(get_pcb_user_save_pcb(pcb), pcb->pcb_initial_npxcw);
991 		npxuserinited(td);
992 		critical_exit();
993 		return (_MC_FPOWNED_PCB);
994 	}
995 	if (td == PCPU_GET(fpcurthread)) {
996 		fpusave(get_pcb_user_save_pcb(pcb));
997 		if (!cpu_fxsr)
998 			/*
999 			 * fnsave initializes the FPU and destroys whatever
1000 			 * context it contains.  Make sure the FPU owner
1001 			 * starts with a clean state next time.
1002 			 */
1003 			npxdrop();
1004 		owned = _MC_FPOWNED_FPU;
1005 	} else {
1006 		owned = _MC_FPOWNED_PCB;
1007 	}
1008 	if (use_xsave) {
1009 		/*
1010 		 * Handle partially saved state.
1011 		 */
1012 		sa = (char *)get_pcb_user_save_pcb(pcb);
1013 		xstate_bv = (uint64_t *)(sa + sizeof(union savefpu) +
1014 		    offsetof(struct xstate_hdr, xstate_bv));
1015 		if (xsave_mask >> 32 != 0)
1016 			max_ext_n = fls(xsave_mask >> 32) + 32;
1017 		else
1018 			max_ext_n = fls(xsave_mask);
1019 		for (i = 0; i < max_ext_n; i++) {
1020 			bit = 1ULL << i;
1021 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
1022 				continue;
1023 			bcopy((char *)npx_initialstate +
1024 			    xsave_area_desc[i].offset,
1025 			    sa + xsave_area_desc[i].offset,
1026 			    xsave_area_desc[i].size);
1027 			*xstate_bv |= bit;
1028 		}
1029 	}
1030 	critical_exit();
1031 	return (owned);
1032 }
1033 
1034 void
1035 npxuserinited(struct thread *td)
1036 {
1037 	struct pcb *pcb;
1038 
1039 	CRITICAL_ASSERT(td);
1040 	pcb = td->td_pcb;
1041 	if (PCB_USER_FPU(pcb))
1042 		pcb->pcb_flags |= PCB_NPXINITDONE;
1043 	pcb->pcb_flags |= PCB_NPXUSERINITDONE;
1044 }
1045 
1046 int
1047 npxsetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
1048 {
1049 	struct xstate_hdr *hdr, *ehdr;
1050 	size_t len, max_len;
1051 	uint64_t bv;
1052 
1053 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
1054 	if (xfpustate == NULL)
1055 		return (0);
1056 	if (!use_xsave)
1057 		return (EOPNOTSUPP);
1058 
1059 	len = xfpustate_size;
1060 	if (len < sizeof(struct xstate_hdr))
1061 		return (EINVAL);
1062 	max_len = cpu_max_ext_state_size - sizeof(union savefpu);
1063 	if (len > max_len)
1064 		return (EINVAL);
1065 
1066 	ehdr = (struct xstate_hdr *)xfpustate;
1067 	bv = ehdr->xstate_bv;
1068 
1069 	/*
1070 	 * Avoid #gp.
1071 	 */
1072 	if (bv & ~xsave_mask)
1073 		return (EINVAL);
1074 
1075 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
1076 
1077 	hdr->xstate_bv = bv;
1078 	bcopy(xfpustate + sizeof(struct xstate_hdr),
1079 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
1080 
1081 	return (0);
1082 }
1083 
1084 int
1085 npxsetregs(struct thread *td, union savefpu *addr, char *xfpustate,
1086 	size_t xfpustate_size)
1087 {
1088 	struct pcb *pcb;
1089 	int error;
1090 
1091 	if (!hw_float)
1092 		return (ENXIO);
1093 
1094 	if (cpu_fxsr)
1095 		addr->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
1096 	pcb = td->td_pcb;
1097 	error = 0;
1098 	critical_enter();
1099 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
1100 		error = npxsetxstate(td, xfpustate, xfpustate_size);
1101 		if (error == 0) {
1102 			if (!cpu_fxsr)
1103 				fnclex();	/* As in npxdrop(). */
1104 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
1105 			fpurstor(get_pcb_user_save_td(td));
1106 			pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
1107 		}
1108 	} else {
1109 		error = npxsetxstate(td, xfpustate, xfpustate_size);
1110 		if (error == 0) {
1111 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
1112 			npxuserinited(td);
1113 		}
1114 	}
1115 	critical_exit();
1116 	return (error);
1117 }
1118 
1119 static void
1120 npx_fill_fpregs_xmm1(struct savexmm *sv_xmm, struct save87 *sv_87)
1121 {
1122 	struct env87 *penv_87;
1123 	struct envxmm *penv_xmm;
1124 	struct fpacc87 *fx_reg;
1125 	int i, st;
1126 	uint64_t mantissa;
1127 	uint16_t tw, exp;
1128 	uint8_t ab_tw;
1129 
1130 	penv_87 = &sv_87->sv_env;
1131 	penv_xmm = &sv_xmm->sv_env;
1132 
1133 	/* FPU control/status */
1134 	penv_87->en_cw = penv_xmm->en_cw;
1135 	penv_87->en_sw = penv_xmm->en_sw;
1136 	penv_87->en_fip = penv_xmm->en_fip;
1137 	penv_87->en_fcs = penv_xmm->en_fcs;
1138 	penv_87->en_opcode = penv_xmm->en_opcode;
1139 	penv_87->en_foo = penv_xmm->en_foo;
1140 	penv_87->en_fos = penv_xmm->en_fos;
1141 
1142 	/*
1143 	 * FPU registers and tags.
