xref: /freebsd/sys/i386/i386/pmap.c (revision 6419bb52)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * the Systems Programming Group of the University of Utah Computer
15  * Science Department and William Jolitz of UUNET Technologies Inc.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46  */
47 /*-
48  * Copyright (c) 2003 Networks Associates Technology, Inc.
49  * All rights reserved.
50  * Copyright (c) 2018 The FreeBSD Foundation
51  * All rights reserved.
52  *
53  * This software was developed for the FreeBSD Project by Jake Burkholder,
54  * Safeport Network Services, and Network Associates Laboratories, the
55  * Security Research Division of Network Associates, Inc. under
56  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
57  * CHATS research program.
58  *
59  * Portions of this software were developed by
60  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
61  * the FreeBSD Foundation.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  * 1. Redistributions of source code must retain the above copyright
67  *    notice, this list of conditions and the following disclaimer.
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in the
70  *    documentation and/or other materials provided with the distribution.
71  *
72  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
73  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
74  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
75  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
76  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
77  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
78  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
80  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
81  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
82  * SUCH DAMAGE.
83  */
84 
85 #include <sys/cdefs.h>
86 __FBSDID("$FreeBSD$");
87 
88 /*
89  *	Manages physical address maps.
90  *
91  *	Since the information managed by this module is
92  *	also stored by the logical address mapping module,
93  *	this module may throw away valid virtual-to-physical
94  *	mappings at almost any time.  However, invalidations
95  *	of virtual-to-physical mappings must be done as
96  *	requested.
97  *
98  *	In order to cope with hardware architectures which
99  *	make virtual-to-physical map invalidates expensive,
100  *	this module may delay invalidate or reduced protection
101  *	operations until such time as they are actually
102  *	necessary.  This module is given full information as
103  *	to which processors are currently using which maps,
104  *	and to when physical maps must be made correct.
105  */
106 
107 #include "opt_apic.h"
108 #include "opt_cpu.h"
109 #include "opt_pmap.h"
110 #include "opt_smp.h"
111 #include "opt_vm.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/kernel.h>
116 #include <sys/ktr.h>
117 #include <sys/lock.h>
118 #include <sys/malloc.h>
119 #include <sys/mman.h>
120 #include <sys/msgbuf.h>
121 #include <sys/mutex.h>
122 #include <sys/proc.h>
123 #include <sys/rwlock.h>
124 #include <sys/sbuf.h>
125 #include <sys/sf_buf.h>
126 #include <sys/sx.h>
127 #include <sys/vmmeter.h>
128 #include <sys/sched.h>
129 #include <sys/sysctl.h>
130 #include <sys/smp.h>
131 #include <sys/vmem.h>
132 
133 #include <vm/vm.h>
134 #include <vm/vm_param.h>
135 #include <vm/vm_kern.h>
136 #include <vm/vm_page.h>
137 #include <vm/vm_map.h>
138 #include <vm/vm_object.h>
139 #include <vm/vm_extern.h>
140 #include <vm/vm_pageout.h>
141 #include <vm/vm_pager.h>
142 #include <vm/vm_phys.h>
143 #include <vm/vm_radix.h>
144 #include <vm/vm_reserv.h>
145 #include <vm/uma.h>
146 
147 #ifdef DEV_APIC
148 #include <sys/bus.h>
149 #include <machine/intr_machdep.h>
150 #include <x86/apicvar.h>
151 #endif
152 #include <x86/ifunc.h>
153 #include <machine/bootinfo.h>
154 #include <machine/cpu.h>
155 #include <machine/cputypes.h>
156 #include <machine/md_var.h>
157 #include <machine/pcb.h>
158 #include <machine/specialreg.h>
159 #ifdef SMP
160 #include <machine/smp.h>
161 #endif
162 #include <machine/pmap_base.h>
163 
164 #if !defined(DIAGNOSTIC)
165 #ifdef __GNUC_GNU_INLINE__
166 #define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
167 #else
168 #define PMAP_INLINE	extern inline
169 #endif
170 #else
171 #define PMAP_INLINE
172 #endif
173 
174 #ifdef PV_STATS
175 #define PV_STAT(x)	do { x ; } while (0)
176 #else
177 #define PV_STAT(x)	do { } while (0)
178 #endif
179 
180 #define	pa_index(pa)	((pa) >> PDRSHIFT)
181 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
182 
183 /*
184  * PTmap is recursive pagemap at top of virtual address space.
185  * Within PTmap, the page directory can be found (third indirection).
186  */
187 #define	PTmap	((pt_entry_t *)(PTDPTDI << PDRSHIFT))
188 #define	PTD	((pd_entry_t *)((PTDPTDI << PDRSHIFT) + (PTDPTDI * PAGE_SIZE)))
189 #define	PTDpde	((pd_entry_t *)((PTDPTDI << PDRSHIFT) + (PTDPTDI * PAGE_SIZE) + \
190     (PTDPTDI * PDESIZE)))
191 
192 /*
193  * Translate a virtual address to the kernel virtual address of its page table
194  * entry (PTE).  This can be used recursively.  If the address of a PTE as
195  * previously returned by this macro is itself given as the argument, then the
196  * address of the page directory entry (PDE) that maps the PTE will be
197  * returned.
198  *
199  * This macro may be used before pmap_bootstrap() is called.
200  */
201 #define	vtopte(va)	(PTmap + i386_btop(va))
202 
203 /*
204  * Get PDEs and PTEs for user/kernel address space
205  */
206 #define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
207 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
208 
209 #define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
210 #define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
211 #define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
212 #define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
213 #define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
214 
215 #define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
216     atomic_clear_int((u_int *)(pte), PG_W))
217 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
218 
219 static int pgeflag = 0;		/* PG_G or-in */
220 static int pseflag = 0;		/* PG_PS or-in */
221 
222 static int nkpt = NKPT;
223 
224 #ifdef PMAP_PAE_COMP
225 pt_entry_t pg_nx;
226 static uma_zone_t pdptzone;
227 #else
228 #define	pg_nx	0
229 #endif
230 
231 _Static_assert(VM_MAXUSER_ADDRESS == VADDR(TRPTDI, 0), "VM_MAXUSER_ADDRESS");
232 _Static_assert(VM_MAX_KERNEL_ADDRESS <= VADDR(PTDPTDI, 0),
233     "VM_MAX_KERNEL_ADDRESS");
234 _Static_assert(PMAP_MAP_LOW == VADDR(LOWPTDI, 0), "PMAP_MAP_LOW");
235 _Static_assert(KERNLOAD == (KERNPTDI << PDRSHIFT), "KERNLOAD");
236 
237 extern int pat_works;
238 extern int pg_ps_enabled;
239 
240 extern int elf32_nxstack;
241 
242 #define	PAT_INDEX_SIZE	8
243 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
244 
245 /*
246  * pmap_mapdev support pre initialization (i.e. console)
247  */
248 #define	PMAP_PREINIT_MAPPING_COUNT	8
249 static struct pmap_preinit_mapping {
250 	vm_paddr_t	pa;
251 	vm_offset_t	va;
252 	vm_size_t	sz;
253 	int		mode;
254 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
255 static int pmap_initialized;
256 
257 static struct rwlock_padalign pvh_global_lock;
258 
259 /*
260  * Data for the pv entry allocation mechanism
261  */
262 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
263 extern int pv_entry_max, pv_entry_count;
264 static int pv_entry_high_water = 0;
265 static struct md_page *pv_table;
266 extern int shpgperproc;
267 
268 static struct pv_chunk *pv_chunkbase;	/* KVA block for pv_chunks */
269 static int pv_maxchunks;		/* How many chunks we have KVA for */
270 static vm_offset_t pv_vafree;		/* freelist stored in the PTE */
271 
272 /*
273  * All those kernel PT submaps that BSD is so fond of
274  */
275 static pt_entry_t *CMAP3;
276 static pd_entry_t *KPTD;
277 static caddr_t CADDR3;
278 
279 /*
280  * Crashdump maps.
281  */
282 static caddr_t crashdumpmap;
283 
284 static pt_entry_t *PMAP1 = NULL, *PMAP2, *PMAP3;
285 static pt_entry_t *PADDR1 = NULL, *PADDR2, *PADDR3;
286 #ifdef SMP
287 static int PMAP1cpu, PMAP3cpu;
288 extern int PMAP1changedcpu;
289 #endif
290 extern int PMAP1changed;
291 extern int PMAP1unchanged;
292 static struct mtx PMAP2mutex;
293 
294 /*
295  * Internal flags for pmap_enter()'s helper functions.
296  */
297 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
298 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
299 
300 static void	free_pv_chunk(struct pv_chunk *pc);
301 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
302 static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
303 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
304 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
305 		    u_int flags);
306 #if VM_NRESERVLEVEL > 0
307 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
308 #endif
309 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
310 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
311 		    vm_offset_t va);
312 static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
313 
314 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
315 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
316 static bool	pmap_enter_4mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
317 		    vm_prot_t prot);
318 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
319 		    u_int flags, vm_page_t m);
320 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
321     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
322 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted);
323 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
324 		    pd_entry_t pde);
325 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
326 static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
327 static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
328 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
329 static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
330 static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
331 #if VM_NRESERVLEVEL > 0
332 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
333 #endif
334 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
335     vm_prot_t prot);
336 static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
337 static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
338     struct spglist *free);
339 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
340     struct spglist *free);
341 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
342 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free);
343 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
344 		    struct spglist *free);
345 static void pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va);
346 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
347 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
348     vm_page_t m);
349 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
350     pd_entry_t newpde);
351 static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
352 
353 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
354 
355 static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
356 static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
357 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
358 static void pmap_pte_release(pt_entry_t *pte);
359 static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
360 #ifdef PMAP_PAE_COMP
361 static void *pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain,
362     uint8_t *flags, int wait);
363 #endif
364 static void pmap_init_trm(void);
365 static void pmap_invalidate_all_int(pmap_t pmap);
366 
367 static __inline void pagezero(void *page);
368 
369 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
370 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
371 
372 extern char _end[];
373 extern u_long physfree;	/* phys addr of next free page */
374 extern u_long vm86phystk;/* PA of vm86/bios stack */
375 extern u_long vm86paddr;/* address of vm86 region */
376 extern int vm86pa;	/* phys addr of vm86 region */
377 extern u_long KERNend;	/* phys addr end of kernel (just after bss) */
378 #ifdef PMAP_PAE_COMP
379 pd_entry_t *IdlePTD_pae;	/* phys addr of kernel PTD */
380 pdpt_entry_t *IdlePDPT;	/* phys addr of kernel PDPT */
381 pt_entry_t *KPTmap_pae;	/* address of kernel page tables */
382 #define	IdlePTD	IdlePTD_pae
383 #define	KPTmap	KPTmap_pae
384 #else
385 pd_entry_t *IdlePTD_nopae;
386 pt_entry_t *KPTmap_nopae;
387 #define	IdlePTD	IdlePTD_nopae
388 #define	KPTmap	KPTmap_nopae
389 #endif
390 extern u_long KPTphys;	/* phys addr of kernel page tables */
391 extern u_long tramp_idleptd;
392 
393 static u_long
394 allocpages(u_int cnt, u_long *physfree)
395 {
396 	u_long res;
397 
398 	res = *physfree;
399 	*physfree += PAGE_SIZE * cnt;
400 	bzero((void *)res, PAGE_SIZE * cnt);
401 	return (res);
402 }
403 
404 static void
405 pmap_cold_map(u_long pa, u_long va, u_long cnt)
406 {
407 	pt_entry_t *pt;
408 
409 	for (pt = (pt_entry_t *)KPTphys + atop(va); cnt > 0;
410 	    cnt--, pt++, va += PAGE_SIZE, pa += PAGE_SIZE)
411 		*pt = pa | PG_V | PG_RW | PG_A | PG_M;
412 }
413 
414 static void
415 pmap_cold_mapident(u_long pa, u_long cnt)
416 {
417 
418 	pmap_cold_map(pa, pa, cnt);
419 }
420 
421 _Static_assert(LOWPTDI * 2 * NBPDR == KERNBASE,
422     "Broken double-map of zero PTD");
423 
424 static void
425 __CONCAT(PMTYPE, remap_lower)(bool enable)
426 {
427 	int i;
428 
429 	for (i = 0; i < LOWPTDI; i++)
430 		IdlePTD[i] = enable ? IdlePTD[LOWPTDI + i] : 0;
431 	load_cr3(rcr3());		/* invalidate TLB */
432 }
433 
434 /*
435  * Called from locore.s before paging is enabled.  Sets up the first
436  * kernel page table.  Since kernel is mapped with PA == VA, this code
437  * does not require relocations.
438  */
439 void
440 __CONCAT(PMTYPE, cold)(void)
441 {
442 	pt_entry_t *pt;
443 	u_long a;
444 	u_int cr3, ncr4;
445 
446 	physfree = (u_long)&_end;
447 	if (bootinfo.bi_esymtab != 0)
448 		physfree = bootinfo.bi_esymtab;
449 	if (bootinfo.bi_kernend != 0)
450 		physfree = bootinfo.bi_kernend;
451 	physfree = roundup2(physfree, NBPDR);
452 	KERNend = physfree;
453 
454 	/* Allocate Kernel Page Tables */
455 	KPTphys = allocpages(NKPT, &physfree);
456 	KPTmap = (pt_entry_t *)KPTphys;
457 
458 	/* Allocate Page Table Directory */
459 #ifdef PMAP_PAE_COMP
460 	/* XXX only need 32 bytes (easier for now) */
461 	IdlePDPT = (pdpt_entry_t *)allocpages(1, &physfree);
462 #endif
463 	IdlePTD = (pd_entry_t *)allocpages(NPGPTD, &physfree);
464 
465 	/*
466 	 * Allocate KSTACK.  Leave a guard page between IdlePTD and
467 	 * proc0kstack, to control stack overflow for thread0 and
468 	 * prevent corruption of the page table.  We leak the guard
469 	 * physical memory due to 1:1 mappings.
470 	 */
471 	allocpages(1, &physfree);
472 	proc0kstack = allocpages(TD0_KSTACK_PAGES, &physfree);
473 
474 	/* vm86/bios stack */
475 	vm86phystk = allocpages(1, &physfree);
476 
477 	/* pgtable + ext + IOPAGES */
478 	vm86paddr = vm86pa = allocpages(3, &physfree);
479 
480 	/* Install page tables into PTD.  Page table page 1 is wasted. */
481 	for (a = 0; a < NKPT; a++)
482 		IdlePTD[a] = (KPTphys + ptoa(a)) | PG_V | PG_RW | PG_A | PG_M;
483 
484 #ifdef PMAP_PAE_COMP
485 	/* PAE install PTD pointers into PDPT */
486 	for (a = 0; a < NPGPTD; a++)
487 		IdlePDPT[a] = ((u_int)IdlePTD + ptoa(a)) | PG_V;
488 #endif
489 
490 	/*
491 	 * Install recursive mapping for kernel page tables into
492 	 * itself.
493 	 */
494 	for (a = 0; a < NPGPTD; a++)
495 		IdlePTD[PTDPTDI + a] = ((u_int)IdlePTD + ptoa(a)) | PG_V |
496 		    PG_RW;
497 
498 	/*
499 	 * Initialize page table pages mapping physical address zero
500 	 * through the (physical) end of the kernel.  Many of these
501 	 * pages must be reserved, and we reserve them all and map
502 	 * them linearly for convenience.  We do this even if we've
503 	 * enabled PSE above; we'll just switch the corresponding
504 	 * kernel PDEs before we turn on paging.
