xref: /freebsd/sys/i386/i386/pmap.c (revision 0957b409)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * the Systems Programming Group of the University of Utah Computer
15  * Science Department and William Jolitz of UUNET Technologies Inc.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46  */
47 /*-
48  * Copyright (c) 2003 Networks Associates Technology, Inc.
49  * All rights reserved.
50  * Copyright (c) 2018 The FreeBSD Foundation
51  * All rights reserved.
52  *
53  * This software was developed for the FreeBSD Project by Jake Burkholder,
54  * Safeport Network Services, and Network Associates Laboratories, the
55  * Security Research Division of Network Associates, Inc. under
56  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
57  * CHATS research program.
58  *
59  * Portions of this software were developed by
60  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
61  * the FreeBSD Foundation.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  * 1. Redistributions of source code must retain the above copyright
67  *    notice, this list of conditions and the following disclaimer.
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in the
70  *    documentation and/or other materials provided with the distribution.
71  *
72  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
73  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
74  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
75  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
76  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
77  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
78  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
80  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
81  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
82  * SUCH DAMAGE.
83  */
84 
85 #include <sys/cdefs.h>
86 __FBSDID("$FreeBSD$");
87 
88 /*
89  *	Manages physical address maps.
90  *
91  *	Since the information managed by this module is
92  *	also stored by the logical address mapping module,
93  *	this module may throw away valid virtual-to-physical
94  *	mappings at almost any time.  However, invalidations
95  *	of virtual-to-physical mappings must be done as
96  *	requested.
97  *
98  *	In order to cope with hardware architectures which
99  *	make virtual-to-physical map invalidates expensive,
100  *	this module may delay invalidate or reduced protection
101  *	operations until such time as they are actually
102  *	necessary.  This module is given full information as
103  *	to which processors are currently using which maps,
104  *	and to when physical maps must be made correct.
105  */
106 
107 #include "opt_apic.h"
108 #include "opt_cpu.h"
109 #include "opt_pmap.h"
110 #include "opt_smp.h"
111 #include "opt_vm.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/kernel.h>
116 #include <sys/ktr.h>
117 #include <sys/lock.h>
118 #include <sys/malloc.h>
119 #include <sys/mman.h>
120 #include <sys/msgbuf.h>
121 #include <sys/mutex.h>
122 #include <sys/proc.h>
123 #include <sys/rwlock.h>
124 #include <sys/sf_buf.h>
125 #include <sys/sx.h>
126 #include <sys/vmmeter.h>
127 #include <sys/sched.h>
128 #include <sys/sysctl.h>
129 #include <sys/smp.h>
130 #include <sys/vmem.h>
131 
132 #include <vm/vm.h>
133 #include <vm/vm_param.h>
134 #include <vm/vm_kern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_map.h>
137 #include <vm/vm_object.h>
138 #include <vm/vm_extern.h>
139 #include <vm/vm_pageout.h>
140 #include <vm/vm_pager.h>
141 #include <vm/vm_phys.h>
142 #include <vm/vm_radix.h>
143 #include <vm/vm_reserv.h>
144 #include <vm/uma.h>
145 
146 #ifdef DEV_APIC
147 #include <sys/bus.h>
148 #include <machine/intr_machdep.h>
149 #include <x86/apicvar.h>
150 #endif
151 #include <x86/ifunc.h>
152 #include <machine/bootinfo.h>
153 #include <machine/cpu.h>
154 #include <machine/cputypes.h>
155 #include <machine/md_var.h>
156 #include <machine/pcb.h>
157 #include <machine/specialreg.h>
158 #ifdef SMP
159 #include <machine/smp.h>
160 #endif
161 #include <machine/pmap_base.h>
162 
163 #if !defined(DIAGNOSTIC)
164 #ifdef __GNUC_GNU_INLINE__
165 #define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
166 #else
167 #define PMAP_INLINE	extern inline
168 #endif
169 #else
170 #define PMAP_INLINE
171 #endif
172 
173 #ifdef PV_STATS
174 #define PV_STAT(x)	do { x ; } while (0)
175 #else
176 #define PV_STAT(x)	do { } while (0)
177 #endif
178 
179 #define	pa_index(pa)	((pa) >> PDRSHIFT)
180 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
181 
182 /*
183  * PTmap is recursive pagemap at top of virtual address space.
184  * Within PTmap, the page directory can be found (third indirection).
185  */
186 #define	PTmap	((pt_entry_t *)(PTDPTDI << PDRSHIFT))
187 #define	PTD	((pd_entry_t *)((PTDPTDI << PDRSHIFT) + (PTDPTDI * PAGE_SIZE)))
188 #define	PTDpde	((pd_entry_t *)((PTDPTDI << PDRSHIFT) + (PTDPTDI * PAGE_SIZE) + \
189     (PTDPTDI * PDESIZE)))
190 
191 /*
192  * Translate a virtual address to the kernel virtual address of its page table
193  * entry (PTE).  This can be used recursively.  If the address of a PTE as
194  * previously returned by this macro is itself given as the argument, then the
195  * address of the page directory entry (PDE) that maps the PTE will be
196  * returned.
197  *
198  * This macro may be used before pmap_bootstrap() is called.
199  */
200 #define	vtopte(va)	(PTmap + i386_btop(va))
201 
202 /*
203  * Get PDEs and PTEs for user/kernel address space
204  */
205 #define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
206 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
207 
208 #define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
209 #define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
210 #define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
211 #define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
212 #define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
213 
214 #define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
215     atomic_clear_int((u_int *)(pte), PG_W))
216 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
217 
218 _Static_assert(sizeof(struct pmap) <= sizeof(struct pmap_KBI),
219     "pmap_KBI");
220 
221 static int pgeflag = 0;		/* PG_G or-in */
222 static int pseflag = 0;		/* PG_PS or-in */
223 
224 static int nkpt = NKPT;
225 
226 #ifdef PMAP_PAE_COMP
227 pt_entry_t pg_nx;
228 static uma_zone_t pdptzone;
229 #endif
230 
231 _Static_assert(VM_MAXUSER_ADDRESS == VADDR(TRPTDI, 0), "VM_MAXUSER_ADDRESS");
232 _Static_assert(VM_MAX_KERNEL_ADDRESS <= VADDR(PTDPTDI, 0),
233     "VM_MAX_KERNEL_ADDRESS");
234 _Static_assert(PMAP_MAP_LOW == VADDR(LOWPTDI, 0), "PMAP_MAP_LOW");
235 _Static_assert(KERNLOAD == (KERNPTDI << PDRSHIFT), "KERNLOAD");
236 
237 extern int pat_works;
238 extern int pg_ps_enabled;
239 
240 extern int elf32_nxstack;
241 
242 #define	PAT_INDEX_SIZE	8
243 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
244 
245 /*
246  * pmap_mapdev support pre initialization (i.e. console)
247  */
248 #define	PMAP_PREINIT_MAPPING_COUNT	8
249 static struct pmap_preinit_mapping {
250 	vm_paddr_t	pa;
251 	vm_offset_t	va;
252 	vm_size_t	sz;
253 	int		mode;
254 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
255 static int pmap_initialized;
256 
257 static struct rwlock_padalign pvh_global_lock;
258 
259 /*
260  * Data for the pv entry allocation mechanism
261  */
262 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
263 extern int pv_entry_max, pv_entry_count;
264 static int pv_entry_high_water = 0;
265 static struct md_page *pv_table;
266 extern int shpgperproc;
267 
268 static struct pv_chunk *pv_chunkbase;	/* KVA block for pv_chunks */
269 static int pv_maxchunks;		/* How many chunks we have KVA for */
270 static vm_offset_t pv_vafree;		/* freelist stored in the PTE */
271 
272 /*
273  * All those kernel PT submaps that BSD is so fond of
274  */
275 static pt_entry_t *CMAP3;
276 static pd_entry_t *KPTD;
277 static caddr_t CADDR3;
278 
279 /*
280  * Crashdump maps.
281  */
282 static caddr_t crashdumpmap;
283 
284 static pt_entry_t *PMAP1 = NULL, *PMAP2, *PMAP3;
285 static pt_entry_t *PADDR1 = NULL, *PADDR2, *PADDR3;
286 #ifdef SMP
287 static int PMAP1cpu, PMAP3cpu;
288 extern int PMAP1changedcpu;
289 #endif
290 extern int PMAP1changed;
291 extern int PMAP1unchanged;
292 static struct mtx PMAP2mutex;
293 
294 /*
295  * Internal flags for pmap_enter()'s helper functions.
296  */
297 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
298 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
299 
300 static void	free_pv_chunk(struct pv_chunk *pc);
301 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
302 static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
303 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
304 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
305 		    u_int flags);
306 #if VM_NRESERVLEVEL > 0
307 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
308 #endif
309 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
310 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
311 		    vm_offset_t va);
312 static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
313 
314 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
315 static bool	pmap_enter_4mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
316 		    vm_prot_t prot);
317 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
318 		    u_int flags, vm_page_t m);
319 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
320     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
321 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
322 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
323 		    pd_entry_t pde);
324 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
325 static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
326 static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
327 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
328 static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
329 static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
330 #if VM_NRESERVLEVEL > 0
331 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
332 #endif
333 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
334     vm_prot_t prot);
335 static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
336 static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
337     struct spglist *free);
338 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
339     struct spglist *free);
340 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
341 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
342     struct spglist *free);
343 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
344 		    struct spglist *free);
345 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
346 					vm_offset_t va);
347 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
348 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
349     vm_page_t m);
350 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
351     pd_entry_t newpde);
352 static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
353 
354 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
355 
356 static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
357 static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
358 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
359 static void pmap_pte_release(pt_entry_t *pte);
360 static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
361 #ifdef PMAP_PAE_COMP
362 static void *pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain,
363     uint8_t *flags, int wait);
364 #endif
365 static void pmap_init_trm(void);
366 static void pmap_invalidate_all_int(pmap_t pmap);
367 
368 static __inline void pagezero(void *page);
369 
370 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
371 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
372 
373 extern char _end[];
374 extern u_long physfree;	/* phys addr of next free page */
375 extern u_long vm86phystk;/* PA of vm86/bios stack */
376 extern u_long vm86paddr;/* address of vm86 region */
377 extern int vm86pa;	/* phys addr of vm86 region */
378 extern u_long KERNend;	/* phys addr end of kernel (just after bss) */
379 #ifdef PMAP_PAE_COMP
380 pd_entry_t *IdlePTD_pae;	/* phys addr of kernel PTD */
381 pdpt_entry_t *IdlePDPT;	/* phys addr of kernel PDPT */
382 pt_entry_t *KPTmap_pae;	/* address of kernel page tables */
383 #define	IdlePTD	IdlePTD_pae
384 #define	KPTmap	KPTmap_pae
385 #else
386 pd_entry_t *IdlePTD_nopae;
387 pt_entry_t *KPTmap_nopae;
388 #define	IdlePTD	IdlePTD_nopae
389 #define	KPTmap	KPTmap_nopae
390 #endif
391 extern u_long KPTphys;	/* phys addr of kernel page tables */
392 extern u_long tramp_idleptd;
393 
394 static u_long
395 allocpages(u_int cnt, u_long *physfree)
396 {
397 	u_long res;
398 
399 	res = *physfree;
400 	*physfree += PAGE_SIZE * cnt;
401 	bzero((void *)res, PAGE_SIZE * cnt);
402 	return (res);
403 }
404 
405 static void
406 pmap_cold_map(u_long pa, u_long va, u_long cnt)
407 {
408 	pt_entry_t *pt;
409 
410 	for (pt = (pt_entry_t *)KPTphys + atop(va); cnt > 0;
411 	    cnt--, pt++, va += PAGE_SIZE, pa += PAGE_SIZE)
412 		*pt = pa | PG_V | PG_RW | PG_A | PG_M;
413 }
414 
415 static void
416 pmap_cold_mapident(u_long pa, u_long cnt)
417 {
418 
419 	pmap_cold_map(pa, pa, cnt);
420 }
421 
422 _Static_assert(LOWPTDI * 2 * NBPDR == KERNBASE,
423     "Broken double-map of zero PTD");
424 
425 static void
426 __CONCAT(PMTYPE, remap_lower)(bool enable)
427 {
428 	int i;
429 
430 	for (i = 0; i < LOWPTDI; i++)
431 		IdlePTD[i] = enable ? IdlePTD[LOWPTDI + i] : 0;
432 	load_cr3(rcr3());		/* invalidate TLB */
433 }
434 
435 /*
436  * Called from locore.s before paging is enabled.  Sets up the first
437  * kernel page table.  Since kernel is mapped with PA == VA, this code
438  * does not require relocations.
439  */
440 void
441 __CONCAT(PMTYPE, cold)(void)
442 {
443 	pt_entry_t *pt;
444 	u_long a;
445 	u_int cr3, ncr4;
446 
447 	physfree = (u_long)&_end;
448 	if (bootinfo.bi_esymtab != 0)
449 		physfree = bootinfo.bi_esymtab;
450 	if (bootinfo.bi_kernend != 0)
451 		physfree = bootinfo.bi_kernend;
452 	physfree = roundup2(physfree, NBPDR);
453 	KERNend = physfree;
454 
455 	/* Allocate Kernel Page Tables */
456 	KPTphys = allocpages(NKPT, &physfree);
457 	KPTmap = (pt_entry_t *)KPTphys;
458 
459 	/* Allocate Page Table Directory */
460 #ifdef PMAP_PAE_COMP
461 	/* XXX only need 32 bytes (easier for now) */
462 	IdlePDPT = (pdpt_entry_t *)allocpages(1, &physfree);
463 #endif
464 	IdlePTD = (pd_entry_t *)allocpages(NPGPTD, &physfree);
465 
466 	/*
467 	 * Allocate KSTACK.  Leave a guard page between IdlePTD and
468 	 * proc0kstack, to control stack overflow for thread0 and
469 	 * prevent corruption of the page table.  We leak the guard
470 	 * physical memory due to 1:1 mappings.
471 	 */
472 	allocpages(1, &physfree);
473 	proc0kstack = allocpages(TD0_KSTACK_PAGES, &physfree);
474 
475 	/* vm86/bios stack */
476 	vm86phystk = allocpages(1, &physfree);
477 
478 	/* pgtable + ext + IOPAGES */
479 	vm86paddr = vm86pa = allocpages(3, &physfree);
480 
481 	/* Install page tables into PTD.  Page table page 1 is wasted. */
482 	for (a = 0; a < NKPT; a++)
483 		IdlePTD[a] = (KPTphys + ptoa(a)) | PG_V | PG_RW | PG_A | PG_M;
484 
485 #ifdef PMAP_PAE_COMP
486 	/* PAE install PTD pointers into PDPT */
487 	for (a = 0; a < NPGPTD; a++)
488 		IdlePDPT[a] = ((u_int)IdlePTD + ptoa(a)) | PG_V;
489 #endif
490 
491 	/*
492 	 * Install recursive mapping for kernel page tables into
493 	 * itself.
494 	 */
495 	for (a = 0; a < NPGPTD; a++)
496 		IdlePTD[PTDPTDI + a] = ((u_int)IdlePTD + ptoa(a)) | PG_V |
497 		    PG_RW;
498 
499 	/*
500 	 * Initialize page table pages mapping physical address zero
501 	 * through the (physical) end of the kernel.  Many of these
502 	 * pages must be reserved, and we reserve them all and map
503 	 * them linearly for convenience.  We do this even if we've
504 	 * enabled PSE above; we'll just switch the corresponding
505 	 * kernel PDEs before we turn on paging.
506 	 *
507 	 * This and all other page table entries allow read and write
508 	 * access for various reasons.  Kernel mappings never have any
509 	 * access restrictions.
510 	 */
511 	pmap_cold_mapident(0, atop(NBPDR) * LOWPTDI);
512 	pmap_cold_map(0, NBPDR * LOWPTDI, atop(NBPDR) * LOWPTDI);
513 	pmap_cold_mapident(KERNBASE, atop(KERNend - KERNBASE));
514 
515 	/* Map page table directory */
516 #ifdef PMAP_PAE_COMP
517 	pmap_cold_mapident((u_long)IdlePDPT, 1);
518 #endif
519 	pmap_cold_mapident((u_long)IdlePTD, NPGPTD);
520 
521 	/* Map early KPTmap.  It is really pmap_cold_mapident. */
522 	pmap_cold_map(KPTphys, (u_long)KPTmap, NKPT);
523 
524 	/* Map proc0kstack */
525 	pmap_cold_mapident(proc0kstack, TD0_KSTACK_PAGES);
526 	/* ISA hole already mapped */
527 
528 	pmap_cold_mapident(vm86phystk, 1);
529 	pmap_cold_mapident(vm86pa, 3);
530 
531 	/* Map page 0 into the vm86 page table */
532 	*(pt_entry_t *)vm86pa = 0 | PG_RW | PG_U | PG_A | PG_M | PG_V;
533 
534 	/* ...likewise for the ISA hole for vm86 */
535 	for (pt = (pt_entry_t *)vm86pa + atop(ISA_HOLE_START), a = 0;
536 	    a < atop(ISA_HOLE_LENGTH); a++, pt++)
537 		*pt = (ISA_HOLE_START + ptoa(a)) | PG_RW | PG_U | PG_A |
538 		    PG_M | PG_V;
539 
540 	/* Enable PSE, PGE, VME, and PAE if configured. */
541 	ncr4 = 0;
542 	if ((cpu_feature & CPUID_PSE) != 0) {
543 		ncr4 |= CR4_PSE;
544 		pseflag = PG_PS;
545 		/*
546 		 * Superpage mapping of the kernel text.  Existing 4k
547 		 * page table pages are wasted.
548 		 */
549 		for (a = KERNBASE; a < KERNend; a += NBPDR)
550 			IdlePTD[a >> PDRSHIFT] = a | PG_PS | PG_A | PG_M |
551 			    PG_RW | PG_V;
552 	}
553 	if ((cpu_feature & CPUID_PGE) != 0) {
554 		ncr4 |= CR4_PGE;
555 		pgeflag = PG_G;
556 	}
557 	ncr4 |= (cpu_feature & CPUID_VME) != 0 ? CR4_VME : 0;
558 #ifdef PMAP_PAE_COMP
559 	ncr4 |= CR4_PAE;
560 #endif
561 	if (ncr4 != 0)
562 		load_cr4(rcr4() | ncr4);
563 
564 	/* Now enable paging */
565 #ifdef PMAP_PAE_COMP
566 	cr3 = (u_int)IdlePDPT;
567 #else
568 	cr3 = (u_int)IdlePTD;
569 #endif
570 	tramp_idleptd = cr3;
571 	load_cr3(cr3);
572 	load_cr0(rcr0() | CR0_PG);
573 
574 	/*
575 	 * Now running relocated at KERNBASE where the system is
576 	 * linked to run.
577 	 */
578 
579 	/*
580 	 * Remove the lowest part of the double mapping of low memory
581 	 * to get some null pointer checks.
582 	 */
583 	__CONCAT(PMTYPE, remap_lower)(false);
584 
585 	kernel_vm_end = /* 0 + */ NKPT * NBPDR;
586 #ifdef PMAP_PAE_COMP
587 	i386_pmap_VM_NFREEORDER = VM_NFREEORDER_PAE;
588 	i386_pmap_VM_LEVEL_0_ORDER = VM_LEVEL_0_ORDER_PAE;
589 	i386_pmap_PDRSHIFT = PDRSHIFT_PAE;
590 #else
591 	i386_pmap_VM_NFREEORDER = VM_NFREEORDER_NOPAE;
592 	i386_pmap_VM_LEVEL_0_ORDER = VM_LEVEL_0_ORDER_NOPAE;
593 	i386_pmap_PDRSHIFT = PDRSHIFT_NOPAE;
594 #endif
595 }
596 
597 static void
598 __CONCAT(PMTYPE, set_nx)(void)
599 {
600 
601 #ifdef PMAP_PAE_COMP
602 	if ((amd_feature & AMDID_NX) == 0)
603 		return;
604 	pg_nx = PG_NX;
605 	elf32_nxstack = 1;
606 	/* EFER.EFER_NXE is set in initializecpu(). */
607 #endif
608 }
609 
610 /*
611  *	Bootstrap the system enough to run with virtual memory.
612  *
613  *	On the i386 this is called after pmap_cold() created initial
614  *	kernel page table and enabled paging, and just syncs the pmap
615  *	module with what has already been done.
616  */
617 static void
618 __CONCAT(PMTYPE, bootstrap)(vm_paddr_t firstaddr)
619 {
620 	vm_offset_t va;
621 	pt_entry_t *pte, *unused;
622 	struct pcpu *pc;
623 	u_long res;
624 	int i;
625 
626 	res = atop(firstaddr - (vm_paddr_t)KERNLOAD);
627 
628 	/*
629 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
630 	 * preallocated kernel page table pages so that vm_page structures
631 	 * representing these pages will be created.  The vm_page structures
632 	 * are required for promotion of the corresponding kernel virtual
633 	 * addresses to superpage mappings.
634 	 */
635 	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
636 
637 	/*
638 	 * Initialize the first available kernel virtual address.
639 	 * However, using "firstaddr" may waste a few pages of the
640 	 * kernel virtual address space, because pmap_cold() may not
641 	 * have mapped every physical page that it allocated.
642 	 * Preferably, pmap_cold() would provide a first unused
643 	 * virtual address in addition to "firstaddr".
644 	 */
645 	virtual_avail = (vm_offset_t)firstaddr;
646 	virtual_end = VM_MAX_KERNEL_ADDRESS;
647 
648 	/*
649 	 * Initialize the kernel pmap (which is statically allocated).
650 	 * Count bootstrap data as being resident in case any of this data is
651 	 * later unmapped (using pmap_remove()) and freed.
652 	 */
653 	PMAP_LOCK_INIT(kernel_pmap);
654 	kernel_pmap->pm_pdir = IdlePTD;
655 #ifdef PMAP_PAE_COMP
656 	kernel_pmap->pm_pdpt = IdlePDPT;
657 #endif
658 	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
659 	kernel_pmap->pm_stats.resident_count = res;
660 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
661 
662  	/*
663 	 * Initialize the global pv list lock.
664 	 */
665 	rw_init(&pvh_global_lock, "pmap pv global");
666 
667 	/*
668 	 * Reserve some special page table entries/VA space for temporary
669 	 * mapping of pages.
670 	 */
671 #define	SYSMAP(c, p, v, n)	\
672 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
673 
674 	va = virtual_avail;
675 	pte = vtopte(va);
676 
677 
678 	/*
679 	 * Initialize temporary map objects on the current CPU for use
680 	 * during early boot.
681 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
682 	 * CMAP3 is used for the boot-time memory test.
683 	 */
684 	pc = get_pcpu();
685 	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
686 	SYSMAP(caddr_t, pc->pc_cmap_pte1, pc->pc_cmap_addr1, 1)
687 	SYSMAP(caddr_t, pc->pc_cmap_pte2, pc->pc_cmap_addr2, 1)
688 	SYSMAP(vm_offset_t, pte, pc->pc_qmap_addr, 1)
689 
690 	SYSMAP(caddr_t, CMAP3, CADDR3, 1);
691 
692 	/*
693 	 * Crashdump maps.
694 	 */
695 	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
696 
697 	/*
698 	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
699 	 */
700 	SYSMAP(caddr_t, unused, ptvmmap, 1)
701 
702 	/*
703 	 * msgbufp is used to map the system message buffer.
704 	 */
705 	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
706 
707 	/*
708 	 * KPTmap is used by pmap_kextract().
709 	 *
710 	 * KPTmap is first initialized by pmap_cold().  However, that initial
711 	 * KPTmap can only support NKPT page table pages.  Here, a larger
712 	 * KPTmap is created that can support KVA_PAGES page table pages.
713 	 */
714 	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
715 
716 	for (i = 0; i < NKPT; i++)
717 		KPTD[i] = (KPTphys + ptoa(i)) | PG_RW | PG_V;
718 
719 	/*
720 	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
721 	 * respectively.
722 	 */
723 	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
724 	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
725 	SYSMAP(pt_entry_t *, PMAP3, PADDR3, 1)
726 
727 	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
728 
729 	virtual_avail = va;
730 
731 	/*
732 	 * Initialize the PAT MSR if present.
733 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
734 	 * side-effect, invalidates stale PG_G TLB entries that might
735 	 * have been created in our pre-boot environment.  We assume
736 	 * that PAT support implies PGE and in reverse, PGE presence
737 	 * comes with PAT.  Both features were added for Pentium Pro.
738 	 */
739 	pmap_init_pat();
740 }
741 
742 static void
743 pmap_init_reserved_pages(void)
744 {
745 	struct pcpu *pc;
746 	vm_offset_t pages;
747 	int i;
748 
749 #ifdef PMAP_PAE_COMP
750 	if (!pae_mode)
751 		return;
752 #else
753 	if (pae_mode)
754 		return;
755 #endif
756 	CPU_FOREACH(i) {
757 		pc = pcpu_find(i);
758 		mtx_init(&pc->pc_copyout_mlock, "cpmlk", NULL, MTX_DEF |
759 		    MTX_NEW);
760 		pc->pc_copyout_maddr = kva_alloc(ptoa(2));
761 		if (pc->pc_copyout_maddr == 0)
762 			panic("unable to allocate non-sleepable copyout KVA");
763 		sx_init(&pc->pc_copyout_slock, "cpslk");
764 		pc->pc_copyout_saddr = kva_alloc(ptoa(2));
765 		if (pc->pc_copyout_saddr == 0)
766 			panic("unable to allocate sleepable copyout KVA");
767 		pc->pc_pmap_eh_va = kva_alloc(ptoa(1));
768 		if (pc->pc_pmap_eh_va == 0)
769 			panic("unable to allocate pmap_extract_and_hold KVA");
770 		pc->pc_pmap_eh_ptep = (char *)vtopte(pc->pc_pmap_eh_va);
771 
772 		/*
773 		 * Skip if the mappings have already been initialized,
774 		 * i.e. this is the BSP.
775 		 */
776 		if (pc->pc_cmap_addr1 != 0)
777 			continue;
778 
779 		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
780 		pages = kva_alloc(PAGE_SIZE * 3);
781 		if (pages == 0)
782 			panic("unable to allocate CMAP KVA");
783 		pc->pc_cmap_pte1 = vtopte(pages);
784 		pc->pc_cmap_pte2 = vtopte(pages + PAGE_SIZE);
785 		pc->pc_cmap_addr1 = (caddr_t)pages;
786 		pc->pc_cmap_addr2 = (caddr_t)(pages + PAGE_SIZE);
787 		pc->pc_qmap_addr = pages + ptoa(2);
788 	}
789 }
790 
791 SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
792 
793 /*
794  * Setup the PAT MSR.