1144 	 * For ST(i), i = fpu_reg - top; we start with fpu_reg=7.
1145 	 */
1146 	st = 7 - ((penv_xmm->en_sw >> 11) & 7);
1147 	ab_tw = penv_xmm->en_tw;
1148 	tw = 0;
1149 	for (i = 0x80; i != 0; i >>= 1) {
1150 		sv_87->sv_ac[st] = sv_xmm->sv_fp[st].fp_acc;
1151 		tw <<= 2;
1152 		if (ab_tw & i) {
1153 			/* Non-empty - we need to check ST(i) */
1154 			fx_reg = &sv_xmm->sv_fp[st].fp_acc;
1155 			/* The first 64 bits contain the mantissa. */
1156 			mantissa = *((uint64_t *)fx_reg->fp_bytes);
1157 			/*
1158 			 * The final 16 bits contain the sign bit and the exponent.
1159 			 * Mask the sign bit since it is of no consequence to these
1160 			 * tests.
1161 			 */
1162 			exp = *((uint16_t *)&fx_reg->fp_bytes[8]) & 0x7fff;
1163 			if (exp == 0) {
1164 				if (mantissa == 0)
1165 					tw |= 1; /* Zero */
1166 				else
1167 					tw |= 2; /* Denormal */
1168 			} else if (exp == 0x7fff)
1169 				tw |= 2; /* Infinity or NaN */
1170 		} else
1171 			tw |= 3; /* Empty */
1172 		st = (st - 1) & 7;
1173 	}
1174 	penv_87->en_tw = tw;
1175 }
1176 
1177 void
1178 npx_fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
1179 {
1180 
1181 	bzero(sv_87, sizeof(*sv_87));
1182 	npx_fill_fpregs_xmm1(sv_xmm, sv_87);
1183 }
1184 
1185 void
1186 npx_set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
1187 {
1188 	struct env87 *penv_87;
1189 	struct envxmm *penv_xmm;
1190 	int i;
1191 
1192 	penv_87 = &sv_87->sv_env;
1193 	penv_xmm = &sv_xmm->sv_env;
1194 
1195 	/* FPU control/status */
1196 	penv_xmm->en_cw = penv_87->en_cw;
1197 	penv_xmm->en_sw = penv_87->en_sw;
1198 	penv_xmm->en_fip = penv_87->en_fip;
1199 	penv_xmm->en_fcs = penv_87->en_fcs;
1200 	penv_xmm->en_opcode = penv_87->en_opcode;
1201 	penv_xmm->en_foo = penv_87->en_foo;
1202 	penv_xmm->en_fos = penv_87->en_fos;
1203 
1204 	/*
1205 	 * FPU registers and tags.
1206 	 * Abridged  /  Full translation (values in binary), see FXSAVE spec.
1207 	 * 0		11
1208 	 * 1		00, 01, 10
1209 	 */
1210 	penv_xmm->en_tw = 0;
1211 	for (i = 0; i < 8; ++i) {
1212 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
1213 		if ((penv_87->en_tw & (3 << i * 2)) != (3 << i * 2))
1214 			penv_xmm->en_tw |= 1 << i;
1215 	}
1216 }
1217 
1218 void
1219 npx_get_fsave(void *addr)
1220 {
1221 	struct thread *td;
1222 	union savefpu *sv;
1223 
1224 	td = curthread;
1225 	npxgetregs(td);
1226 	sv = get_pcb_user_save_td(td);
1227 	if (cpu_fxsr)
1228 		npx_fill_fpregs_xmm1(&sv->sv_xmm, addr);
1229 	else
1230 		bcopy(sv, addr, sizeof(struct env87) +
1231 		    sizeof(struct fpacc87[8]));
1232 }
1233 
1234 int
1235 npx_set_fsave(void *addr)
1236 {
1237 	union savefpu sv;
1238 	int error;
1239 
1240 	bzero(&sv, sizeof(sv));
1241 	if (cpu_fxsr)
1242 		npx_set_fpregs_xmm(addr, &sv.sv_xmm);
1243 	else
1244 		bcopy(addr, &sv, sizeof(struct env87) +
1245 		    sizeof(struct fpacc87[8]));
1246 	error = npxsetregs(curthread, &sv, NULL, 0);
1247 	return (error);
1248 }
1249 
1250 /*
1251  * On AuthenticAMD processors, the fxrstor instruction does not restore
1252  * the x87's stored last instruction pointer, last data pointer, and last
1253  * opcode values, except in the rare case in which the exception summary
1254  * (ES) bit in the x87 status word is set to 1.