505 	 *
506 	 * This and all other page table entries allow read and write
507 	 * access for various reasons.  Kernel mappings never have any
508 	 * access restrictions.
509 	 */
510 	pmap_cold_mapident(0, atop(NBPDR) * LOWPTDI);
511 	pmap_cold_map(0, NBPDR * LOWPTDI, atop(NBPDR) * LOWPTDI);
512 	pmap_cold_mapident(KERNBASE, atop(KERNend - KERNBASE));
513 
514 	/* Map page table directory */
515 #ifdef PMAP_PAE_COMP
516 	pmap_cold_mapident((u_long)IdlePDPT, 1);
517 #endif
518 	pmap_cold_mapident((u_long)IdlePTD, NPGPTD);
519 
520 	/* Map early KPTmap.  It is really pmap_cold_mapident. */
521 	pmap_cold_map(KPTphys, (u_long)KPTmap, NKPT);
522 
523 	/* Map proc0kstack */
524 	pmap_cold_mapident(proc0kstack, TD0_KSTACK_PAGES);
525 	/* ISA hole already mapped */
526 
527 	pmap_cold_mapident(vm86phystk, 1);
528 	pmap_cold_mapident(vm86pa, 3);
529 
530 	/* Map page 0 into the vm86 page table */
531 	*(pt_entry_t *)vm86pa = 0 | PG_RW | PG_U | PG_A | PG_M | PG_V;
532 
533 	/* ...likewise for the ISA hole for vm86 */
534 	for (pt = (pt_entry_t *)vm86pa + atop(ISA_HOLE_START), a = 0;
535 	    a < atop(ISA_HOLE_LENGTH); a++, pt++)
536 		*pt = (ISA_HOLE_START + ptoa(a)) | PG_RW | PG_U | PG_A |
537 		    PG_M | PG_V;
538 
539 	/* Enable PSE, PGE, VME, and PAE if configured. */
540 	ncr4 = 0;
541 	if ((cpu_feature & CPUID_PSE) != 0) {
542 		ncr4 |= CR4_PSE;
543 		pseflag = PG_PS;
544 		/*
545 		 * Superpage mapping of the kernel text.  Existing 4k
546 		 * page table pages are wasted.
547 		 */
548 		for (a = KERNBASE; a < KERNend; a += NBPDR)
549 			IdlePTD[a >> PDRSHIFT] = a | PG_PS | PG_A | PG_M |
550 			    PG_RW | PG_V;
551 	}
552 	if ((cpu_feature & CPUID_PGE) != 0) {
553 		ncr4 |= CR4_PGE;
554 		pgeflag = PG_G;
555 	}
556 	ncr4 |= (cpu_feature & CPUID_VME) != 0 ? CR4_VME : 0;
557 #ifdef PMAP_PAE_COMP
558 	ncr4 |= CR4_PAE;
559 #endif
560 	if (ncr4 != 0)
561 		load_cr4(rcr4() | ncr4);
562 
563 	/* Now enable paging */
564 #ifdef PMAP_PAE_COMP
565 	cr3 = (u_int)IdlePDPT;
566 	if ((cpu_feature & CPUID_PAT) == 0)
567 		wbinvd();
568 #else
569 	cr3 = (u_int)IdlePTD;
570 #endif
571 	tramp_idleptd = cr3;
572 	load_cr3(cr3);
573 	load_cr0(rcr0() | CR0_PG);
574 
575 	/*
576 	 * Now running relocated at KERNBASE where the system is
577 	 * linked to run.
578 	 */
579 
580 	/*
581 	 * Remove the lowest part of the double mapping of low memory
582 	 * to get some null pointer checks.
583 	 */
584 	__CONCAT(PMTYPE, remap_lower)(false);
585 
586 	kernel_vm_end = /* 0 + */ NKPT * NBPDR;
587 #ifdef PMAP_PAE_COMP
588 	i386_pmap_VM_NFREEORDER = VM_NFREEORDER_PAE;
589 	i386_pmap_VM_LEVEL_0_ORDER = VM_LEVEL_0_ORDER_PAE;
590 	i386_pmap_PDRSHIFT = PDRSHIFT_PAE;
591 #else
592 	i386_pmap_VM_NFREEORDER = VM_NFREEORDER_NOPAE;
593 	i386_pmap_VM_LEVEL_0_ORDER = VM_LEVEL_0_ORDER_NOPAE;
594 	i386_pmap_PDRSHIFT = PDRSHIFT_NOPAE;
595 #endif
596 }
597 
598 static void
599 __CONCAT(PMTYPE, set_nx)(void)
600 {
601 
602 #ifdef PMAP_PAE_COMP
603 	if ((amd_feature & AMDID_NX) == 0)
604 		return;
605 	pg_nx = PG_NX;
606 	elf32_nxstack = 1;
607 	/* EFER.EFER_NXE is set in initializecpu(). */
608 #endif
609 }
610 
611 /*
612  *	Bootstrap the system enough to run with virtual memory.
613  *
614  *	On the i386 this is called after pmap_cold() created initial
615  *	kernel page table and enabled paging, and just syncs the pmap
616  *	module with what has already been done.
617  */
618 static void
619 __CONCAT(PMTYPE, bootstrap)(vm_paddr_t firstaddr)
620 {
621 	vm_offset_t va;
622 	pt_entry_t *pte, *unused;
623 	struct pcpu *pc;
624 	u_long res;
625 	int i;
626 
627 	res = atop(firstaddr - (vm_paddr_t)KERNLOAD);
628 
629 	/*
630 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
631 	 * preallocated kernel page table pages so that vm_page structures
632 	 * representing these pages will be created.  The vm_page structures
633 	 * are required for promotion of the corresponding kernel virtual
634 	 * addresses to superpage mappings.
635 	 */
636 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
637 
638 	/*
639 	 * Initialize the first available kernel virtual address.
640 	 * However, using "firstaddr" may waste a few pages of the
641 	 * kernel virtual address space, because pmap_cold() may not
642 	 * have mapped every physical page that it allocated.
643 	 * Preferably, pmap_cold() would provide a first unused
644 	 * virtual address in addition to "firstaddr".
645 	 */
646 	virtual_avail = (vm_offset_t)firstaddr;
647 	virtual_end = VM_MAX_KERNEL_ADDRESS;
648 
649 	/*
650 	 * Initialize the kernel pmap (which is statically allocated).
651 	 * Count bootstrap data as being resident in case any of this data is
652 	 * later unmapped (using pmap_remove()) and freed.
653 	 */
654 	PMAP_LOCK_INIT(kernel_pmap);
655 	kernel_pmap->pm_pdir = IdlePTD;
656 #ifdef PMAP_PAE_COMP
657 	kernel_pmap->pm_pdpt = IdlePDPT;
658 #endif
659 	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
660 	kernel_pmap->pm_stats.resident_count = res;
661 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
662 
663  	/*
664 	 * Initialize the global pv list lock.
665 	 */
666 	rw_init(&pvh_global_lock, "pmap pv global");
667 
668 	/*
669 	 * Reserve some special page table entries/VA space for temporary
670 	 * mapping of pages.
671 	 */
672 #define	SYSMAP(c, p, v, n)	\
673 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
674 
675 	va = virtual_avail;
676 	pte = vtopte(va);
677 
678 
679 	/*
680 	 * Initialize temporary map objects on the current CPU for use
681 	 * during early boot.
682 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
683 	 * CMAP3 is used for the boot-time memory test.
684 	 */
685 	pc = get_pcpu();
686 	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
687 	SYSMAP(caddr_t, pc->pc_cmap_pte1, pc->pc_cmap_addr1, 1)
688 	SYSMAP(caddr_t, pc->pc_cmap_pte2, pc->pc_cmap_addr2, 1)
689 	SYSMAP(vm_offset_t, pte, pc->pc_qmap_addr, 1)
690 
691 	SYSMAP(caddr_t, CMAP3, CADDR3, 1);
692 
693 	/*
694 	 * Crashdump maps.
695 	 */
696 	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
697 
698 	/*
699 	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
700 	 */
701 	SYSMAP(caddr_t, unused, ptvmmap, 1)
702 
703 	/*
704 	 * msgbufp is used to map the system message buffer.
705 	 */
706 	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
707 
708 	/*
709 	 * KPTmap is used by pmap_kextract().
710 	 *
711 	 * KPTmap is first initialized by pmap_cold().  However, that initial
712 	 * KPTmap can only support NKPT page table pages.  Here, a larger
713 	 * KPTmap is created that can support KVA_PAGES page table pages.
714 	 */
715 	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
716 
717 	for (i = 0; i < NKPT; i++)
718 		KPTD[i] = (KPTphys + ptoa(i)) | PG_RW | PG_V;
719 
720 	/*
721 	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
722 	 * respectively.
723 	 */
724 	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
725 	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
726 	SYSMAP(pt_entry_t *, PMAP3, PADDR3, 1)
727 
728 	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
729 
730 	virtual_avail = va;
731 
732 	/*
733 	 * Initialize the PAT MSR if present.
734 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
735 	 * side-effect, invalidates stale PG_G TLB entries that might
736 	 * have been created in our pre-boot environment.  We assume
737 	 * that PAT support implies PGE and in reverse, PGE presence
738 	 * comes with PAT.  Both features were added for Pentium Pro.
739 	 */
740 	pmap_init_pat();
741 }
742 
743 static void
744 pmap_init_reserved_pages(void)
745 {
746 	struct pcpu *pc;
747 	vm_offset_t pages;
748 	int i;
749 
750 #ifdef PMAP_PAE_COMP
751 	if (!pae_mode)
752 		return;
753 #else
754 	if (pae_mode)
755 		return;
756 #endif
757 	CPU_FOREACH(i) {
758 		pc = pcpu_find(i);
759 		mtx_init(&pc->pc_copyout_mlock, "cpmlk", NULL, MTX_DEF |
760 		    MTX_NEW);
761 		pc->pc_copyout_maddr = kva_alloc(ptoa(2));
762 		if (pc->pc_copyout_maddr == 0)
763 			panic("unable to allocate non-sleepable copyout KVA");
764 		sx_init(&pc->pc_copyout_slock, "cpslk");
765 		pc->pc_copyout_saddr = kva_alloc(ptoa(2));
766 		if (pc->pc_copyout_saddr == 0)
767 			panic("unable to allocate sleepable copyout KVA");
768 		pc->pc_pmap_eh_va = kva_alloc(ptoa(1));
769 		if (pc->pc_pmap_eh_va == 0)
770 			panic("unable to allocate pmap_extract_and_hold KVA");
771 		pc->pc_pmap_eh_ptep = (char *)vtopte(pc->pc_pmap_eh_va);
772 
773 		/*
774 		 * Skip if the mappings have already been initialized,
775 		 * i.e. this is the BSP.
776 		 */
777 		if (pc->pc_cmap_addr1 != 0)
778 			continue;
779 
780 		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
781 		pages = kva_alloc(PAGE_SIZE * 3);
782 		if (pages == 0)
783 			panic("unable to allocate CMAP KVA");
784 		pc->pc_cmap_pte1 = vtopte(pages);
785 		pc->pc_cmap_pte2 = vtopte(pages + PAGE_SIZE);
786 		pc->pc_cmap_addr1 = (caddr_t)pages;
787 		pc->pc_cmap_addr2 = (caddr_t)(pages + PAGE_SIZE);
788 		pc->pc_qmap_addr = pages + ptoa(2);
789 	}
790 }
791 
792 SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
793 
794 /*
795  * Setup the PAT MSR.
796  */
797 static void
798 __CONCAT(PMTYPE, init_pat)(void)
799 {
800 	int pat_table[PAT_INDEX_SIZE];
801 	uint64_t pat_msr;
802 	u_long cr0, cr4;
803 	int i;
804 
805 	/* Set default PAT index table. */
806 	for (i = 0; i < PAT_INDEX_SIZE; i++)
807 		pat_table[i] = -1;
808 	pat_table[PAT_WRITE_BACK] = 0;
809 	pat_table[PAT_WRITE_THROUGH] = 1;
810 	pat_table[PAT_UNCACHEABLE] = 3;
811 	pat_table[PAT_WRITE_COMBINING] = 3;
812 	pat_table[PAT_WRITE_PROTECTED] = 3;
813 	pat_table[PAT_UNCACHED] = 3;
814 
815 	/*
816 	 * Bail if this CPU doesn't implement PAT.
817 	 * We assume that PAT support implies PGE.
818 	 */
819 	if ((cpu_feature & CPUID_PAT) == 0) {
820 		for (i = 0; i < PAT_INDEX_SIZE; i++)
821 			pat_index[i] = pat_table[i];
822 		pat_works = 0;
823 		return;
824 	}
825 
826 	/*
827 	 * Due to some Intel errata, we can only safely use the lower 4
828 	 * PAT entries.
829 	 *
830 	 *   Intel Pentium III Processor Specification Update
831 	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
832 	 * or Mode C Paging)
833 	 *
834 	 *   Intel Pentium IV  Processor Specification Update
835 	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
836 	 */
837 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
838 	    !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
839 		pat_works = 0;
840 
841 	/* Initialize default PAT entries. */
842 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
843 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
844 	    PAT_VALUE(2, PAT_UNCACHED) |
845 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
846 	    PAT_VALUE(4, PAT_WRITE_BACK) |
847 	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
848 	    PAT_VALUE(6, PAT_UNCACHED) |
849 	    PAT_VALUE(7, PAT_UNCACHEABLE);
850 
851 	if (pat_works) {
852 		/*
853 		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
854 		 * Program 5 and 6 as WP and WC.
855 		 * Leave 4 and 7 as WB and UC.
856 		 */
857 		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
858 		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
859 		    PAT_VALUE(6, PAT_WRITE_COMBINING);
860 		pat_table[PAT_UNCACHED] = 2;
861 		pat_table[PAT_WRITE_PROTECTED] = 5;
862 		pat_table[PAT_WRITE_COMBINING] = 6;
863 	} else {
864 		/*
865 		 * Just replace PAT Index 2 with WC instead of UC-.
866 		 */
867 		pat_msr &= ~PAT_MASK(2);
868 		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
869 		pat_table[PAT_WRITE_COMBINING] = 2;
870 	}
871 
872 	/* Disable PGE. */
873 	cr4 = rcr4();
874 	load_cr4(cr4 & ~CR4_PGE);
875 
876 	/* Disable caches (CD = 1, NW = 0). */
877 	cr0 = rcr0();
878 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
879 
880 	/* Flushes caches and TLBs. */
881 	wbinvd();
882 	invltlb();
883 
884 	/* Update PAT and index table. */
885 	wrmsr(MSR_PAT, pat_msr);
886 	for (i = 0; i < PAT_INDEX_SIZE; i++)
887 		pat_index[i] = pat_table[i];
888 
889 	/* Flush caches and TLBs again. */
890 	wbinvd();
891 	invltlb();
892 
893 	/* Restore caches and PGE. */
894 	load_cr0(cr0);
895 	load_cr4(cr4);
896 }
897 
898 #ifdef PMAP_PAE_COMP
899 static void *
900 pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
901     int wait)
902 {
903 
904 	/* Inform UMA that this allocator uses kernel_map/object. */
905 	*flags = UMA_SLAB_KERNEL;
906 	return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
907 	    bytes, wait, 0x0ULL, 0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
908 }
909 #endif
910 
911 /*
912  * Abuse the pte nodes for unmapped kva to thread a kva freelist through.