795  */
796 static void
797 __CONCAT(PMTYPE, init_pat)(void)
798 {
799 	int pat_table[PAT_INDEX_SIZE];
800 	uint64_t pat_msr;
801 	u_long cr0, cr4;
802 	int i;
803 
804 	/* Set default PAT index table. */
805 	for (i = 0; i < PAT_INDEX_SIZE; i++)
806 		pat_table[i] = -1;
807 	pat_table[PAT_WRITE_BACK] = 0;
808 	pat_table[PAT_WRITE_THROUGH] = 1;
809 	pat_table[PAT_UNCACHEABLE] = 3;
810 	pat_table[PAT_WRITE_COMBINING] = 3;
811 	pat_table[PAT_WRITE_PROTECTED] = 3;
812 	pat_table[PAT_UNCACHED] = 3;
813 
814 	/*
815 	 * Bail if this CPU doesn't implement PAT.
816 	 * We assume that PAT support implies PGE.
817 	 */
818 	if ((cpu_feature & CPUID_PAT) == 0) {
819 		for (i = 0; i < PAT_INDEX_SIZE; i++)
820 			pat_index[i] = pat_table[i];
821 		pat_works = 0;
822 		return;
823 	}
824 
825 	/*
826 	 * Due to some Intel errata, we can only safely use the lower 4
827 	 * PAT entries.
828 	 *
829 	 *   Intel Pentium III Processor Specification Update
830 	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
831 	 * or Mode C Paging)
832 	 *
833 	 *   Intel Pentium IV  Processor Specification Update
834 	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
835 	 */
836 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
837 	    !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
838 		pat_works = 0;
839 
840 	/* Initialize default PAT entries. */
841 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
842 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
843 	    PAT_VALUE(2, PAT_UNCACHED) |
844 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
845 	    PAT_VALUE(4, PAT_WRITE_BACK) |
846 	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
847 	    PAT_VALUE(6, PAT_UNCACHED) |
848 	    PAT_VALUE(7, PAT_UNCACHEABLE);
849 
850 	if (pat_works) {
851 		/*
852 		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
853 		 * Program 5 and 6 as WP and WC.
854 		 * Leave 4 and 7 as WB and UC.
855 		 */
856 		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
857 		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
858 		    PAT_VALUE(6, PAT_WRITE_COMBINING);
859 		pat_table[PAT_UNCACHED] = 2;
860 		pat_table[PAT_WRITE_PROTECTED] = 5;
861 		pat_table[PAT_WRITE_COMBINING] = 6;
862 	} else {
863 		/*
864 		 * Just replace PAT Index 2 with WC instead of UC-.
865 		 */
866 		pat_msr &= ~PAT_MASK(2);
867 		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
868 		pat_table[PAT_WRITE_COMBINING] = 2;
869 	}
870 
871 	/* Disable PGE. */
872 	cr4 = rcr4();
873 	load_cr4(cr4 & ~CR4_PGE);
874 
875 	/* Disable caches (CD = 1, NW = 0). */
876 	cr0 = rcr0();
877 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
878 
879 	/* Flushes caches and TLBs. */
880 	wbinvd();
881 	invltlb();
882 
883 	/* Update PAT and index table. */
884 	wrmsr(MSR_PAT, pat_msr);
885 	for (i = 0; i < PAT_INDEX_SIZE; i++)
886 		pat_index[i] = pat_table[i];
887 
888 	/* Flush caches and TLBs again. */
889 	wbinvd();
890 	invltlb();
891 
892 	/* Restore caches and PGE. */
893 	load_cr0(cr0);
894 	load_cr4(cr4);
895 }
896 
897 #ifdef PMAP_PAE_COMP
898 static void *
899 pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
900     int wait)
901 {
902 
903 	/* Inform UMA that this allocator uses kernel_map/object. */
904 	*flags = UMA_SLAB_KERNEL;
905 	return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
906 	    bytes, wait, 0x0ULL, 0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
907 }
908 #endif
909 
910 /*
911  * Abuse the pte nodes for unmapped kva to thread a kva freelist through.
912  * Requirements:
913  *  - Must deal with pages in order to ensure that none of the PG_* bits
914  *    are ever set, PG_V in particular.
915  *  - Assumes we can write to ptes without pte_store() atomic ops, even
916  *    on PAE systems.  This should be ok.
917  *  - Assumes nothing will ever test these addresses for 0 to indicate
918  *    no mapping instead of correctly checking PG_V.
919  *  - Assumes a vm_offset_t will fit in a pte (true for i386).
920  * Because PG_V is never set, there can be no mappings to invalidate.
921  */
922 static vm_offset_t
923 pmap_ptelist_alloc(vm_offset_t *head)
924 {
925 	pt_entry_t *pte;
926 	vm_offset_t va;
927 
928 	va = *head;
929 	if (va == 0)
930 		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
931 	pte = vtopte(va);
932 	*head = *pte;
933 	if (*head & PG_V)
934 		panic("pmap_ptelist_alloc: va with PG_V set!");
935 	*pte = 0;
936 	return (va);
937 }
938 
939 static void
940 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
941 {
942 	pt_entry_t *pte;
943 
944 	if (va & PG_V)
945 		panic("pmap_ptelist_free: freeing va with PG_V set!");
946 	pte = vtopte(va);
947 	*pte = *head;		/* virtual! PG_V is 0 though */
948 	*head = va;
949 }
950 
951 static void
952 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
953 {
954 	int i;
955 	vm_offset_t va;
956 
957 	*head = 0;
958 	for (i = npages - 1; i >= 0; i--) {
959 		va = (vm_offset_t)base + i * PAGE_SIZE;
960 		pmap_ptelist_free(head, va);
961 	}
962 }
963 
964 
965 /*
966  *	Initialize the pmap module.
967  *	Called by vm_init, to initialize any structures that the pmap
968  *	system needs to map virtual memory.
969  */
970 static void
971 __CONCAT(PMTYPE, init)(void)
972 {
973 	struct pmap_preinit_mapping *ppim;
974 	vm_page_t mpte;
975 	vm_size_t s;
976 	int i, pv_npg;
977 
978 	/*
979 	 * Initialize the vm page array entries for the kernel pmap's
980 	 * page table pages.
981 	 */
982 	PMAP_LOCK(kernel_pmap);
983 	for (i = 0; i < NKPT; i++) {
984 		mpte = PHYS_TO_VM_PAGE(KPTphys + ptoa(i));
985 		KASSERT(mpte >= vm_page_array &&
986 		    mpte < &vm_page_array[vm_page_array_size],
987 		    ("pmap_init: page table page is out of range"));
988 		mpte->pindex = i + KPTDI;
989 		mpte->phys_addr = KPTphys + ptoa(i);
990 		mpte->wire_count = 1;
991 		if (pseflag != 0 &&
992 		    KERNBASE <= i << PDRSHIFT && i << PDRSHIFT < KERNend &&
993 		    pmap_insert_pt_page(kernel_pmap, mpte))
994 			panic("pmap_init: pmap_insert_pt_page failed");
995 	}
996 	PMAP_UNLOCK(kernel_pmap);
997 	vm_wire_add(NKPT);
998 
999 	/*
1000 	 * Initialize the address space (zone) for the pv entries.  Set a
1001 	 * high water mark so that the system can recover from excessive
1002 	 * numbers of pv entries.
1003 	 */
1004 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1005 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1006 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1007 	pv_entry_max = roundup(pv_entry_max, _NPCPV);
1008 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1009 
1010 	/*
1011 	 * If the kernel is running on a virtual machine, then it must assume
1012 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
1013 	 * be prepared for the hypervisor changing the vendor and family that
1014 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
1015 	 * 10h Erratum 383 is enabled if the processor's feature set does not
1016 	 * include at least one feature that is only supported by older Intel
1017 	 * or newer AMD processors.
1018 	 */
1019 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
1020 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
1021 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
1022 	    AMDID2_FMA4)) == 0)
1023 		workaround_erratum383 = 1;
1024 
1025 	/*
1026 	 * Are large page mappings supported and enabled?
1027 	 */
1028 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
1029 	if (pseflag == 0)
1030 		pg_ps_enabled = 0;
1031 	else if (pg_ps_enabled) {
1032 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1033 		    ("pmap_init: can't assign to pagesizes[1]"));
1034 		pagesizes[1] = NBPDR;
1035 	}
1036 
1037 	/*
1038 	 * Calculate the size of the pv head table for superpages.
1039 	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1040 	 */
1041 	pv_npg = trunc_4mpage(vm_phys_segs[vm_phys_nsegs - 1].end -
1042 	    PAGE_SIZE) / NBPDR + 1;
1043 
1044 	/*
1045 	 * Allocate memory for the pv head table for superpages.
1046 	 */
1047 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1048 	s = round_page(s);
1049 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
1050 	for (i = 0; i < pv_npg; i++)
1051 		TAILQ_INIT(&pv_table[i].pv_list);
1052 
1053 	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1054 	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1055 	if (pv_chunkbase == NULL)
1056 		panic("pmap_init: not enough kvm for pv chunks");
1057 	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1058 #ifdef PMAP_PAE_COMP
1059 	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
1060 	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
1061 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1062 	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
1063 #endif
1064 
1065 	pmap_initialized = 1;
1066 	pmap_init_trm();
1067 
1068 	if (!bootverbose)
1069 		return;
1070 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
1071 		ppim = pmap_preinit_mapping + i;
1072 		if (ppim->va == 0)
1073 			continue;
1074 		printf("PPIM %u: PA=%#jx, VA=%#x, size=%#x, mode=%#x\n", i,
1075 		    (uintmax_t)ppim->pa, ppim->va, ppim->sz, ppim->mode);
1076 	}
1077 
1078 }
1079 
1080 extern u_long pmap_pde_demotions;
1081 extern u_long pmap_pde_mappings;
1082 extern u_long pmap_pde_p_failures;
1083 extern u_long pmap_pde_promotions;
1084 
1085 /***************************************************
1086  * Low level helper routines.....
1087  ***************************************************/
1088 
1089 static boolean_t
1090 __CONCAT(PMTYPE, is_valid_memattr)(pmap_t pmap __unused, vm_memattr_t mode)
1091 {
1092 
1093 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
1094 	    pat_index[(int)mode] >= 0);
1095 }
1096 
1097 /*
1098  * Determine the appropriate bits to set in a PTE or PDE for a specified
1099  * caching mode.
1100  */
1101 static int
1102 __CONCAT(PMTYPE, cache_bits)(pmap_t pmap, int mode, boolean_t is_pde)
1103 {
1104 	int cache_bits, pat_flag, pat_idx;
1105 
1106 	if (!pmap_is_valid_memattr(pmap, mode))
1107 		panic("Unknown caching mode %d\n", mode);
1108 
1109 	/* The PAT bit is different for PTE's and PDE's. */
1110 	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
1111 
1112 	/* Map the caching mode to a PAT index. */
1113 	pat_idx = pat_index[mode];
1114 
1115 	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
1116 	cache_bits = 0;
1117 	if (pat_idx & 0x4)
1118 		cache_bits |= pat_flag;
1119 	if (pat_idx & 0x2)
1120 		cache_bits |= PG_NC_PCD;
1121 	if (pat_idx & 0x1)
1122 		cache_bits |= PG_NC_PWT;
1123 	return (cache_bits);
1124 }
1125 
1126 static bool
1127 __CONCAT(PMTYPE, ps_enabled)(pmap_t pmap __unused)
1128 {
1129 
1130 	return (pg_ps_enabled);
1131 }
1132 
1133 /*
1134  * The caller is responsible for maintaining TLB consistency.
1135  */
1136 static void
1137 pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
1138 {
1139 	pd_entry_t *pde;
1140 
1141 	pde = pmap_pde(kernel_pmap, va);
1142 	pde_store(pde, newpde);
1143 }
1144 
1145 /*
1146  * After changing the page size for the specified virtual address in the page
1147  * table, flush the corresponding entries from the processor's TLB.  Only the
1148  * calling processor's TLB is affected.
1149  *
1150  * The calling thread must be pinned to a processor.
1151  */
1152 static void
1153 pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
1154 {
1155 
1156 	if ((newpde & PG_PS) == 0)
1157 		/* Demotion: flush a specific 2MB page mapping. */
1158 		invlpg(va);
1159 	else /* if ((newpde & PG_G) == 0) */
1160 		/*
1161 		 * Promotion: flush every 4KB page mapping from the TLB
1162 		 * because there are too many to flush individually.
1163 		 */
1164 		invltlb();
1165 }
1166 
1167 #ifdef SMP
1168 /*
1169  * For SMP, these functions have to use the IPI mechanism for coherence.
1170  *
1171  * N.B.: Before calling any of the following TLB invalidation functions,
1172  * the calling processor must ensure that all stores updating a non-
1173  * kernel page table are globally performed.  Otherwise, another
1174  * processor could cache an old, pre-update entry without being
1175  * invalidated.  This can happen one of two ways: (1) The pmap becomes
1176  * active on another processor after its pm_active field is checked by
1177  * one of the following functions but before a store updating the page
1178  * table is globally performed. (2) The pmap becomes active on another
1179  * processor before its pm_active field is checked but due to
1180  * speculative loads one of the following functions stills reads the
1181  * pmap as inactive on the other processor.
1182  *
1183  * The kernel page table is exempt because its pm_active field is
1184  * immutable.  The kernel page table is always active on every
1185  * processor.
1186  */
1187 static void
1188 pmap_invalidate_page_int(pmap_t pmap, vm_offset_t va)
1189 {
1190 	cpuset_t *mask, other_cpus;
1191 	u_int cpuid;
1192 
1193 	sched_pin();
1194 	if (pmap == kernel_pmap) {
1195 		invlpg(va);
1196 		mask = &all_cpus;
1197 	} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1198 		mask = &all_cpus;
1199 	} else {
1200 		cpuid = PCPU_GET(cpuid);
1201 		other_cpus = all_cpus;
1202 		CPU_CLR(cpuid, &other_cpus);
1203 		CPU_AND(&other_cpus, &pmap->pm_active);
1204 		mask = &other_cpus;
1205 	}
1206 	smp_masked_invlpg(*mask, va, pmap);
1207 	sched_unpin();
1208 }
1209 
1210 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
1211 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
1212 
1213 static void
1214 pmap_invalidate_range_int(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1215 {
1216 	cpuset_t *mask, other_cpus;
1217 	vm_offset_t addr;
1218 	u_int cpuid;
1219 
1220 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
1221 		pmap_invalidate_all_int(pmap);
1222 		return;
1223 	}
1224 
1225 	sched_pin();
1226 	if (pmap == kernel_pmap) {
1227 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1228 			invlpg(addr);
1229 		mask = &all_cpus;
1230 	} else  if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1231 		mask = &all_cpus;
1232 	} else {
1233 		cpuid = PCPU_GET(cpuid);
1234 		other_cpus = all_cpus;
1235 		CPU_CLR(cpuid, &other_cpus);
1236 		CPU_AND(&other_cpus, &pmap->pm_active);
1237 		mask = &other_cpus;
1238 	}
1239 	smp_masked_invlpg_range(*mask, sva, eva, pmap);
1240 	sched_unpin();
1241 }
1242 
1243 static void
1244 pmap_invalidate_all_int(pmap_t pmap)
1245 {
1246 	cpuset_t *mask, other_cpus;
1247 	u_int cpuid;
1248 
1249 	sched_pin();
1250 	if (pmap == kernel_pmap) {
1251 		invltlb();
1252 		mask = &all_cpus;
1253 	} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1254 		mask = &all_cpus;
1255 	} else {
1256 		cpuid = PCPU_GET(cpuid);
1257 		other_cpus = all_cpus;
1258 		CPU_CLR(cpuid, &other_cpus);
1259 		CPU_AND(&other_cpus, &pmap->pm_active);
1260 		mask = &other_cpus;
1261 	}
1262 	smp_masked_invltlb(*mask, pmap);
1263 	sched_unpin();
1264 }
1265 
1266 static void
1267 __CONCAT(PMTYPE, invalidate_cache)(void)
1268 {
1269 
1270 	sched_pin();
1271 	wbinvd();
1272 	smp_cache_flush();
1273 	sched_unpin();
1274 }
1275 
1276 struct pde_action {
1277 	cpuset_t invalidate;	/* processors that invalidate their TLB */
1278 	vm_offset_t va;
1279 	pd_entry_t *pde;
1280 	pd_entry_t newpde;
1281 	u_int store;		/* processor that updates the PDE */
1282 };
1283 
1284 static void
1285 pmap_update_pde_kernel(void *arg)
1286 {
1287 	struct pde_action *act = arg;
1288 	pd_entry_t *pde;
1289 
1290 	if (act->store == PCPU_GET(cpuid)) {
1291 		pde = pmap_pde(kernel_pmap, act->va);
1292 		pde_store(pde, act->newpde);
1293 	}
1294 }
1295 
1296 static void
1297 pmap_update_pde_user(void *arg)
1298 {
1299 	struct pde_action *act = arg;
1300 
1301 	if (act->store == PCPU_GET(cpuid))
1302 		pde_store(act->pde, act->newpde);
1303 }
1304 
1305 static void
1306 pmap_update_pde_teardown(void *arg)
1307 {
1308 	struct pde_action *act = arg;
1309 
1310 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1311 		pmap_update_pde_invalidate(act->va, act->newpde);
1312 }
1313 
1314 /*
1315  * Change the page size for the specified virtual address in a way that
1316  * prevents any possibility of the TLB ever having two entries that map the
1317  * same virtual address using different page sizes.  This is the recommended
1318  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1319  * machine check exception for a TLB state that is improperly diagnosed as a
1320  * hardware error.
1321  */
1322 static void
1323 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1324 {
1325 	struct pde_action act;
1326 	cpuset_t active, other_cpus;
1327 	u_int cpuid;
1328 
1329 	sched_pin();
1330 	cpuid = PCPU_GET(cpuid);
1331 	other_cpus = all_cpus;
1332 	CPU_CLR(cpuid, &other_cpus);
1333 	if (pmap == kernel_pmap)
1334 		active = all_cpus;
1335 	else
1336 		active = pmap->pm_active;
1337 	if (CPU_OVERLAP(&active, &other_cpus)) {
1338 		act.store = cpuid;
1339 		act.invalidate = active;
1340 		act.va = va;
1341 		act.pde = pde;
1342 		act.newpde = newpde;
1343 		CPU_SET(cpuid, &active);
1344 		smp_rendezvous_cpus(active,
1345 		    smp_no_rendezvous_barrier, pmap == kernel_pmap ?
1346 		    pmap_update_pde_kernel : pmap_update_pde_user,
1347 		    pmap_update_pde_teardown, &act);
1348 	} else {
1349 		if (pmap == kernel_pmap)
1350 			pmap_kenter_pde(va, newpde);
1351 		else
1352 			pde_store(pde, newpde);
1353 		if (CPU_ISSET(cpuid, &active))
1354 			pmap_update_pde_invalidate(va, newpde);
1355 	}
1356 	sched_unpin();
1357 }
1358 #else /* !SMP */
1359 /*
1360  * Normal, non-SMP, 486+ invalidation functions.
1361  * We inline these within pmap.c for speed.
1362  */
1363 static void
1364 pmap_invalidate_page_int(pmap_t pmap, vm_offset_t va)
1365 {
1366 
1367 	if (pmap == kernel_pmap)
1368 		invlpg(va);
1369 }
1370 
1371 static void
1372 pmap_invalidate_range_int(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1373 {
1374 	vm_offset_t addr;
1375 
1376 	if (pmap == kernel_pmap)
1377 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1378 			invlpg(addr);
1379 }
1380 
1381 static void
1382 pmap_invalidate_all_int(pmap_t pmap)
1383 {
1384 
1385 	if (pmap == kernel_pmap)
1386 		invltlb();
1387 }
1388 
1389 static void
1390 __CONCAT(PMTYPE, invalidate_cache)(void)
1391 {
1392 
1393 	wbinvd();
1394 }
1395 
1396 static void
1397 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1398 {
1399 
1400 	if (pmap == kernel_pmap)
1401 		pmap_kenter_pde(va, newpde);
1402 	else
1403 		pde_store(pde, newpde);
1404 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1405 		pmap_update_pde_invalidate(va, newpde);
1406 }
1407 #endif /* !SMP */
1408 
1409 static void
1410 __CONCAT(PMTYPE, invalidate_page)(pmap_t pmap, vm_offset_t va)
1411 {
1412 
1413 	pmap_invalidate_page_int(pmap, va);
1414 }
1415 
1416 static void
1417 __CONCAT(PMTYPE, invalidate_range)(pmap_t pmap, vm_offset_t sva,
1418     vm_offset_t eva)
1419 {
1420 
1421 	pmap_invalidate_range_int(pmap, sva, eva);
1422 }
1423 
1424 static void
1425 __CONCAT(PMTYPE, invalidate_all)(pmap_t pmap)
1426 {
1427 
1428 	pmap_invalidate_all_int(pmap);
1429 }
1430 
1431 static void
1432 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1433 {
1434 
1435 	/*
1436 	 * When the PDE has PG_PROMOTED set, the 2- or 4MB page mapping was
1437 	 * created by a promotion that did not invalidate the 512 or 1024 4KB
1438 	 * page mappings that might exist in the TLB.  Consequently, at this
1439 	 * point, the TLB may hold both 4KB and 2- or 4MB page mappings for
1440 	 * the address range [va, va + NBPDR).  Therefore, the entire range
1441 	 * must be invalidated here.  In contrast, when PG_PROMOTED is clear,
1442 	 * the TLB will not hold any 4KB page mappings for the address range
1443 	 * [va, va + NBPDR), and so a single INVLPG suffices to invalidate the
1444 	 * 2- or 4MB page mapping from the TLB.
1445 	 */
1446 	if ((pde & PG_PROMOTED) != 0)
1447 		pmap_invalidate_range_int(pmap, va, va + NBPDR - 1);
1448 	else
1449 		pmap_invalidate_page_int(pmap, va);
1450 }
1451 
1452 /*
1453  * Are we current address space or kernel?
1454  */
1455 static __inline int
1456 pmap_is_current(pmap_t pmap)
1457 {
1458 
1459 	return (pmap == kernel_pmap);
1460 }
1461 
1462 /*
1463  * If the given pmap is not the current or kernel pmap, the returned pte must
1464  * be released by passing it to pmap_pte_release().
1465  */
1466 static pt_entry_t *
1467 __CONCAT(PMTYPE, pte)(pmap_t pmap, vm_offset_t va)
1468 {
1469 	pd_entry_t newpf;
1470 	pd_entry_t *pde;
1471 
1472 	pde = pmap_pde(pmap, va);
1473 	if (*pde & PG_PS)
1474 		return (pde);
1475 	if (*pde != 0) {
1476 		/* are we current address space or kernel? */
1477 		if (pmap_is_current(pmap))
1478 			return (vtopte(va));
1479 		mtx_lock(&PMAP2mutex);
1480 		newpf = *pde & PG_FRAME;
1481 		if ((*PMAP2 & PG_FRAME) != newpf) {
1482 			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1483 			pmap_invalidate_page_int(kernel_pmap,
1484 			    (vm_offset_t)PADDR2);
1485 		}
1486 		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1487 	}
1488 	return (NULL);
1489 }
1490 
1491 /*
1492  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1493  * being NULL.
1494  */
1495 static __inline void
1496 pmap_pte_release(pt_entry_t *pte)
1497 {
1498 
1499 	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1500 		mtx_unlock(&PMAP2mutex);
1501 }
1502 
1503 /*
1504  * NB:  The sequence of updating a page table followed by accesses to the
1505  * corresponding pages is subject to the situation described in the "AMD64
1506  * Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
1507  * "7.3.1 Special Coherency Considerations".  Therefore, issuing the INVLPG
1508  * right after modifying the PTE bits is crucial.
1509  */
1510 static __inline void
1511 invlcaddr(void *caddr)
1512 {
1513 
1514 	invlpg((u_int)caddr);
1515 }
1516 
1517 /*
1518  * Super fast pmap_pte routine best used when scanning
1519  * the pv lists.  This eliminates many coarse-grained
1520  * invltlb calls.  Note that many of the pv list
1521  * scans are across different pmaps.  It is very wasteful
1522  * to do an entire invltlb for checking a single mapping.
1523  *
1524  * If the given pmap is not the current pmap, pvh_global_lock
1525  * must be held and curthread pinned to a CPU.
1526  */
1527 static pt_entry_t *
1528 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1529 {
1530 	pd_entry_t newpf;
1531 	pd_entry_t *pde;
1532 
1533 	pde = pmap_pde(pmap, va);
1534 	if (*pde & PG_PS)
1535 		return (pde);
1536 	if (*pde != 0) {
1537 		/* are we current address space or kernel? */
1538 		if (pmap_is_current(pmap))
1539 			return (vtopte(va));
1540 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1541 		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1542 		newpf = *pde & PG_FRAME;
1543 		if ((*PMAP1 & PG_FRAME) != newpf) {
1544 			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1545 #ifdef SMP
1546 			PMAP1cpu = PCPU_GET(cpuid);
1547 #endif
1548 			invlcaddr(PADDR1);
1549 			PMAP1changed++;
1550 		} else
1551 #ifdef SMP
1552 		if (PMAP1cpu != PCPU_GET(cpuid)) {
1553 			PMAP1cpu = PCPU_GET(cpuid);
1554 			invlcaddr(PADDR1);
1555 			PMAP1changedcpu++;
1556 		} else
1557 #endif
1558 			PMAP1unchanged++;
1559 		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1560 	}
1561 	return (0);
1562 }
1563 
1564 static pt_entry_t *
1565 pmap_pte_quick3(pmap_t pmap, vm_offset_t va)
1566 {
1567 	pd_entry_t newpf;
1568 	pd_entry_t *pde;
1569 
1570 	pde = pmap_pde(pmap, va);
1571 	if (*pde & PG_PS)
1572 		return (pde);
1573 	if (*pde != 0) {
1574 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1575 		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1576 		newpf = *pde & PG_FRAME;
1577 		if ((*PMAP3 & PG_FRAME) != newpf) {
1578 			*PMAP3 = newpf | PG_RW | PG_V | PG_A | PG_M;
1579 #ifdef SMP
1580 			PMAP3cpu = PCPU_GET(cpuid);
1581 #endif
1582 			invlcaddr(PADDR3);
1583 			PMAP1changed++;
1584 		} else
1585 #ifdef SMP
1586 		if (PMAP3cpu != PCPU_GET(cpuid)) {
1587 			PMAP3cpu = PCPU_GET(cpuid);
1588 			invlcaddr(PADDR3);
1589 			PMAP1changedcpu++;
1590 		} else
1591 #endif
1592 			PMAP1unchanged++;
1593 		return (PADDR3 + (i386_btop(va) & (NPTEPG - 1)));
1594 	}
1595 	return (0);
1596 }
1597 
1598 static pt_entry_t
1599 pmap_pte_ufast(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1600 {
1601 	pt_entry_t *eh_ptep, pte, *ptep;
1602 
1603 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1604 	pde &= PG_FRAME;
1605 	critical_enter();
1606 	eh_ptep = (pt_entry_t *)PCPU_GET(pmap_eh_ptep);
1607 	if ((*eh_ptep & PG_FRAME) != pde) {
1608 		*eh_ptep = pde | PG_RW | PG_V | PG_A | PG_M;
1609 		invlcaddr((void *)PCPU_GET(pmap_eh_va));
1610 	}
1611 	ptep = (pt_entry_t *)PCPU_GET(pmap_eh_va) + (i386_btop(va) &
1612 	    (NPTEPG - 1));
1613 	pte = *ptep;
1614 	critical_exit();
1615 	return (pte);
1616 }
1617 
1618 /*
1619  * Extract from the kernel page table the physical address that is mapped by
1620  * the given virtual address "va".