1255  *
1256  * In order to avoid leaking this information across processes, we clean
1257  * these values by performing a dummy load before executing fxrstor().
1258  */
1259 static void
1260 fpu_clean_state(void)
1261 {
1262 	static float dummy_variable = 0.0;
1263 	u_short status;
1264 
1265 	/*
1266 	 * Clear the ES bit in the x87 status word if it is currently
1267 	 * set, in order to avoid causing a fault in the upcoming load.
1268 	 */
1269 	fnstsw(&status);
1270 	if (status & 0x80)
1271 		fnclex();
1272 
1273 	/*
1274 	 * Load the dummy variable into the x87 stack.  This mangles
1275 	 * the x87 stack, but we don't care since we're about to call
1276 	 * fxrstor() anyway.
1277 	 */
1278 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1279 }
1280 
1281 static void
1282 fpurstor(union savefpu *addr)
1283 {
1284 
1285 	if (use_xsave)
1286 		xrstor((char *)addr, xsave_mask);
1287 	else if (cpu_fxsr)
1288 		fxrstor(addr);
1289 	else
1290 		frstor(addr);
1291 }
1292 
1293 #ifdef DEV_ISA
1294 /*
1295  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1296  */
1297 static struct isa_pnp_id npxisa_ids[] = {
1298 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1299 	{ 0 }
1300 };
1301 
1302 static int
1303 npxisa_probe(device_t dev)
1304 {
1305 	int result;
1306 	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
1307 		device_quiet(dev);
1308 	}
1309 	return(result);
1310 }
1311 
1312 static int
1313 npxisa_attach(device_t dev)
1314 {
1315 	return (0);
1316 }
1317 
1318 static device_method_t npxisa_methods[] = {
1319 	/* Device interface */
1320 	DEVMETHOD(device_probe,		npxisa_probe),
1321 	DEVMETHOD(device_attach,	npxisa_attach),
1322 	DEVMETHOD(device_detach,	bus_generic_detach),
1323 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1324 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1325 	DEVMETHOD(device_resume,	bus_generic_resume),
1326 	{ 0, 0 }
1327 };
1328 
1329 static driver_t npxisa_driver = {
1330 	"npxisa",
1331 	npxisa_methods,
1332 	1,			/* no softc */
1333 };
1334 
1335 DRIVER_MODULE(npxisa, isa, npxisa_driver, 0, 0);
1336 DRIVER_MODULE(npxisa, acpi, npxisa_driver, 0, 0);
1337 ISA_PNP_INFO(npxisa_ids);
1338 #endif /* DEV_ISA */
1339 
1340 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1341     "Kernel contexts for FPU state");
1342 
1343 #define	FPU_KERN_CTX_NPXINITDONE 0x01
1344 #define	FPU_KERN_CTX_DUMMY	 0x02
1345 #define	FPU_KERN_CTX_INUSE	 0x04
1346 
1347 struct fpu_kern_ctx {
1348 	union savefpu *prev;
1349 	uint32_t flags;
1350 	char hwstate1[];
1351 };
1352 
1353 struct fpu_kern_ctx *
1354 fpu_kern_alloc_ctx(u_int flags)
1355 {
1356 	struct fpu_kern_ctx *res;
1357 	size_t sz;
1358 
1359 	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
1360 	    cpu_max_ext_state_size;
1361 	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
1362 	    M_NOWAIT : M_WAITOK) | M_ZERO);
1363 	return (res);
1364 }
1365 
1366 void
1367 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1368 {
1369 
1370 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1371 	/* XXXKIB clear the memory ? */
1372 	free(ctx, M_FPUKERN_CTX);
1373 }
1374 
1375 static union savefpu *
1376 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1377 {
1378 	vm_offset_t p;
1379 
1380 	p = (vm_offset_t)&ctx->hwstate1;
1381 	p = roundup2(p, XSAVE_AREA_ALIGN);
1382 	return ((union savefpu *)p);
1383 }
1384 
1385 void
1386 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1387 {
1388 	struct pcb *pcb;
1389 
1390 	pcb = td->td_pcb;
1391 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1392 	    ("ctx is required when !FPU_KERN_NOCTX"));
1393 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1394 	    ("using inuse ctx"));
1395 	KASSERT((pcb->pcb_flags & PCB_NPXNOSAVE) == 0,
1396 	    ("recursive fpu_kern_enter while in PCB_NPXNOSAVE state"));
1397 
1398 	if ((flags & FPU_KERN_NOCTX) != 0) {
1399 		critical_enter();
1400 		stop_emulating();
1401 		if (curthread == PCPU_GET(fpcurthread)) {
1402 			fpusave(curpcb->pcb_save);
1403 			PCPU_SET(fpcurthread, NULL);
1404 		} else {
1405 			KASSERT(PCPU_GET(fpcurthread) == NULL,
1406 			    ("invalid fpcurthread"));
1407 		}
1408 
1409 		/*
1410 		 * This breaks XSAVEOPT tracker, but
1411 		 * PCB_NPXNOSAVE state is supposed to never need to
1412 		 * save FPU context at all.