913  * Requirements:
914  *  - Must deal with pages in order to ensure that none of the PG_* bits
915  *    are ever set, PG_V in particular.
916  *  - Assumes we can write to ptes without pte_store() atomic ops, even
917  *    on PAE systems.  This should be ok.
918  *  - Assumes nothing will ever test these addresses for 0 to indicate
919  *    no mapping instead of correctly checking PG_V.
920  *  - Assumes a vm_offset_t will fit in a pte (true for i386).
921  * Because PG_V is never set, there can be no mappings to invalidate.
922  */
923 static vm_offset_t
924 pmap_ptelist_alloc(vm_offset_t *head)
925 {
926 	pt_entry_t *pte;
927 	vm_offset_t va;
928 
929 	va = *head;
930 	if (va == 0)
931 		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
932 	pte = vtopte(va);
933 	*head = *pte;
934 	if (*head & PG_V)
935 		panic("pmap_ptelist_alloc: va with PG_V set!");
936 	*pte = 0;
937 	return (va);
938 }
939 
940 static void
941 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
942 {
943 	pt_entry_t *pte;
944 
945 	if (va & PG_V)
946 		panic("pmap_ptelist_free: freeing va with PG_V set!");
947 	pte = vtopte(va);
948 	*pte = *head;		/* virtual! PG_V is 0 though */
949 	*head = va;
950 }
951 
952 static void
953 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
954 {
955 	int i;
956 	vm_offset_t va;
957 
958 	*head = 0;
959 	for (i = npages - 1; i >= 0; i--) {
960 		va = (vm_offset_t)base + i * PAGE_SIZE;
961 		pmap_ptelist_free(head, va);
962 	}
963 }
964 
965 
966 /*
967  *	Initialize the pmap module.
968  *	Called by vm_init, to initialize any structures that the pmap
969  *	system needs to map virtual memory.
970  */
971 static void
972 __CONCAT(PMTYPE, init)(void)
973 {
974 	struct pmap_preinit_mapping *ppim;
975 	vm_page_t mpte;
976 	vm_size_t s;
977 	int i, pv_npg;
978 
979 	/*
980 	 * Initialize the vm page array entries for the kernel pmap's
981 	 * page table pages.
982 	 */
983 	PMAP_LOCK(kernel_pmap);
984 	for (i = 0; i < NKPT; i++) {
985 		mpte = PHYS_TO_VM_PAGE(KPTphys + ptoa(i));
986 		KASSERT(mpte >= vm_page_array &&
987 		    mpte < &vm_page_array[vm_page_array_size],
988 		    ("pmap_init: page table page is out of range"));
989 		mpte->pindex = i + KPTDI;
990 		mpte->phys_addr = KPTphys + ptoa(i);
991 		mpte->ref_count = 1;
992 
993 		/*
994 		 * Collect the page table pages that were replaced by a 2/4MB
995 		 * page.  They are filled with equivalent 4KB page mappings.
996 		 */
997 		if (pseflag != 0 &&
998 		    KERNBASE <= i << PDRSHIFT && i << PDRSHIFT < KERNend &&
999 		    pmap_insert_pt_page(kernel_pmap, mpte, true))
1000 			panic("pmap_init: pmap_insert_pt_page failed");
1001 	}
1002 	PMAP_UNLOCK(kernel_pmap);
1003 	vm_wire_add(NKPT);
1004 
1005 	/*
1006 	 * Initialize the address space (zone) for the pv entries.  Set a
1007 	 * high water mark so that the system can recover from excessive
1008 	 * numbers of pv entries.
1009 	 */
1010 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1011 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1012 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1013 	pv_entry_max = roundup(pv_entry_max, _NPCPV);
1014 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1015 
1016 	/*
1017 	 * If the kernel is running on a virtual machine, then it must assume
1018 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
1019 	 * be prepared for the hypervisor changing the vendor and family that
1020 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
1021 	 * 10h Erratum 383 is enabled if the processor's feature set does not
1022 	 * include at least one feature that is only supported by older Intel
1023 	 * or newer AMD processors.
1024 	 */
1025 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
1026 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
1027 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
1028 	    AMDID2_FMA4)) == 0)
1029 		workaround_erratum383 = 1;
1030 
1031 	/*
1032 	 * Are large page mappings supported and enabled?
1033 	 */
1034 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
1035 	if (pseflag == 0)
1036 		pg_ps_enabled = 0;
1037 	else if (pg_ps_enabled) {
1038 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1039 		    ("pmap_init: can't assign to pagesizes[1]"));
1040 		pagesizes[1] = NBPDR;
1041 	}
1042 
1043 	/*
1044 	 * Calculate the size of the pv head table for superpages.
1045 	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1046 	 */
1047 	pv_npg = trunc_4mpage(vm_phys_segs[vm_phys_nsegs - 1].end -
1048 	    PAGE_SIZE) / NBPDR + 1;
1049 
1050 	/*
1051 	 * Allocate memory for the pv head table for superpages.
1052 	 */
1053 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1054 	s = round_page(s);
1055 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
1056 	for (i = 0; i < pv_npg; i++)
1057 		TAILQ_INIT(&pv_table[i].pv_list);
1058 
1059 	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1060 	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1061 	if (pv_chunkbase == NULL)
1062 		panic("pmap_init: not enough kvm for pv chunks");
1063 	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1064 #ifdef PMAP_PAE_COMP
1065 	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
1066 	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
1067 	    UMA_ZONE_CONTIG | UMA_ZONE_VM | UMA_ZONE_NOFREE);
1068 	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
1069 #endif
1070 
1071 	pmap_initialized = 1;
1072 	pmap_init_trm();
1073 
1074 	if (!bootverbose)
1075 		return;
1076 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
1077 		ppim = pmap_preinit_mapping + i;
1078 		if (ppim->va == 0)
1079 			continue;
1080 		printf("PPIM %u: PA=%#jx, VA=%#x, size=%#x, mode=%#x\n", i,
1081 		    (uintmax_t)ppim->pa, ppim->va, ppim->sz, ppim->mode);
1082 	}
1083 
1084 }
1085 
1086 extern u_long pmap_pde_demotions;
1087 extern u_long pmap_pde_mappings;
1088 extern u_long pmap_pde_p_failures;
1089 extern u_long pmap_pde_promotions;
1090 
1091 /***************************************************
1092  * Low level helper routines.....
1093  ***************************************************/
1094 
1095 static boolean_t
1096 __CONCAT(PMTYPE, is_valid_memattr)(pmap_t pmap __unused, vm_memattr_t mode)
1097 {
1098 
1099 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
1100 	    pat_index[(int)mode] >= 0);
1101 }
1102 
1103 /*
1104  * Determine the appropriate bits to set in a PTE or PDE for a specified
1105  * caching mode.
1106  */
1107 static int
1108 __CONCAT(PMTYPE, cache_bits)(pmap_t pmap, int mode, boolean_t is_pde)
1109 {
1110 	int cache_bits, pat_flag, pat_idx;
1111 
1112 	if (!pmap_is_valid_memattr(pmap, mode))
1113 		panic("Unknown caching mode %d\n", mode);
1114 
1115 	/* The PAT bit is different for PTE's and PDE's. */
1116 	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
1117 
1118 	/* Map the caching mode to a PAT index. */
1119 	pat_idx = pat_index[mode];
1120 
1121 	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
1122 	cache_bits = 0;
1123 	if (pat_idx & 0x4)
1124 		cache_bits |= pat_flag;
1125 	if (pat_idx & 0x2)
1126 		cache_bits |= PG_NC_PCD;
1127 	if (pat_idx & 0x1)
1128 		cache_bits |= PG_NC_PWT;
1129 	return (cache_bits);
1130 }
1131 
1132 static int
1133 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
1134 {
1135 	int pat_flag, pat_idx;
1136 
1137 	if ((cpu_feature & CPUID_PAT) == 0)
1138 		return (0);
1139 
1140 	pat_idx = 0;
1141 	/* The PAT bit is different for PTE's and PDE's. */
1142 	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
1143 
1144 	if ((pte & pat_flag) != 0)
1145 		pat_idx |= 0x4;
1146 	if ((pte & PG_NC_PCD) != 0)
1147 		pat_idx |= 0x2;
1148 	if ((pte & PG_NC_PWT) != 0)
1149 		pat_idx |= 0x1;
1150 
1151 	/* See pmap_init_pat(). */
1152 	if (pat_works) {
1153 		if (pat_idx == 4)
1154 			pat_idx = 0;
1155 		if (pat_idx == 7)
1156 			pat_idx = 3;
1157 	} else {
1158 		/* XXXKIB */
1159 	}
1160 
1161 	return (pat_idx);
1162 }
1163 
1164 static bool
1165 __CONCAT(PMTYPE, ps_enabled)(pmap_t pmap __unused)
1166 {
1167 
1168 	return (pg_ps_enabled);
1169 }
1170 
1171 /*
1172  * The caller is responsible for maintaining TLB consistency.
1173  */
1174 static void
1175 pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
1176 {
1177 	pd_entry_t *pde;
1178 
1179 	pde = pmap_pde(kernel_pmap, va);
1180 	pde_store(pde, newpde);
1181 }
1182 
1183 /*
1184  * After changing the page size for the specified virtual address in the page
1185  * table, flush the corresponding entries from the processor's TLB.  Only the
1186  * calling processor's TLB is affected.
1187  *
1188  * The calling thread must be pinned to a processor.
1189  */
1190 static void
1191 pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
1192 {
1193 
1194 	if ((newpde & PG_PS) == 0)
1195 		/* Demotion: flush a specific 2MB page mapping. */
1196 		invlpg(va);
1197 	else /* if ((newpde & PG_G) == 0) */
1198 		/*
1199 		 * Promotion: flush every 4KB page mapping from the TLB
1200 		 * because there are too many to flush individually.
1201 		 */
1202 		invltlb();
1203 }
1204 
1205 #ifdef SMP
1206 
1207 static void
1208 pmap_curcpu_cb_dummy(pmap_t pmap __unused, vm_offset_t addr1 __unused,
1209     vm_offset_t addr2 __unused)
1210 {
1211 }
1212 
1213 /*
1214  * For SMP, these functions have to use the IPI mechanism for coherence.
1215  *
1216  * N.B.: Before calling any of the following TLB invalidation functions,
1217  * the calling processor must ensure that all stores updating a non-
1218  * kernel page table are globally performed.  Otherwise, another
1219  * processor could cache an old, pre-update entry without being
1220  * invalidated.  This can happen one of two ways: (1) The pmap becomes
1221  * active on another processor after its pm_active field is checked by
1222  * one of the following functions but before a store updating the page
1223  * table is globally performed. (2) The pmap becomes active on another
1224  * processor before its pm_active field is checked but due to
1225  * speculative loads one of the following functions stills reads the
1226  * pmap as inactive on the other processor.
1227  *
1228  * The kernel page table is exempt because its pm_active field is
1229  * immutable.  The kernel page table is always active on every
1230  * processor.
1231  */
1232 static void
1233 pmap_invalidate_page_int(pmap_t pmap, vm_offset_t va)
1234 {
1235 	cpuset_t *mask, other_cpus;
1236 	u_int cpuid;
1237 
1238 	sched_pin();
1239 	if (pmap == kernel_pmap) {
1240 		invlpg(va);
1241 		mask = &all_cpus;
1242 	} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1243 		mask = &all_cpus;
1244 	} else {
1245 		cpuid = PCPU_GET(cpuid);
1246 		other_cpus = all_cpus;
1247 		CPU_CLR(cpuid, &other_cpus);
1248 		CPU_AND(&other_cpus, &pmap->pm_active);
1249 		mask = &other_cpus;
1250 	}
1251 	smp_masked_invlpg(*mask, va, pmap, pmap_curcpu_cb_dummy);
1252 	sched_unpin();
1253 }
1254 
1255 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
1256 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
1257 
1258 static void
1259 pmap_invalidate_range_int(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1260 {
1261 	cpuset_t *mask, other_cpus;
1262 	vm_offset_t addr;
1263 	u_int cpuid;
1264 
1265 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
1266 		pmap_invalidate_all_int(pmap);
1267 		return;
1268 	}
1269 
1270 	sched_pin();
1271 	if (pmap == kernel_pmap) {
1272 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1273 			invlpg(addr);
1274 		mask = &all_cpus;
1275 	} else  if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1276 		mask = &all_cpus;
1277 	} else {
1278 		cpuid = PCPU_GET(cpuid);
1279 		other_cpus = all_cpus;
1280 		CPU_CLR(cpuid, &other_cpus);
1281 		CPU_AND(&other_cpus, &pmap->pm_active);
1282 		mask = &other_cpus;
1283 	}
1284 	smp_masked_invlpg_range(*mask, sva, eva, pmap, pmap_curcpu_cb_dummy);
1285 	sched_unpin();
1286 }
1287 
1288 static void
1289 pmap_invalidate_all_int(pmap_t pmap)
1290 {
1291 	cpuset_t *mask, other_cpus;
1292 	u_int cpuid;
1293 
1294 	sched_pin();
1295 	if (pmap == kernel_pmap) {
1296 		invltlb();
1297 		mask = &all_cpus;
1298 	} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1299 		mask = &all_cpus;
1300 	} else {
1301 		cpuid = PCPU_GET(cpuid);
1302 		other_cpus = all_cpus;
1303 		CPU_CLR(cpuid, &other_cpus);
1304 		CPU_AND(&other_cpus, &pmap->pm_active);
1305 		mask = &other_cpus;
1306 	}
1307 	smp_masked_invltlb(*mask, pmap, pmap_curcpu_cb_dummy);
1308 	sched_unpin();
1309 }
1310 
1311 static void
1312 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,
1313     vm_offset_t addr1 __unused, vm_offset_t addr2 __unused)
1314 {
1315 	wbinvd();
1316 }
1317 
1318 static void
1319 __CONCAT(PMTYPE, invalidate_cache)(void)
1320 {
1321 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
1322 }
1323 
1324 struct pde_action {
1325 	cpuset_t invalidate;	/* processors that invalidate their TLB */
1326 	vm_offset_t va;
1327 	pd_entry_t *pde;
1328 	pd_entry_t newpde;
1329 	u_int store;		/* processor that updates the PDE */
1330 };
1331 
1332 static void
1333 pmap_update_pde_kernel(void *arg)
1334 {
1335 	struct pde_action *act = arg;
1336 	pd_entry_t *pde;
1337 
1338 	if (act->store == PCPU_GET(cpuid)) {
1339 		pde = pmap_pde(kernel_pmap, act->va);
1340 		pde_store(pde, act->newpde);
1341 	}
1342 }
1343 
1344 static void
1345 pmap_update_pde_user(void *arg)
1346 {
1347 	struct pde_action *act = arg;
1348 
1349 	if (act->store == PCPU_GET(cpuid))
1350 		pde_store(act->pde, act->newpde);
1351 }
1352 
1353 static void
1354 pmap_update_pde_teardown(void *arg)
1355 {
1356 	struct pde_action *act = arg;
1357 
1358 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1359 		pmap_update_pde_invalidate(act->va, act->newpde);
1360 }
1361 
1362 /*
1363  * Change the page size for the specified virtual address in a way that
1364  * prevents any possibility of the TLB ever having two entries that map the
1365  * same virtual address using different page sizes.  This is the recommended
1366  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1367  * machine check exception for a TLB state that is improperly diagnosed as a
1368  * hardware error.