1621  *
1622  * This function may be used before pmap_bootstrap() is called.
1623  */
1624 static vm_paddr_t
1625 __CONCAT(PMTYPE, kextract)(vm_offset_t va)
1626 {
1627 	vm_paddr_t pa;
1628 
1629 	if ((pa = pte_load(&PTD[va >> PDRSHIFT])) & PG_PS) {
1630 		pa = (pa & PG_PS_FRAME) | (va & PDRMASK);
1631 	} else {
1632 		/*
1633 		 * Beware of a concurrent promotion that changes the PDE at
1634 		 * this point!  For example, vtopte() must not be used to
1635 		 * access the PTE because it would use the new PDE.  It is,
1636 		 * however, safe to use the old PDE because the page table
1637 		 * page is preserved by the promotion.
1638 		 */
1639 		pa = KPTmap[i386_btop(va)];
1640 		pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1641 	}
1642 	return (pa);
1643 }
1644 
1645 /*
1646  *	Routine:	pmap_extract
1647  *	Function:
1648  *		Extract the physical page address associated
1649  *		with the given map/virtual_address pair.
1650  */
1651 static vm_paddr_t
1652 __CONCAT(PMTYPE, extract)(pmap_t pmap, vm_offset_t va)
1653 {
1654 	vm_paddr_t rtval;
1655 	pt_entry_t pte;
1656 	pd_entry_t pde;
1657 
1658 	rtval = 0;
1659 	PMAP_LOCK(pmap);
1660 	pde = pmap->pm_pdir[va >> PDRSHIFT];
1661 	if (pde != 0) {
1662 		if ((pde & PG_PS) != 0)
1663 			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1664 		else {
1665 			pte = pmap_pte_ufast(pmap, va, pde);
1666 			rtval = (pte & PG_FRAME) | (va & PAGE_MASK);
1667 		}
1668 	}
1669 	PMAP_UNLOCK(pmap);
1670 	return (rtval);
1671 }
1672 
1673 /*
1674  *	Routine:	pmap_extract_and_hold
1675  *	Function:
1676  *		Atomically extract and hold the physical page
1677  *		with the given pmap and virtual address pair
1678  *		if that mapping permits the given protection.
1679  */
1680 static vm_page_t
1681 __CONCAT(PMTYPE, extract_and_hold)(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1682 {
1683 	pd_entry_t pde;
1684 	pt_entry_t pte;
1685 	vm_page_t m;
1686 	vm_paddr_t pa;
1687 
1688 	pa = 0;
1689 	m = NULL;
1690 	PMAP_LOCK(pmap);
1691 retry:
1692 	pde = *pmap_pde(pmap, va);
1693 	if (pde != 0) {
1694 		if (pde & PG_PS) {
1695 			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1696 				if (vm_page_pa_tryrelock(pmap, (pde &
1697 				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1698 					goto retry;
1699 				m = PHYS_TO_VM_PAGE(pa);
1700 			}
1701 		} else {
1702 			pte = pmap_pte_ufast(pmap, va, pde);
1703 			if (pte != 0 &&
1704 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1705 				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1706 				    &pa))
1707 					goto retry;
1708 				m = PHYS_TO_VM_PAGE(pa);
1709 			}
1710 		}
1711 		if (m != NULL)
1712 			vm_page_hold(m);
1713 	}
1714 	PA_UNLOCK_COND(pa);
1715 	PMAP_UNLOCK(pmap);
1716 	return (m);
1717 }
1718 
1719 /***************************************************
1720  * Low level mapping routines.....
1721  ***************************************************/
1722 
1723 /*
1724  * Add a wired page to the kva.
1725  * Note: not SMP coherent.
1726  *
1727  * This function may be used before pmap_bootstrap() is called.
1728  */
1729 static void
1730 __CONCAT(PMTYPE, kenter)(vm_offset_t va, vm_paddr_t pa)
1731 {
1732 	pt_entry_t *pte;
1733 
1734 	pte = vtopte(va);
1735 	pte_store(pte, pa | PG_RW | PG_V);
1736 }
1737 
1738 static __inline void
1739 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1740 {
1741 	pt_entry_t *pte;
1742 
1743 	pte = vtopte(va);
1744 	pte_store(pte, pa | PG_RW | PG_V | pmap_cache_bits(kernel_pmap,
1745 	    mode, 0));
1746 }
1747 
1748 /*
1749  * Remove a page from the kernel pagetables.
1750  * Note: not SMP coherent.
1751  *
1752  * This function may be used before pmap_bootstrap() is called.
1753  */
1754 static void
1755 __CONCAT(PMTYPE, kremove)(vm_offset_t va)
1756 {
1757 	pt_entry_t *pte;
1758 
1759 	pte = vtopte(va);
1760 	pte_clear(pte);
1761 }
1762 
1763 /*
1764  *	Used to map a range of physical addresses into kernel
1765  *	virtual address space.
1766  *
1767  *	The value passed in '*virt' is a suggested virtual address for
1768  *	the mapping. Architectures which can support a direct-mapped
1769  *	physical to virtual region can return the appropriate address
1770  *	within that region, leaving '*virt' unchanged. Other
1771  *	architectures should map the pages starting at '*virt' and
1772  *	update '*virt' with the first usable address after the mapped
1773  *	region.
1774  */
1775 static vm_offset_t
1776 __CONCAT(PMTYPE, map)(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1777     int prot)
1778 {
1779 	vm_offset_t va, sva;
1780 	vm_paddr_t superpage_offset;
1781 	pd_entry_t newpde;
1782 
1783 	va = *virt;
1784 	/*
1785 	 * Does the physical address range's size and alignment permit at
1786 	 * least one superpage mapping to be created?
1787 	 */
1788 	superpage_offset = start & PDRMASK;
1789 	if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
1790 		/*
1791 		 * Increase the starting virtual address so that its alignment
1792 		 * does not preclude the use of superpage mappings.
1793 		 */
1794 		if ((va & PDRMASK) < superpage_offset)
1795 			va = (va & ~PDRMASK) + superpage_offset;
1796 		else if ((va & PDRMASK) > superpage_offset)
1797 			va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
1798 	}
1799 	sva = va;
1800 	while (start < end) {
1801 		if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
1802 		    pseflag != 0) {
1803 			KASSERT((va & PDRMASK) == 0,
1804 			    ("pmap_map: misaligned va %#x", va));
1805 			newpde = start | PG_PS | PG_RW | PG_V;
1806 			pmap_kenter_pde(va, newpde);
1807 			va += NBPDR;
1808 			start += NBPDR;
1809 		} else {
1810 			pmap_kenter(va, start);
1811 			va += PAGE_SIZE;
1812 			start += PAGE_SIZE;
1813 		}
1814 	}
1815 	pmap_invalidate_range_int(kernel_pmap, sva, va);
1816 	*virt = va;
1817 	return (sva);
1818 }
1819 
1820 
1821 /*
1822  * Add a list of wired pages to the kva
1823  * this routine is only used for temporary
1824  * kernel mappings that do not need to have
1825  * page modification or references recorded.
1826  * Note that old mappings are simply written
1827  * over.  The page *must* be wired.
1828  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1829  */
1830 static void
1831 __CONCAT(PMTYPE, qenter)(vm_offset_t sva, vm_page_t *ma, int count)
1832 {
1833 	pt_entry_t *endpte, oldpte, pa, *pte;
1834 	vm_page_t m;
1835 
1836 	oldpte = 0;
1837 	pte = vtopte(sva);
1838 	endpte = pte + count;
1839 	while (pte < endpte) {
1840 		m = *ma++;
1841 		pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(kernel_pmap,
1842 		    m->md.pat_mode, 0);
1843 		if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1844 			oldpte |= *pte;
1845 #ifdef PMAP_PAE_COMP
1846 			pte_store(pte, pa | pg_nx | PG_RW | PG_V);
1847 #else
1848 			pte_store(pte, pa | PG_RW | PG_V);
1849 #endif
1850 		}
1851 		pte++;
1852 	}
1853 	if (__predict_false((oldpte & PG_V) != 0))
1854 		pmap_invalidate_range_int(kernel_pmap, sva, sva + count *
1855 		    PAGE_SIZE);
1856 }
1857 
1858 /*
1859  * This routine tears out page mappings from the
1860  * kernel -- it is meant only for temporary mappings.
1861  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1862  */
1863 static void
1864 __CONCAT(PMTYPE, qremove)(vm_offset_t sva, int count)
1865 {
1866 	vm_offset_t va;
1867 
1868 	va = sva;
1869 	while (count-- > 0) {
1870 		pmap_kremove(va);
1871 		va += PAGE_SIZE;
1872 	}
1873 	pmap_invalidate_range_int(kernel_pmap, sva, va);
1874 }
1875 
1876 /***************************************************
1877  * Page table page management routines.....
1878  ***************************************************/
1879 /*
1880  * Schedule the specified unused page table page to be freed.  Specifically,
1881  * add the page to the specified list of pages that will be released to the
1882  * physical memory manager after the TLB has been updated.
1883  */
1884 static __inline void
1885 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1886     boolean_t set_PG_ZERO)
1887 {
1888 
1889 	if (set_PG_ZERO)
1890 		m->flags |= PG_ZERO;
1891 	else
1892 		m->flags &= ~PG_ZERO;
1893 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1894 }
1895 
1896 /*
1897  * Inserts the specified page table page into the specified pmap's collection
1898  * of idle page table pages.  Each of a pmap's page table pages is responsible
1899  * for mapping a distinct range of virtual addresses.  The pmap's collection is
1900  * ordered by this virtual address range.
1901  */
1902 static __inline int
1903 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1904 {
1905 
1906 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1907 	return (vm_radix_insert(&pmap->pm_root, mpte));
1908 }
1909 
1910 /*
1911  * Removes the page table page mapping the specified virtual address from the
1912  * specified pmap's collection of idle page table pages, and returns it.
1913  * Otherwise, returns NULL if there is no page table page corresponding to the
1914  * specified virtual address.
1915  */
1916 static __inline vm_page_t
1917 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
1918 {
1919 
1920 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1921 	return (vm_radix_remove(&pmap->pm_root, va >> PDRSHIFT));
1922 }
1923 
1924 /*
1925  * Decrements a page table page's wire count, which is used to record the
1926  * number of valid page table entries within the page.  If the wire count
1927  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1928  * page table page was unmapped and FALSE otherwise.
1929  */
1930 static inline boolean_t
1931 pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1932 {
1933 
1934 	--m->wire_count;
1935 	if (m->wire_count == 0) {
1936 		_pmap_unwire_ptp(pmap, m, free);
1937 		return (TRUE);
1938 	} else
1939 		return (FALSE);
1940 }
1941 
1942 static void
1943 _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1944 {
1945 
1946 	/*
1947 	 * unmap the page table page
1948 	 */
1949 	pmap->pm_pdir[m->pindex] = 0;
1950 	--pmap->pm_stats.resident_count;
1951 
1952 	/*
1953 	 * There is not need to invalidate the recursive mapping since
1954 	 * we never instantiate such mapping for the usermode pmaps,
1955 	 * and never remove page table pages from the kernel pmap.
1956 	 * Put page on a list so that it is released since all TLB
1957 	 * shootdown is done.
1958 	 */
1959 	MPASS(pmap != kernel_pmap);
1960 	pmap_add_delayed_free_list(m, free, TRUE);
1961 }
1962 
1963 /*
1964  * After removing a page table entry, this routine is used to
1965  * conditionally free the page, and manage the hold/wire counts.
1966  */
1967 static int
1968 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
1969 {
1970 	pd_entry_t ptepde;
1971 	vm_page_t mpte;
1972 
1973 	if (pmap == kernel_pmap)
1974 		return (0);
1975 	ptepde = *pmap_pde(pmap, va);
1976 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1977 	return (pmap_unwire_ptp(pmap, mpte, free));
1978 }
1979 
1980 /*
1981  * Initialize the pmap for the swapper process.
1982  */
1983 static void
1984 __CONCAT(PMTYPE, pinit0)(pmap_t pmap)
1985 {
1986 
1987 	PMAP_LOCK_INIT(pmap);
1988 	pmap->pm_pdir = IdlePTD;
1989 #ifdef PMAP_PAE_COMP
1990 	pmap->pm_pdpt = IdlePDPT;
1991 #endif
1992 	pmap->pm_root.rt_root = 0;
1993 	CPU_ZERO(&pmap->pm_active);
1994 	TAILQ_INIT(&pmap->pm_pvchunk);
1995 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1996 	pmap_activate_boot(pmap);
1997 }
1998 
1999 /*
2000  * Initialize a preallocated and zeroed pmap structure,
2001  * such as one in a vmspace structure.
2002  */
2003 static int
2004 __CONCAT(PMTYPE, pinit)(pmap_t pmap)
2005 {
2006 	vm_page_t m;
2007 	int i;
2008 
2009 	/*
2010 	 * No need to allocate page table space yet but we do need a valid
2011 	 * page directory table.
2012 	 */
2013 	if (pmap->pm_pdir == NULL) {
2014 		pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
2015 		if (pmap->pm_pdir == NULL)
2016 			return (0);
2017 #ifdef PMAP_PAE_COMP
2018 		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
2019 		KASSERT(((vm_offset_t)pmap->pm_pdpt &
2020 		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
2021 		    ("pmap_pinit: pdpt misaligned"));
2022 		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
2023 		    ("pmap_pinit: pdpt above 4g"));
2024 #endif
2025 		pmap->pm_root.rt_root = 0;
2026 	}
2027 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2028 	    ("pmap_pinit: pmap has reserved page table page(s)"));
2029 
2030 	/*
2031 	 * allocate the page directory page(s)
2032 	 */
2033 	for (i = 0; i < NPGPTD; i++) {
2034 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2035 		    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_WAITOK);
2036 		pmap->pm_ptdpg[i] = m;
2037 #ifdef PMAP_PAE_COMP
2038 		pmap->pm_pdpt[i] = VM_PAGE_TO_PHYS(m) | PG_V;
2039 #endif
2040 	}
2041 
2042 	pmap_qenter((vm_offset_t)pmap->pm_pdir, pmap->pm_ptdpg, NPGPTD);
2043 
2044 	for (i = 0; i < NPGPTD; i++)
2045 		if ((pmap->pm_ptdpg[i]->flags & PG_ZERO) == 0)
2046 			pagezero(pmap->pm_pdir + (i * NPDEPG));
2047 
2048 	/* Install the trampoline mapping. */
2049 	pmap->pm_pdir[TRPTDI] = PTD[TRPTDI];
2050 
2051 	CPU_ZERO(&pmap->pm_active);
2052 	TAILQ_INIT(&pmap->pm_pvchunk);
2053 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2054 
2055 	return (1);
2056 }
2057 
2058 /*
2059  * this routine is called if the page table page is not
2060  * mapped correctly.
2061  */
2062 static vm_page_t
2063 _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
2064 {
2065 	vm_paddr_t ptepa;
2066 	vm_page_t m;
2067 
2068 	/*
2069 	 * Allocate a page table page.
2070 	 */
2071 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
2072 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
2073 		if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2074 			PMAP_UNLOCK(pmap);
2075 			rw_wunlock(&pvh_global_lock);
2076 			vm_wait(NULL);
2077 			rw_wlock(&pvh_global_lock);
2078 			PMAP_LOCK(pmap);
2079 		}
2080 
2081 		/*
2082 		 * Indicate the need to retry.  While waiting, the page table
2083 		 * page may have been allocated.
2084 		 */
2085 		return (NULL);
2086 	}
2087 	if ((m->flags & PG_ZERO) == 0)
2088 		pmap_zero_page(m);
2089 
2090 	/*
2091 	 * Map the pagetable page into the process address space, if
2092 	 * it isn't already there.
2093 	 */
2094 
2095 	pmap->pm_stats.resident_count++;
2096 
2097 	ptepa = VM_PAGE_TO_PHYS(m);
2098 	pmap->pm_pdir[ptepindex] =
2099 		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
2100 
2101 	return (m);
2102 }
2103 
2104 static vm_page_t
2105 pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
2106 {
2107 	u_int ptepindex;
2108 	pd_entry_t ptepa;
2109 	vm_page_t m;
2110 
2111 	/*
2112 	 * Calculate pagetable page index
2113 	 */
2114 	ptepindex = va >> PDRSHIFT;
2115 retry:
2116 	/*
2117 	 * Get the page directory entry
2118 	 */
2119 	ptepa = pmap->pm_pdir[ptepindex];
2120 
2121 	/*
2122 	 * This supports switching from a 4MB page to a
2123 	 * normal 4K page.
2124 	 */
2125 	if (ptepa & PG_PS) {
2126 		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
2127 		ptepa = pmap->pm_pdir[ptepindex];
2128 	}
2129 
2130 	/*
2131 	 * If the page table page is mapped, we just increment the
2132 	 * hold count, and activate it.
2133 	 */
2134 	if (ptepa) {
2135 		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
2136 		m->wire_count++;
2137 	} else {
2138 		/*
2139 		 * Here if the pte page isn't mapped, or if it has
2140 		 * been deallocated.
2141 		 */
2142 		m = _pmap_allocpte(pmap, ptepindex, flags);
2143 		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2144 			goto retry;
2145 	}
2146 	return (m);
2147 }
2148 
2149 
2150 /***************************************************
2151 * Pmap allocation/deallocation routines.
2152  ***************************************************/
2153 
2154 /*
2155  * Release any resources held by the given physical map.
2156  * Called when a pmap initialized by pmap_pinit is being released.
2157  * Should only be called if the map contains no valid mappings.
2158  */
2159 static void
2160 __CONCAT(PMTYPE, release)(pmap_t pmap)
2161 {
2162 	vm_page_t m;
2163 	int i;
2164 
2165 	KASSERT(pmap->pm_stats.resident_count == 0,
2166 	    ("pmap_release: pmap resident count %ld != 0",
2167 	    pmap->pm_stats.resident_count));
2168 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2169 	    ("pmap_release: pmap has reserved page table page(s)"));
2170 	KASSERT(CPU_EMPTY(&pmap->pm_active),
2171 	    ("releasing active pmap %p", pmap));
2172 
2173 	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2174 
2175 	for (i = 0; i < NPGPTD; i++) {
2176 		m = pmap->pm_ptdpg[i];
2177 #ifdef PMAP_PAE_COMP
2178 		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2179 		    ("pmap_release: got wrong ptd page"));
2180 #endif
2181 		vm_page_unwire_noq(m);
2182 		vm_page_free(m);
2183 	}
2184 }
2185 
2186 /*
2187  * grow the number of kernel page table entries, if needed
2188  */
2189 static void
2190 __CONCAT(PMTYPE, growkernel)(vm_offset_t addr)
2191 {
2192 	vm_paddr_t ptppaddr;
2193 	vm_page_t nkpg;
2194 	pd_entry_t newpdir;
2195 
2196 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2197 	addr = roundup2(addr, NBPDR);
2198 	if (addr - 1 >= vm_map_max(kernel_map))
2199 		addr = vm_map_max(kernel_map);
2200 	while (kernel_vm_end < addr) {
2201 		if (pdir_pde(PTD, kernel_vm_end)) {
2202 			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2203 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2204 				kernel_vm_end = vm_map_max(kernel_map);
2205 				break;
2206 			}
2207 			continue;
2208 		}
2209 
2210 		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2211 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2212 		    VM_ALLOC_ZERO);
2213 		if (nkpg == NULL)
2214 			panic("pmap_growkernel: no memory to grow kernel");
2215 
2216 		nkpt++;
2217 
2218 		if ((nkpg->flags & PG_ZERO) == 0)
2219 			pmap_zero_page(nkpg);
2220 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2221 		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2222 		pdir_pde(KPTD, kernel_vm_end) = newpdir;
2223 
2224 		pmap_kenter_pde(kernel_vm_end, newpdir);
2225 		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2226 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2227 			kernel_vm_end = vm_map_max(kernel_map);
2228 			break;
2229 		}
2230 	}
2231 }
2232 
2233 
2234 /***************************************************
2235  * page management routines.
2236  ***************************************************/
2237 
2238 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2239 CTASSERT(_NPCM == 11);
2240 CTASSERT(_NPCPV == 336);
2241 
2242 static __inline struct pv_chunk *
2243 pv_to_chunk(pv_entry_t pv)
2244 {
2245 
2246 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2247 }
2248 
2249 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2250 
2251 #define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2252 #define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2253 
2254 static const uint32_t pc_freemask[_NPCM] = {
2255 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2256 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2257 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2258 	PC_FREE0_9, PC_FREE10
2259 };
2260 
2261 #ifdef PV_STATS
2262 extern int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2263 extern long pv_entry_frees, pv_entry_allocs;
2264 extern int pv_entry_spare;
2265 #endif
2266 
2267 /*
2268  * We are in a serious low memory condition.  Resort to
2269  * drastic measures to free some pages so we can allocate
2270  * another pv entry chunk.
2271  */
2272 static vm_page_t
2273 pmap_pv_reclaim(pmap_t locked_pmap)
2274 {
2275 	struct pch newtail;
2276 	struct pv_chunk *pc;
2277 	struct md_page *pvh;
2278 	pd_entry_t *pde;
2279 	pmap_t pmap;
2280 	pt_entry_t *pte, tpte;
2281 	pv_entry_t pv;
2282 	vm_offset_t va;
2283 	vm_page_t m, m_pc;
2284 	struct spglist free;
2285 	uint32_t inuse;
2286 	int bit, field, freed;
2287 
2288 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2289 	pmap = NULL;
2290 	m_pc = NULL;
2291 	SLIST_INIT(&free);
2292 	TAILQ_INIT(&newtail);
2293 	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2294 	    SLIST_EMPTY(&free))) {
2295 		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2296 		if (pmap != pc->pc_pmap) {
2297 			if (pmap != NULL) {
2298 				pmap_invalidate_all_int(pmap);
2299 				if (pmap != locked_pmap)
2300 					PMAP_UNLOCK(pmap);
2301 			}
2302 			pmap = pc->pc_pmap;
2303 			/* Avoid deadlock and lock recursion. */
2304 			if (pmap > locked_pmap)
2305 				PMAP_LOCK(pmap);
2306 			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2307 				pmap = NULL;
2308 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2309 				continue;
2310 			}
2311 		}
2312 
2313 		/*
2314 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2315 		 */
2316 		freed = 0;
2317 		for (field = 0; field < _NPCM; field++) {
2318 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2319 			    inuse != 0; inuse &= ~(1UL << bit)) {
2320 				bit = bsfl(inuse);
2321 				pv = &pc->pc_pventry[field * 32 + bit];
2322 				va = pv->pv_va;
2323 				pde = pmap_pde(pmap, va);
2324 				if ((*pde & PG_PS) != 0)
2325 					continue;
2326 				pte = __CONCAT(PMTYPE, pte)(pmap, va);
2327 				tpte = *pte;
2328 				if ((tpte & PG_W) == 0)
2329 					tpte = pte_load_clear(pte);
2330 				pmap_pte_release(pte);
2331 				if ((tpte & PG_W) != 0)
2332 					continue;
2333 				KASSERT(tpte != 0,
2334 				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2335 				    pmap, va));
2336 				if ((tpte & PG_G) != 0)
2337 					pmap_invalidate_page_int(pmap, va);
2338 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2339 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2340 					vm_page_dirty(m);
2341 				if ((tpte & PG_A) != 0)
2342 					vm_page_aflag_set(m, PGA_REFERENCED);
2343 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2344 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2345 				    (m->flags & PG_FICTITIOUS) == 0) {
2346 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2347 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2348 						vm_page_aflag_clear(m,
2349 						    PGA_WRITEABLE);
2350 					}
2351 				}
2352 				pc->pc_map[field] |= 1UL << bit;
2353 				pmap_unuse_pt(pmap, va, &free);
2354 				freed++;
2355 			}
2356 		}
2357 		if (freed == 0) {
2358 			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2359 			continue;
2360 		}
2361 		/* Every freed mapping is for a 4 KB page. */
2362 		pmap->pm_stats.resident_count -= freed;
2363 		PV_STAT(pv_entry_frees += freed);
2364 		PV_STAT(pv_entry_spare += freed);
2365 		pv_entry_count -= freed;
2366 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2367 		for (field = 0; field < _NPCM; field++)
2368 			if (pc->pc_map[field] != pc_freemask[field]) {
2369 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2370 				    pc_list);
2371 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2372 
2373 				/*
2374 				 * One freed pv entry in locked_pmap is
2375 				 * sufficient.