1413 		 */
1414 		fpurstor(npx_initialstate);
1415 		pcb->pcb_flags |= PCB_KERNNPX | PCB_NPXNOSAVE | PCB_NPXINITDONE;
1416 		return;
1417 	}
1418 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1419 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1420 		return;
1421 	}
1422 	pcb = td->td_pcb;
1423 	critical_enter();
1424 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1425 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1426 	ctx->flags = FPU_KERN_CTX_INUSE;
1427 	if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
1428 		ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
1429 	npxexit(td);
1430 	ctx->prev = pcb->pcb_save;
1431 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1432 	pcb->pcb_flags |= PCB_KERNNPX;
1433 	pcb->pcb_flags &= ~PCB_NPXINITDONE;
1434 	critical_exit();
1435 }
1436 
1437 int
1438 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1439 {
1440 	struct pcb *pcb;
1441 
1442 	pcb = td->td_pcb;
1443 
1444 	if ((pcb->pcb_flags & PCB_NPXNOSAVE) != 0) {
1445 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1446 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1447 		    ("non-NULL fpcurthread for PCB_NPXNOSAVE"));
1448 		CRITICAL_ASSERT(td);
1449 
1450 		pcb->pcb_flags &= ~(PCB_NPXNOSAVE | PCB_NPXINITDONE);
1451 		start_emulating();
1452 	} else {
1453 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1454 		    ("leaving not inuse ctx"));
1455 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1456 
1457 		if (is_fpu_kern_thread(0) &&
1458 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1459 			return (0);
1460 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1461 		    ("dummy ctx"));
1462 		critical_enter();
1463 		if (curthread == PCPU_GET(fpcurthread))
1464 			npxdrop();
1465 		pcb->pcb_save = ctx->prev;
1466 	}
1467 
1468 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1469 		if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0) {
1470 			pcb->pcb_flags |= PCB_NPXINITDONE;
1471 			if ((pcb->pcb_flags & PCB_KERNNPX_THR) == 0)
1472 				pcb->pcb_flags &= ~PCB_KERNNPX;
1473 		} else if ((pcb->pcb_flags & PCB_KERNNPX_THR) == 0)
1474 			pcb->pcb_flags &= ~(PCB_NPXINITDONE | PCB_KERNNPX);
1475 	} else {
1476 		if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
1477 			pcb->pcb_flags |= PCB_NPXINITDONE;
1478 		else
1479 			pcb->pcb_flags &= ~PCB_NPXINITDONE;
1480 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1481 	}
1482 	critical_exit();
1483 	return (0);
1484 }
1485 
1486 int
1487 fpu_kern_thread(u_int flags)
1488 {
1489 
1490 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1491 	    ("Only kthread may use fpu_kern_thread"));
1492 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1493 	    ("mangled pcb_save"));
1494 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1495 
1496 	curpcb->pcb_flags |= PCB_KERNNPX | PCB_KERNNPX_THR;
1497 	return (0);
1498 }
1499 
1500 int
1501 is_fpu_kern_thread(u_int flags)
1502 {
1503 
1504 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1505 		return (0);
1506 	return ((curpcb->pcb_flags & PCB_KERNNPX_THR) != 0);
1507 }
1508 
1509 /*
1510  * FPU save area alloc/free/init utility routines
1511  */
1512 union savefpu *
1513 fpu_save_area_alloc(void)
1514 {
1515 
1516 	return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
1517 }
1518 
1519 void
1520 fpu_save_area_free(union savefpu *fsa)
1521 {
1522 
1523 	uma_zfree(fpu_save_area_zone, fsa);
1524 }
1525 
1526 void
1527 fpu_save_area_reset(union savefpu *fsa)
1528 {
1529 
1530 	bcopy(npx_initialstate, fsa, cpu_max_ext_state_size);
1531 }
1532