1369  */
1370 static void
1371 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1372 {
1373 	struct pde_action act;
1374 	cpuset_t active, other_cpus;
1375 	u_int cpuid;
1376 
1377 	sched_pin();
1378 	cpuid = PCPU_GET(cpuid);
1379 	other_cpus = all_cpus;
1380 	CPU_CLR(cpuid, &other_cpus);
1381 	if (pmap == kernel_pmap)
1382 		active = all_cpus;
1383 	else
1384 		active = pmap->pm_active;
1385 	if (CPU_OVERLAP(&active, &other_cpus)) {
1386 		act.store = cpuid;
1387 		act.invalidate = active;
1388 		act.va = va;
1389 		act.pde = pde;
1390 		act.newpde = newpde;
1391 		CPU_SET(cpuid, &active);
1392 		smp_rendezvous_cpus(active,
1393 		    smp_no_rendezvous_barrier, pmap == kernel_pmap ?
1394 		    pmap_update_pde_kernel : pmap_update_pde_user,
1395 		    pmap_update_pde_teardown, &act);
1396 	} else {
1397 		if (pmap == kernel_pmap)
1398 			pmap_kenter_pde(va, newpde);
1399 		else
1400 			pde_store(pde, newpde);
1401 		if (CPU_ISSET(cpuid, &active))
1402 			pmap_update_pde_invalidate(va, newpde);
1403 	}
1404 	sched_unpin();
1405 }
1406 #else /* !SMP */
1407 /*
1408  * Normal, non-SMP, 486+ invalidation functions.
1409  * We inline these within pmap.c for speed.
1410  */
1411 static void
1412 pmap_invalidate_page_int(pmap_t pmap, vm_offset_t va)
1413 {
1414 
1415 	if (pmap == kernel_pmap)
1416 		invlpg(va);
1417 }
1418 
1419 static void
1420 pmap_invalidate_range_int(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1421 {
1422 	vm_offset_t addr;
1423 
1424 	if (pmap == kernel_pmap)
1425 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1426 			invlpg(addr);
1427 }
1428 
1429 static void
1430 pmap_invalidate_all_int(pmap_t pmap)
1431 {
1432 
1433 	if (pmap == kernel_pmap)
1434 		invltlb();
1435 }
1436 
1437 static void
1438 __CONCAT(PMTYPE, invalidate_cache)(void)
1439 {
1440 
1441 	wbinvd();
1442 }
1443 
1444 static void
1445 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1446 {
1447 
1448 	if (pmap == kernel_pmap)
1449 		pmap_kenter_pde(va, newpde);
1450 	else
1451 		pde_store(pde, newpde);
1452 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1453 		pmap_update_pde_invalidate(va, newpde);
1454 }
1455 #endif /* !SMP */
1456 
1457 static void
1458 __CONCAT(PMTYPE, invalidate_page)(pmap_t pmap, vm_offset_t va)
1459 {
1460 
1461 	pmap_invalidate_page_int(pmap, va);
1462 }
1463 
1464 static void
1465 __CONCAT(PMTYPE, invalidate_range)(pmap_t pmap, vm_offset_t sva,
1466     vm_offset_t eva)
1467 {
1468 
1469 	pmap_invalidate_range_int(pmap, sva, eva);
1470 }
1471 
1472 static void
1473 __CONCAT(PMTYPE, invalidate_all)(pmap_t pmap)
1474 {
1475 
1476 	pmap_invalidate_all_int(pmap);
1477 }
1478 
1479 static void
1480 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1481 {
1482 
1483 	/*
1484 	 * When the PDE has PG_PROMOTED set, the 2- or 4MB page mapping was
1485 	 * created by a promotion that did not invalidate the 512 or 1024 4KB
1486 	 * page mappings that might exist in the TLB.  Consequently, at this
1487 	 * point, the TLB may hold both 4KB and 2- or 4MB page mappings for
1488 	 * the address range [va, va + NBPDR).  Therefore, the entire range
1489 	 * must be invalidated here.  In contrast, when PG_PROMOTED is clear,
1490 	 * the TLB will not hold any 4KB page mappings for the address range
1491 	 * [va, va + NBPDR), and so a single INVLPG suffices to invalidate the
1492 	 * 2- or 4MB page mapping from the TLB.
1493 	 */
1494 	if ((pde & PG_PROMOTED) != 0)
1495 		pmap_invalidate_range_int(pmap, va, va + NBPDR - 1);
1496 	else
1497 		pmap_invalidate_page_int(pmap, va);
1498 }
1499 
1500 /*
1501  * Are we current address space or kernel?
1502  */
1503 static __inline int
1504 pmap_is_current(pmap_t pmap)
1505 {
1506 
1507 	return (pmap == kernel_pmap);
1508 }
1509 
1510 /*
1511  * If the given pmap is not the current or kernel pmap, the returned pte must
1512  * be released by passing it to pmap_pte_release().
1513  */
1514 static pt_entry_t *
1515 __CONCAT(PMTYPE, pte)(pmap_t pmap, vm_offset_t va)
1516 {
1517 	pd_entry_t newpf;
1518 	pd_entry_t *pde;
1519 
1520 	pde = pmap_pde(pmap, va);
1521 	if (*pde & PG_PS)
1522 		return (pde);
1523 	if (*pde != 0) {
1524 		/* are we current address space or kernel? */
1525 		if (pmap_is_current(pmap))
1526 			return (vtopte(va));
1527 		mtx_lock(&PMAP2mutex);
1528 		newpf = *pde & PG_FRAME;
1529 		if ((*PMAP2 & PG_FRAME) != newpf) {
1530 			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1531 			pmap_invalidate_page_int(kernel_pmap,
1532 			    (vm_offset_t)PADDR2);
1533 		}
1534 		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1535 	}
1536 	return (NULL);
1537 }
1538 
1539 /*
1540  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1541  * being NULL.
1542  */
1543 static __inline void
1544 pmap_pte_release(pt_entry_t *pte)
1545 {
1546 
1547 	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1548 		mtx_unlock(&PMAP2mutex);
1549 }
1550 
1551 /*
1552  * NB:  The sequence of updating a page table followed by accesses to the
1553  * corresponding pages is subject to the situation described in the "AMD64
1554  * Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
1555  * "7.3.1 Special Coherency Considerations".  Therefore, issuing the INVLPG
1556  * right after modifying the PTE bits is crucial.
1557  */
1558 static __inline void
1559 invlcaddr(void *caddr)
1560 {
1561 
1562 	invlpg((u_int)caddr);
1563 }
1564 
1565 /*
1566  * Super fast pmap_pte routine best used when scanning
1567  * the pv lists.  This eliminates many coarse-grained
1568  * invltlb calls.  Note that many of the pv list
1569  * scans are across different pmaps.  It is very wasteful
1570  * to do an entire invltlb for checking a single mapping.
1571  *
1572  * If the given pmap is not the current pmap, pvh_global_lock
1573  * must be held and curthread pinned to a CPU.
1574  */
1575 static pt_entry_t *
1576 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1577 {
1578 	pd_entry_t newpf;
1579 	pd_entry_t *pde;
1580 
1581 	pde = pmap_pde(pmap, va);
1582 	if (*pde & PG_PS)
1583 		return (pde);
1584 	if (*pde != 0) {
1585 		/* are we current address space or kernel? */
1586 		if (pmap_is_current(pmap))
1587 			return (vtopte(va));
1588 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1589 		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1590 		newpf = *pde & PG_FRAME;
1591 		if ((*PMAP1 & PG_FRAME) != newpf) {
1592 			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1593 #ifdef SMP
1594 			PMAP1cpu = PCPU_GET(cpuid);
1595 #endif
1596 			invlcaddr(PADDR1);
1597 			PMAP1changed++;
1598 		} else
1599 #ifdef SMP
1600 		if (PMAP1cpu != PCPU_GET(cpuid)) {
1601 			PMAP1cpu = PCPU_GET(cpuid);
1602 			invlcaddr(PADDR1);
1603 			PMAP1changedcpu++;
1604 		} else
1605 #endif
1606 			PMAP1unchanged++;
1607 		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1608 	}
1609 	return (0);
1610 }
1611 
1612 static pt_entry_t *
1613 pmap_pte_quick3(pmap_t pmap, vm_offset_t va)
1614 {
1615 	pd_entry_t newpf;
1616 	pd_entry_t *pde;
1617 
1618 	pde = pmap_pde(pmap, va);
1619 	if (*pde & PG_PS)
1620 		return (pde);
1621 	if (*pde != 0) {
1622 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1623 		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1624 		newpf = *pde & PG_FRAME;
1625 		if ((*PMAP3 & PG_FRAME) != newpf) {
1626 			*PMAP3 = newpf | PG_RW | PG_V | PG_A | PG_M;
1627 #ifdef SMP
1628 			PMAP3cpu = PCPU_GET(cpuid);
1629 #endif
1630 			invlcaddr(PADDR3);
1631 			PMAP1changed++;
1632 		} else
1633 #ifdef SMP
1634 		if (PMAP3cpu != PCPU_GET(cpuid)) {
1635 			PMAP3cpu = PCPU_GET(cpuid);
1636 			invlcaddr(PADDR3);
1637 			PMAP1changedcpu++;
1638 		} else
1639 #endif
1640 			PMAP1unchanged++;
1641 		return (PADDR3 + (i386_btop(va) & (NPTEPG - 1)));
1642 	}
1643 	return (0);
1644 }
1645 
1646 static pt_entry_t
1647 pmap_pte_ufast(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1648 {
1649 	pt_entry_t *eh_ptep, pte, *ptep;
1650 
1651 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1652 	pde &= PG_FRAME;
1653 	critical_enter();
1654 	eh_ptep = (pt_entry_t *)PCPU_GET(pmap_eh_ptep);
1655 	if ((*eh_ptep & PG_FRAME) != pde) {
1656 		*eh_ptep = pde | PG_RW | PG_V | PG_A | PG_M;
1657 		invlcaddr((void *)PCPU_GET(pmap_eh_va));
1658 	}
1659 	ptep = (pt_entry_t *)PCPU_GET(pmap_eh_va) + (i386_btop(va) &
1660 	    (NPTEPG - 1));
1661 	pte = *ptep;
1662 	critical_exit();
1663 	return (pte);
1664 }
1665 
1666 /*
1667  * Extract from the kernel page table the physical address that is mapped by
1668  * the given virtual address "va".
1669  *
1670  * This function may be used before pmap_bootstrap() is called.
1671  */
1672 static vm_paddr_t
1673 __CONCAT(PMTYPE, kextract)(vm_offset_t va)
1674 {
1675 	vm_paddr_t pa;
1676 
1677 	if ((pa = pte_load(&PTD[va >> PDRSHIFT])) & PG_PS) {
1678 		pa = (pa & PG_PS_FRAME) | (va & PDRMASK);
1679 	} else {
1680 		/*
1681 		 * Beware of a concurrent promotion that changes the PDE at
1682 		 * this point!  For example, vtopte() must not be used to
1683 		 * access the PTE because it would use the new PDE.  It is,
1684 		 * however, safe to use the old PDE because the page table
1685 		 * page is preserved by the promotion.
1686 		 */
1687 		pa = KPTmap[i386_btop(va)];
1688 		pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1689 	}
1690 	return (pa);
1691 }
1692 
1693 /*
1694  *	Routine:	pmap_extract
1695  *	Function:
1696  *		Extract the physical page address associated
1697  *		with the given map/virtual_address pair.
1698  */
1699 static vm_paddr_t
1700 __CONCAT(PMTYPE, extract)(pmap_t pmap, vm_offset_t va)
1701 {
1702 	vm_paddr_t rtval;
1703 	pt_entry_t pte;
1704 	pd_entry_t pde;
1705 
1706 	rtval = 0;
1707 	PMAP_LOCK(pmap);
1708 	pde = pmap->pm_pdir[va >> PDRSHIFT];
1709 	if (pde != 0) {
1710 		if ((pde & PG_PS) != 0)
1711 			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1712 		else {
1713 			pte = pmap_pte_ufast(pmap, va, pde);
1714 			rtval = (pte & PG_FRAME) | (va & PAGE_MASK);
1715 		}
1716 	}
1717 	PMAP_UNLOCK(pmap);
1718 	return (rtval);
1719 }
1720 
1721 /*
1722  *	Routine:	pmap_extract_and_hold
1723  *	Function:
1724  *		Atomically extract and hold the physical page
1725  *		with the given pmap and virtual address pair
1726  *		if that mapping permits the given protection.
1727  */
1728 static vm_page_t
1729 __CONCAT(PMTYPE, extract_and_hold)(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1730 {
1731 	pd_entry_t pde;
1732 	pt_entry_t pte;
1733 	vm_page_t m;
1734 
1735 	m = NULL;
1736 	PMAP_LOCK(pmap);
1737 	pde = *pmap_pde(pmap, va);
1738 	if (pde != 0) {
1739 		if (pde & PG_PS) {
1740 			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0)
1741 				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1742 				    (va & PDRMASK));
1743 		} else {
1744 			pte = pmap_pte_ufast(pmap, va, pde);
1745 			if (pte != 0 &&
1746 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
1747 				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1748 		}
1749 		if (m != NULL && !vm_page_wire_mapped(m))
1750 			m = NULL;
1751 	}
1752 	PMAP_UNLOCK(pmap);
1753 	return (m);
1754 }
1755 
1756 /***************************************************
1757  * Low level mapping routines.....
1758  ***************************************************/
1759 
1760 /*
1761  * Add a wired page to the kva.
1762  * Note: not SMP coherent.
1763  *
1764  * This function may be used before pmap_bootstrap() is called.
1765  */
1766 static void
1767 __CONCAT(PMTYPE, kenter)(vm_offset_t va, vm_paddr_t pa)
1768 {
1769 	pt_entry_t *pte;
1770 
1771 	pte = vtopte(va);
1772 	pte_store(pte, pa | PG_RW | PG_V);
1773 }
1774 
1775 static __inline void
1776 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1777 {
1778 	pt_entry_t *pte;
1779 
1780 	pte = vtopte(va);
1781 	pte_store(pte, pa | PG_RW | PG_V | pmap_cache_bits(kernel_pmap,
1782 	    mode, 0));
1783 }
1784 
1785 /*
1786  * Remove a page from the kernel pagetables.
1787  * Note: not SMP coherent.
1788  *
1789  * This function may be used before pmap_bootstrap() is called.
1790  */
1791 static void
1792 __CONCAT(PMTYPE, kremove)(vm_offset_t va)
1793 {
1794 	pt_entry_t *pte;
1795 
1796 	pte = vtopte(va);
1797 	pte_clear(pte);
1798 }
1799 
1800 /*
1801  *	Used to map a range of physical addresses into kernel
1802  *	virtual address space.
1803  *
1804  *	The value passed in '*virt' is a suggested virtual address for
1805  *	the mapping. Architectures which can support a direct-mapped
1806  *	physical to virtual region can return the appropriate address
1807  *	within that region, leaving '*virt' unchanged. Other
1808  *	architectures should map the pages starting at '*virt' and
1809  *	update '*virt' with the first usable address after the mapped
1810  *	region.