2376 				 */
2377 				if (pmap == locked_pmap)
2378 					goto out;
2379 				break;
2380 			}
2381 		if (field == _NPCM) {
2382 			PV_STAT(pv_entry_spare -= _NPCPV);
2383 			PV_STAT(pc_chunk_count--);
2384 			PV_STAT(pc_chunk_frees++);
2385 			/* Entire chunk is free; return it. */
2386 			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2387 			pmap_qremove((vm_offset_t)pc, 1);
2388 			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2389 			break;
2390 		}
2391 	}
2392 out:
2393 	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2394 	if (pmap != NULL) {
2395 		pmap_invalidate_all_int(pmap);
2396 		if (pmap != locked_pmap)
2397 			PMAP_UNLOCK(pmap);
2398 	}
2399 	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2400 		m_pc = SLIST_FIRST(&free);
2401 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2402 		/* Recycle a freed page table page. */
2403 		m_pc->wire_count = 1;
2404 	}
2405 	vm_page_free_pages_toq(&free, true);
2406 	return (m_pc);
2407 }
2408 
2409 /*
2410  * free the pv_entry back to the free list
2411  */
2412 static void
2413 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2414 {
2415 	struct pv_chunk *pc;
2416 	int idx, field, bit;
2417 
2418 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2419 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2420 	PV_STAT(pv_entry_frees++);
2421 	PV_STAT(pv_entry_spare++);
2422 	pv_entry_count--;
2423 	pc = pv_to_chunk(pv);
2424 	idx = pv - &pc->pc_pventry[0];
2425 	field = idx / 32;
2426 	bit = idx % 32;
2427 	pc->pc_map[field] |= 1ul << bit;
2428 	for (idx = 0; idx < _NPCM; idx++)
2429 		if (pc->pc_map[idx] != pc_freemask[idx]) {
2430 			/*
2431 			 * 98% of the time, pc is already at the head of the
2432 			 * list.  If it isn't already, move it to the head.
2433 			 */
2434 			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2435 			    pc)) {
2436 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2437 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2438 				    pc_list);
2439 			}
2440 			return;
2441 		}
2442 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2443 	free_pv_chunk(pc);
2444 }
2445 
2446 static void
2447 free_pv_chunk(struct pv_chunk *pc)
2448 {
2449 	vm_page_t m;
2450 
2451  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2452 	PV_STAT(pv_entry_spare -= _NPCPV);
2453 	PV_STAT(pc_chunk_count--);
2454 	PV_STAT(pc_chunk_frees++);
2455 	/* entire chunk is free, return it */
2456 	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2457 	pmap_qremove((vm_offset_t)pc, 1);
2458 	vm_page_unwire(m, PQ_NONE);
2459 	vm_page_free(m);
2460 	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2461 }
2462 
2463 /*
2464  * get a new pv_entry, allocating a block from the system
2465  * when needed.
2466  */
2467 static pv_entry_t
2468 get_pv_entry(pmap_t pmap, boolean_t try)
2469 {
2470 	static const struct timeval printinterval = { 60, 0 };
2471 	static struct timeval lastprint;
2472 	int bit, field;
2473 	pv_entry_t pv;
2474 	struct pv_chunk *pc;
2475 	vm_page_t m;
2476 
2477 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2478 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2479 	PV_STAT(pv_entry_allocs++);
2480 	pv_entry_count++;
2481 	if (pv_entry_count > pv_entry_high_water)
2482 		if (ratecheck(&lastprint, &printinterval))
2483 			printf("Approaching the limit on PV entries, consider "
2484 			    "increasing either the vm.pmap.shpgperproc or the "
2485 			    "vm.pmap.pv_entries tunable.\n");
2486 retry:
2487 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2488 	if (pc != NULL) {
2489 		for (field = 0; field < _NPCM; field++) {
2490 			if (pc->pc_map[field]) {
2491 				bit = bsfl(pc->pc_map[field]);
2492 				break;
2493 			}
2494 		}
2495 		if (field < _NPCM) {
2496 			pv = &pc->pc_pventry[field * 32 + bit];
2497 			pc->pc_map[field] &= ~(1ul << bit);
2498 			/* If this was the last item, move it to tail */
2499 			for (field = 0; field < _NPCM; field++)
2500 				if (pc->pc_map[field] != 0) {
2501 					PV_STAT(pv_entry_spare--);
2502 					return (pv);	/* not full, return */
2503 				}
2504 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2505 			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2506 			PV_STAT(pv_entry_spare--);
2507 			return (pv);
2508 		}
2509 	}
2510 	/*
2511 	 * Access to the ptelist "pv_vafree" is synchronized by the pvh
2512 	 * global lock.  If "pv_vafree" is currently non-empty, it will
2513 	 * remain non-empty until pmap_ptelist_alloc() completes.
2514 	 */
2515 	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2516 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2517 		if (try) {
2518 			pv_entry_count--;
2519 			PV_STAT(pc_chunk_tryfail++);
2520 			return (NULL);
2521 		}
2522 		m = pmap_pv_reclaim(pmap);
2523 		if (m == NULL)
2524 			goto retry;
2525 	}
2526 	PV_STAT(pc_chunk_count++);
2527 	PV_STAT(pc_chunk_allocs++);
2528 	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2529 	pmap_qenter((vm_offset_t)pc, &m, 1);
2530 	pc->pc_pmap = pmap;
2531 	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2532 	for (field = 1; field < _NPCM; field++)
2533 		pc->pc_map[field] = pc_freemask[field];
2534 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2535 	pv = &pc->pc_pventry[0];
2536 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2537 	PV_STAT(pv_entry_spare += _NPCPV - 1);
2538 	return (pv);
2539 }
2540 
2541 static __inline pv_entry_t
2542 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2543 {
2544 	pv_entry_t pv;
2545 
2546 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2547 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2548 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2549 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2550 			break;
2551 		}
2552 	}
2553 	return (pv);
2554 }
2555 
2556 static void
2557 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2558 {
2559 	struct md_page *pvh;
2560 	pv_entry_t pv;
2561 	vm_offset_t va_last;
2562 	vm_page_t m;
2563 
2564 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2565 	KASSERT((pa & PDRMASK) == 0,
2566 	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2567 
2568 	/*
2569 	 * Transfer the 4mpage's pv entry for this mapping to the first
2570 	 * page's pv list.
2571 	 */
2572 	pvh = pa_to_pvh(pa);
2573 	va = trunc_4mpage(va);
2574 	pv = pmap_pvh_remove(pvh, pmap, va);
2575 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2576 	m = PHYS_TO_VM_PAGE(pa);
2577 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2578 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2579 	va_last = va + NBPDR - PAGE_SIZE;
2580 	do {
2581 		m++;
2582 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2583 		    ("pmap_pv_demote_pde: page %p is not managed", m));
2584 		va += PAGE_SIZE;
2585 		pmap_insert_entry(pmap, va, m);
2586 	} while (va < va_last);
2587 }
2588 
2589 #if VM_NRESERVLEVEL > 0
2590 static void
2591 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2592 {
2593 	struct md_page *pvh;
2594 	pv_entry_t pv;
2595 	vm_offset_t va_last;
2596 	vm_page_t m;
2597 
2598 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2599 	KASSERT((pa & PDRMASK) == 0,
2600 	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2601 
2602 	/*
2603 	 * Transfer the first page's pv entry for this mapping to the
2604 	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2605 	 * to get_pv_entry(), a transfer avoids the possibility that
2606 	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2607 	 * removes one of the mappings that is being promoted.
2608 	 */
2609 	m = PHYS_TO_VM_PAGE(pa);
2610 	va = trunc_4mpage(va);
2611 	pv = pmap_pvh_remove(&m->md, pmap, va);
2612 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2613 	pvh = pa_to_pvh(pa);
2614 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2615 	/* Free the remaining NPTEPG - 1 pv entries. */
2616 	va_last = va + NBPDR - PAGE_SIZE;
2617 	do {
2618 		m++;
2619 		va += PAGE_SIZE;
2620 		pmap_pvh_free(&m->md, pmap, va);
2621 	} while (va < va_last);
2622 }
2623 #endif /* VM_NRESERVLEVEL > 0 */
2624 
2625 static void
2626 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2627 {
2628 	pv_entry_t pv;
2629 
2630 	pv = pmap_pvh_remove(pvh, pmap, va);
2631 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2632 	free_pv_entry(pmap, pv);
2633 }
2634 
2635 static void
2636 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2637 {
2638 	struct md_page *pvh;
2639 
2640 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2641 	pmap_pvh_free(&m->md, pmap, va);
2642 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
2643 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2644 		if (TAILQ_EMPTY(&pvh->pv_list))
2645 			vm_page_aflag_clear(m, PGA_WRITEABLE);
2646 	}
2647 }
2648 
2649 /*
2650  * Create a pv entry for page at pa for
2651  * (pmap, va).
2652  */
2653 static void
2654 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2655 {
2656 	pv_entry_t pv;
2657 
2658 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2659 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2660 	pv = get_pv_entry(pmap, FALSE);
2661 	pv->pv_va = va;
2662 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2663 }
2664 
2665 /*
2666  * Conditionally create a pv entry.
2667  */
2668 static boolean_t
2669 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2670 {
2671 	pv_entry_t pv;
2672 
2673 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2674 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2675 	if (pv_entry_count < pv_entry_high_water &&
2676 	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2677 		pv->pv_va = va;
2678 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2679 		return (TRUE);
2680 	} else
2681 		return (FALSE);
2682 }
2683 
2684 /*
2685  * Create the pv entries for each of the pages within a superpage.
2686  */
2687 static bool
2688 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags)
2689 {
2690 	struct md_page *pvh;
2691 	pv_entry_t pv;
2692 	bool noreclaim;
2693 
2694 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2695 	noreclaim = (flags & PMAP_ENTER_NORECLAIM) != 0;
2696 	if ((noreclaim && pv_entry_count >= pv_entry_high_water) ||
2697 	    (pv = get_pv_entry(pmap, noreclaim)) == NULL)
2698 		return (false);
2699 	pv->pv_va = va;
2700 	pvh = pa_to_pvh(pde & PG_PS_FRAME);
2701 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2702 	return (true);
2703 }
2704 
2705 /*
2706  * Fills a page table page with mappings to consecutive physical pages.
2707  */
2708 static void
2709 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2710 {
2711 	pt_entry_t *pte;
2712 
2713 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2714 		*pte = newpte;
2715 		newpte += PAGE_SIZE;
2716 	}
2717 }
2718 
2719 /*
2720  * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2721  * 2- or 4MB page mapping is invalidated.
2722  */
2723 static boolean_t
2724 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2725 {
2726 	pd_entry_t newpde, oldpde;
2727 	pt_entry_t *firstpte, newpte;
2728 	vm_paddr_t mptepa;
2729 	vm_page_t mpte;
2730 	struct spglist free;
2731 	vm_offset_t sva;
2732 
2733 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2734 	oldpde = *pde;
2735 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2736 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2737 	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
2738 	    NULL) {
2739 		KASSERT((oldpde & PG_W) == 0,
2740 		    ("pmap_demote_pde: page table page for a wired mapping"
2741 		    " is missing"));
2742 
2743 		/*
2744 		 * Invalidate the 2- or 4MB page mapping and return
2745 		 * "failure" if the mapping was never accessed or the
2746 		 * allocation of the new page table page fails.
2747 		 */
2748 		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2749 		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2750 		    VM_ALLOC_WIRED)) == NULL) {
2751 			SLIST_INIT(&free);
2752 			sva = trunc_4mpage(va);
2753 			pmap_remove_pde(pmap, pde, sva, &free);
2754 			if ((oldpde & PG_G) == 0)
2755 				pmap_invalidate_pde_page(pmap, sva, oldpde);
2756 			vm_page_free_pages_toq(&free, true);
2757 			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2758 			    " in pmap %p", va, pmap);
2759 			return (FALSE);
2760 		}
2761 		if (pmap != kernel_pmap)
2762 			pmap->pm_stats.resident_count++;
2763 	}
2764 	mptepa = VM_PAGE_TO_PHYS(mpte);
2765 
2766 	/*
2767 	 * If the page mapping is in the kernel's address space, then the
2768 	 * KPTmap can provide access to the page table page.  Otherwise,
2769 	 * temporarily map the page table page (mpte) into the kernel's
2770 	 * address space at either PADDR1 or PADDR2.
2771 	 */
2772 	if (pmap == kernel_pmap)
2773 		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2774 	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
2775 		if ((*PMAP1 & PG_FRAME) != mptepa) {
2776 			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2777 #ifdef SMP
2778 			PMAP1cpu = PCPU_GET(cpuid);
2779 #endif
2780 			invlcaddr(PADDR1);
2781 			PMAP1changed++;
2782 		} else
2783 #ifdef SMP
2784 		if (PMAP1cpu != PCPU_GET(cpuid)) {
2785 			PMAP1cpu = PCPU_GET(cpuid);
2786 			invlcaddr(PADDR1);
2787 			PMAP1changedcpu++;
2788 		} else
2789 #endif
2790 			PMAP1unchanged++;
2791 		firstpte = PADDR1;
2792 	} else {
2793 		mtx_lock(&PMAP2mutex);
2794 		if ((*PMAP2 & PG_FRAME) != mptepa) {
2795 			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2796 			pmap_invalidate_page_int(kernel_pmap,
2797 			    (vm_offset_t)PADDR2);
2798 		}
2799 		firstpte = PADDR2;
2800 	}
2801 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2802 	KASSERT((oldpde & PG_A) != 0,
2803 	    ("pmap_demote_pde: oldpde is missing PG_A"));
2804 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2805 	    ("pmap_demote_pde: oldpde is missing PG_M"));
2806 	newpte = oldpde & ~PG_PS;
2807 	if ((newpte & PG_PDE_PAT) != 0)
2808 		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2809 
2810 	/*
2811 	 * If the page table page is new, initialize it.
2812 	 */
2813 	if (mpte->wire_count == 1) {
2814 		mpte->wire_count = NPTEPG;
2815 		pmap_fill_ptp(firstpte, newpte);
2816 	}
2817 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2818 	    ("pmap_demote_pde: firstpte and newpte map different physical"
2819 	    " addresses"));
2820 
2821 	/*
2822 	 * If the mapping has changed attributes, update the page table
2823 	 * entries.
2824 	 */
2825 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2826 		pmap_fill_ptp(firstpte, newpte);
2827 
2828 	/*
2829 	 * Demote the mapping.  This pmap is locked.  The old PDE has
2830 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2831 	 * set.  Thus, there is no danger of a race with another
2832 	 * processor changing the setting of PG_A and/or PG_M between
2833 	 * the read above and the store below.
2834 	 */
2835 	if (workaround_erratum383)
2836 		pmap_update_pde(pmap, va, pde, newpde);
2837 	else if (pmap == kernel_pmap)
2838 		pmap_kenter_pde(va, newpde);
2839 	else
2840 		pde_store(pde, newpde);
2841 	if (firstpte == PADDR2)
2842 		mtx_unlock(&PMAP2mutex);
2843 
2844 	/*
2845 	 * Invalidate the recursive mapping of the page table page.
2846 	 */
2847 	pmap_invalidate_page_int(pmap, (vm_offset_t)vtopte(va));
2848 
2849 	/*
2850 	 * Demote the pv entry.  This depends on the earlier demotion
2851 	 * of the mapping.  Specifically, the (re)creation of a per-
2852 	 * page pv entry might trigger the execution of pmap_collect(),
2853 	 * which might reclaim a newly (re)created per-page pv entry
2854 	 * and destroy the associated mapping.  In order to destroy
2855 	 * the mapping, the PDE must have already changed from mapping
2856 	 * the 2mpage to referencing the page table page.
2857 	 */
2858 	if ((oldpde & PG_MANAGED) != 0)
2859 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2860 
2861 	pmap_pde_demotions++;
2862 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2863 	    " in pmap %p", va, pmap);
2864 	return (TRUE);
2865 }
2866 
2867 /*
2868  * Removes a 2- or 4MB page mapping from the kernel pmap.
2869  */
2870 static void
2871 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2872 {
2873 	pd_entry_t newpde;
2874 	vm_paddr_t mptepa;
2875 	vm_page_t mpte;
2876 
2877 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2878 	mpte = pmap_remove_pt_page(pmap, va);
2879 	if (mpte == NULL)
2880 		panic("pmap_remove_kernel_pde: Missing pt page.");
2881 
2882 	mptepa = VM_PAGE_TO_PHYS(mpte);
2883 	newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
2884 
2885 	/*
2886 	 * Initialize the page table page.
2887 	 */
2888 	pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
2889 
2890 	/*
2891 	 * Remove the mapping.
2892 	 */
2893 	if (workaround_erratum383)
2894 		pmap_update_pde(pmap, va, pde, newpde);
2895 	else
2896 		pmap_kenter_pde(va, newpde);
2897 
2898 	/*
2899 	 * Invalidate the recursive mapping of the page table page.
2900 	 */
2901 	pmap_invalidate_page_int(pmap, (vm_offset_t)vtopte(va));
2902 }
2903 
2904 /*
2905  * pmap_remove_pde: do the things to unmap a superpage in a process
2906  */
2907 static void
2908 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2909     struct spglist *free)
2910 {
2911 	struct md_page *pvh;
2912 	pd_entry_t oldpde;
2913 	vm_offset_t eva, va;
2914 	vm_page_t m, mpte;
2915 
2916 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2917 	KASSERT((sva & PDRMASK) == 0,
2918 	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2919 	oldpde = pte_load_clear(pdq);
2920 	if (oldpde & PG_W)
2921 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2922 
2923 	/*
2924 	 * Machines that don't support invlpg, also don't support
2925 	 * PG_G.
2926 	 */
2927 	if ((oldpde & PG_G) != 0)
2928 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
2929 
2930 	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2931 	if (oldpde & PG_MANAGED) {
2932 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2933 		pmap_pvh_free(pvh, pmap, sva);
2934 		eva = sva + NBPDR;
2935 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2936 		    va < eva; va += PAGE_SIZE, m++) {
2937 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2938 				vm_page_dirty(m);
2939 			if (oldpde & PG_A)
2940 				vm_page_aflag_set(m, PGA_REFERENCED);
2941 			if (TAILQ_EMPTY(&m->md.pv_list) &&
2942 			    TAILQ_EMPTY(&pvh->pv_list))
2943 				vm_page_aflag_clear(m, PGA_WRITEABLE);
2944 		}
2945 	}
2946 	if (pmap == kernel_pmap) {
2947 		pmap_remove_kernel_pde(pmap, pdq, sva);
2948 	} else {
2949 		mpte = pmap_remove_pt_page(pmap, sva);
2950 		if (mpte != NULL) {
2951 			pmap->pm_stats.resident_count--;
2952 			KASSERT(mpte->wire_count == NPTEPG,
2953 			    ("pmap_remove_pde: pte page wire count error"));
2954 			mpte->wire_count = 0;
2955 			pmap_add_delayed_free_list(mpte, free, FALSE);
2956 		}
2957 	}
2958 }
2959 
2960 /*
2961  * pmap_remove_pte: do the things to unmap a page in a process
2962  */
2963 static int
2964 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
2965     struct spglist *free)
2966 {
2967 	pt_entry_t oldpte;
2968 	vm_page_t m;
2969 
2970 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2971 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2972 	oldpte = pte_load_clear(ptq);
2973 	KASSERT(oldpte != 0,
2974 	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
2975 	if (oldpte & PG_W)
2976 		pmap->pm_stats.wired_count -= 1;
2977 	/*
2978 	 * Machines that don't support invlpg, also don't support
2979 	 * PG_G.
2980 	 */
2981 	if (oldpte & PG_G)
2982 		pmap_invalidate_page_int(kernel_pmap, va);
2983 	pmap->pm_stats.resident_count -= 1;
2984 	if (oldpte & PG_MANAGED) {
2985 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2986 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2987 			vm_page_dirty(m);
2988 		if (oldpte & PG_A)
2989 			vm_page_aflag_set(m, PGA_REFERENCED);
2990 		pmap_remove_entry(pmap, m, va);
2991 	}
2992 	return (pmap_unuse_pt(pmap, va, free));
2993 }
2994 
2995 /*
2996  * Remove a single page from a process address space
2997  */
2998 static void
2999 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
3000 {
3001 	pt_entry_t *pte;
3002 
3003 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3004 	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
3005 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3006 	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
3007 		return;
3008 	pmap_remove_pte(pmap, pte, va, free);
3009 	pmap_invalidate_page_int(pmap, va);
3010 }
3011 
3012 /*
3013  * Removes the specified range of addresses from the page table page.
3014  */
3015 static bool
3016 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3017     struct spglist *free)
3018 {
3019 	pt_entry_t *pte;
3020 	bool anyvalid;
3021 
3022 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3023 	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
3024 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3025 	anyvalid = false;
3026 	for (pte = pmap_pte_quick(pmap, sva); sva != eva; pte++,
3027 	    sva += PAGE_SIZE) {
3028 		if (*pte == 0)
3029 			continue;
3030 
3031 		/*
3032 		 * The TLB entry for a PG_G mapping is invalidated by
3033 		 * pmap_remove_pte().
3034 		 */
3035 		if ((*pte & PG_G) == 0)
3036 			anyvalid = true;
3037 
3038 		if (pmap_remove_pte(pmap, pte, sva, free))
3039 			break;
3040 	}
3041 	return (anyvalid);
3042 }
3043 
3044 /*
3045  *	Remove the given range of addresses from the specified map.
3046  *
3047  *	It is assumed that the start and end are properly
3048  *	rounded to the page size.
3049  */
3050 static void
3051 __CONCAT(PMTYPE, remove)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3052 {
3053 	vm_offset_t pdnxt;
3054 	pd_entry_t ptpaddr;
3055 	struct spglist free;
3056 	int anyvalid;
3057 
3058 	/*
3059 	 * Perform an unsynchronized read.  This is, however, safe.
3060 	 */
3061 	if (pmap->pm_stats.resident_count == 0)
3062 		return;
3063 
3064 	anyvalid = 0;
3065 	SLIST_INIT(&free);
3066 
3067 	rw_wlock(&pvh_global_lock);
3068 	sched_pin();
3069 	PMAP_LOCK(pmap);
3070 
3071 	/*
3072 	 * special handling of removing one page.  a very
3073 	 * common operation and easy to short circuit some
3074 	 * code.
3075 	 */
3076 	if ((sva + PAGE_SIZE == eva) &&
3077 	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
3078 		pmap_remove_page(pmap, sva, &free);
3079 		goto out;
3080 	}
3081 
3082 	for (; sva < eva; sva = pdnxt) {
3083 		u_int pdirindex;
3084 
3085 		/*
3086 		 * Calculate index for next page table.
3087 		 */
3088 		pdnxt = (sva + NBPDR) & ~PDRMASK;
3089 		if (pdnxt < sva)
3090 			pdnxt = eva;
3091 		if (pmap->pm_stats.resident_count == 0)
3092 			break;
3093 
3094 		pdirindex = sva >> PDRSHIFT;
3095 		ptpaddr = pmap->pm_pdir[pdirindex];
3096 
3097 		/*
3098 		 * Weed out invalid mappings. Note: we assume that the page
3099 		 * directory table is always allocated, and in kernel virtual.
3100 		 */
3101 		if (ptpaddr == 0)
3102 			continue;
3103 
3104 		/*
3105 		 * Check for large page.
3106 		 */
3107 		if ((ptpaddr & PG_PS) != 0) {
3108 			/*
3109 			 * Are we removing the entire large page?  If not,
3110 			 * demote the mapping and fall through.
3111 			 */
3112 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3113 				/*
3114 				 * The TLB entry for a PG_G mapping is
3115 				 * invalidated by pmap_remove_pde().
3116 				 */
3117 				if ((ptpaddr & PG_G) == 0)
3118 					anyvalid = 1;
3119 				pmap_remove_pde(pmap,
3120 				    &pmap->pm_pdir[pdirindex], sva, &free);
3121 				continue;
3122 			} else if (!pmap_demote_pde(pmap,
3123 			    &pmap->pm_pdir[pdirindex], sva)) {
3124 				/* The large page mapping was destroyed. */
3125 				continue;
3126 			}
3127 		}
3128 
3129 		/*
3130 		 * Limit our scan to either the end of the va represented
3131 		 * by the current page table page, or to the end of the
3132 		 * range being removed.
3133 		 */
3134 		if (pdnxt > eva)
3135 			pdnxt = eva;
3136 
3137 		if (pmap_remove_ptes(pmap, sva, pdnxt, &free))
3138 			anyvalid = 1;
3139 	}
3140 out:
3141 	sched_unpin();
3142 	if (anyvalid)
3143 		pmap_invalidate_all_int(pmap);
3144 	rw_wunlock(&pvh_global_lock);
3145 	PMAP_UNLOCK(pmap);
3146 	vm_page_free_pages_toq(&free, true);
3147 }
3148 
3149 /*
3150  *	Routine:	pmap_remove_all
3151  *	Function:
3152  *		Removes this physical page from
3153  *		all physical maps in which it resides.
3154  *		Reflects back modify bits to the pager.
3155  *
3156  *	Notes:
3157  *		Original versions of this routine were very
3158  *		inefficient because they iteratively called
3159  *		pmap_remove (slow...)
3160  */
3161 
3162 static void
3163 __CONCAT(PMTYPE, remove_all)(vm_page_t m)
3164 {
3165 	struct md_page *pvh;
3166 	pv_entry_t pv;
3167 	pmap_t pmap;
3168 	pt_entry_t *pte, tpte;
3169 	pd_entry_t *pde;
3170 	vm_offset_t va;
3171 	struct spglist free;
3172 
3173 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3174 	    ("pmap_remove_all: page %p is not managed", m));
3175 	SLIST_INIT(&free);
3176 	rw_wlock(&pvh_global_lock);
3177 	sched_pin();
3178 	if ((m->flags & PG_FICTITIOUS) != 0)
3179 		goto small_mappings;
3180 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3181 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3182 		va = pv->pv_va;
3183 		pmap = PV_PMAP(pv);
3184 		PMAP_LOCK(pmap);
3185 		pde = pmap_pde(pmap, va);
3186 		(void)pmap_demote_pde(pmap, pde, va);
3187 		PMAP_UNLOCK(pmap);
3188 	}
3189 small_mappings:
3190 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3191 		pmap = PV_PMAP(pv);
3192 		PMAP_LOCK(pmap);
3193 		pmap->pm_stats.resident_count--;
3194 		pde = pmap_pde(pmap, pv->pv_va);
3195 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3196 		    " a 4mpage in page %p's pv list", m));
3197 		pte = pmap_pte_quick(pmap, pv->pv_va);
3198 		tpte = pte_load_clear(pte);
3199 		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
3200 		    pmap, pv->pv_va));
3201 		if (tpte & PG_W)
3202 			pmap->pm_stats.wired_count--;
3203 		if (tpte & PG_A)
3204 			vm_page_aflag_set(m, PGA_REFERENCED);
3205 
3206 		/*
3207 		 * Update the vm_page_t clean and reference bits.