1811  */
1812 static vm_offset_t
1813 __CONCAT(PMTYPE, map)(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1814     int prot)
1815 {
1816 	vm_offset_t va, sva;
1817 	vm_paddr_t superpage_offset;
1818 	pd_entry_t newpde;
1819 
1820 	va = *virt;
1821 	/*
1822 	 * Does the physical address range's size and alignment permit at
1823 	 * least one superpage mapping to be created?
1824 	 */
1825 	superpage_offset = start & PDRMASK;
1826 	if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
1827 		/*
1828 		 * Increase the starting virtual address so that its alignment
1829 		 * does not preclude the use of superpage mappings.
1830 		 */
1831 		if ((va & PDRMASK) < superpage_offset)
1832 			va = (va & ~PDRMASK) + superpage_offset;
1833 		else if ((va & PDRMASK) > superpage_offset)
1834 			va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
1835 	}
1836 	sva = va;
1837 	while (start < end) {
1838 		if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
1839 		    pseflag != 0) {
1840 			KASSERT((va & PDRMASK) == 0,
1841 			    ("pmap_map: misaligned va %#x", va));
1842 			newpde = start | PG_PS | PG_RW | PG_V;
1843 			pmap_kenter_pde(va, newpde);
1844 			va += NBPDR;
1845 			start += NBPDR;
1846 		} else {
1847 			pmap_kenter(va, start);
1848 			va += PAGE_SIZE;
1849 			start += PAGE_SIZE;
1850 		}
1851 	}
1852 	pmap_invalidate_range_int(kernel_pmap, sva, va);
1853 	*virt = va;
1854 	return (sva);
1855 }
1856 
1857 
1858 /*
1859  * Add a list of wired pages to the kva
1860  * this routine is only used for temporary
1861  * kernel mappings that do not need to have
1862  * page modification or references recorded.
1863  * Note that old mappings are simply written
1864  * over.  The page *must* be wired.
1865  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1866  */
1867 static void
1868 __CONCAT(PMTYPE, qenter)(vm_offset_t sva, vm_page_t *ma, int count)
1869 {
1870 	pt_entry_t *endpte, oldpte, pa, *pte;
1871 	vm_page_t m;
1872 
1873 	oldpte = 0;
1874 	pte = vtopte(sva);
1875 	endpte = pte + count;
1876 	while (pte < endpte) {
1877 		m = *ma++;
1878 		pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(kernel_pmap,
1879 		    m->md.pat_mode, 0);
1880 		if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1881 			oldpte |= *pte;
1882 			pte_store(pte, pa | pg_nx | PG_RW | PG_V);
1883 		}
1884 		pte++;
1885 	}
1886 	if (__predict_false((oldpte & PG_V) != 0))
1887 		pmap_invalidate_range_int(kernel_pmap, sva, sva + count *
1888 		    PAGE_SIZE);
1889 }
1890 
1891 /*
1892  * This routine tears out page mappings from the
1893  * kernel -- it is meant only for temporary mappings.
1894  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1895  */
1896 static void
1897 __CONCAT(PMTYPE, qremove)(vm_offset_t sva, int count)
1898 {
1899 	vm_offset_t va;
1900 
1901 	va = sva;
1902 	while (count-- > 0) {
1903 		pmap_kremove(va);
1904 		va += PAGE_SIZE;
1905 	}
1906 	pmap_invalidate_range_int(kernel_pmap, sva, va);
1907 }
1908 
1909 /***************************************************
1910  * Page table page management routines.....
1911  ***************************************************/
1912 /*
1913  * Schedule the specified unused page table page to be freed.  Specifically,
1914  * add the page to the specified list of pages that will be released to the
1915  * physical memory manager after the TLB has been updated.
1916  */
1917 static __inline void
1918 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1919     boolean_t set_PG_ZERO)
1920 {
1921 
1922 	if (set_PG_ZERO)
1923 		m->flags |= PG_ZERO;
1924 	else
1925 		m->flags &= ~PG_ZERO;
1926 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1927 }
1928 
1929 /*
1930  * Inserts the specified page table page into the specified pmap's collection
1931  * of idle page table pages.  Each of a pmap's page table pages is responsible
1932  * for mapping a distinct range of virtual addresses.  The pmap's collection is
1933  * ordered by this virtual address range.
1934  *
1935  * If "promoted" is false, then the page table page "mpte" must be zero filled.
1936  */
1937 static __inline int
1938 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted)
1939 {
1940 
1941 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1942 	mpte->valid = promoted ? VM_PAGE_BITS_ALL : 0;
1943 	return (vm_radix_insert(&pmap->pm_root, mpte));
1944 }
1945 
1946 /*
1947  * Removes the page table page mapping the specified virtual address from the
1948  * specified pmap's collection of idle page table pages, and returns it.
1949  * Otherwise, returns NULL if there is no page table page corresponding to the
1950  * specified virtual address.
1951  */
1952 static __inline vm_page_t
1953 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
1954 {
1955 
1956 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1957 	return (vm_radix_remove(&pmap->pm_root, va >> PDRSHIFT));
1958 }
1959 
1960 /*
1961  * Decrements a page table page's reference count, which is used to record the
1962  * number of valid page table entries within the page.  If the reference count
1963  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1964  * page table page was unmapped and FALSE otherwise.
1965  */
1966 static inline boolean_t
1967 pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1968 {
1969 
1970 	--m->ref_count;
1971 	if (m->ref_count == 0) {
1972 		_pmap_unwire_ptp(pmap, m, free);
1973 		return (TRUE);
1974 	} else
1975 		return (FALSE);
1976 }
1977 
1978 static void
1979 _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1980 {
1981 
1982 	/*
1983 	 * unmap the page table page
1984 	 */
1985 	pmap->pm_pdir[m->pindex] = 0;
1986 	--pmap->pm_stats.resident_count;
1987 
1988 	/*
1989 	 * There is not need to invalidate the recursive mapping since
1990 	 * we never instantiate such mapping for the usermode pmaps,
1991 	 * and never remove page table pages from the kernel pmap.
1992 	 * Put page on a list so that it is released since all TLB
1993 	 * shootdown is done.
1994 	 */
1995 	MPASS(pmap != kernel_pmap);
1996 	pmap_add_delayed_free_list(m, free, TRUE);
1997 }
1998 
1999 /*
2000  * After removing a page table entry, this routine is used to
2001  * conditionally free the page, and manage the reference count.
2002  */
2003 static int
2004 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
2005 {
2006 	pd_entry_t ptepde;
2007 	vm_page_t mpte;
2008 
2009 	if (pmap == kernel_pmap)
2010 		return (0);
2011 	ptepde = *pmap_pde(pmap, va);
2012 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
2013 	return (pmap_unwire_ptp(pmap, mpte, free));
2014 }
2015 
2016 /*
2017  * Release a page table page reference after a failed attempt to create a
2018  * mapping.
2019  */
2020 static void
2021 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
2022 {
2023 	struct spglist free;
2024 
2025 	SLIST_INIT(&free);
2026 	if (pmap_unwire_ptp(pmap, mpte, &free)) {
2027 		/*
2028 		 * Although "va" was never mapped, paging-structure caches
2029 		 * could nonetheless have entries that refer to the freed
2030 		 * page table pages.  Invalidate those entries.
2031 		 */
2032 		pmap_invalidate_page_int(pmap, va);
2033 		vm_page_free_pages_toq(&free, true);
2034 	}
2035 }
2036 
2037 /*
2038  * Initialize the pmap for the swapper process.
2039  */
2040 static void
2041 __CONCAT(PMTYPE, pinit0)(pmap_t pmap)
2042 {
2043 
2044 	PMAP_LOCK_INIT(pmap);
2045 	pmap->pm_pdir = IdlePTD;
2046 #ifdef PMAP_PAE_COMP
2047 	pmap->pm_pdpt = IdlePDPT;
2048 #endif
2049 	pmap->pm_root.rt_root = 0;
2050 	CPU_ZERO(&pmap->pm_active);
2051 	TAILQ_INIT(&pmap->pm_pvchunk);
2052 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2053 	pmap_activate_boot(pmap);
2054 }
2055 
2056 /*
2057  * Initialize a preallocated and zeroed pmap structure,
2058  * such as one in a vmspace structure.
2059  */
2060 static int
2061 __CONCAT(PMTYPE, pinit)(pmap_t pmap)
2062 {
2063 	vm_page_t m;
2064 	int i;
2065 
2066 	/*
2067 	 * No need to allocate page table space yet but we do need a valid
2068 	 * page directory table.
2069 	 */
2070 	if (pmap->pm_pdir == NULL) {
2071 		pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
2072 		if (pmap->pm_pdir == NULL)
2073 			return (0);
2074 #ifdef PMAP_PAE_COMP
2075 		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
2076 		KASSERT(((vm_offset_t)pmap->pm_pdpt &
2077 		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
2078 		    ("pmap_pinit: pdpt misaligned"));
2079 		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
2080 		    ("pmap_pinit: pdpt above 4g"));
2081 #endif
2082 		pmap->pm_root.rt_root = 0;
2083 	}
2084 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2085 	    ("pmap_pinit: pmap has reserved page table page(s)"));
2086 
2087 	/*
2088 	 * allocate the page directory page(s)
2089 	 */
2090 	for (i = 0; i < NPGPTD; i++) {
2091 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2092 		    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_WAITOK);
2093 		pmap->pm_ptdpg[i] = m;
2094 #ifdef PMAP_PAE_COMP
2095 		pmap->pm_pdpt[i] = VM_PAGE_TO_PHYS(m) | PG_V;
2096 #endif
2097 	}
2098 
2099 	pmap_qenter((vm_offset_t)pmap->pm_pdir, pmap->pm_ptdpg, NPGPTD);
2100 #ifdef PMAP_PAE_COMP
2101 	if ((cpu_feature & CPUID_PAT) == 0) {
2102 		pmap_invalidate_cache_range(
2103 		    trunc_page((vm_offset_t)pmap->pm_pdpt),
2104 		    round_page((vm_offset_t)pmap->pm_pdpt +
2105 		    NPGPTD * sizeof(pdpt_entry_t)));
2106 	}
2107 #endif
2108 
2109 	for (i = 0; i < NPGPTD; i++)
2110 		if ((pmap->pm_ptdpg[i]->flags & PG_ZERO) == 0)
2111 			pagezero(pmap->pm_pdir + (i * NPDEPG));
2112 
2113 	/* Install the trampoline mapping. */
2114 	pmap->pm_pdir[TRPTDI] = PTD[TRPTDI];
2115 
2116 	CPU_ZERO(&pmap->pm_active);
2117 	TAILQ_INIT(&pmap->pm_pvchunk);
2118 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2119 
2120 	return (1);
2121 }
2122 
2123 /*
2124  * this routine is called if the page table page is not
2125  * mapped correctly.
2126  */
2127 static vm_page_t
2128 _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
2129 {
2130 	vm_paddr_t ptepa;
2131 	vm_page_t m;
2132 
2133 	/*
2134 	 * Allocate a page table page.
2135 	 */
2136 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
2137 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
2138 		if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2139 			PMAP_UNLOCK(pmap);
2140 			rw_wunlock(&pvh_global_lock);
2141 			vm_wait(NULL);
2142 			rw_wlock(&pvh_global_lock);
2143 			PMAP_LOCK(pmap);
2144 		}
2145 
2146 		/*
2147 		 * Indicate the need to retry.  While waiting, the page table
2148 		 * page may have been allocated.
2149 		 */
2150 		return (NULL);
2151 	}
2152 	if ((m->flags & PG_ZERO) == 0)
2153 		pmap_zero_page(m);
2154 
2155 	/*
2156 	 * Map the pagetable page into the process address space, if
2157 	 * it isn't already there.
2158 	 */
2159 
2160 	pmap->pm_stats.resident_count++;
2161 
2162 	ptepa = VM_PAGE_TO_PHYS(m);
2163 	pmap->pm_pdir[ptepindex] =
2164 		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
2165 
2166 	return (m);
2167 }
2168 
2169 static vm_page_t
2170 pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
2171 {
2172 	u_int ptepindex;
2173 	pd_entry_t ptepa;
2174 	vm_page_t m;
2175 
2176 	/*
2177 	 * Calculate pagetable page index
2178 	 */
2179 	ptepindex = va >> PDRSHIFT;
2180 retry:
2181 	/*
2182 	 * Get the page directory entry
2183 	 */
2184 	ptepa = pmap->pm_pdir[ptepindex];
2185 
2186 	/*
2187 	 * This supports switching from a 4MB page to a
2188 	 * normal 4K page.
2189 	 */
2190 	if (ptepa & PG_PS) {
2191 		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
2192 		ptepa = pmap->pm_pdir[ptepindex];
2193 	}
2194 
2195 	/*
2196 	 * If the page table page is mapped, we just increment the
2197 	 * hold count, and activate it.
2198 	 */
2199 	if (ptepa) {
2200 		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
2201 		m->ref_count++;
2202 	} else {
2203 		/*
2204 		 * Here if the pte page isn't mapped, or if it has
2205 		 * been deallocated.
2206 		 */
2207 		m = _pmap_allocpte(pmap, ptepindex, flags);
2208 		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2209 			goto retry;
2210 	}
2211 	return (m);
2212 }
2213 
2214 
2215 /***************************************************
2216 * Pmap allocation/deallocation routines.
2217  ***************************************************/
2218 
2219 /*
2220  * Release any resources held by the given physical map.
2221  * Called when a pmap initialized by pmap_pinit is being released.
2222  * Should only be called if the map contains no valid mappings.
2223  */
2224 static void
2225 __CONCAT(PMTYPE, release)(pmap_t pmap)
2226 {
2227 	vm_page_t m;
2228 	int i;
2229 
2230 	KASSERT(pmap->pm_stats.resident_count == 0,
2231 	    ("pmap_release: pmap resident count %ld != 0",
2232 	    pmap->pm_stats.resident_count));
2233 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2234 	    ("pmap_release: pmap has reserved page table page(s)"));
2235 	KASSERT(CPU_EMPTY(&pmap->pm_active),
2236 	    ("releasing active pmap %p", pmap));
2237 
2238 	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2239 
2240 	for (i = 0; i < NPGPTD; i++) {
2241 		m = pmap->pm_ptdpg[i];
2242 #ifdef PMAP_PAE_COMP
2243 		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2244 		    ("pmap_release: got wrong ptd page"));
2245 #endif
2246 		vm_page_unwire_noq(m);
2247 		vm_page_free(m);
2248 	}
2249 }
2250 
2251 /*
2252  * grow the number of kernel page table entries, if needed
2253  */
2254 static void
2255 __CONCAT(PMTYPE, growkernel)(vm_offset_t addr)
2256 {
2257 	vm_paddr_t ptppaddr;
2258 	vm_page_t nkpg;
2259 	pd_entry_t newpdir;
2260 
2261 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2262 	addr = roundup2(addr, NBPDR);
2263 	if (addr - 1 >= vm_map_max(kernel_map))
2264 		addr = vm_map_max(kernel_map);
2265 	while (kernel_vm_end < addr) {
2266 		if (pdir_pde(PTD, kernel_vm_end)) {
2267 			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2268 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2269 				kernel_vm_end = vm_map_max(kernel_map);
2270 				break;
2271 			}
2272 			continue;
2273 		}
2274 
2275 		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2276 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2277 		    VM_ALLOC_ZERO);
2278 		if (nkpg == NULL)
2279 			panic("pmap_growkernel: no memory to grow kernel");
2280 
2281 		nkpt++;
2282 
2283 		if ((nkpg->flags & PG_ZERO) == 0)
2284 			pmap_zero_page(nkpg);
2285 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2286 		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2287 		pdir_pde(KPTD, kernel_vm_end) = newpdir;
2288 
2289 		pmap_kenter_pde(kernel_vm_end, newpdir);
2290 		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2291 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2292 			kernel_vm_end = vm_map_max(kernel_map);
2293 			break;
2294 		}
2295 	}
2296 }
2297 
2298 
2299 /***************************************************
2300  * page management routines.
2301  ***************************************************/
2302 
2303 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2304 CTASSERT(_NPCM == 11);
2305 CTASSERT(_NPCPV == 336);
2306 
2307 static __inline struct pv_chunk *
2308 pv_to_chunk(pv_entry_t pv)
2309 {
2310 
2311 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2312 }
2313 
2314 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2315 
2316 #define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2317 #define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2318 
2319 static const uint32_t pc_freemask[_NPCM] = {
2320 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2321 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2322 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2323 	PC_FREE0_9, PC_FREE10
2324 };
2325 
2326 #ifdef PV_STATS
2327 extern int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2328 extern long pv_entry_frees, pv_entry_allocs;
2329 extern int pv_entry_spare;
2330 #endif
2331 
2332 /*
2333  * We are in a serious low memory condition.  Resort to
2334  * drastic measures to free some pages so we can allocate
2335  * another pv entry chunk.
2336  */
2337 static vm_page_t
2338 pmap_pv_reclaim(pmap_t locked_pmap)
2339 {
2340 	struct pch newtail;
2341 	struct pv_chunk *pc;
2342 	struct md_page *pvh;
2343 	pd_entry_t *pde;
2344 	pmap_t pmap;
2345 	pt_entry_t *pte, tpte;
2346 	pv_entry_t pv;
2347 	vm_offset_t va;
2348 	vm_page_t m, m_pc;
2349 	struct spglist free;
2350 	uint32_t inuse;
2351 	int bit, field, freed;
2352 
2353 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2354 	pmap = NULL;
2355 	m_pc = NULL;
2356 	SLIST_INIT(&free);
2357 	TAILQ_INIT(&newtail);
2358 	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2359 	    SLIST_EMPTY(&free))) {
2360 		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2361 		if (pmap != pc->pc_pmap) {
2362 			if (pmap != NULL) {
2363 				pmap_invalidate_all_int(pmap);
2364 				if (pmap != locked_pmap)
2365 					PMAP_UNLOCK(pmap);
2366 			}
2367 			pmap = pc->pc_pmap;
2368 			/* Avoid deadlock and lock recursion. */
2369 			if (pmap > locked_pmap)
2370 				PMAP_LOCK(pmap);
2371 			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2372 				pmap = NULL;
2373 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2374 				continue;
2375 			}
2376 		}
2377 
2378 		/*
2379 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2380 		 */
2381 		freed = 0;
2382 		for (field = 0; field < _NPCM; field++) {
2383 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2384 			    inuse != 0; inuse &= ~(1UL << bit)) {
2385 				bit = bsfl(inuse);
2386 				pv = &pc->pc_pventry[field * 32 + bit];
2387 				va = pv->pv_va;
2388 				pde = pmap_pde(pmap, va);
2389 				if ((*pde & PG_PS) != 0)
2390 					continue;
2391 				pte = __CONCAT(PMTYPE, pte)(pmap, va);
2392 				tpte = *pte;
2393 				if ((tpte & PG_W) == 0)
2394 					tpte = pte_load_clear(pte);
2395 				pmap_pte_release(pte);
2396 				if ((tpte & PG_W) != 0)
2397 					continue;
2398 				KASSERT(tpte != 0,
2399 				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2400 				    pmap, va));
2401 				if ((tpte & PG_G) != 0)
2402 					pmap_invalidate_page_int(pmap, va);
2403 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2404 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2405 					vm_page_dirty(m);
2406 				if ((tpte & PG_A) != 0)
2407 					vm_page_aflag_set(m, PGA_REFERENCED);
2408 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2409 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2410 				    (m->flags & PG_FICTITIOUS) == 0) {
2411 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2412 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2413 						vm_page_aflag_clear(m,
2414 						    PGA_WRITEABLE);
2415 					}
2416 				}
2417 				pc->pc_map[field] |= 1UL << bit;
2418 				pmap_unuse_pt(pmap, va, &free);
2419 				freed++;
2420 			}
2421 		}
2422 		if (freed == 0) {
2423 			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2424 			continue;
2425 		}
2426 		/* Every freed mapping is for a 4 KB page. */
2427 		pmap->pm_stats.resident_count -= freed;
2428 		PV_STAT(pv_entry_frees += freed);
2429 		PV_STAT(pv_entry_spare += freed);
2430 		pv_entry_count -= freed;
2431 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2432 		for (field = 0; field < _NPCM; field++)
2433 			if (pc->pc_map[field] != pc_freemask[field]) {
2434 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2435 				    pc_list);
2436 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2437 
2438 				/*
2439 				 * One freed pv entry in locked_pmap is
2440 				 * sufficient.
2441 				 */
2442 				if (pmap == locked_pmap)
2443 					goto out;
2444 				break;
2445 			}
2446 		if (field == _NPCM) {
2447 			PV_STAT(pv_entry_spare -= _NPCPV);
2448 			PV_STAT(pc_chunk_count--);
2449 			PV_STAT(pc_chunk_frees++);
2450 			/* Entire chunk is free; return it. */
2451 			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2452 			pmap_qremove((vm_offset_t)pc, 1);
2453 			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2454 			break;
2455 		}
2456 	}
2457 out:
2458 	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2459 	if (pmap != NULL) {
2460 		pmap_invalidate_all_int(pmap);
2461 		if (pmap != locked_pmap)
2462 			PMAP_UNLOCK(pmap);
2463 	}
2464 	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2465 		m_pc = SLIST_FIRST(&free);
2466 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2467 		/* Recycle a freed page table page. */
2468 		m_pc->ref_count = 1;
2469 	}
2470 	vm_page_free_pages_toq(&free, true);
2471 	return (m_pc);
2472 }
2473 
2474 /*
2475  * free the pv_entry back to the free list
2476  */
2477 static void
2478 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2479 {
2480 	struct pv_chunk *pc;
2481 	int idx, field, bit;
2482 
2483 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2484 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2485 	PV_STAT(pv_entry_frees++);
2486 	PV_STAT(pv_entry_spare++);
2487 	pv_entry_count--;
2488 	pc = pv_to_chunk(pv);
2489 	idx = pv - &pc->pc_pventry[0];
2490 	field = idx / 32;
2491 	bit = idx % 32;
2492 	pc->pc_map[field] |= 1ul << bit;
2493 	for (idx = 0; idx < _NPCM; idx++)
2494 		if (pc->pc_map[idx] != pc_freemask[idx]) {
2495 			/*
2496 			 * 98% of the time, pc is already at the head of the
2497 			 * list.  If it isn't already, move it to the head.
2498 			 */
2499 			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2500 			    pc)) {
2501 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2502 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2503 				    pc_list);
2504 			}
2505 			return;
2506 		}
2507 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2508 	free_pv_chunk(pc);
2509 }
2510 
2511 static void
2512 free_pv_chunk(struct pv_chunk *pc)
2513 {
2514 	vm_page_t m;
2515 
2516  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2517 	PV_STAT(pv_entry_spare -= _NPCPV);
2518 	PV_STAT(pc_chunk_count--);
2519 	PV_STAT(pc_chunk_frees++);
2520 	/* entire chunk is free, return it */
2521 	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2522 	pmap_qremove((vm_offset_t)pc, 1);
2523 	vm_page_unwire_noq(m);
2524 	vm_page_free(m);
2525 	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2526 }
2527 
2528 /*
2529  * get a new pv_entry, allocating a block from the system
2530  * when needed.
2531  */
2532 static pv_entry_t
2533 get_pv_entry(pmap_t pmap, boolean_t try)
2534 {
2535 	static const struct timeval printinterval = { 60, 0 };
2536 	static struct timeval lastprint;
2537 	int bit, field;
2538 	pv_entry_t pv;
2539 	struct pv_chunk *pc;
2540 	vm_page_t m;
2541 
2542 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2543 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2544 	PV_STAT(pv_entry_allocs++);
2545 	pv_entry_count++;
2546 	if (pv_entry_count > pv_entry_high_water)
2547 		if (ratecheck(&lastprint, &printinterval))
2548 			printf("Approaching the limit on PV entries, consider "
2549 			    "increasing either the vm.pmap.shpgperproc or the "
2550 			    "vm.pmap.pv_entries tunable.\n");
2551 retry:
2552 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2553 	if (pc != NULL) {
2554 		for (field = 0; field < _NPCM; field++) {
2555 			if (pc->pc_map[field]) {
2556 				bit = bsfl(pc->pc_map[field]);
2557 				break;
2558 			}
2559 		}
2560 		if (field < _NPCM) {
2561 			pv = &pc->pc_pventry[field * 32 + bit];
2562 			pc->pc_map[field] &= ~(1ul << bit);
2563 			/* If this was the last item, move it to tail */
2564 			for (field = 0; field < _NPCM; field++)
2565 				if (pc->pc_map[field] != 0) {
2566 					PV_STAT(pv_entry_spare--);
2567 					return (pv);	/* not full, return */
2568 				}
2569 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2570 			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2571 			PV_STAT(pv_entry_spare--);
2572 			return (pv);
2573 		}
2574 	}
2575 	/*
2576 	 * Access to the ptelist "pv_vafree" is synchronized by the pvh
2577 	 * global lock.  If "pv_vafree" is currently non-empty, it will
2578 	 * remain non-empty until pmap_ptelist_alloc() completes.
2579 	 */
2580 	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2581 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2582 		if (try) {
2583 			pv_entry_count--;
2584 			PV_STAT(pc_chunk_tryfail++);
2585 			return (NULL);
2586 		}
2587 		m = pmap_pv_reclaim(pmap);
2588 		if (m == NULL)
2589 			goto retry;
2590 	}
2591 	PV_STAT(pc_chunk_count++);
2592 	PV_STAT(pc_chunk_allocs++);
2593 	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2594 	pmap_qenter((vm_offset_t)pc, &m, 1);
2595 	pc->pc_pmap = pmap;
2596 	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2597 	for (field = 1; field < _NPCM; field++)
2598 		pc->pc_map[field] = pc_freemask[field];
2599 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2600 	pv = &pc->pc_pventry[0];
2601 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2602 	PV_STAT(pv_entry_spare += _NPCPV - 1);
2603 	return (pv);
2604 }
2605 
2606 static __inline pv_entry_t
2607 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2608 {
2609 	pv_entry_t pv;
2610 
2611 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2612 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2613 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2614 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2615 			break;
2616 		}
2617 	}
2618 	return (pv);
2619 }
2620 
2621 static void
2622 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2623 {
2624 	struct md_page *pvh;
2625 	pv_entry_t pv;
2626 	vm_offset_t va_last;
2627 	vm_page_t m;
2628 
2629 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2630 	KASSERT((pa & PDRMASK) == 0,
2631 	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2632 
2633 	/*
2634 	 * Transfer the 4mpage's pv entry for this mapping to the first
2635 	 * page's pv list.
2636 	 */
2637 	pvh = pa_to_pvh(pa);
2638 	va = trunc_4mpage(va);
2639 	pv = pmap_pvh_remove(pvh, pmap, va);
2640 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2641 	m = PHYS_TO_VM_PAGE(pa);
2642 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2643 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2644 	va_last = va + NBPDR - PAGE_SIZE;
2645 	do {
2646 		m++;
2647 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2648 		    ("pmap_pv_demote_pde: page %p is not managed", m));
2649 		va += PAGE_SIZE;
2650 		pmap_insert_entry(pmap, va, m);
2651 	} while (va < va_last);
2652 }
2653 
2654 #if VM_NRESERVLEVEL > 0
2655 static void
2656 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2657 {
2658 	struct md_page *pvh;
2659 	pv_entry_t pv;
2660 	vm_offset_t va_last;
2661 	vm_page_t m;
2662 
2663 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2664 	KASSERT((pa & PDRMASK) == 0,
2665 	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2666 
2667 	/*
2668 	 * Transfer the first page's pv entry for this mapping to the
2669 	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2670 	 * to get_pv_entry(), a transfer avoids the possibility that
2671 	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2672 	 * removes one of the mappings that is being promoted.
2673 	 */
2674 	m = PHYS_TO_VM_PAGE(pa);
2675 	va = trunc_4mpage(va);
2676 	pv = pmap_pvh_remove(&m->md, pmap, va);
2677 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2678 	pvh = pa_to_pvh(pa);
2679 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2680 	/* Free the remaining NPTEPG - 1 pv entries. */
2681 	va_last = va + NBPDR - PAGE_SIZE;
2682 	do {
2683 		m++;
2684 		va += PAGE_SIZE;
2685 		pmap_pvh_free(&m->md, pmap, va);
2686 	} while (va < va_last);
2687 }
2688 #endif /* VM_NRESERVLEVEL > 0 */
2689 
2690 static void
2691 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2692 {
2693 	pv_entry_t pv;
2694 
2695 	pv = pmap_pvh_remove(pvh, pmap, va);
2696 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2697 	free_pv_entry(pmap, pv);
2698 }
2699 
2700 static void
2701 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2702 {
2703 	struct md_page *pvh;
2704 
2705 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2706 	pmap_pvh_free(&m->md, pmap, va);
2707 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
2708 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2709 		if (TAILQ_EMPTY(&pvh->pv_list))
2710 			vm_page_aflag_clear(m, PGA_WRITEABLE);
2711 	}
2712 }
2713 
2714 /*
2715  * Create a pv entry for page at pa for
2716  * (pmap, va).
2717  */
2718 static void
2719 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2720 {
2721 	pv_entry_t pv;
2722 
2723 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2724 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2725 	pv = get_pv_entry(pmap, FALSE);
2726 	pv->pv_va = va;
2727 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2728 }
2729 
2730 /*
2731  * Conditionally create a pv entry.
2732  */
2733 static boolean_t
2734 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2735 {
2736 	pv_entry_t pv;
2737 
2738 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2739 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2740 	if (pv_entry_count < pv_entry_high_water &&
2741 	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2742 		pv->pv_va = va;
2743 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2744 		return (TRUE);
2745 	} else
2746 		return (FALSE);
2747 }
2748 
2749 /*
2750  * Create the pv entries for each of the pages within a superpage.
2751  */
2752 static bool
2753 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags)
2754 {
2755 	struct md_page *pvh;
2756 	pv_entry_t pv;
2757 	bool noreclaim;
2758 
2759 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2760 	noreclaim = (flags & PMAP_ENTER_NORECLAIM) != 0;
2761 	if ((noreclaim && pv_entry_count >= pv_entry_high_water) ||
2762 	    (pv = get_pv_entry(pmap, noreclaim)) == NULL)
2763 		return (false);
2764 	pv->pv_va = va;
2765 	pvh = pa_to_pvh(pde & PG_PS_FRAME);
2766 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2767 	return (true);
2768 }
2769 
2770 /*
2771  * Fills a page table page with mappings to consecutive physical pages.