3208 		 */
3209 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3210 			vm_page_dirty(m);
3211 		pmap_unuse_pt(pmap, pv->pv_va, &free);
3212 		pmap_invalidate_page_int(pmap, pv->pv_va);
3213 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3214 		free_pv_entry(pmap, pv);
3215 		PMAP_UNLOCK(pmap);
3216 	}
3217 	vm_page_aflag_clear(m, PGA_WRITEABLE);
3218 	sched_unpin();
3219 	rw_wunlock(&pvh_global_lock);
3220 	vm_page_free_pages_toq(&free, true);
3221 }
3222 
3223 /*
3224  * pmap_protect_pde: do the things to protect a 4mpage in a process
3225  */
3226 static boolean_t
3227 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3228 {
3229 	pd_entry_t newpde, oldpde;
3230 	vm_offset_t eva, va;
3231 	vm_page_t m;
3232 	boolean_t anychanged;
3233 
3234 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3235 	KASSERT((sva & PDRMASK) == 0,
3236 	    ("pmap_protect_pde: sva is not 4mpage aligned"));
3237 	anychanged = FALSE;
3238 retry:
3239 	oldpde = newpde = *pde;
3240 	if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
3241 	    (PG_MANAGED | PG_M | PG_RW)) {
3242 		eva = sva + NBPDR;
3243 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3244 		    va < eva; va += PAGE_SIZE, m++)
3245 			vm_page_dirty(m);
3246 	}
3247 	if ((prot & VM_PROT_WRITE) == 0)
3248 		newpde &= ~(PG_RW | PG_M);
3249 #ifdef PMAP_PAE_COMP
3250 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3251 		newpde |= pg_nx;
3252 #endif
3253 	if (newpde != oldpde) {
3254 		/*
3255 		 * As an optimization to future operations on this PDE, clear
3256 		 * PG_PROMOTED.  The impending invalidation will remove any
3257 		 * lingering 4KB page mappings from the TLB.
3258 		 */
3259 		if (!pde_cmpset(pde, oldpde, newpde & ~PG_PROMOTED))
3260 			goto retry;
3261 		if ((oldpde & PG_G) != 0)
3262 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
3263 		else
3264 			anychanged = TRUE;
3265 	}
3266 	return (anychanged);
3267 }
3268 
3269 /*
3270  *	Set the physical protection on the
3271  *	specified range of this map as requested.
3272  */
3273 static void
3274 __CONCAT(PMTYPE, protect)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3275     vm_prot_t prot)
3276 {
3277 	vm_offset_t pdnxt;
3278 	pd_entry_t ptpaddr;
3279 	pt_entry_t *pte;
3280 	boolean_t anychanged, pv_lists_locked;
3281 
3282 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3283 	if (prot == VM_PROT_NONE) {
3284 		pmap_remove(pmap, sva, eva);
3285 		return;
3286 	}
3287 
3288 #ifdef PMAP_PAE_COMP
3289 	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
3290 	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
3291 		return;
3292 #else
3293 	if (prot & VM_PROT_WRITE)
3294 		return;
3295 #endif
3296 
3297 	if (pmap_is_current(pmap))
3298 		pv_lists_locked = FALSE;
3299 	else {
3300 		pv_lists_locked = TRUE;
3301 resume:
3302 		rw_wlock(&pvh_global_lock);
3303 		sched_pin();
3304 	}
3305 	anychanged = FALSE;
3306 
3307 	PMAP_LOCK(pmap);
3308 	for (; sva < eva; sva = pdnxt) {
3309 		pt_entry_t obits, pbits;
3310 		u_int pdirindex;
3311 
3312 		pdnxt = (sva + NBPDR) & ~PDRMASK;
3313 		if (pdnxt < sva)
3314 			pdnxt = eva;
3315 
3316 		pdirindex = sva >> PDRSHIFT;
3317 		ptpaddr = pmap->pm_pdir[pdirindex];
3318 
3319 		/*
3320 		 * Weed out invalid mappings. Note: we assume that the page
3321 		 * directory table is always allocated, and in kernel virtual.
3322 		 */
3323 		if (ptpaddr == 0)
3324 			continue;
3325 
3326 		/*
3327 		 * Check for large page.
3328 		 */
3329 		if ((ptpaddr & PG_PS) != 0) {
3330 			/*
3331 			 * Are we protecting the entire large page?  If not,
3332 			 * demote the mapping and fall through.
3333 			 */
3334 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3335 				/*
3336 				 * The TLB entry for a PG_G mapping is
3337 				 * invalidated by pmap_protect_pde().
3338 				 */
3339 				if (pmap_protect_pde(pmap,
3340 				    &pmap->pm_pdir[pdirindex], sva, prot))
3341 					anychanged = TRUE;
3342 				continue;
3343 			} else {
3344 				if (!pv_lists_locked) {
3345 					pv_lists_locked = TRUE;
3346 					if (!rw_try_wlock(&pvh_global_lock)) {
3347 						if (anychanged)
3348 							pmap_invalidate_all_int(
3349 							    pmap);
3350 						PMAP_UNLOCK(pmap);
3351 						goto resume;
3352 					}
3353 					sched_pin();
3354 				}
3355 				if (!pmap_demote_pde(pmap,
3356 				    &pmap->pm_pdir[pdirindex], sva)) {
3357 					/*
3358 					 * The large page mapping was
3359 					 * destroyed.
3360 					 */
3361 					continue;
3362 				}
3363 			}
3364 		}
3365 
3366 		if (pdnxt > eva)
3367 			pdnxt = eva;
3368 
3369 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3370 		    sva += PAGE_SIZE) {
3371 			vm_page_t m;
3372 
3373 retry:
3374 			/*
3375 			 * Regardless of whether a pte is 32 or 64 bits in
3376 			 * size, PG_RW, PG_A, and PG_M are among the least
3377 			 * significant 32 bits.
3378 			 */
3379 			obits = pbits = *pte;
3380 			if ((pbits & PG_V) == 0)
3381 				continue;
3382 
3383 			if ((prot & VM_PROT_WRITE) == 0) {
3384 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3385 				    (PG_MANAGED | PG_M | PG_RW)) {
3386 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3387 					vm_page_dirty(m);
3388 				}
3389 				pbits &= ~(PG_RW | PG_M);
3390 			}
3391 #ifdef PMAP_PAE_COMP
3392 			if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3393 				pbits |= pg_nx;
3394 #endif
3395 
3396 			if (pbits != obits) {
3397 #ifdef PMAP_PAE_COMP
3398 				if (!atomic_cmpset_64(pte, obits, pbits))
3399 					goto retry;
3400 #else
3401 				if (!atomic_cmpset_int((u_int *)pte, obits,
3402 				    pbits))
3403 					goto retry;
3404 #endif
3405 				if (obits & PG_G)
3406 					pmap_invalidate_page_int(pmap, sva);
3407 				else
3408 					anychanged = TRUE;
3409 			}
3410 		}
3411 	}
3412 	if (anychanged)
3413 		pmap_invalidate_all_int(pmap);
3414 	if (pv_lists_locked) {
3415 		sched_unpin();
3416 		rw_wunlock(&pvh_global_lock);
3417 	}
3418 	PMAP_UNLOCK(pmap);
3419 }
3420 
3421 #if VM_NRESERVLEVEL > 0
3422 /*
3423  * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3424  * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3425  * For promotion to occur, two conditions must be met: (1) the 4KB page
3426  * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3427  * mappings must have identical characteristics.
3428  *
3429  * Managed (PG_MANAGED) mappings within the kernel address space are not
3430  * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3431  * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3432  * pmap.
3433  */
3434 static void
3435 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3436 {
3437 	pd_entry_t newpde;
3438 	pt_entry_t *firstpte, oldpte, pa, *pte;
3439 	vm_offset_t oldpteva;
3440 	vm_page_t mpte;
3441 
3442 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3443 
3444 	/*
3445 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3446 	 * either invalid, unused, or does not map the first 4KB physical page
3447 	 * within a 2- or 4MB page.
3448 	 */
3449 	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3450 setpde:
3451 	newpde = *firstpte;
3452 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3453 		pmap_pde_p_failures++;
3454 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3455 		    " in pmap %p", va, pmap);
3456 		return;
3457 	}
3458 	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3459 		pmap_pde_p_failures++;
3460 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3461 		    " in pmap %p", va, pmap);
3462 		return;
3463 	}
3464 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3465 		/*
3466 		 * When PG_M is already clear, PG_RW can be cleared without
3467 		 * a TLB invalidation.
3468 		 */
3469 		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3470 		    ~PG_RW))
3471 			goto setpde;
3472 		newpde &= ~PG_RW;
3473 	}
3474 
3475 	/*
3476 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3477 	 * PTE maps an unexpected 4KB physical page or does not have identical
3478 	 * characteristics to the first PTE.
3479 	 */
3480 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3481 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3482 setpte:
3483 		oldpte = *pte;
3484 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3485 			pmap_pde_p_failures++;
3486 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3487 			    " in pmap %p", va, pmap);
3488 			return;
3489 		}
3490 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3491 			/*
3492 			 * When PG_M is already clear, PG_RW can be cleared
3493 			 * without a TLB invalidation.
3494 			 */
3495 			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3496 			    oldpte & ~PG_RW))
3497 				goto setpte;
3498 			oldpte &= ~PG_RW;
3499 			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3500 			    (va & ~PDRMASK);
3501 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3502 			    " in pmap %p", oldpteva, pmap);
3503 		}
3504 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3505 			pmap_pde_p_failures++;
3506 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3507 			    " in pmap %p", va, pmap);
3508 			return;
3509 		}
3510 		pa -= PAGE_SIZE;
3511 	}
3512 
3513 	/*
3514 	 * Save the page table page in its current state until the PDE
3515 	 * mapping the superpage is demoted by pmap_demote_pde() or
3516 	 * destroyed by pmap_remove_pde().
3517 	 */
3518 	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3519 	KASSERT(mpte >= vm_page_array &&
3520 	    mpte < &vm_page_array[vm_page_array_size],
3521 	    ("pmap_promote_pde: page table page is out of range"));
3522 	KASSERT(mpte->pindex == va >> PDRSHIFT,
3523 	    ("pmap_promote_pde: page table page's pindex is wrong"));
3524 	if (pmap_insert_pt_page(pmap, mpte)) {
3525 		pmap_pde_p_failures++;
3526 		CTR2(KTR_PMAP,
3527 		    "pmap_promote_pde: failure for va %#x in pmap %p", va,
3528 		    pmap);
3529 		return;
3530 	}
3531 
3532 	/*
3533 	 * Promote the pv entries.
3534 	 */
3535 	if ((newpde & PG_MANAGED) != 0)
3536 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3537 
3538 	/*
3539 	 * Propagate the PAT index to its proper position.
3540 	 */
3541 	if ((newpde & PG_PTE_PAT) != 0)
3542 		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3543 
3544 	/*
3545 	 * Map the superpage.
3546 	 */
3547 	if (workaround_erratum383)
3548 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3549 	else if (pmap == kernel_pmap)
3550 		pmap_kenter_pde(va, PG_PROMOTED | PG_PS | newpde);
3551 	else
3552 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
3553 
3554 	pmap_pde_promotions++;
3555 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3556 	    " in pmap %p", va, pmap);
3557 }
3558 #endif /* VM_NRESERVLEVEL > 0 */
3559 
3560 /*
3561  *	Insert the given physical page (p) at
3562  *	the specified virtual address (v) in the
3563  *	target physical map with the protection requested.
3564  *
3565  *	If specified, the page will be wired down, meaning
3566  *	that the related pte can not be reclaimed.
3567  *
3568  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3569  *	or lose information.  That is, this routine must actually
3570  *	insert this page into the given map NOW.
3571  */
3572 static int
3573 __CONCAT(PMTYPE, enter)(pmap_t pmap, vm_offset_t va, vm_page_t m,
3574     vm_prot_t prot, u_int flags, int8_t psind)
3575 {
3576 	pd_entry_t *pde;
3577 	pt_entry_t *pte;
3578 	pt_entry_t newpte, origpte;
3579 	pv_entry_t pv;
3580 	vm_paddr_t opa, pa;
3581 	vm_page_t mpte, om;
3582 	int rv;
3583 
3584 	va = trunc_page(va);
3585 	KASSERT((pmap == kernel_pmap && va < VM_MAX_KERNEL_ADDRESS) ||
3586 	    (pmap != kernel_pmap && va < VM_MAXUSER_ADDRESS),
3587 	    ("pmap_enter: toobig k%d %#x", pmap == kernel_pmap, va));
3588 	KASSERT(va < PMAP_TRM_MIN_ADDRESS,
3589 	    ("pmap_enter: invalid to pmap_enter into trampoline (va: 0x%x)",
3590 	    va));
3591 	KASSERT(pmap != kernel_pmap || (m->oflags & VPO_UNMANAGED) != 0 ||
3592 	    va < kmi.clean_sva || va >= kmi.clean_eva,
3593 	    ("pmap_enter: managed mapping within the clean submap"));
3594 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3595 		VM_OBJECT_ASSERT_LOCKED(m->object);
3596 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
3597 	    ("pmap_enter: flags %u has reserved bits set", flags));
3598 	pa = VM_PAGE_TO_PHYS(m);
3599 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
3600 	if ((flags & VM_PROT_WRITE) != 0)
3601 		newpte |= PG_M;
3602 	if ((prot & VM_PROT_WRITE) != 0)
3603 		newpte |= PG_RW;
3604 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
3605 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
3606 #ifdef PMAP_PAE_COMP
3607 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3608 		newpte |= pg_nx;
3609 #endif
3610 	if ((flags & PMAP_ENTER_WIRED) != 0)
3611 		newpte |= PG_W;
3612 	if (pmap != kernel_pmap)
3613 		newpte |= PG_U;
3614 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
3615 	if ((m->oflags & VPO_UNMANAGED) == 0)
3616 		newpte |= PG_MANAGED;
3617 
3618 	rw_wlock(&pvh_global_lock);
3619 	PMAP_LOCK(pmap);
3620 	sched_pin();
3621 	if (psind == 1) {
3622 		/* Assert the required virtual and physical alignment. */
3623 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
3624 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
3625 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m);
3626 		goto out;
3627 	}
3628 
3629 	pde = pmap_pde(pmap, va);
3630 	if (pmap != kernel_pmap) {
3631 		/*
3632 		 * va is for UVA.
3633 		 * In the case that a page table page is not resident,
3634 		 * we are creating it here.  pmap_allocpte() handles
3635 		 * demotion.
3636 		 */
3637 		mpte = pmap_allocpte(pmap, va, flags);
3638 		if (mpte == NULL) {
3639 			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3640 			    ("pmap_allocpte failed with sleep allowed"));
3641 			rv = KERN_RESOURCE_SHORTAGE;
3642 			goto out;
3643 		}
3644 	} else {
3645 		/*
3646 		 * va is for KVA, so pmap_demote_pde() will never fail
3647 		 * to install a page table page.  PG_V is also
3648 		 * asserted by pmap_demote_pde().
3649 		 */
3650 		mpte = NULL;
3651 		KASSERT(pde != NULL && (*pde & PG_V) != 0,
3652 		    ("KVA %#x invalid pde pdir %#jx", va,
3653 		    (uintmax_t)pmap->pm_pdir[PTDPTDI]));
3654 		if ((*pde & PG_PS) != 0)
3655 			pmap_demote_pde(pmap, pde, va);
3656 	}
3657 	pte = pmap_pte_quick(pmap, va);
3658 
3659 	/*
3660 	 * Page Directory table entry is not valid, which should not
3661 	 * happen.  We should have either allocated the page table
3662 	 * page or demoted the existing mapping above.
3663 	 */
3664 	if (pte == NULL) {
3665 		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3666 		    (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3667 	}
3668 
3669 	origpte = *pte;
3670 	pv = NULL;
3671 
3672 	/*
3673 	 * Is the specified virtual address already mapped?
3674 	 */
3675 	if ((origpte & PG_V) != 0) {
3676 		/*
3677 		 * Wiring change, just update stats. We don't worry about
3678 		 * wiring PT pages as they remain resident as long as there
3679 		 * are valid mappings in them. Hence, if a user page is wired,
3680 		 * the PT page will be also.
3681 		 */
3682 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
3683 			pmap->pm_stats.wired_count++;
3684 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
3685 			pmap->pm_stats.wired_count--;
3686 
3687 		/*
3688 		 * Remove the extra PT page reference.
3689 		 */
3690 		if (mpte != NULL) {
3691 			mpte->wire_count--;
3692 			KASSERT(mpte->wire_count > 0,
3693 			    ("pmap_enter: missing reference to page table page,"
3694 			     " va: 0x%x", va));
3695 		}
3696 
3697 		/*
3698 		 * Has the physical page changed?
3699 		 */
3700 		opa = origpte & PG_FRAME;
3701 		if (opa == pa) {
3702 			/*
3703 			 * No, might be a protection or wiring change.
3704 			 */
3705 			if ((origpte & PG_MANAGED) != 0 &&
3706 			    (newpte & PG_RW) != 0)
3707 				vm_page_aflag_set(m, PGA_WRITEABLE);
3708 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
3709 				goto unchanged;
3710 			goto validate;
3711 		}
3712 
3713 		/*
3714 		 * The physical page has changed.  Temporarily invalidate
3715 		 * the mapping.  This ensures that all threads sharing the
3716 		 * pmap keep a consistent view of the mapping, which is
3717 		 * necessary for the correct handling of COW faults.  It
3718 		 * also permits reuse of the old mapping's PV entry,
3719 		 * avoiding an allocation.
3720 		 *
3721 		 * For consistency, handle unmanaged mappings the same way.
3722 		 */
3723 		origpte = pte_load_clear(pte);
3724 		KASSERT((origpte & PG_FRAME) == opa,
3725 		    ("pmap_enter: unexpected pa update for %#x", va));
3726 		if ((origpte & PG_MANAGED) != 0) {
3727 			om = PHYS_TO_VM_PAGE(opa);
3728 
3729 			/*
3730 			 * The pmap lock is sufficient to synchronize with
3731 			 * concurrent calls to pmap_page_test_mappings() and
3732 			 * pmap_ts_referenced().
3733 			 */
3734 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3735 				vm_page_dirty(om);
3736 			if ((origpte & PG_A) != 0)
3737 				vm_page_aflag_set(om, PGA_REFERENCED);
3738 			pv = pmap_pvh_remove(&om->md, pmap, va);
3739 			KASSERT(pv != NULL,
3740 			    ("pmap_enter: no PV entry for %#x", va));
3741 			if ((newpte & PG_MANAGED) == 0)
3742 				free_pv_entry(pmap, pv);
3743 			if ((om->aflags & PGA_WRITEABLE) != 0 &&
3744 			    TAILQ_EMPTY(&om->md.pv_list) &&
3745 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3746 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3747 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3748 		}
3749 		if ((origpte & PG_A) != 0)
3750 			pmap_invalidate_page_int(pmap, va);
3751 		origpte = 0;
3752 	} else {
3753 		/*
3754 		 * Increment the counters.
3755 		 */
3756 		if ((newpte & PG_W) != 0)
3757 			pmap->pm_stats.wired_count++;
3758 		pmap->pm_stats.resident_count++;
3759 	}
3760 
3761 	/*
3762 	 * Enter on the PV list if part of our managed memory.
3763 	 */
3764 	if ((newpte & PG_MANAGED) != 0) {
3765 		if (pv == NULL) {
3766 			pv = get_pv_entry(pmap, FALSE);
3767 			pv->pv_va = va;
3768 		}
3769 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3770 		if ((newpte & PG_RW) != 0)
3771 			vm_page_aflag_set(m, PGA_WRITEABLE);
3772 	}
3773 
3774 	/*
3775 	 * Update the PTE.
3776 	 */
3777 	if ((origpte & PG_V) != 0) {
3778 validate:
3779 		origpte = pte_load_store(pte, newpte);
3780 		KASSERT((origpte & PG_FRAME) == pa,
3781 		    ("pmap_enter: unexpected pa update for %#x", va));
3782 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3783 		    (PG_M | PG_RW)) {
3784 			if ((origpte & PG_MANAGED) != 0)
3785 				vm_page_dirty(m);
3786 
3787 			/*
3788 			 * Although the PTE may still have PG_RW set, TLB
3789 			 * invalidation may nonetheless be required because
3790 			 * the PTE no longer has PG_M set.
3791 			 */
3792 		}
3793 #ifdef PMAP_PAE_COMP
3794 		else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
3795 			/*
3796 			 * This PTE change does not require TLB invalidation.
3797 			 */
3798 			goto unchanged;
3799 		}
3800 #endif
3801 		if ((origpte & PG_A) != 0)
3802 			pmap_invalidate_page_int(pmap, va);
3803 	} else
3804 		pte_store(pte, newpte);
3805 
3806 unchanged:
3807 
3808 #if VM_NRESERVLEVEL > 0
3809 	/*
3810 	 * If both the page table page and the reservation are fully
3811 	 * populated, then attempt promotion.
3812 	 */
3813 	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3814 	    pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
3815 	    vm_reserv_level_iffullpop(m) == 0)
3816 		pmap_promote_pde(pmap, pde, va);
3817 #endif
3818 
3819 	rv = KERN_SUCCESS;
3820 out:
3821 	sched_unpin();
3822 	rw_wunlock(&pvh_global_lock);
3823 	PMAP_UNLOCK(pmap);
3824 	return (rv);
3825 }
3826 
3827 /*
3828  * Tries to create a read- and/or execute-only 2 or 4 MB page mapping.  Returns
3829  * true if successful.  Returns false if (1) a mapping already exists at the
3830  * specified virtual address or (2) a PV entry cannot be allocated without
3831  * reclaiming another PV entry.
3832  */
3833 static bool
3834 pmap_enter_4mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3835 {
3836 	pd_entry_t newpde;
3837 
3838 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3839 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
3840 	    PG_PS | PG_V;
3841 	if ((m->oflags & VPO_UNMANAGED) == 0)
3842 		newpde |= PG_MANAGED;
3843 #ifdef PMAP_PAE_COMP
3844 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3845 		newpde |= pg_nx;
3846 #endif
3847 	if (pmap != kernel_pmap)
3848 		newpde |= PG_U;
3849 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3850 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL) ==
3851 	    KERN_SUCCESS);
3852 }
3853 
3854 /*
3855  * Tries to create the specified 2 or 4 MB page mapping.  Returns KERN_SUCCESS
3856  * if the mapping was created, and either KERN_FAILURE or
3857  * KERN_RESOURCE_SHORTAGE otherwise.  Returns KERN_FAILURE if
3858  * PMAP_ENTER_NOREPLACE was specified and a mapping already exists at the
3859  * specified virtual address.  Returns KERN_RESOURCE_SHORTAGE if
3860  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3861  *
3862  * The parameter "m" is only used when creating a managed, writeable mapping.
3863  */
3864 static int
3865 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
3866     vm_page_t m)
3867 {
3868 	struct spglist free;
3869 	pd_entry_t oldpde, *pde;
3870 	vm_page_t mt;
3871 
3872 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3873 	KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3874 	    ("pmap_enter_pde: newpde is missing PG_M"));
3875 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3876 	pde = pmap_pde(pmap, va);
3877 	oldpde = *pde;
3878 	if ((oldpde & PG_V) != 0) {
3879 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3880 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3881 			    " in pmap %p", va, pmap);
3882 			return (KERN_FAILURE);
3883 		}
3884 		/* Break the existing mapping(s). */
3885 		SLIST_INIT(&free);
3886 		if ((oldpde & PG_PS) != 0) {
3887 			/*
3888 			 * If the PDE resulted from a promotion, then a
3889 			 * reserved PT page could be freed.
3890 			 */
3891 			(void)pmap_remove_pde(pmap, pde, va, &free);
3892 			if ((oldpde & PG_G) == 0)
3893 				pmap_invalidate_pde_page(pmap, va, oldpde);
3894 		} else {
3895 			if (pmap_remove_ptes(pmap, va, va + NBPDR, &free))
3896 		               pmap_invalidate_all_int(pmap);
3897 		}
3898 		vm_page_free_pages_toq(&free, true);
3899 		if (pmap == kernel_pmap) {
3900 			mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3901 			if (pmap_insert_pt_page(pmap, mt)) {
3902 				/*
3903 				 * XXX Currently, this can't happen because
3904 				 * we do not perform pmap_enter(psind == 1)
3905 				 * on the kernel pmap.
3906 				 */
3907 				panic("pmap_enter_pde: trie insert failed");
3908 			}
3909 		} else
3910 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
3911 			    pde));
3912 	}
3913 	if ((newpde & PG_MANAGED) != 0) {
3914 		/*
3915 		 * Abort this mapping if its PV entry could not be created.
3916 		 */
3917 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags)) {
3918 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3919 			    " in pmap %p", va, pmap);
3920 			return (KERN_RESOURCE_SHORTAGE);
3921 		}
3922 		if ((newpde & PG_RW) != 0) {
3923 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3924 				vm_page_aflag_set(mt, PGA_WRITEABLE);
3925 		}
3926 	}
3927 
3928 	/*
3929 	 * Increment counters.
3930 	 */
3931 	if ((newpde & PG_W) != 0)
3932 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
3933 	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3934 
3935 	/*
3936 	 * Map the superpage.  (This is not a promoted mapping; there will not
3937 	 * be any lingering 4KB page mappings in the TLB.)
3938 	 */
3939 	pde_store(pde, newpde);
3940 
3941 	pmap_pde_mappings++;
3942 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3943 	    " in pmap %p", va, pmap);
3944 	return (KERN_SUCCESS);
3945 }
3946 
3947 /*
3948  * Maps a sequence of resident pages belonging to the same object.
3949  * The sequence begins with the given page m_start.  This page is
3950  * mapped at the given virtual address start.  Each subsequent page is
3951  * mapped at a virtual address that is offset from start by the same
3952  * amount as the page is offset from m_start within the object.  The
3953  * last page in the sequence is the page with the largest offset from
3954  * m_start that can be mapped at a virtual address less than the given
3955  * virtual address end.  Not every virtual page between start and end
3956  * is mapped; only those for which a resident page exists with the
3957  * corresponding offset from m_start are mapped.
3958  */
3959 static void
3960 __CONCAT(PMTYPE, enter_object)(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3961     vm_page_t m_start, vm_prot_t prot)
3962 {
3963 	vm_offset_t va;
3964 	vm_page_t m, mpte;
3965 	vm_pindex_t diff, psize;
3966 
3967 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3968 
3969 	psize = atop(end - start);
3970 	mpte = NULL;
3971 	m = m_start;
3972 	rw_wlock(&pvh_global_lock);
3973 	PMAP_LOCK(pmap);
3974 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3975 		va = start + ptoa(diff);
3976 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3977 		    m->psind == 1 && pg_ps_enabled &&
3978 		    pmap_enter_4mpage(pmap, va, m, prot))
3979 			m = &m[NBPDR / PAGE_SIZE - 1];
3980 		else
3981 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3982 			    mpte);
3983 		m = TAILQ_NEXT(m, listq);
3984 	}
3985 	rw_wunlock(&pvh_global_lock);
3986 	PMAP_UNLOCK(pmap);
3987 }
3988 
3989 /*
3990  * this code makes some *MAJOR* assumptions:
3991  * 1. Current pmap & pmap exists.