2772  */
2773 static void
2774 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2775 {
2776 	pt_entry_t *pte;
2777 
2778 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2779 		*pte = newpte;
2780 		newpte += PAGE_SIZE;
2781 	}
2782 }
2783 
2784 /*
2785  * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2786  * 2- or 4MB page mapping is invalidated.
2787  */
2788 static boolean_t
2789 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2790 {
2791 	pd_entry_t newpde, oldpde;
2792 	pt_entry_t *firstpte, newpte;
2793 	vm_paddr_t mptepa;
2794 	vm_page_t mpte;
2795 	struct spglist free;
2796 	vm_offset_t sva;
2797 
2798 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2799 	oldpde = *pde;
2800 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2801 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2802 	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
2803 	    NULL) {
2804 		KASSERT((oldpde & PG_W) == 0,
2805 		    ("pmap_demote_pde: page table page for a wired mapping"
2806 		    " is missing"));
2807 
2808 		/*
2809 		 * Invalidate the 2- or 4MB page mapping and return
2810 		 * "failure" if the mapping was never accessed or the
2811 		 * allocation of the new page table page fails.
2812 		 */
2813 		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2814 		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2815 		    VM_ALLOC_WIRED)) == NULL) {
2816 			SLIST_INIT(&free);
2817 			sva = trunc_4mpage(va);
2818 			pmap_remove_pde(pmap, pde, sva, &free);
2819 			if ((oldpde & PG_G) == 0)
2820 				pmap_invalidate_pde_page(pmap, sva, oldpde);
2821 			vm_page_free_pages_toq(&free, true);
2822 			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2823 			    " in pmap %p", va, pmap);
2824 			return (FALSE);
2825 		}
2826 		if (pmap != kernel_pmap) {
2827 			mpte->ref_count = NPTEPG;
2828 			pmap->pm_stats.resident_count++;
2829 		}
2830 	}
2831 	mptepa = VM_PAGE_TO_PHYS(mpte);
2832 
2833 	/*
2834 	 * If the page mapping is in the kernel's address space, then the
2835 	 * KPTmap can provide access to the page table page.  Otherwise,
2836 	 * temporarily map the page table page (mpte) into the kernel's
2837 	 * address space at either PADDR1 or PADDR2.
2838 	 */
2839 	if (pmap == kernel_pmap)
2840 		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2841 	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
2842 		if ((*PMAP1 & PG_FRAME) != mptepa) {
2843 			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2844 #ifdef SMP
2845 			PMAP1cpu = PCPU_GET(cpuid);
2846 #endif
2847 			invlcaddr(PADDR1);
2848 			PMAP1changed++;
2849 		} else
2850 #ifdef SMP
2851 		if (PMAP1cpu != PCPU_GET(cpuid)) {
2852 			PMAP1cpu = PCPU_GET(cpuid);
2853 			invlcaddr(PADDR1);
2854 			PMAP1changedcpu++;
2855 		} else
2856 #endif
2857 			PMAP1unchanged++;
2858 		firstpte = PADDR1;
2859 	} else {
2860 		mtx_lock(&PMAP2mutex);
2861 		if ((*PMAP2 & PG_FRAME) != mptepa) {
2862 			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2863 			pmap_invalidate_page_int(kernel_pmap,
2864 			    (vm_offset_t)PADDR2);
2865 		}
2866 		firstpte = PADDR2;
2867 	}
2868 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2869 	KASSERT((oldpde & PG_A) != 0,
2870 	    ("pmap_demote_pde: oldpde is missing PG_A"));
2871 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2872 	    ("pmap_demote_pde: oldpde is missing PG_M"));
2873 	newpte = oldpde & ~PG_PS;
2874 	if ((newpte & PG_PDE_PAT) != 0)
2875 		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2876 
2877 	/*
2878 	 * If the page table page is not leftover from an earlier promotion,
2879 	 * initialize it.
2880 	 */
2881 	if (mpte->valid == 0)
2882 		pmap_fill_ptp(firstpte, newpte);
2883 
2884 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2885 	    ("pmap_demote_pde: firstpte and newpte map different physical"
2886 	    " addresses"));
2887 
2888 	/*
2889 	 * If the mapping has changed attributes, update the page table
2890 	 * entries.
2891 	 */
2892 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2893 		pmap_fill_ptp(firstpte, newpte);
2894 
2895 	/*
2896 	 * Demote the mapping.  This pmap is locked.  The old PDE has
2897 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2898 	 * set.  Thus, there is no danger of a race with another
2899 	 * processor changing the setting of PG_A and/or PG_M between
2900 	 * the read above and the store below.
2901 	 */
2902 	if (workaround_erratum383)
2903 		pmap_update_pde(pmap, va, pde, newpde);
2904 	else if (pmap == kernel_pmap)
2905 		pmap_kenter_pde(va, newpde);
2906 	else
2907 		pde_store(pde, newpde);
2908 	if (firstpte == PADDR2)
2909 		mtx_unlock(&PMAP2mutex);
2910 
2911 	/*
2912 	 * Invalidate the recursive mapping of the page table page.
2913 	 */
2914 	pmap_invalidate_page_int(pmap, (vm_offset_t)vtopte(va));
2915 
2916 	/*
2917 	 * Demote the pv entry.  This depends on the earlier demotion
2918 	 * of the mapping.  Specifically, the (re)creation of a per-
2919 	 * page pv entry might trigger the execution of pmap_collect(),
2920 	 * which might reclaim a newly (re)created per-page pv entry
2921 	 * and destroy the associated mapping.  In order to destroy
2922 	 * the mapping, the PDE must have already changed from mapping
2923 	 * the 2mpage to referencing the page table page.
2924 	 */
2925 	if ((oldpde & PG_MANAGED) != 0)
2926 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2927 
2928 	pmap_pde_demotions++;
2929 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2930 	    " in pmap %p", va, pmap);
2931 	return (TRUE);
2932 }
2933 
2934 /*
2935  * Removes a 2- or 4MB page mapping from the kernel pmap.
2936  */
2937 static void
2938 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2939 {
2940 	pd_entry_t newpde;
2941 	vm_paddr_t mptepa;
2942 	vm_page_t mpte;
2943 
2944 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2945 	mpte = pmap_remove_pt_page(pmap, va);
2946 	if (mpte == NULL)
2947 		panic("pmap_remove_kernel_pde: Missing pt page.");
2948 
2949 	mptepa = VM_PAGE_TO_PHYS(mpte);
2950 	newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
2951 
2952 	/*
2953 	 * If this page table page was unmapped by a promotion, then it
2954 	 * contains valid mappings.  Zero it to invalidate those mappings.
2955 	 */
2956 	if (mpte->valid != 0)
2957 		pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
2958 
2959 	/*
2960 	 * Remove the mapping.
2961 	 */
2962 	if (workaround_erratum383)
2963 		pmap_update_pde(pmap, va, pde, newpde);
2964 	else
2965 		pmap_kenter_pde(va, newpde);
2966 
2967 	/*
2968 	 * Invalidate the recursive mapping of the page table page.
2969 	 */
2970 	pmap_invalidate_page_int(pmap, (vm_offset_t)vtopte(va));
2971 }
2972 
2973 /*
2974  * pmap_remove_pde: do the things to unmap a superpage in a process
2975  */
2976 static void
2977 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2978     struct spglist *free)
2979 {
2980 	struct md_page *pvh;
2981 	pd_entry_t oldpde;
2982 	vm_offset_t eva, va;
2983 	vm_page_t m, mpte;
2984 
2985 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2986 	KASSERT((sva & PDRMASK) == 0,
2987 	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2988 	oldpde = pte_load_clear(pdq);
2989 	if (oldpde & PG_W)
2990 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2991 
2992 	/*
2993 	 * Machines that don't support invlpg, also don't support
2994 	 * PG_G.
2995 	 */
2996 	if ((oldpde & PG_G) != 0)
2997 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
2998 
2999 	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
3000 	if (oldpde & PG_MANAGED) {
3001 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
3002 		pmap_pvh_free(pvh, pmap, sva);
3003 		eva = sva + NBPDR;
3004 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3005 		    va < eva; va += PAGE_SIZE, m++) {
3006 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
3007 				vm_page_dirty(m);
3008 			if (oldpde & PG_A)
3009 				vm_page_aflag_set(m, PGA_REFERENCED);
3010 			if (TAILQ_EMPTY(&m->md.pv_list) &&
3011 			    TAILQ_EMPTY(&pvh->pv_list))
3012 				vm_page_aflag_clear(m, PGA_WRITEABLE);
3013 		}
3014 	}
3015 	if (pmap == kernel_pmap) {
3016 		pmap_remove_kernel_pde(pmap, pdq, sva);
3017 	} else {
3018 		mpte = pmap_remove_pt_page(pmap, sva);
3019 		if (mpte != NULL) {
3020 			KASSERT(mpte->valid == VM_PAGE_BITS_ALL,
3021 			    ("pmap_remove_pde: pte page not promoted"));
3022 			pmap->pm_stats.resident_count--;
3023 			KASSERT(mpte->ref_count == NPTEPG,
3024 			    ("pmap_remove_pde: pte page ref count error"));
3025 			mpte->ref_count = 0;
3026 			pmap_add_delayed_free_list(mpte, free, FALSE);
3027 		}
3028 	}
3029 }
3030 
3031 /*
3032  * pmap_remove_pte: do the things to unmap a page in a process
3033  */
3034 static int
3035 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
3036     struct spglist *free)
3037 {
3038 	pt_entry_t oldpte;
3039 	vm_page_t m;
3040 
3041 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3042 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3043 	oldpte = pte_load_clear(ptq);
3044 	KASSERT(oldpte != 0,
3045 	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
3046 	if (oldpte & PG_W)
3047 		pmap->pm_stats.wired_count -= 1;
3048 	/*
3049 	 * Machines that don't support invlpg, also don't support
3050 	 * PG_G.
3051 	 */
3052 	if (oldpte & PG_G)
3053 		pmap_invalidate_page_int(kernel_pmap, va);
3054 	pmap->pm_stats.resident_count -= 1;
3055 	if (oldpte & PG_MANAGED) {
3056 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
3057 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3058 			vm_page_dirty(m);
3059 		if (oldpte & PG_A)
3060 			vm_page_aflag_set(m, PGA_REFERENCED);
3061 		pmap_remove_entry(pmap, m, va);
3062 	}
3063 	return (pmap_unuse_pt(pmap, va, free));
3064 }
3065 
3066 /*
3067  * Remove a single page from a process address space
3068  */
3069 static void
3070 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
3071 {
3072 	pt_entry_t *pte;
3073 
3074 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3075 	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
3076 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3077 	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
3078 		return;
3079 	pmap_remove_pte(pmap, pte, va, free);
3080 	pmap_invalidate_page_int(pmap, va);
3081 }
3082 
3083 /*
3084  * Removes the specified range of addresses from the page table page.
3085  */
3086 static bool
3087 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3088     struct spglist *free)
3089 {
3090 	pt_entry_t *pte;
3091 	bool anyvalid;
3092 
3093 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3094 	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
3095 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3096 	anyvalid = false;
3097 	for (pte = pmap_pte_quick(pmap, sva); sva != eva; pte++,
3098 	    sva += PAGE_SIZE) {
3099 		if (*pte == 0)
3100 			continue;
3101 
3102 		/*
3103 		 * The TLB entry for a PG_G mapping is invalidated by
3104 		 * pmap_remove_pte().
3105 		 */
3106 		if ((*pte & PG_G) == 0)
3107 			anyvalid = true;
3108 
3109 		if (pmap_remove_pte(pmap, pte, sva, free))
3110 			break;
3111 	}
3112 	return (anyvalid);
3113 }
3114 
3115 /*
3116  *	Remove the given range of addresses from the specified map.
3117  *
3118  *	It is assumed that the start and end are properly
3119  *	rounded to the page size.
3120  */
3121 static void
3122 __CONCAT(PMTYPE, remove)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3123 {
3124 	vm_offset_t pdnxt;
3125 	pd_entry_t ptpaddr;
3126 	struct spglist free;
3127 	int anyvalid;
3128 
3129 	/*
3130 	 * Perform an unsynchronized read.  This is, however, safe.
3131 	 */
3132 	if (pmap->pm_stats.resident_count == 0)
3133 		return;
3134 
3135 	anyvalid = 0;
3136 	SLIST_INIT(&free);
3137 
3138 	rw_wlock(&pvh_global_lock);
3139 	sched_pin();
3140 	PMAP_LOCK(pmap);
3141 
3142 	/*
3143 	 * special handling of removing one page.  a very
3144 	 * common operation and easy to short circuit some
3145 	 * code.
3146 	 */
3147 	if ((sva + PAGE_SIZE == eva) &&
3148 	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
3149 		pmap_remove_page(pmap, sva, &free);
3150 		goto out;
3151 	}
3152 
3153 	for (; sva < eva; sva = pdnxt) {
3154 		u_int pdirindex;
3155 
3156 		/*
3157 		 * Calculate index for next page table.
3158 		 */
3159 		pdnxt = (sva + NBPDR) & ~PDRMASK;
3160 		if (pdnxt < sva)
3161 			pdnxt = eva;
3162 		if (pmap->pm_stats.resident_count == 0)
3163 			break;
3164 
3165 		pdirindex = sva >> PDRSHIFT;
3166 		ptpaddr = pmap->pm_pdir[pdirindex];
3167 
3168 		/*
3169 		 * Weed out invalid mappings. Note: we assume that the page
3170 		 * directory table is always allocated, and in kernel virtual.
3171 		 */
3172 		if (ptpaddr == 0)
3173 			continue;
3174 
3175 		/*
3176 		 * Check for large page.
3177 		 */
3178 		if ((ptpaddr & PG_PS) != 0) {
3179 			/*
3180 			 * Are we removing the entire large page?  If not,
3181 			 * demote the mapping and fall through.
3182 			 */
3183 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3184 				/*
3185 				 * The TLB entry for a PG_G mapping is
3186 				 * invalidated by pmap_remove_pde().
3187 				 */
3188 				if ((ptpaddr & PG_G) == 0)
3189 					anyvalid = 1;
3190 				pmap_remove_pde(pmap,
3191 				    &pmap->pm_pdir[pdirindex], sva, &free);
3192 				continue;
3193 			} else if (!pmap_demote_pde(pmap,
3194 			    &pmap->pm_pdir[pdirindex], sva)) {
3195 				/* The large page mapping was destroyed. */
3196 				continue;
3197 			}
3198 		}
3199 
3200 		/*
3201 		 * Limit our scan to either the end of the va represented
3202 		 * by the current page table page, or to the end of the
3203 		 * range being removed.
3204 		 */
3205 		if (pdnxt > eva)
3206 			pdnxt = eva;
3207 
3208 		if (pmap_remove_ptes(pmap, sva, pdnxt, &free))
3209 			anyvalid = 1;
3210 	}
3211 out:
3212 	sched_unpin();
3213 	if (anyvalid)
3214 		pmap_invalidate_all_int(pmap);
3215 	rw_wunlock(&pvh_global_lock);
3216 	PMAP_UNLOCK(pmap);
3217 	vm_page_free_pages_toq(&free, true);
3218 }
3219 
3220 /*
3221  *	Routine:	pmap_remove_all
3222  *	Function:
3223  *		Removes this physical page from
3224  *		all physical maps in which it resides.
3225  *		Reflects back modify bits to the pager.
3226  *
3227  *	Notes:
3228  *		Original versions of this routine were very
3229  *		inefficient because they iteratively called
3230  *		pmap_remove (slow...)