3992  * 2. Not wired.
3993  * 3. Read access.
3994  * 4. No page table pages.
3995  * but is *MUCH* faster than pmap_enter...
3996  */
3997 
3998 static void
3999 __CONCAT(PMTYPE, enter_quick)(pmap_t pmap, vm_offset_t va, vm_page_t m,
4000     vm_prot_t prot)
4001 {
4002 
4003 	rw_wlock(&pvh_global_lock);
4004 	PMAP_LOCK(pmap);
4005 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4006 	rw_wunlock(&pvh_global_lock);
4007 	PMAP_UNLOCK(pmap);
4008 }
4009 
4010 static vm_page_t
4011 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4012     vm_prot_t prot, vm_page_t mpte)
4013 {
4014 	pt_entry_t newpte, *pte;
4015 	struct spglist free;
4016 
4017 	KASSERT(pmap != kernel_pmap || va < kmi.clean_sva ||
4018 	    va >= kmi.clean_eva || (m->oflags & VPO_UNMANAGED) != 0,
4019 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
4020 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4021 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4022 
4023 	/*
4024 	 * In the case that a page table page is not
4025 	 * resident, we are creating it here.
4026 	 */
4027 	if (pmap != kernel_pmap) {
4028 		u_int ptepindex;
4029 		pd_entry_t ptepa;
4030 
4031 		/*
4032 		 * Calculate pagetable page index
4033 		 */
4034 		ptepindex = va >> PDRSHIFT;
4035 		if (mpte && (mpte->pindex == ptepindex)) {
4036 			mpte->wire_count++;
4037 		} else {
4038 			/*
4039 			 * Get the page directory entry
4040 			 */
4041 			ptepa = pmap->pm_pdir[ptepindex];
4042 
4043 			/*
4044 			 * If the page table page is mapped, we just increment
4045 			 * the hold count, and activate it.
4046 			 */
4047 			if (ptepa) {
4048 				if (ptepa & PG_PS)
4049 					return (NULL);
4050 				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
4051 				mpte->wire_count++;
4052 			} else {
4053 				mpte = _pmap_allocpte(pmap, ptepindex,
4054 				    PMAP_ENTER_NOSLEEP);
4055 				if (mpte == NULL)
4056 					return (mpte);
4057 			}
4058 		}
4059 	} else {
4060 		mpte = NULL;
4061 	}
4062 
4063 	sched_pin();
4064 	pte = pmap_pte_quick(pmap, va);
4065 	if (*pte) {
4066 		if (mpte != NULL) {
4067 			mpte->wire_count--;
4068 			mpte = NULL;
4069 		}
4070 		sched_unpin();
4071 		return (mpte);
4072 	}
4073 
4074 	/*
4075 	 * Enter on the PV list if part of our managed memory.
4076 	 */
4077 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4078 	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4079 		if (mpte != NULL) {
4080 			SLIST_INIT(&free);
4081 			if (pmap_unwire_ptp(pmap, mpte, &free)) {
4082 				pmap_invalidate_page_int(pmap, va);
4083 				vm_page_free_pages_toq(&free, true);
4084 			}
4085 
4086 			mpte = NULL;
4087 		}
4088 		sched_unpin();
4089 		return (mpte);
4090 	}
4091 
4092 	/*
4093 	 * Increment counters
4094 	 */
4095 	pmap->pm_stats.resident_count++;
4096 
4097 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
4098 	    pmap_cache_bits(pmap, m->md.pat_mode, 0);
4099 	if ((m->oflags & VPO_UNMANAGED) == 0)
4100 		newpte |= PG_MANAGED;
4101 #ifdef PMAP_PAE_COMP
4102 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
4103 		newpte |= pg_nx;
4104 #endif
4105 	if (pmap != kernel_pmap)
4106 		newpte |= PG_U;
4107 	pte_store(pte, newpte);
4108 	sched_unpin();
4109 	return (mpte);
4110 }
4111 
4112 /*
4113  * Make a temporary mapping for a physical address.  This is only intended
4114  * to be used for panic dumps.
4115  */
4116 static void *
4117 __CONCAT(PMTYPE, kenter_temporary)(vm_paddr_t pa, int i)
4118 {
4119 	vm_offset_t va;
4120 
4121 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
4122 	pmap_kenter(va, pa);
4123 	invlpg(va);
4124 	return ((void *)crashdumpmap);
4125 }
4126 
4127 /*
4128  * This code maps large physical mmap regions into the
4129  * processor address space.  Note that some shortcuts
4130  * are taken, but the code works.
4131  */
4132 static void
4133 __CONCAT(PMTYPE, object_init_pt)(pmap_t pmap, vm_offset_t addr,
4134     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
4135 {
4136 	pd_entry_t *pde;
4137 	vm_paddr_t pa, ptepa;
4138 	vm_page_t p;
4139 	int pat_mode;
4140 
4141 	VM_OBJECT_ASSERT_WLOCKED(object);
4142 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4143 	    ("pmap_object_init_pt: non-device object"));
4144 	if (pg_ps_enabled &&
4145 	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
4146 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4147 			return;
4148 		p = vm_page_lookup(object, pindex);
4149 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4150 		    ("pmap_object_init_pt: invalid page %p", p));
4151 		pat_mode = p->md.pat_mode;
4152 
4153 		/*
4154 		 * Abort the mapping if the first page is not physically
4155 		 * aligned to a 2/4MB page boundary.
4156 		 */
4157 		ptepa = VM_PAGE_TO_PHYS(p);
4158 		if (ptepa & (NBPDR - 1))
4159 			return;
4160 
4161 		/*
4162 		 * Skip the first page.  Abort the mapping if the rest of
4163 		 * the pages are not physically contiguous or have differing
4164 		 * memory attributes.
4165 		 */
4166 		p = TAILQ_NEXT(p, listq);
4167 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4168 		    pa += PAGE_SIZE) {
4169 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4170 			    ("pmap_object_init_pt: invalid page %p", p));
4171 			if (pa != VM_PAGE_TO_PHYS(p) ||
4172 			    pat_mode != p->md.pat_mode)
4173 				return;
4174 			p = TAILQ_NEXT(p, listq);
4175 		}
4176 
4177 		/*
4178 		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
4179 		 * "size" is a multiple of 2/4M, adding the PAT setting to
4180 		 * "pa" will not affect the termination of this loop.
4181 		 */
4182 		PMAP_LOCK(pmap);
4183 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
4184 		    pa < ptepa + size; pa += NBPDR) {
4185 			pde = pmap_pde(pmap, addr);
4186 			if (*pde == 0) {
4187 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
4188 				    PG_U | PG_RW | PG_V);
4189 				pmap->pm_stats.resident_count += NBPDR /
4190 				    PAGE_SIZE;
4191 				pmap_pde_mappings++;
4192 			}
4193 			/* Else continue on if the PDE is already valid. */
4194 			addr += NBPDR;
4195 		}
4196 		PMAP_UNLOCK(pmap);
4197 	}
4198 }
4199 
4200 /*
4201  *	Clear the wired attribute from the mappings for the specified range of
4202  *	addresses in the given pmap.  Every valid mapping within that range
4203  *	must have the wired attribute set.  In contrast, invalid mappings
4204  *	cannot have the wired attribute set, so they are ignored.
4205  *
4206  *	The wired attribute of the page table entry is not a hardware feature,
4207  *	so there is no need to invalidate any TLB entries.
4208  */
4209 static void
4210 __CONCAT(PMTYPE, unwire)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4211 {
4212 	vm_offset_t pdnxt;
4213 	pd_entry_t *pde;
4214 	pt_entry_t *pte;
4215 	boolean_t pv_lists_locked;
4216 
4217 	if (pmap_is_current(pmap))
4218 		pv_lists_locked = FALSE;
4219 	else {
4220 		pv_lists_locked = TRUE;
4221 resume:
4222 		rw_wlock(&pvh_global_lock);
4223 		sched_pin();
4224 	}
4225 	PMAP_LOCK(pmap);
4226 	for (; sva < eva; sva = pdnxt) {
4227 		pdnxt = (sva + NBPDR) & ~PDRMASK;
4228 		if (pdnxt < sva)
4229 			pdnxt = eva;
4230 		pde = pmap_pde(pmap, sva);
4231 		if ((*pde & PG_V) == 0)
4232 			continue;
4233 		if ((*pde & PG_PS) != 0) {
4234 			if ((*pde & PG_W) == 0)
4235 				panic("pmap_unwire: pde %#jx is missing PG_W",
4236 				    (uintmax_t)*pde);
4237 
4238 			/*
4239 			 * Are we unwiring the entire large page?  If not,
4240 			 * demote the mapping and fall through.
4241 			 */
4242 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
4243 				/*
4244 				 * Regardless of whether a pde (or pte) is 32
4245 				 * or 64 bits in size, PG_W is among the least
4246 				 * significant 32 bits.
4247 				 */
4248 				atomic_clear_int((u_int *)pde, PG_W);
4249 				pmap->pm_stats.wired_count -= NBPDR /
4250 				    PAGE_SIZE;
4251 				continue;
4252 			} else {
4253 				if (!pv_lists_locked) {
4254 					pv_lists_locked = TRUE;
4255 					if (!rw_try_wlock(&pvh_global_lock)) {
4256 						PMAP_UNLOCK(pmap);
4257 						/* Repeat sva. */
4258 						goto resume;
4259 					}
4260 					sched_pin();
4261 				}
4262 				if (!pmap_demote_pde(pmap, pde, sva))
4263 					panic("pmap_unwire: demotion failed");
4264 			}
4265 		}
4266 		if (pdnxt > eva)
4267 			pdnxt = eva;
4268 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
4269 		    sva += PAGE_SIZE) {
4270 			if ((*pte & PG_V) == 0)
4271 				continue;
4272 			if ((*pte & PG_W) == 0)
4273 				panic("pmap_unwire: pte %#jx is missing PG_W",
4274 				    (uintmax_t)*pte);
4275 
4276 			/*
4277 			 * PG_W must be cleared atomically.  Although the pmap
4278 			 * lock synchronizes access to PG_W, another processor
4279 			 * could be setting PG_M and/or PG_A concurrently.
4280 			 *
4281 			 * PG_W is among the least significant 32 bits.
4282 			 */
4283 			atomic_clear_int((u_int *)pte, PG_W);
4284 			pmap->pm_stats.wired_count--;
4285 		}
4286 	}
4287 	if (pv_lists_locked) {
4288 		sched_unpin();
4289 		rw_wunlock(&pvh_global_lock);
4290 	}
4291 	PMAP_UNLOCK(pmap);
4292 }
4293 
4294 
4295 /*
4296  *	Copy the range specified by src_addr/len
4297  *	from the source map to the range dst_addr/len
4298  *	in the destination map.
4299  *
4300  *	This routine is only advisory and need not do anything.  Since
4301  *	current pmap is always the kernel pmap when executing in
4302  *	kernel, and we do not copy from the kernel pmap to a user
4303  *	pmap, this optimization is not usable in 4/4G full split i386
4304  *	world.
4305  */
4306 
4307 static void
4308 __CONCAT(PMTYPE, copy)(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
4309     vm_size_t len, vm_offset_t src_addr)
4310 {
4311 	struct spglist free;
4312 	pt_entry_t *src_pte, *dst_pte, ptetemp;
4313 	pd_entry_t srcptepaddr;
4314 	vm_page_t dstmpte, srcmpte;
4315 	vm_offset_t addr, end_addr, pdnxt;
4316 	u_int ptepindex;
4317 
4318 	if (dst_addr != src_addr)
4319 		return;
4320 
4321 	end_addr = src_addr + len;
4322 
4323 	rw_wlock(&pvh_global_lock);
4324 	if (dst_pmap < src_pmap) {
4325 		PMAP_LOCK(dst_pmap);
4326 		PMAP_LOCK(src_pmap);
4327 	} else {
4328 		PMAP_LOCK(src_pmap);
4329 		PMAP_LOCK(dst_pmap);
4330 	}
4331 	sched_pin();
4332 	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
4333 		KASSERT(addr < PMAP_TRM_MIN_ADDRESS,
4334 		    ("pmap_copy: invalid to pmap_copy the trampoline"));
4335 
4336 		pdnxt = (addr + NBPDR) & ~PDRMASK;
4337 		if (pdnxt < addr)
4338 			pdnxt = end_addr;
4339 		ptepindex = addr >> PDRSHIFT;
4340 
4341 		srcptepaddr = src_pmap->pm_pdir[ptepindex];
4342 		if (srcptepaddr == 0)
4343 			continue;
4344 
4345 		if (srcptepaddr & PG_PS) {
4346 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4347 				continue;
4348 			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
4349 			    ((srcptepaddr & PG_MANAGED) == 0 ||
4350 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
4351 			    PMAP_ENTER_NORECLAIM))) {
4352 				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
4353 				    ~PG_W;
4354 				dst_pmap->pm_stats.resident_count +=
4355 				    NBPDR / PAGE_SIZE;
4356 				pmap_pde_mappings++;
4357 			}
4358 			continue;
4359 		}
4360 
4361 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
4362 		KASSERT(srcmpte->wire_count > 0,
4363 		    ("pmap_copy: source page table page is unused"));
4364 
4365 		if (pdnxt > end_addr)
4366 			pdnxt = end_addr;
4367 
4368 		src_pte = pmap_pte_quick3(src_pmap, addr);
4369 		while (addr < pdnxt) {
4370 			ptetemp = *src_pte;
4371 			/*
4372 			 * we only virtual copy managed pages
4373 			 */
4374 			if ((ptetemp & PG_MANAGED) != 0) {
4375 				dstmpte = pmap_allocpte(dst_pmap, addr,
4376 				    PMAP_ENTER_NOSLEEP);
4377 				if (dstmpte == NULL)
4378 					goto out;
4379 				dst_pte = pmap_pte_quick(dst_pmap, addr);
4380 				if (*dst_pte == 0 &&
4381 				    pmap_try_insert_pv_entry(dst_pmap, addr,
4382 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
4383 					/*
4384 					 * Clear the wired, modified, and
4385 					 * accessed (referenced) bits
4386 					 * during the copy.
4387 					 */
4388 					*dst_pte = ptetemp & ~(PG_W | PG_M |
4389 					    PG_A);
4390 					dst_pmap->pm_stats.resident_count++;
4391 				} else {
4392 					SLIST_INIT(&free);
4393 					if (pmap_unwire_ptp(dst_pmap, dstmpte,
4394 					    &free)) {
4395 						pmap_invalidate_page_int(
4396 						    dst_pmap, addr);
4397 						vm_page_free_pages_toq(&free,
4398 						    true);
4399 					}
4400 					goto out;
4401 				}
4402 				if (dstmpte->wire_count >= srcmpte->wire_count)
4403 					break;
4404 			}
4405 			addr += PAGE_SIZE;
4406 			src_pte++;
4407 		}
4408 	}
4409 out:
4410 	sched_unpin();
4411 	rw_wunlock(&pvh_global_lock);
4412 	PMAP_UNLOCK(src_pmap);
4413 	PMAP_UNLOCK(dst_pmap);
4414 }
4415 
4416 /*
4417  * Zero 1 page of virtual memory mapped from a hardware page by the caller.
4418  */
4419 static __inline void
4420 pagezero(void *page)
4421 {
4422 #if defined(I686_CPU)
4423 	if (cpu_class == CPUCLASS_686) {
4424 		if (cpu_feature & CPUID_SSE2)
4425 			sse2_pagezero(page);
4426 		else
4427 			i686_pagezero(page);
4428 	} else
4429 #endif
4430 		bzero(page, PAGE_SIZE);
4431 }
4432 
4433 /*
4434  * Zero the specified hardware page.
4435  */
4436 static void
4437 __CONCAT(PMTYPE, zero_page)(vm_page_t m)
4438 {
4439 	pt_entry_t *cmap_pte2;
4440 	struct pcpu *pc;
4441 
4442 	sched_pin();
4443 	pc = get_pcpu();
4444 	cmap_pte2 = pc->pc_cmap_pte2;
4445 	mtx_lock(&pc->pc_cmap_lock);
4446 	if (*cmap_pte2)
4447 		panic("pmap_zero_page: CMAP2 busy");
4448 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4449 	    pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
4450 	invlcaddr(pc->pc_cmap_addr2);
4451 	pagezero(pc->pc_cmap_addr2);
4452 	*cmap_pte2 = 0;
4453 
4454 	/*
4455 	 * Unpin the thread before releasing the lock.  Otherwise the thread
4456 	 * could be rescheduled while still bound to the current CPU, only
4457 	 * to unpin itself immediately upon resuming execution.
4458 	 */
4459 	sched_unpin();
4460 	mtx_unlock(&pc->pc_cmap_lock);
4461 }
4462 
4463 /*
4464  * Zero an an area within a single hardware page.  off and size must not
4465  * cover an area beyond a single hardware page.
4466  */
4467 static void
4468 __CONCAT(PMTYPE, zero_page_area)(vm_page_t m, int off, int size)
4469 {
4470 	pt_entry_t *cmap_pte2;
4471 	struct pcpu *pc;
4472 
4473 	sched_pin();
4474 	pc = get_pcpu();
4475 	cmap_pte2 = pc->pc_cmap_pte2;
4476 	mtx_lock(&pc->pc_cmap_lock);
4477 	if (*cmap_pte2)
4478 		panic("pmap_zero_page_area: CMAP2 busy");
4479 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4480 	    pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
4481 	invlcaddr(pc->pc_cmap_addr2);
4482 	if (off == 0 && size == PAGE_SIZE)
4483 		pagezero(pc->pc_cmap_addr2);
4484 	else
4485 		bzero(pc->pc_cmap_addr2 + off, size);
4486 	*cmap_pte2 = 0;
4487 	sched_unpin();
4488 	mtx_unlock(&pc->pc_cmap_lock);
4489 }
4490 
4491 /*
4492  * Copy 1 specified hardware page to another.
4493  */
4494 static void
4495 __CONCAT(PMTYPE, copy_page)(vm_page_t src, vm_page_t dst)
4496 {
4497 	pt_entry_t *cmap_pte1, *cmap_pte2;
4498 	struct pcpu *pc;
4499 
4500 	sched_pin();
4501 	pc = get_pcpu();
4502 	cmap_pte1 = pc->pc_cmap_pte1;
4503 	cmap_pte2 = pc->pc_cmap_pte2;
4504 	mtx_lock(&pc->pc_cmap_lock);
4505 	if (*cmap_pte1)
4506 		panic("pmap_copy_page: CMAP1 busy");
4507 	if (*cmap_pte2)
4508 		panic("pmap_copy_page: CMAP2 busy");
4509 	*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4510 	    pmap_cache_bits(kernel_pmap, src->md.pat_mode, 0);
4511 	invlcaddr(pc->pc_cmap_addr1);
4512 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4513 	    pmap_cache_bits(kernel_pmap, dst->md.pat_mode, 0);
4514 	invlcaddr(pc->pc_cmap_addr2);
4515 	bcopy(pc->pc_cmap_addr1, pc->pc_cmap_addr2, PAGE_SIZE);
4516 	*cmap_pte1 = 0;
4517 	*cmap_pte2 = 0;
4518 	sched_unpin();
4519 	mtx_unlock(&pc->pc_cmap_lock);
4520 }
4521 
4522 static void
4523 __CONCAT(PMTYPE, copy_pages)(vm_page_t ma[], vm_offset_t a_offset,
4524     vm_page_t mb[], vm_offset_t b_offset, int xfersize)
4525 {
4526 	vm_page_t a_pg, b_pg;
4527 	char *a_cp, *b_cp;
4528 	vm_offset_t a_pg_offset, b_pg_offset;
4529 	pt_entry_t *cmap_pte1, *cmap_pte2;
4530 	struct pcpu *pc;
4531 	int cnt;
4532 
4533 	sched_pin();
4534 	pc = get_pcpu();
4535 	cmap_pte1 = pc->pc_cmap_pte1;
4536 	cmap_pte2 = pc->pc_cmap_pte2;
4537 	mtx_lock(&pc->pc_cmap_lock);
4538 	if (*cmap_pte1 != 0)
4539 		panic("pmap_copy_pages: CMAP1 busy");
4540 	if (*cmap_pte2 != 0)
4541 		panic("pmap_copy_pages: CMAP2 busy");
4542 	while (xfersize > 0) {
4543 		a_pg = ma[a_offset >> PAGE_SHIFT];
4544 		a_pg_offset = a_offset & PAGE_MASK;
4545 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4546 		b_pg = mb[b_offset >> PAGE_SHIFT];
4547 		b_pg_offset = b_offset & PAGE_MASK;
4548 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4549 		*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
4550 		    pmap_cache_bits(kernel_pmap, a_pg->md.pat_mode, 0);
4551 		invlcaddr(pc->pc_cmap_addr1);
4552 		*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
4553 		    PG_M | pmap_cache_bits(kernel_pmap, b_pg->md.pat_mode, 0);
4554 		invlcaddr(pc->pc_cmap_addr2);
4555 		a_cp = pc->pc_cmap_addr1 + a_pg_offset;
4556 		b_cp = pc->pc_cmap_addr2 + b_pg_offset;
4557 		bcopy(a_cp, b_cp, cnt);
4558 		a_offset += cnt;
4559 		b_offset += cnt;
4560 		xfersize -= cnt;
4561 	}
4562 	*cmap_pte1 = 0;
4563 	*cmap_pte2 = 0;
4564 	sched_unpin();
4565 	mtx_unlock(&pc->pc_cmap_lock);
4566 }
4567 
4568 /*
4569  * Returns true if the pmap's pv is one of the first
4570  * 16 pvs linked to from this page.  This count may
4571  * be changed upwards or downwards in the future; it
4572  * is only necessary that true be returned for a small
4573  * subset of pmaps for proper page aging.
4574  */
4575 static boolean_t
4576 __CONCAT(PMTYPE, page_exists_quick)(pmap_t pmap, vm_page_t m)
4577 {
4578 	struct md_page *pvh;
4579 	pv_entry_t pv;
4580 	int loops = 0;
4581 	boolean_t rv;
4582 
4583 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4584 	    ("pmap_page_exists_quick: page %p is not managed", m));
4585 	rv = FALSE;
4586 	rw_wlock(&pvh_global_lock);
4587 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4588 		if (PV_PMAP(pv) == pmap) {
4589 			rv = TRUE;
4590 			break;
4591 		}
4592 		loops++;
4593 		if (loops >= 16)
4594 			break;
4595 	}
4596 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4597 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4598 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4599 			if (PV_PMAP(pv) == pmap) {
4600 				rv = TRUE;
4601 				break;
4602 			}
4603 			loops++;
4604 			if (loops >= 16)
4605 				break;
4606 		}
4607 	}
4608 	rw_wunlock(&pvh_global_lock);
4609 	return (rv);
4610 }
4611 
4612 /*
4613  *	pmap_page_wired_mappings:
4614  *
4615  *	Return the number of managed mappings to the given physical page
4616  *	that are wired.
4617  */
4618 static int
4619 __CONCAT(PMTYPE, page_wired_mappings)(vm_page_t m)
4620 {
4621 	int count;
4622 
4623 	count = 0;
4624 	if ((m->oflags & VPO_UNMANAGED) != 0)
4625 		return (count);
4626 	rw_wlock(&pvh_global_lock);
4627 	count = pmap_pvh_wired_mappings(&m->md, count);
4628 	if ((m->flags & PG_FICTITIOUS) == 0) {
4629 	    count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4630 	        count);
4631 	}
4632 	rw_wunlock(&pvh_global_lock);
4633 	return (count);
4634 }
4635 
4636 /*
4637  *	pmap_pvh_wired_mappings:
4638  *
4639  *	Return the updated number "count" of managed mappings that are wired.
4640  */
4641 static int
4642 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4643 {
4644 	pmap_t pmap;
4645 	pt_entry_t *pte;
4646 	pv_entry_t pv;
4647 
4648 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4649 	sched_pin();
4650 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4651 		pmap = PV_PMAP(pv);
4652 		PMAP_LOCK(pmap);
4653 		pte = pmap_pte_quick(pmap, pv->pv_va);
4654 		if ((*pte & PG_W) != 0)
4655 			count++;
4656 		PMAP_UNLOCK(pmap);
4657 	}
4658 	sched_unpin();
4659 	return (count);
4660 }
4661 
4662 /*
4663  * Returns TRUE if the given page is mapped individually or as part of
4664  * a 4mpage.  Otherwise, returns FALSE.
4665  */
4666 static boolean_t
4667 __CONCAT(PMTYPE, page_is_mapped)(vm_page_t m)
4668 {
4669 	boolean_t rv;
4670 
4671 	if ((m->oflags & VPO_UNMANAGED) != 0)
4672 		return (FALSE);
4673 	rw_wlock(&pvh_global_lock);
4674 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4675 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4676 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4677 	rw_wunlock(&pvh_global_lock);
4678 	return (rv);
4679 }
4680 
4681 /*
4682  * Remove all pages from specified address space
4683  * this aids process exit speeds.  Also, this code
4684  * is special cased for current process only, but
4685  * can have the more generic (and slightly slower)
4686  * mode enabled.  This is much faster than pmap_remove
4687  * in the case of running down an entire address space.
4688  */
4689 static void
4690 __CONCAT(PMTYPE, remove_pages)(pmap_t pmap)
4691 {
4692 	pt_entry_t *pte, tpte;
4693 	vm_page_t m, mpte, mt;
4694 	pv_entry_t pv;
4695 	struct md_page *pvh;
4696 	struct pv_chunk *pc, *npc;
4697 	struct spglist free;
4698 	int field, idx;
4699 	int32_t bit;
4700 	uint32_t inuse, bitmask;
4701 	int allfree;
4702 
4703 	if (pmap != PCPU_GET(curpmap)) {
4704 		printf("warning: pmap_remove_pages called with non-current pmap\n");
4705 		return;
4706 	}
4707 	SLIST_INIT(&free);
4708 	rw_wlock(&pvh_global_lock);
4709 	PMAP_LOCK(pmap);
4710 	sched_pin();
4711 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4712 		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
4713 		    pc->pc_pmap));
4714 		allfree = 1;
4715 		for (field = 0; field < _NPCM; field++) {
4716 			inuse = ~pc->pc_map[field] & pc_freemask[field];
4717 			while (inuse != 0) {
4718 				bit = bsfl(inuse);
4719 				bitmask = 1UL << bit;
4720 				idx = field * 32 + bit;
4721 				pv = &pc->pc_pventry[idx];
4722 				inuse &= ~bitmask;
4723 
4724 				pte = pmap_pde(pmap, pv->pv_va);
4725 				tpte = *pte;
4726 				if ((tpte & PG_PS) == 0) {
4727 					pte = pmap_pte_quick(pmap, pv->pv_va);
4728 					tpte = *pte & ~PG_PTE_PAT;
4729 				}
4730 
4731 				if (tpte == 0) {
4732 					printf(
4733 					    "TPTE at %p  IS ZERO @ VA %08x\n",
4734 					    pte, pv->pv_va);
4735 					panic("bad pte");
4736 				}
4737 
4738 /*
4739  * We cannot remove wired pages from a process' mapping at this time
4740  */
4741 				if (tpte & PG_W) {
4742 					allfree = 0;
4743 					continue;
4744 				}
4745 
4746 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4747 				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4748 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4749 				    m, (uintmax_t)m->phys_addr,
4750 				    (uintmax_t)tpte));
4751 
4752 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4753 				    m < &vm_page_array[vm_page_array_size],
4754 				    ("pmap_remove_pages: bad tpte %#jx",
4755 				    (uintmax_t)tpte));
4756 
4757 				pte_clear(pte);
4758 
4759 				/*
4760 				 * Update the vm_page_t clean/reference bits.
4761 				 */
4762 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4763 					if ((tpte & PG_PS) != 0) {
4764 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4765 							vm_page_dirty(mt);
4766 					} else
4767 						vm_page_dirty(m);
4768 				}
4769 
4770 				/* Mark free */
4771 				PV_STAT(pv_entry_frees++);
4772 				PV_STAT(pv_entry_spare++);
4773 				pv_entry_count--;
4774 				pc->pc_map[field] |= bitmask;
4775 				if ((tpte & PG_PS) != 0) {
4776 					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4777 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4778 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4779 					if (TAILQ_EMPTY(&pvh->pv_list)) {
4780 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4781 							if (TAILQ_EMPTY(&mt->md.pv_list))
4782 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
4783 					}
4784 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
4785 					if (mpte != NULL) {
4786 						pmap->pm_stats.resident_count--;
4787 						KASSERT(mpte->wire_count == NPTEPG,
4788 						    ("pmap_remove_pages: pte page wire count error"));
4789 						mpte->wire_count = 0;
4790 						pmap_add_delayed_free_list(mpte, &free, FALSE);
4791 					}
4792 				} else {
4793 					pmap->pm_stats.resident_count--;
4794 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4795 					if (TAILQ_EMPTY(&m->md.pv_list) &&
4796 					    (m->flags & PG_FICTITIOUS) == 0) {
4797 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4798 						if (TAILQ_EMPTY(&pvh->pv_list))
4799 							vm_page_aflag_clear(m, PGA_WRITEABLE);
4800 					}
4801 					pmap_unuse_pt(pmap, pv->pv_va, &free);
4802 				}
4803 			}
4804 		}
4805 		if (allfree) {
4806 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4807 			free_pv_chunk(pc);
4808 		}
4809 	}
4810 	sched_unpin();
4811 	pmap_invalidate_all_int(pmap);
4812 	rw_wunlock(&pvh_global_lock);
4813 	PMAP_UNLOCK(pmap);
4814 	vm_page_free_pages_toq(&free, true);
4815 }
4816 
4817 /*
4818  *	pmap_is_modified:
4819  *
4820  *	Return whether or not the specified physical page was modified
4821  *	in any physical maps.
4822  */
4823 static boolean_t
4824 __CONCAT(PMTYPE, is_modified)(vm_page_t m)
4825 {
4826 	boolean_t rv;
4827 
4828 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4829 	    ("pmap_is_modified: page %p is not managed", m));
4830 
4831 	/*
4832 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4833 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
4834 	 * is clear, no PTEs can have PG_M set.
4835 	 */
4836 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4837 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4838 		return (FALSE);
4839 	rw_wlock(&pvh_global_lock);
4840 	rv = pmap_is_modified_pvh(&m->md) ||
4841 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4842 	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4843 	rw_wunlock(&pvh_global_lock);
4844 	return (rv);
4845 }
4846 
4847 /*
4848  * Returns TRUE if any of the given mappings were used to modify
4849  * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4850  * mappings are supported.
4851  */
4852 static boolean_t
4853 pmap_is_modified_pvh(struct md_page *pvh)
4854 {
4855 	pv_entry_t pv;
4856 	pt_entry_t *pte;
4857 	pmap_t pmap;
4858 	boolean_t rv;
4859 
4860 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4861 	rv = FALSE;
4862 	sched_pin();
4863 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4864 		pmap = PV_PMAP(pv);
4865 		PMAP_LOCK(pmap);
4866 		pte = pmap_pte_quick(pmap, pv->pv_va);
4867 		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4868 		PMAP_UNLOCK(pmap);
4869 		if (rv)
4870 			break;
4871 	}
4872 	sched_unpin();
4873 	return (rv);
4874 }
4875 
4876 /*
4877  *	pmap_is_prefaultable:
4878  *
4879  *	Return whether or not the specified virtual address is elgible
4880  *	for prefault.
4881  */
4882 static boolean_t
4883 __CONCAT(PMTYPE, is_prefaultable)(pmap_t pmap, vm_offset_t addr)
4884 {
4885 	pd_entry_t pde;
4886 	boolean_t rv;
4887 
4888 	rv = FALSE;
4889 	PMAP_LOCK(pmap);
4890 	pde = *pmap_pde(pmap, addr);
4891 	if (pde != 0 && (pde & PG_PS) == 0)
4892 		rv = pmap_pte_ufast(pmap, addr, pde) == 0;
4893 	PMAP_UNLOCK(pmap);
4894 	return (rv);
4895 }
4896 
4897 /*
4898  *	pmap_is_referenced:
4899  *
4900  *	Return whether or not the specified physical page was referenced
4901  *	in any physical maps.
4902  */
4903 static boolean_t
4904 __CONCAT(PMTYPE, is_referenced)(vm_page_t m)
4905 {
4906 	boolean_t rv;
4907 
4908 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4909 	    ("pmap_is_referenced: page %p is not managed", m));
4910 	rw_wlock(&pvh_global_lock);
4911 	rv = pmap_is_referenced_pvh(&m->md) ||
4912 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4913 	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4914 	rw_wunlock(&pvh_global_lock);
4915 	return (rv);
4916 }
4917 
4918 /*
4919  * Returns TRUE if any of the given mappings were referenced and FALSE
4920  * otherwise.  Both page and 4mpage mappings are supported.
4921  */
4922 static boolean_t
4923 pmap_is_referenced_pvh(struct md_page *pvh)
4924 {
4925 	pv_entry_t pv;
4926 	pt_entry_t *pte;
4927 	pmap_t pmap;
4928 	boolean_t rv;
4929 
4930 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4931 	rv = FALSE;
4932 	sched_pin();
4933 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4934 		pmap = PV_PMAP(pv);
4935 		PMAP_LOCK(pmap);
4936 		pte = pmap_pte_quick(pmap, pv->pv_va);
4937 		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
4938 		PMAP_UNLOCK(pmap);
4939 		if (rv)
4940 			break;
4941 	}
4942 	sched_unpin();
4943 	return (rv);
4944 }
4945 
4946 /*
4947  * Clear the write and modified bits in each of the given page's mappings.
4948  */
4949 static void
4950 __CONCAT(PMTYPE, remove_write)(vm_page_t m)
4951 {
4952 	struct md_page *pvh;
4953 	pv_entry_t next_pv, pv;
4954 	pmap_t pmap;
4955 	pd_entry_t *pde;
4956 	pt_entry_t oldpte, *pte;
4957 	vm_offset_t va;
4958 
4959 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4960 	    ("pmap_remove_write: page %p is not managed", m));
4961 
4962 	/*
4963 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4964 	 * set by another thread while the object is locked.  Thus,
4965 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
4966 	 */
4967 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4968 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4969 		return;
4970 	rw_wlock(&pvh_global_lock);
4971 	sched_pin();
4972 	if ((m->flags & PG_FICTITIOUS) != 0)
4973 		goto small_mappings;
4974 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4975 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4976 		va = pv->pv_va;
4977 		pmap = PV_PMAP(pv);
4978 		PMAP_LOCK(pmap);
4979 		pde = pmap_pde(pmap, va);
4980 		if ((*pde & PG_RW) != 0)
4981 			(void)pmap_demote_pde(pmap, pde, va);
4982 		PMAP_UNLOCK(pmap);
4983 	}
4984 small_mappings:
4985 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4986 		pmap = PV_PMAP(pv);
4987 		PMAP_LOCK(pmap);
4988 		pde = pmap_pde(pmap, pv->pv_va);
4989 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4990 		    " a 4mpage in page %p's pv list", m));
4991 		pte = pmap_pte_quick(pmap, pv->pv_va);
4992 retry:
4993 		oldpte = *pte;
4994 		if ((oldpte & PG_RW) != 0) {
4995 			/*
4996 			 * Regardless of whether a pte is 32 or 64 bits
4997 			 * in size, PG_RW and PG_M are among the least
4998 			 * significant 32 bits.
4999 			 */
5000 			if (!atomic_cmpset_int((u_int *)pte, oldpte,
5001 			    oldpte & ~(PG_RW | PG_M)))
5002 				goto retry;
5003 			if ((oldpte & PG_M) != 0)
5004 				vm_page_dirty(m);
5005 			pmap_invalidate_page_int(pmap, pv->pv_va);
5006 		}
5007 		PMAP_UNLOCK(pmap);
5008 	}
5009 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5010 	sched_unpin();
5011 	rw_wunlock(&pvh_global_lock);
5012 }
5013 
5014 /*
5015  *	pmap_ts_referenced:
5016  *
5017  *	Return a count of reference bits for a page, clearing those bits.
5018  *	It is not necessary for every reference bit to be cleared, but it
5019  *	is necessary that 0 only be returned when there are truly no
5020  *	reference bits set.
5021  *
5022  *	As an optimization, update the page's dirty field if a modified bit is
5023  *	found while counting reference bits.  This opportunistic update can be
5024  *	performed at low cost and can eliminate the need for some future calls
5025  *	to pmap_is_modified().  However, since this function stops after
5026  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5027  *	dirty pages.  Those dirty pages will only be detected by a future call
5028  *	to pmap_is_modified().
5029  */
5030 static int
5031 __CONCAT(PMTYPE, ts_referenced)(vm_page_t m)
5032 {
5033 	struct md_page *pvh;
5034 	pv_entry_t pv, pvf;
5035 	pmap_t pmap;
5036 	pd_entry_t *pde;
5037 	pt_entry_t *pte;
5038 	vm_paddr_t pa;
5039 	int rtval = 0;
5040 
5041 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5042 	    ("pmap_ts_referenced: page %p is not managed", m));
5043 	pa = VM_PAGE_TO_PHYS(m);
5044 	pvh = pa_to_pvh(pa);
5045 	rw_wlock(&pvh_global_lock);
5046 	sched_pin();
5047 	if ((m->flags & PG_FICTITIOUS) != 0 ||
5048 	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5049 		goto small_mappings;
5050 	pv = pvf;
5051 	do {
5052 		pmap = PV_PMAP(pv);
5053 		PMAP_LOCK(pmap);
5054 		pde = pmap_pde(pmap, pv->pv_va);
5055 		if ((*pde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5056 			/*
5057 			 * Although "*pde" is mapping a 2/4MB page, because
5058 			 * this function is called at a 4KB page granularity,
5059 			 * we only update the 4KB page under test.
5060 			 */
5061 			vm_page_dirty(m);
5062 		}
5063 		if ((*pde & PG_A) != 0) {
5064 			/*
5065 			 * Since this reference bit is shared by either 1024
5066 			 * or 512 4KB pages, it should not be cleared every
5067 			 * time it is tested.  Apply a simple "hash" function
5068 			 * on the physical page number, the virtual superpage
5069 			 * number, and the pmap address to select one 4KB page
5070 			 * out of the 1024 or 512 on which testing the
5071 			 * reference bit will result in clearing that bit.
5072 			 * This function is designed to avoid the selection of
5073 			 * the same 4KB page for every 2- or 4MB page mapping.
5074 			 *
5075 			 * On demotion, a mapping that hasn't been referenced
5076 			 * is simply destroyed.  To avoid the possibility of a
5077 			 * subsequent page fault on a demoted wired mapping,
5078 			 * always leave its reference bit set.  Moreover,
5079 			 * since the superpage is wired, the current state of
5080 			 * its reference bit won't affect page replacement.
5081 			 */
5082 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
5083 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
5084 			    (*pde & PG_W) == 0) {
5085 				atomic_clear_int((u_int *)pde, PG_A);
5086 				pmap_invalidate_page_int(pmap, pv->pv_va);
5087 			}
5088 			rtval++;
5089 		}
5090 		PMAP_UNLOCK(pmap);
5091 		/* Rotate the PV list if it has more than one entry. */
5092 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5093 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5094 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5095 		}
5096 		if (rtval >= PMAP_TS_REFERENCED_MAX)
5097 			goto out;
5098 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5099 small_mappings:
5100 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5101 		goto out;
5102 	pv = pvf;
5103 	do {
5104 		pmap = PV_PMAP(pv);
5105 		PMAP_LOCK(pmap);
5106 		pde = pmap_pde(pmap, pv->pv_va);
5107 		KASSERT((*pde & PG_PS) == 0,
5108 		    ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
5109 		    m));
5110 		pte = pmap_pte_quick(pmap, pv->pv_va);
5111 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5112 			vm_page_dirty(m);
5113 		if ((*pte & PG_A) != 0) {
5114 			atomic_clear_int((u_int *)pte, PG_A);
5115 			pmap_invalidate_page_int(pmap, pv->pv_va);
5116 			rtval++;
5117 		}
5118 		PMAP_UNLOCK(pmap);
5119 		/* Rotate the PV list if it has more than one entry. */
5120 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5121 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5122 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5123 		}
5124 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5125 	    PMAP_TS_REFERENCED_MAX);
5126 out:
5127 	sched_unpin();
5128 	rw_wunlock(&pvh_global_lock);
5129 	return (rtval);
5130 }
5131 
5132 /*
5133  *	Apply the given advice to the specified range of addresses within the
5134  *	given pmap.  Depending on the advice, clear the referenced and/or
5135  *	modified flags in each mapping and set the mapped page's dirty field.
5136  */
5137 static void
5138 __CONCAT(PMTYPE, advise)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5139     int advice)
5140 {
5141 	pd_entry_t oldpde, *pde;
5142 	pt_entry_t *pte;
5143 	vm_offset_t va, pdnxt;
5144 	vm_page_t m;
5145 	boolean_t anychanged, pv_lists_locked;
5146 
5147 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5148 		return;
5149 	if (pmap_is_current(pmap))
5150 		pv_lists_locked = FALSE;
5151 	else {
5152 		pv_lists_locked = TRUE;
5153 resume:
5154 		rw_wlock(&pvh_global_lock);
5155 		sched_pin();
5156 	}
5157 	anychanged = FALSE;
5158 	PMAP_LOCK(pmap);
5159 	for (; sva < eva; sva = pdnxt) {
5160 		pdnxt = (sva + NBPDR) & ~PDRMASK;
5161 		if (pdnxt < sva)
5162 			pdnxt = eva;
5163 		pde = pmap_pde(pmap, sva);
5164 		oldpde = *pde;
5165 		if ((oldpde & PG_V) == 0)
5166 			continue;
5167 		else if ((oldpde & PG_PS) != 0) {
5168 			if ((oldpde & PG_MANAGED) == 0)
5169 				continue;
5170 			if (!pv_lists_locked) {
5171 				pv_lists_locked = TRUE;
5172 				if (!rw_try_wlock(&pvh_global_lock)) {
5173 					if (anychanged)
5174 						pmap_invalidate_all_int(pmap);
5175 					PMAP_UNLOCK(pmap);
5176 					goto resume;
5177 				}
5178 				sched_pin();
5179 			}
5180 			if (!pmap_demote_pde(pmap, pde, sva)) {
5181 				/*
5182 				 * The large page mapping was destroyed.
5183 				 */
5184 				continue;
5185 			}
5186 
5187 			/*
5188 			 * Unless the page mappings are wired, remove the
5189 			 * mapping to a single page so that a subsequent
5190 			 * access may repromote.  Since the underlying page
5191 			 * table page is fully populated, this removal never
5192 			 * frees a page table page.
5193 			 */
5194 			if ((oldpde & PG_W) == 0) {
5195 				pte = pmap_pte_quick(pmap, sva);
5196 				KASSERT((*pte & PG_V) != 0,
5197 				    ("pmap_advise: invalid PTE"));
5198 				pmap_remove_pte(pmap, pte, sva, NULL);
5199 				anychanged = TRUE;
5200 			}
5201 		}
5202 		if (pdnxt > eva)
5203 			pdnxt = eva;
5204 		va = pdnxt;
5205 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
5206 		    sva += PAGE_SIZE) {
5207 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
5208 				goto maybe_invlrng;
5209 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5210 				if (advice == MADV_DONTNEED) {
5211 					/*
5212 					 * Future calls to pmap_is_modified()
5213 					 * can be avoided by making the page
5214 					 * dirty now.
5215 					 */
5216 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
5217 					vm_page_dirty(m);
5218 				}
5219 				atomic_clear_int((u_int *)pte, PG_M | PG_A);
5220 			} else if ((*pte & PG_A) != 0)
5221 				atomic_clear_int((u_int *)pte, PG_A);
5222 			else
5223 				goto maybe_invlrng;
5224 			if ((*pte & PG_G) != 0) {
5225 				if (va == pdnxt)
5226 					va = sva;
5227 			} else
5228 				anychanged = TRUE;
5229 			continue;
5230 maybe_invlrng:
5231 			if (va != pdnxt) {
5232 				pmap_invalidate_range_int(pmap, va, sva);
5233 				va = pdnxt;
5234 			}
5235 		}
5236 		if (va != pdnxt)
5237 			pmap_invalidate_range_int(pmap, va, sva);
5238 	}
5239 	if (anychanged)
5240 		pmap_invalidate_all_int(pmap);
5241 	if (pv_lists_locked) {
5242 		sched_unpin();
5243 		rw_wunlock(&pvh_global_lock);
5244 	}
5245 	PMAP_UNLOCK(pmap);
5246 }
5247 
5248 /*
5249  *	Clear the modify bits on the specified physical page.
5250  */
5251 static void
5252 __CONCAT(PMTYPE, clear_modify)(vm_page_t m)
5253 {
5254 	struct md_page *pvh;
5255 	pv_entry_t next_pv, pv;
5256 	pmap_t pmap;
5257 	pd_entry_t oldpde, *pde;
5258 	pt_entry_t oldpte, *pte;
5259 	vm_offset_t va;
5260 
5261 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5262 	    ("pmap_clear_modify: page %p is not managed", m));
5263 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5264 	KASSERT(!vm_page_xbusied(m),
5265 	    ("pmap_clear_modify: page %p is exclusive busied", m));
5266 
5267 	/*
5268 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
5269 	 * If the object containing the page is locked and the page is not
5270 	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
5271 	 */
5272 	if ((m->aflags & PGA_WRITEABLE) == 0)
5273 		return;
5274 	rw_wlock(&pvh_global_lock);
5275 	sched_pin();
5276 	if ((m->flags & PG_FICTITIOUS) != 0)
5277 		goto small_mappings;
5278 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5279 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5280 		va = pv->pv_va;
5281 		pmap = PV_PMAP(pv);
5282 		PMAP_LOCK(pmap);
5283 		pde = pmap_pde(pmap, va);
5284 		oldpde = *pde;
5285 		if ((oldpde & PG_RW) != 0) {
5286 			if (pmap_demote_pde(pmap, pde, va)) {
5287 				if ((oldpde & PG_W) == 0) {
5288 					/*
5289 					 * Write protect the mapping to a
5290 					 * single page so that a subsequent
5291 					 * write access may repromote.
5292 					 */
5293 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
5294 					    PG_PS_FRAME);
5295 					pte = pmap_pte_quick(pmap, va);
5296 					oldpte = *pte;
5297 					if ((oldpte & PG_V) != 0) {
5298 						/*
5299 						 * Regardless of whether a pte is 32 or 64 bits
5300 						 * in size, PG_RW and PG_M are among the least
5301 						 * significant 32 bits.
5302 						 */
5303 						while (!atomic_cmpset_int((u_int *)pte,
5304 						    oldpte,
5305 						    oldpte & ~(PG_M | PG_RW)))
5306 							oldpte = *pte;
5307 						vm_page_dirty(m);
5308 						pmap_invalidate_page_int(pmap,
5309 						    va);
5310 					}
5311 				}
5312 			}
5313 		}
5314 		PMAP_UNLOCK(pmap);
5315 	}
5316 small_mappings:
5317 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5318 		pmap = PV_PMAP(pv);
5319 		PMAP_LOCK(pmap);
5320 		pde = pmap_pde(pmap, pv->pv_va);
5321 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
5322 		    " a 4mpage in page %p's pv list", m));
5323 		pte = pmap_pte_quick(pmap, pv->pv_va);
5324 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5325 			/*
5326 			 * Regardless of whether a pte is 32 or 64 bits
5327 			 * in size, PG_M is among the least significant
5328 			 * 32 bits.
5329 			 */
5330 			atomic_clear_int((u_int *)pte, PG_M);
5331 			pmap_invalidate_page_int(pmap, pv->pv_va);
5332 		}
5333 		PMAP_UNLOCK(pmap);
5334 	}
5335 	sched_unpin();
5336 	rw_wunlock(&pvh_global_lock);
5337 }
5338 
5339 /*
5340  * Miscellaneous support routines follow
5341  */
5342 
5343 /* Adjust the cache mode for a 4KB page mapped via a PTE. */
5344 static __inline void
5345 pmap_pte_attr(pt_entry_t *pte, int cache_bits)
5346 {
5347 	u_int opte, npte;
5348 
5349 	/*
5350 	 * The cache mode bits are all in the low 32-bits of the
5351 	 * PTE, so we can just spin on updating the low 32-bits.
5352 	 */
5353 	do {
5354 		opte = *(u_int *)pte;
5355 		npte = opte & ~PG_PTE_CACHE;
5356 		npte |= cache_bits;
5357 	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
5358 }
5359 
5360 /* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
5361 static __inline void
5362 pmap_pde_attr(pd_entry_t *pde, int cache_bits)
5363 {
5364 	u_int opde, npde;
5365 
5366 	/*
5367 	 * The cache mode bits are all in the low 32-bits of the
5368 	 * PDE, so we can just spin on updating the low 32-bits.
5369 	 */
5370 	do {
5371 		opde = *(u_int *)pde;
5372 		npde = opde & ~PG_PDE_CACHE;
5373 		npde |= cache_bits;
5374 	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
5375 }
5376 
5377 /*
5378  * Map a set of physical memory pages into the kernel virtual
5379  * address space. Return a pointer to where it is mapped. This
5380  * routine is intended to be used for mapping device memory,
5381  * NOT real memory.
5382  */
5383 static void *
5384 __CONCAT(PMTYPE, mapdev_attr)(vm_paddr_t pa, vm_size_t size, int mode)
5385 {
5386 	struct pmap_preinit_mapping *ppim;
5387 	vm_offset_t va, offset;
5388 	vm_size_t tmpsize;
5389 	int i;
5390 
5391 	offset = pa & PAGE_MASK;
5392 	size = round_page(offset + size);
5393 	pa = pa & PG_FRAME;
5394 
5395 	if (pa < PMAP_MAP_LOW && pa + size <= PMAP_MAP_LOW)
5396 		va = pa + PMAP_MAP_LOW;
5397 	else if (!pmap_initialized) {
5398 		va = 0;
5399 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5400 			ppim = pmap_preinit_mapping + i;
5401 			if (ppim->va == 0) {
5402 				ppim->pa = pa;
5403 				ppim->sz = size;
5404 				ppim->mode = mode;
5405 				ppim->va = virtual_avail;
5406 				virtual_avail += size;
5407 				va = ppim->va;
5408 				break;
5409 			}
5410 		}
5411 		if (va == 0)
5412 			panic("%s: too many preinit mappings", __func__);
5413 	} else {
5414 		/*
5415 		 * If we have a preinit mapping, re-use it.
5416 		 */
5417 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5418 			ppim = pmap_preinit_mapping + i;
5419 			if (ppim->pa == pa && ppim->sz == size &&
5420 			    ppim->mode == mode)
5421 				return ((void *)(ppim->va + offset));
5422 		}
5423 		va = kva_alloc(size);
5424 		if (va == 0)
5425 			panic("%s: Couldn't allocate KVA", __func__);
5426 	}
5427 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
5428 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
5429 	pmap_invalidate_range_int(kernel_pmap, va, va + tmpsize);
5430 	pmap_invalidate_cache_range(va, va + size);
5431 	return ((void *)(va + offset));
5432 }
5433 
5434 static void
5435 __CONCAT(PMTYPE, unmapdev)(vm_offset_t va, vm_size_t size)
5436 {
5437 	struct pmap_preinit_mapping *ppim;
5438 	vm_offset_t offset;
5439 	int i;
5440 
5441 	if (va >= PMAP_MAP_LOW && va <= KERNBASE && va + size <= KERNBASE)
5442 		return;
5443 	offset = va & PAGE_MASK;
5444 	size = round_page(offset + size);
5445 	va = trunc_page(va);
5446 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5447 		ppim = pmap_preinit_mapping + i;
5448 		if (ppim->va == va && ppim->sz == size) {
5449 			if (pmap_initialized)
5450 				return;
5451 			ppim->pa = 0;
5452 			ppim->va = 0;
5453 			ppim->sz = 0;
5454 			ppim->mode = 0;
5455 			if (va + size == virtual_avail)
5456 				virtual_avail = va;
5457 			return;
5458 		}
5459 	}
5460 	if (pmap_initialized)
5461 		kva_free(va, size);
5462 }
5463 
5464 /*
5465  * Sets the memory attribute for the specified page.
5466  */
5467 static void
5468 __CONCAT(PMTYPE, page_set_memattr)(vm_page_t m, vm_memattr_t ma)
5469 {
5470 
5471 	m->md.pat_mode = ma;
5472 	if ((m->flags & PG_FICTITIOUS) != 0)
5473 		return;
5474 
5475 	/*
5476 	 * If "m" is a normal page, flush it from the cache.
5477 	 * See pmap_invalidate_cache_range().
5478 	 *
5479 	 * First, try to find an existing mapping of the page by sf
5480 	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5481 	 * flushes the cache.
5482 	 */
5483 	if (sf_buf_invalidate_cache(m))
5484 		return;
5485 
5486 	/*
5487 	 * If page is not mapped by sf buffer, but CPU does not
5488 	 * support self snoop, map the page transient and do
5489 	 * invalidation. In the worst case, whole cache is flushed by
5490 	 * pmap_invalidate_cache_range().
5491 	 */
5492 	if ((cpu_feature & CPUID_SS) == 0)
5493 		pmap_flush_page(m);
5494 }
5495 
5496 static void
5497 __CONCAT(PMTYPE, flush_page)(vm_page_t m)
5498 {
5499 	pt_entry_t *cmap_pte2;
5500 	struct pcpu *pc;
5501 	vm_offset_t sva, eva;
5502 	bool useclflushopt;
5503 
5504 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
5505 	if (useclflushopt || (cpu_feature & CPUID_CLFSH) != 0) {
5506 		sched_pin();
5507 		pc = get_pcpu();
5508 		cmap_pte2 = pc->pc_cmap_pte2;
5509 		mtx_lock(&pc->pc_cmap_lock);
5510 		if (*cmap_pte2)
5511 			panic("pmap_flush_page: CMAP2 busy");
5512 		*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
5513 		    PG_A | PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode,
5514 		    0);
5515 		invlcaddr(pc->pc_cmap_addr2);
5516 		sva = (vm_offset_t)pc->pc_cmap_addr2;
5517 		eva = sva + PAGE_SIZE;
5518 
5519 		/*
5520 		 * Use mfence or sfence despite the ordering implied by
5521 		 * mtx_{un,}lock() because clflush on non-Intel CPUs
5522 		 * and clflushopt are not guaranteed to be ordered by
5523 		 * any other instruction.
5524 		 */
5525 		if (useclflushopt)
5526 			sfence();
5527 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5528 			mfence();
5529 		for (; sva < eva; sva += cpu_clflush_line_size) {
5530 			if (useclflushopt)
5531 				clflushopt(sva);
5532 			else
5533 				clflush(sva);
5534 		}
5535 		if (useclflushopt)
5536 			sfence();
5537 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5538 			mfence();
5539 		*cmap_pte2 = 0;
5540 		sched_unpin();
5541 		mtx_unlock(&pc->pc_cmap_lock);
5542 	} else
5543 		pmap_invalidate_cache();
5544 }
5545 
5546 /*
5547  * Changes the specified virtual address range's memory type to that given by
5548  * the parameter "mode".  The specified virtual address range must be
5549  * completely contained within either the kernel map.
5550  *
5551  * Returns zero if the change completed successfully, and either EINVAL or
5552  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5553  * of the virtual address range was not mapped, and ENOMEM is returned if
5554  * there was insufficient memory available to complete the change.
5555  */
5556 static int
5557 __CONCAT(PMTYPE, change_attr)(vm_offset_t va, vm_size_t size, int mode)
5558 {
5559 	vm_offset_t base, offset, tmpva;
5560 	pd_entry_t *pde;
5561 	pt_entry_t *pte;
5562 	int cache_bits_pte, cache_bits_pde;
5563 	boolean_t changed;
5564 
5565 	base = trunc_page(va);
5566 	offset = va & PAGE_MASK;
5567 	size = round_page(offset + size);
5568 
5569 	/*
5570 	 * Only supported on kernel virtual addresses above the recursive map.
5571 	 */
5572 	if (base < VM_MIN_KERNEL_ADDRESS)
5573 		return (EINVAL);
5574 
5575 	cache_bits_pde = pmap_cache_bits(kernel_pmap, mode, 1);
5576 	cache_bits_pte = pmap_cache_bits(kernel_pmap, mode, 0);
5577 	changed = FALSE;
5578 
5579 	/*
5580 	 * Pages that aren't mapped aren't supported.  Also break down
5581 	 * 2/4MB pages into 4KB pages if required.
5582 	 */
5583 	PMAP_LOCK(kernel_pmap);
5584 	for (tmpva = base; tmpva < base + size; ) {
5585 		pde = pmap_pde(kernel_pmap, tmpva);
5586 		if (*pde == 0) {
5587 			PMAP_UNLOCK(kernel_pmap);
5588 			return (EINVAL);
5589 		}
5590 		if (*pde & PG_PS) {
5591 			/*
5592 			 * If the current 2/4MB page already has
5593 			 * the required memory type, then we need not
5594 			 * demote this page.  Just increment tmpva to
5595 			 * the next 2/4MB page frame.
5596 			 */
5597 			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
5598 				tmpva = trunc_4mpage(tmpva) + NBPDR;
5599 				continue;
5600 			}
5601 
5602 			/*
5603 			 * If the current offset aligns with a 2/4MB
5604 			 * page frame and there is at least 2/4MB left
5605 			 * within the range, then we need not break
5606 			 * down this page into 4KB pages.
5607 			 */
5608 			if ((tmpva & PDRMASK) == 0 &&
5609 			    tmpva + PDRMASK < base + size) {
5610 				tmpva += NBPDR;
5611 				continue;
5612 			}
5613 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
5614 				PMAP_UNLOCK(kernel_pmap);
5615 				return (ENOMEM);
5616 			}
5617 		}
5618 		pte = vtopte(tmpva);
5619 		if (*pte == 0) {
5620 			PMAP_UNLOCK(kernel_pmap);
5621 			return (EINVAL);
5622 		}
5623 		tmpva += PAGE_SIZE;
5624 	}
5625 	PMAP_UNLOCK(kernel_pmap);
5626 
5627 	/*
5628 	 * Ok, all the pages exist, so run through them updating their
5629 	 * cache mode if required.
5630 	 */
5631 	for (tmpva = base; tmpva < base + size; ) {
5632 		pde = pmap_pde(kernel_pmap, tmpva);
5633 		if (*pde & PG_PS) {
5634 			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
5635 				pmap_pde_attr(pde, cache_bits_pde);
5636 				changed = TRUE;
5637 			}
5638 			tmpva = trunc_4mpage(tmpva) + NBPDR;
5639 		} else {
5640 			pte = vtopte(tmpva);
5641 			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
5642 				pmap_pte_attr(pte, cache_bits_pte);
5643 				changed = TRUE;
5644 			}
5645 			tmpva += PAGE_SIZE;
5646 		}
5647 	}
5648 
5649 	/*
5650 	 * Flush CPU caches to make sure any data isn't cached that
5651 	 * shouldn't be, etc.
5652 	 */
5653 	if (changed) {
5654 		pmap_invalidate_range_int(kernel_pmap, base, tmpva);
5655 		pmap_invalidate_cache_range(base, tmpva);
5656 	}
5657 	return (0);
5658 }
5659 
5660 /*
5661  * perform the pmap work for mincore
5662  */
5663 static int
5664 __CONCAT(PMTYPE, mincore)(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5665 {
5666 	pd_entry_t pde;
5667 	pt_entry_t pte;
5668 	vm_paddr_t pa;
5669 	int val;
5670 
5671 	PMAP_LOCK(pmap);
5672 retry:
5673 	pde = *pmap_pde(pmap, addr);
5674 	if (pde != 0) {
5675 		if ((pde & PG_PS) != 0) {
5676 			pte = pde;
5677 			/* Compute the physical address of the 4KB page. */
5678 			pa = ((pde & PG_PS_FRAME) | (addr & PDRMASK)) &
5679 			    PG_FRAME;
5680 			val = MINCORE_SUPER;
5681 		} else {
5682 			pte = pmap_pte_ufast(pmap, addr, pde);
5683 			pa = pte & PG_FRAME;
5684 			val = 0;
5685 		}
5686 	} else {
5687 		pte = 0;
5688 		pa = 0;
5689 		val = 0;
5690 	}
5691 	if ((pte & PG_V) != 0) {
5692 		val |= MINCORE_INCORE;
5693 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5694 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5695 		if ((pte & PG_A) != 0)
5696 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5697 	}
5698 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5699 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5700 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5701 		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
5702 		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
5703 			goto retry;
5704 	} else
5705 		PA_UNLOCK_COND(*locked_pa);
5706 	PMAP_UNLOCK(pmap);
5707 	return (val);
5708 }
5709 
5710 static void
5711 __CONCAT(PMTYPE, activate)(struct thread *td)
5712 {
5713 	pmap_t	pmap, oldpmap;
5714 	u_int	cpuid;
5715 	u_int32_t  cr3;
5716 
5717 	critical_enter();
5718 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5719 	oldpmap = PCPU_GET(curpmap);
5720 	cpuid = PCPU_GET(cpuid);
5721 #if defined(SMP)
5722 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
5723 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5724 #else
5725 	CPU_CLR(cpuid, &oldpmap->pm_active);
5726 	CPU_SET(cpuid, &pmap->pm_active);
5727 #endif
5728 #ifdef PMAP_PAE_COMP
5729 	cr3 = vtophys(pmap->pm_pdpt);
5730 #else
5731 	cr3 = vtophys(pmap->pm_pdir);
5732 #endif
5733 	/*
5734 	 * pmap_activate is for the current thread on the current cpu
5735 	 */
5736 	td->td_pcb->pcb_cr3 = cr3;
5737 	PCPU_SET(curpmap, pmap);
5738 	critical_exit();
5739 }
5740 
5741 static void
5742 __CONCAT(PMTYPE, activate_boot)(pmap_t pmap)
5743 {
5744 	u_int cpuid;
5745 
5746 	cpuid = PCPU_GET(cpuid);
5747 #if defined(SMP)
5748 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5749 #else
5750 	CPU_SET(cpuid, &pmap->pm_active);
5751 #endif
5752 	PCPU_SET(curpmap, pmap);
5753 }
5754 
5755 /*
5756  *	Increase the starting virtual address of the given mapping if a
5757  *	different alignment might result in more superpage mappings.
5758  */
5759 static void
5760 __CONCAT(PMTYPE, align_superpage)(vm_object_t object, vm_ooffset_t offset,
5761     vm_offset_t *addr, vm_size_t size)
5762 {
5763 	vm_offset_t superpage_offset;
5764 
5765 	if (size < NBPDR)
5766 		return;
5767 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5768 		offset += ptoa(object->pg_color);
5769 	superpage_offset = offset & PDRMASK;
5770 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5771 	    (*addr & PDRMASK) == superpage_offset)
5772 		return;
5773 	if ((*addr & PDRMASK) < superpage_offset)
5774 		*addr = (*addr & ~PDRMASK) + superpage_offset;
5775 	else
5776 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5777 }
5778 
5779 static vm_offset_t
5780 __CONCAT(PMTYPE, quick_enter_page)(vm_page_t m)
5781 {
5782 	vm_offset_t qaddr;
5783 	pt_entry_t *pte;
5784 
5785 	critical_enter();
5786 	qaddr = PCPU_GET(qmap_addr);
5787 	pte = vtopte(qaddr);
5788 
5789 	KASSERT(*pte == 0,
5790 	    ("pmap_quick_enter_page: PTE busy %#jx", (uintmax_t)*pte));
5791 	*pte = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
5792 	    pmap_cache_bits(kernel_pmap, pmap_page_get_memattr(m), 0);
5793 	invlpg(qaddr);
5794 
5795 	return (qaddr);
5796 }
5797 
5798 static void
5799 __CONCAT(PMTYPE, quick_remove_page)(vm_offset_t addr)
5800 {
5801 	vm_offset_t qaddr;
5802 	pt_entry_t *pte;
5803 
5804 	qaddr = PCPU_GET(qmap_addr);
5805 	pte = vtopte(qaddr);
5806 
5807 	KASSERT(*pte != 0, ("pmap_quick_remove_page: PTE not in use"));
5808 	KASSERT(addr == qaddr, ("pmap_quick_remove_page: invalid address"));
5809 
5810 	*pte = 0;
5811 	critical_exit();
5812 }
5813 
5814 static vmem_t *pmap_trm_arena;
5815 static vmem_addr_t pmap_trm_arena_last = PMAP_TRM_MIN_ADDRESS;
5816 static int trm_guard = PAGE_SIZE;
5817 
5818 static int
5819 pmap_trm_import(void *unused __unused, vmem_size_t size, int flags,
5820     vmem_addr_t *addrp)
5821 {
5822 	vm_page_t m;
5823 	vmem_addr_t af, addr, prev_addr;
5824 	pt_entry_t *trm_pte;
5825 
5826 	prev_addr = atomic_load_long(&pmap_trm_arena_last);
5827 	size = round_page(size) + trm_guard;
5828 	for (;;) {
5829 		if (prev_addr + size < prev_addr || prev_addr + size < size ||
5830 		    prev_addr + size > PMAP_TRM_MAX_ADDRESS)
5831 			return (ENOMEM);
5832 		addr = prev_addr + size;
5833 		if (atomic_fcmpset_int(&pmap_trm_arena_last, &prev_addr, addr))
5834 			break;
5835 	}
5836 	prev_addr += trm_guard;
5837 	trm_pte = PTmap + atop(prev_addr);
5838 	for (af = prev_addr; af < addr; af += PAGE_SIZE) {
5839 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_NOBUSY |
5840 		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
5841 		pte_store(&trm_pte[atop(af - prev_addr)], VM_PAGE_TO_PHYS(m) |
5842 		    PG_M | PG_A | PG_RW | PG_V | pgeflag |
5843 		    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE));
5844 	}
5845 	*addrp = prev_addr;
5846 	return (0);
5847 }
5848 
5849 void
5850 pmap_init_trm(void)
5851 {
5852 	vm_page_t pd_m;
5853 
5854 	TUNABLE_INT_FETCH("machdep.trm_guard", &trm_guard);
5855 	if ((trm_guard & PAGE_MASK) != 0)
5856 		trm_guard = 0;
5857 	pmap_trm_arena = vmem_create("i386trampoline", 0, 0, 1, 0, M_WAITOK);
5858 	vmem_set_import(pmap_trm_arena, pmap_trm_import, NULL, NULL, PAGE_SIZE);
5859 	pd_m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_NOBUSY |
5860 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_WAITOK | VM_ALLOC_ZERO);
5861 	if ((pd_m->flags & PG_ZERO) == 0)
5862 		pmap_zero_page(pd_m);
5863 	PTD[TRPTDI] = VM_PAGE_TO_PHYS(pd_m) | PG_M | PG_A | PG_RW | PG_V |
5864 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, TRUE);
5865 }
5866 
5867 static void *
5868 __CONCAT(PMTYPE, trm_alloc)(size_t size, int flags)
5869 {
5870 	vmem_addr_t res;
5871 	int error;
5872 
5873 	MPASS((flags & ~(M_WAITOK | M_NOWAIT | M_ZERO)) == 0);
5874 	error = vmem_xalloc(pmap_trm_arena, roundup2(size, 4), sizeof(int),
5875 	    0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags | M_FIRSTFIT, &res);
5876 	if (error != 0)
5877 		return (NULL);
5878 	if ((flags & M_ZERO) != 0)
5879 		bzero((void *)res, size);
5880 	return ((void *)res);
5881 }
5882 
5883 static void
5884 __CONCAT(PMTYPE, trm_free)(void *addr, size_t size)
5885 {
5886 
5887 	vmem_free(pmap_trm_arena, (uintptr_t)addr, roundup2(size, 4));
5888 }
5889 
5890 #if defined(PMAP_DEBUG)
5891 pmap_pid_dump(int pid)
5892 {
5893 	pmap_t pmap;
5894 	struct proc *p;
5895 	int npte = 0;
5896 	int index;
5897 
5898 	sx_slock(&allproc_lock);
5899 	FOREACH_PROC_IN_SYSTEM(p) {
5900 		if (p->p_pid != pid)
5901 			continue;
5902 
5903 		if (p->p_vmspace) {
5904 			int i,j;
5905 			index = 0;
5906 			pmap = vmspace_pmap(p->p_vmspace);
5907 			for (i = 0; i < NPDEPTD; i++) {
5908 				pd_entry_t *pde;
5909 				pt_entry_t *pte;
5910 				vm_offset_t base = i << PDRSHIFT;
5911 
5912 				pde = &pmap->pm_pdir[i];
5913 				if (pde && pmap_pde_v(pde)) {
5914 					for (j = 0; j < NPTEPG; j++) {
5915 						vm_offset_t va = base + (j << PAGE_SHIFT);
5916 						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
5917 							if (index) {
5918 								index = 0;
5919 								printf("\n");
5920 							}
5921 							sx_sunlock(&allproc_lock);
5922 							return (npte);
5923 						}
5924 						pte = pmap_pte(pmap, va);
5925 						if (pte && pmap_pte_v(pte)) {
5926 							pt_entry_t pa;
5927 							vm_page_t m;
5928 							pa = *pte;
5929 							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
5930 							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
5931 								va, pa, m->hold_count, m->wire_count, m->flags);
5932 							npte++;
5933 							index++;
5934 							if (index >= 2) {
5935 								index = 0;
5936 								printf("\n");
5937 							} else {
5938 								printf(" ");
5939 							}
5940 						}
5941 					}
5942 				}
5943 			}
5944 		}
5945 	}
5946 	sx_sunlock(&allproc_lock);
5947 	return (npte);
5948 }
5949 #endif
5950 
5951 static void
5952 __CONCAT(PMTYPE, ksetrw)(vm_offset_t va)
5953 {
5954 
5955 	*vtopte(va) |= PG_RW;
5956 }
5957 
5958 static void
5959 __CONCAT(PMTYPE, remap_lowptdi)(bool enable)
5960 {
5961 
5962 	PTD[KPTDI] = enable ? PTD[LOWPTDI] : 0;
5963 	invltlb_glob();
5964 }
5965 
5966 static vm_offset_t
5967 __CONCAT(PMTYPE, get_map_low)(void)
5968 {
5969 
5970 	return (PMAP_MAP_LOW);
5971 }
5972 
5973 static vm_offset_t
5974 __CONCAT(PMTYPE, get_vm_maxuser_address)(void)
5975 {
5976 
5977 	return (VM_MAXUSER_ADDRESS);
5978 }
5979 
5980 static vm_paddr_t
5981 __CONCAT(PMTYPE, pg_frame)(vm_paddr_t pa)
5982 {
5983 
5984 	return (pa & PG_FRAME);
5985 }
5986 
5987 static void
5988 __CONCAT(PMTYPE, sf_buf_map)(struct sf_buf *sf)
5989 {
5990 	pt_entry_t opte, *ptep;
5991 
5992 	/*
5993 	 * Update the sf_buf's virtual-to-physical mapping, flushing the
5994 	 * virtual address from the TLB.  Since the reference count for
5995 	 * the sf_buf's old mapping was zero, that mapping is not
5996 	 * currently in use.  Consequently, there is no need to exchange
5997 	 * the old and new PTEs atomically, even under PAE.
5998 	 */
5999 	ptep = vtopte(sf->kva);
6000 	opte = *ptep;
6001 	*ptep = VM_PAGE_TO_PHYS(sf->m) | PG_RW | PG_V |
6002 	    pmap_cache_bits(kernel_pmap, sf->m->md.pat_mode, 0);
6003 
6004 	/*
6005 	 * Avoid unnecessary TLB invalidations: If the sf_buf's old
6006 	 * virtual-to-physical mapping was not used, then any processor
6007 	 * that has invalidated the sf_buf's virtual address from its TLB
6008 	 * since the last used mapping need not invalidate again.
6009 	 */
6010 #ifdef SMP
6011 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
6012 		CPU_ZERO(&sf->cpumask);
6013 #else
6014 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
6015 		pmap_invalidate_page_int(kernel_pmap, sf->kva);
6016 #endif
6017 }
6018 
6019 static void
6020 __CONCAT(PMTYPE, cp_slow0_map)(vm_offset_t kaddr, int plen, vm_page_t *ma)
6021 {
6022 	pt_entry_t *pte;
6023 	int i;
6024 
6025 	for (i = 0, pte = vtopte(kaddr); i < plen; i++, pte++) {
6026 		*pte = PG_V | PG_RW | PG_A | PG_M | VM_PAGE_TO_PHYS(ma[i]) |
6027 		    pmap_cache_bits(kernel_pmap, pmap_page_get_memattr(ma[i]),
6028 		    FALSE);
6029 		invlpg(kaddr + ptoa(i));
6030 	}
6031 }
6032 
6033 static u_int
6034 __CONCAT(PMTYPE, get_kcr3)(void)
6035 {
6036 
6037 #ifdef PMAP_PAE_COMP
6038 	return ((u_int)IdlePDPT);
6039 #else
6040 	return ((u_int)IdlePTD);
6041 #endif
6042 }
6043 
6044 static u_int
6045 __CONCAT(PMTYPE, get_cr3)(pmap_t pmap)
6046 {
6047 
6048 #ifdef PMAP_PAE_COMP
6049 	return ((u_int)vtophys(pmap->pm_pdpt));
6050 #else
6051 	return ((u_int)vtophys(pmap->pm_pdir));
6052 #endif
6053 }
6054 
6055 static caddr_t
6056 __CONCAT(PMTYPE, cmap3)(vm_paddr_t pa, u_int pte_bits)
6057 {
6058 	pt_entry_t *pte;
6059 
6060 	pte = CMAP3;
6061 	*pte = pa | pte_bits;
6062 	invltlb();
6063 	return (CADDR3);
6064 }
6065 
6066 static void
6067 __CONCAT(PMTYPE, basemem_setup)(u_int basemem)
6068 {
6069 	pt_entry_t *pte;
6070 	int i;
6071 
6072 	/*
6073 	 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
6074 	 * the vm86 page table so that vm86 can scribble on them using
6075 	 * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
6076 	 * page 0, at least as initialized here?
6077 	 */
6078 	pte = (pt_entry_t *)vm86paddr;
6079 	for (i = basemem / 4; i < 160; i++)
6080 		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
6081 }
6082 
6083 struct bios16_pmap_handle {
6084 	pt_entry_t	*pte;
6085 	pd_entry_t	*ptd;
6086 	pt_entry_t	orig_ptd;
6087 };
6088 
6089 static void *
6090 __CONCAT(PMTYPE, bios16_enter)(void)
6091 {
6092 	struct bios16_pmap_handle *h;
6093 
6094 	/*
6095 	 * no page table, so create one and install it.
6096 	 */
6097 	h = malloc(sizeof(struct bios16_pmap_handle), M_TEMP, M_WAITOK);
6098 	h->pte = (pt_entry_t *)malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
6099 	h->ptd = IdlePTD;
6100 	*h->pte = vm86phystk | PG_RW | PG_V;
6101 	h->orig_ptd = *h->ptd;
6102 	*h->ptd = vtophys(h->pte) | PG_RW | PG_V;
6103 	pmap_invalidate_all_int(kernel_pmap);	/* XXX insurance for now */
6104 	return (h);
6105 }
6106 
6107 static void
6108 __CONCAT(PMTYPE, bios16_leave)(void *arg)
6109 {
6110 	struct bios16_pmap_handle *h;
6111 
6112 	h = arg;
6113 	*h->ptd = h->orig_ptd;		/* remove page table */
6114 	/*
6115 	 * XXX only needs to be invlpg(0) but that doesn't work on the 386
6116 	 */
6117 	pmap_invalidate_all_int(kernel_pmap);
6118 	free(h->pte, M_TEMP);		/* ... and free it */
6119 }
6120 
6121 #define	PMM(a)	\
6122 	.pm_##a = __CONCAT(PMTYPE, a),
6123 
6124 struct pmap_methods __CONCAT(PMTYPE, methods) = {
6125 	PMM(ksetrw)
6126 	PMM(remap_lower)
6127 	PMM(remap_lowptdi)
6128 	PMM(align_superpage)
6129 	PMM(quick_enter_page)
6130 	PMM(quick_remove_page)
6131 	PMM(trm_alloc)
6132 	PMM(trm_free)
6133 	PMM(get_map_low)
6134 	PMM(get_vm_maxuser_address)
6135 	PMM(kextract)
6136 	PMM(pg_frame)
6137 	PMM(sf_buf_map)
6138 	PMM(cp_slow0_map)
6139 	PMM(get_kcr3)
6140 	PMM(get_cr3)
6141 	PMM(cmap3)
6142 	PMM(basemem_setup)
6143 	PMM(set_nx)
6144 	PMM(bios16_enter)
6145 	PMM(bios16_leave)
6146 	PMM(bootstrap)
6147 	PMM(is_valid_memattr)
6148 	PMM(cache_bits)
6149 	PMM(ps_enabled)
6150 	PMM(pinit0)
6151 	PMM(pinit)
6152 	PMM(activate)
6153 	PMM(activate_boot)
6154 	PMM(advise)
6155 	PMM(clear_modify)
6156 	PMM(change_attr)
6157 	PMM(mincore)
6158 	PMM(copy)
6159 	PMM(copy_page)
6160 	PMM(copy_pages)
6161 	PMM(zero_page)
6162 	PMM(zero_page_area)
6163 	PMM(enter)
6164 	PMM(enter_object)
6165 	PMM(enter_quick)
6166 	PMM(kenter_temporary)
6167 	PMM(object_init_pt)
6168 	PMM(unwire)
6169 	PMM(page_exists_quick)
6170 	PMM(page_wired_mappings)
6171 	PMM(page_is_mapped)
6172 	PMM(remove_pages)
6173 	PMM(is_modified)
6174 	PMM(is_prefaultable)
6175 	PMM(is_referenced)
6176 	PMM(remove_write)
6177 	PMM(ts_referenced)
6178 	PMM(mapdev_attr)
6179 	PMM(unmapdev)
6180 	PMM(page_set_memattr)
6181 	PMM(extract)
6182 	PMM(extract_and_hold)
6183 	PMM(map)
6184 	PMM(qenter)
6185 	PMM(qremove)
6186 	PMM(release)
6187 	PMM(remove)
6188 	PMM(protect)
6189 	PMM(remove_all)
6190 	PMM(init)
6191 	PMM(init_pat)
6192 	PMM(growkernel)
6193 	PMM(invalidate_page)
6194 	PMM(invalidate_range)
6195 	PMM(invalidate_all)
6196 	PMM(invalidate_cache)
6197 	PMM(flush_page)
6198 	PMM(kenter)
6199 	PMM(kremove)
6200 };
6201