3231  */
3232 
3233 static void
3234 __CONCAT(PMTYPE, remove_all)(vm_page_t m)
3235 {
3236 	struct md_page *pvh;
3237 	pv_entry_t pv;
3238 	pmap_t pmap;
3239 	pt_entry_t *pte, tpte;
3240 	pd_entry_t *pde;
3241 	vm_offset_t va;
3242 	struct spglist free;
3243 
3244 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3245 	    ("pmap_remove_all: page %p is not managed", m));
3246 	SLIST_INIT(&free);
3247 	rw_wlock(&pvh_global_lock);
3248 	sched_pin();
3249 	if ((m->flags & PG_FICTITIOUS) != 0)
3250 		goto small_mappings;
3251 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3252 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3253 		va = pv->pv_va;
3254 		pmap = PV_PMAP(pv);
3255 		PMAP_LOCK(pmap);
3256 		pde = pmap_pde(pmap, va);
3257 		(void)pmap_demote_pde(pmap, pde, va);
3258 		PMAP_UNLOCK(pmap);
3259 	}
3260 small_mappings:
3261 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3262 		pmap = PV_PMAP(pv);
3263 		PMAP_LOCK(pmap);
3264 		pmap->pm_stats.resident_count--;
3265 		pde = pmap_pde(pmap, pv->pv_va);
3266 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3267 		    " a 4mpage in page %p's pv list", m));
3268 		pte = pmap_pte_quick(pmap, pv->pv_va);
3269 		tpte = pte_load_clear(pte);
3270 		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
3271 		    pmap, pv->pv_va));
3272 		if (tpte & PG_W)
3273 			pmap->pm_stats.wired_count--;
3274 		if (tpte & PG_A)
3275 			vm_page_aflag_set(m, PGA_REFERENCED);
3276 
3277 		/*
3278 		 * Update the vm_page_t clean and reference bits.
3279 		 */
3280 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3281 			vm_page_dirty(m);
3282 		pmap_unuse_pt(pmap, pv->pv_va, &free);
3283 		pmap_invalidate_page_int(pmap, pv->pv_va);
3284 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3285 		free_pv_entry(pmap, pv);
3286 		PMAP_UNLOCK(pmap);
3287 	}
3288 	vm_page_aflag_clear(m, PGA_WRITEABLE);
3289 	sched_unpin();
3290 	rw_wunlock(&pvh_global_lock);
3291 	vm_page_free_pages_toq(&free, true);
3292 }
3293 
3294 /*
3295  * pmap_protect_pde: do the things to protect a 4mpage in a process
3296  */
3297 static boolean_t
3298 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3299 {
3300 	pd_entry_t newpde, oldpde;
3301 	vm_page_t m, mt;
3302 	boolean_t anychanged;
3303 
3304 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3305 	KASSERT((sva & PDRMASK) == 0,
3306 	    ("pmap_protect_pde: sva is not 4mpage aligned"));
3307 	anychanged = FALSE;
3308 retry:
3309 	oldpde = newpde = *pde;
3310 	if ((prot & VM_PROT_WRITE) == 0) {
3311 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
3312 		    (PG_MANAGED | PG_M | PG_RW)) {
3313 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3314 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3315 				vm_page_dirty(mt);
3316 		}
3317 		newpde &= ~(PG_RW | PG_M);
3318 	}
3319 #ifdef PMAP_PAE_COMP
3320 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3321 		newpde |= pg_nx;
3322 #endif
3323 	if (newpde != oldpde) {
3324 		/*
3325 		 * As an optimization to future operations on this PDE, clear
3326 		 * PG_PROMOTED.  The impending invalidation will remove any
3327 		 * lingering 4KB page mappings from the TLB.
3328 		 */
3329 		if (!pde_cmpset(pde, oldpde, newpde & ~PG_PROMOTED))
3330 			goto retry;
3331 		if ((oldpde & PG_G) != 0)
3332 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
3333 		else
3334 			anychanged = TRUE;
3335 	}
3336 	return (anychanged);
3337 }
3338 
3339 /*
3340  *	Set the physical protection on the
3341  *	specified range of this map as requested.
3342  */
3343 static void
3344 __CONCAT(PMTYPE, protect)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3345     vm_prot_t prot)
3346 {
3347 	vm_offset_t pdnxt;
3348 	pd_entry_t ptpaddr;
3349 	pt_entry_t *pte;
3350 	boolean_t anychanged, pv_lists_locked;
3351 
3352 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3353 	if (prot == VM_PROT_NONE) {
3354 		pmap_remove(pmap, sva, eva);
3355 		return;
3356 	}
3357 
3358 #ifdef PMAP_PAE_COMP
3359 	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
3360 	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
3361 		return;
3362 #else
3363 	if (prot & VM_PROT_WRITE)
3364 		return;
3365 #endif
3366 
3367 	if (pmap_is_current(pmap))
3368 		pv_lists_locked = FALSE;
3369 	else {
3370 		pv_lists_locked = TRUE;
3371 resume:
3372 		rw_wlock(&pvh_global_lock);
3373 		sched_pin();
3374 	}
3375 	anychanged = FALSE;
3376 
3377 	PMAP_LOCK(pmap);
3378 	for (; sva < eva; sva = pdnxt) {
3379 		pt_entry_t obits, pbits;
3380 		u_int pdirindex;
3381 
3382 		pdnxt = (sva + NBPDR) & ~PDRMASK;
3383 		if (pdnxt < sva)
3384 			pdnxt = eva;
3385 
3386 		pdirindex = sva >> PDRSHIFT;
3387 		ptpaddr = pmap->pm_pdir[pdirindex];
3388 
3389 		/*
3390 		 * Weed out invalid mappings. Note: we assume that the page
3391 		 * directory table is always allocated, and in kernel virtual.
3392 		 */
3393 		if (ptpaddr == 0)
3394 			continue;
3395 
3396 		/*
3397 		 * Check for large page.
3398 		 */
3399 		if ((ptpaddr & PG_PS) != 0) {
3400 			/*
3401 			 * Are we protecting the entire large page?  If not,
3402 			 * demote the mapping and fall through.
3403 			 */
3404 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3405 				/*
3406 				 * The TLB entry for a PG_G mapping is
3407 				 * invalidated by pmap_protect_pde().
3408 				 */
3409 				if (pmap_protect_pde(pmap,
3410 				    &pmap->pm_pdir[pdirindex], sva, prot))
3411 					anychanged = TRUE;
3412 				continue;
3413 			} else {
3414 				if (!pv_lists_locked) {
3415 					pv_lists_locked = TRUE;
3416 					if (!rw_try_wlock(&pvh_global_lock)) {
3417 						if (anychanged)
3418 							pmap_invalidate_all_int(
3419 							    pmap);
3420 						PMAP_UNLOCK(pmap);
3421 						goto resume;
3422 					}
3423 					sched_pin();
3424 				}
3425 				if (!pmap_demote_pde(pmap,
3426 				    &pmap->pm_pdir[pdirindex], sva)) {
3427 					/*
3428 					 * The large page mapping was
3429 					 * destroyed.
3430 					 */
3431 					continue;
3432 				}
3433 			}
3434 		}
3435 
3436 		if (pdnxt > eva)
3437 			pdnxt = eva;
3438 
3439 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3440 		    sva += PAGE_SIZE) {
3441 			vm_page_t m;
3442 
3443 retry:
3444 			/*
3445 			 * Regardless of whether a pte is 32 or 64 bits in
3446 			 * size, PG_RW, PG_A, and PG_M are among the least
3447 			 * significant 32 bits.
3448 			 */
3449 			obits = pbits = *pte;
3450 			if ((pbits & PG_V) == 0)
3451 				continue;
3452 
3453 			if ((prot & VM_PROT_WRITE) == 0) {
3454 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3455 				    (PG_MANAGED | PG_M | PG_RW)) {
3456 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3457 					vm_page_dirty(m);
3458 				}
3459 				pbits &= ~(PG_RW | PG_M);
3460 			}
3461 #ifdef PMAP_PAE_COMP
3462 			if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3463 				pbits |= pg_nx;
3464 #endif
3465 
3466 			if (pbits != obits) {
3467 #ifdef PMAP_PAE_COMP
3468 				if (!atomic_cmpset_64(pte, obits, pbits))
3469 					goto retry;
3470 #else
3471 				if (!atomic_cmpset_int((u_int *)pte, obits,
3472 				    pbits))
3473 					goto retry;
3474 #endif
3475 				if (obits & PG_G)
3476 					pmap_invalidate_page_int(pmap, sva);
3477 				else
3478 					anychanged = TRUE;
3479 			}
3480 		}
3481 	}
3482 	if (anychanged)
3483 		pmap_invalidate_all_int(pmap);
3484 	if (pv_lists_locked) {
3485 		sched_unpin();
3486 		rw_wunlock(&pvh_global_lock);
3487 	}
3488 	PMAP_UNLOCK(pmap);
3489 }
3490 
3491 #if VM_NRESERVLEVEL > 0
3492 /*
3493  * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3494  * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3495  * For promotion to occur, two conditions must be met: (1) the 4KB page
3496  * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3497  * mappings must have identical characteristics.
3498  *
3499  * Managed (PG_MANAGED) mappings within the kernel address space are not
3500  * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3501  * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3502  * pmap.
3503  */
3504 static void
3505 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3506 {
3507 	pd_entry_t newpde;
3508 	pt_entry_t *firstpte, oldpte, pa, *pte;
3509 	vm_offset_t oldpteva;
3510 	vm_page_t mpte;
3511 
3512 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3513 
3514 	/*
3515 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3516 	 * either invalid, unused, or does not map the first 4KB physical page
3517 	 * within a 2- or 4MB page.
3518 	 */
3519 	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3520 setpde:
3521 	newpde = *firstpte;
3522 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3523 		pmap_pde_p_failures++;
3524 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3525 		    " in pmap %p", va, pmap);
3526 		return;
3527 	}
3528 	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3529 		pmap_pde_p_failures++;
3530 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3531 		    " in pmap %p", va, pmap);
3532 		return;
3533 	}
3534 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3535 		/*
3536 		 * When PG_M is already clear, PG_RW can be cleared without
3537 		 * a TLB invalidation.
3538 		 */
3539 		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3540 		    ~PG_RW))
3541 			goto setpde;
3542 		newpde &= ~PG_RW;
3543 	}
3544 
3545 	/*
3546 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3547 	 * PTE maps an unexpected 4KB physical page or does not have identical
3548 	 * characteristics to the first PTE.
3549 	 */
3550 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3551 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3552 setpte:
3553 		oldpte = *pte;
3554 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3555 			pmap_pde_p_failures++;
3556 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3557 			    " in pmap %p", va, pmap);
3558 			return;
3559 		}
3560 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3561 			/*
3562 			 * When PG_M is already clear, PG_RW can be cleared
3563 			 * without a TLB invalidation.
3564 			 */
3565 			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3566 			    oldpte & ~PG_RW))
3567 				goto setpte;
3568 			oldpte &= ~PG_RW;
3569 			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3570 			    (va & ~PDRMASK);
3571 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3572 			    " in pmap %p", oldpteva, pmap);
3573 		}
3574 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3575 			pmap_pde_p_failures++;
3576 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3577 			    " in pmap %p", va, pmap);
3578 			return;
3579 		}
3580 		pa -= PAGE_SIZE;
3581 	}
3582 
3583 	/*
3584 	 * Save the page table page in its current state until the PDE
3585 	 * mapping the superpage is demoted by pmap_demote_pde() or
3586 	 * destroyed by pmap_remove_pde().
3587 	 */
3588 	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3589 	KASSERT(mpte >= vm_page_array &&
3590 	    mpte < &vm_page_array[vm_page_array_size],
3591 	    ("pmap_promote_pde: page table page is out of range"));
3592 	KASSERT(mpte->pindex == va >> PDRSHIFT,
3593 	    ("pmap_promote_pde: page table page's pindex is wrong"));
3594 	if (pmap_insert_pt_page(pmap, mpte, true)) {
3595 		pmap_pde_p_failures++;
3596 		CTR2(KTR_PMAP,
3597 		    "pmap_promote_pde: failure for va %#x in pmap %p", va,
3598 		    pmap);
3599 		return;
3600 	}
3601 
3602 	/*
3603 	 * Promote the pv entries.
3604 	 */
3605 	if ((newpde & PG_MANAGED) != 0)
3606 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3607 
3608 	/*
3609 	 * Propagate the PAT index to its proper position.
3610 	 */
3611 	if ((newpde & PG_PTE_PAT) != 0)
3612 		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3613 
3614 	/*
3615 	 * Map the superpage.
3616 	 */
3617 	if (workaround_erratum383)
3618 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3619 	else if (pmap == kernel_pmap)
3620 		pmap_kenter_pde(va, PG_PROMOTED | PG_PS | newpde);
3621 	else
3622 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
3623 
3624 	pmap_pde_promotions++;
3625 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3626 	    " in pmap %p", va, pmap);
3627 }
3628 #endif /* VM_NRESERVLEVEL > 0 */
3629 
3630 /*
3631  *	Insert the given physical page (p) at
3632  *	the specified virtual address (v) in the
3633  *	target physical map with the protection requested.
3634  *
3635  *	If specified, the page will be wired down, meaning
3636  *	that the related pte can not be reclaimed.
3637  *
3638  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3639  *	or lose information.  That is, this routine must actually
3640  *	insert this page into the given map NOW.
3641  */
3642 static int
3643 __CONCAT(PMTYPE, enter)(pmap_t pmap, vm_offset_t va, vm_page_t m,
3644     vm_prot_t prot, u_int flags, int8_t psind)
3645 {
3646 	pd_entry_t *pde;
3647 	pt_entry_t *pte;
3648 	pt_entry_t newpte, origpte;
3649 	pv_entry_t pv;
3650 	vm_paddr_t opa, pa;
3651 	vm_page_t mpte, om;
3652 	int rv;
3653 
3654 	va = trunc_page(va);
3655 	KASSERT((pmap == kernel_pmap && va < VM_MAX_KERNEL_ADDRESS) ||
3656 	    (pmap != kernel_pmap && va < VM_MAXUSER_ADDRESS),
3657 	    ("pmap_enter: toobig k%d %#x", pmap == kernel_pmap, va));
3658 	KASSERT(va < PMAP_TRM_MIN_ADDRESS,
3659 	    ("pmap_enter: invalid to pmap_enter into trampoline (va: 0x%x)",
3660 	    va));
3661 	KASSERT(pmap != kernel_pmap || (m->oflags & VPO_UNMANAGED) != 0 ||
3662 	    va < kmi.clean_sva || va >= kmi.clean_eva,
3663 	    ("pmap_enter: managed mapping within the clean submap"));
3664 	if ((m->oflags & VPO_UNMANAGED) == 0)
3665 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
3666 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
3667 	    ("pmap_enter: flags %u has reserved bits set", flags));
3668 	pa = VM_PAGE_TO_PHYS(m);
3669 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
3670 	if ((flags & VM_PROT_WRITE) != 0)
3671 		newpte |= PG_M;
3672 	if ((prot & VM_PROT_WRITE) != 0)
3673 		newpte |= PG_RW;
3674 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
3675 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
3676 #ifdef PMAP_PAE_COMP
3677 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3678 		newpte |= pg_nx;
3679 #endif
3680 	if ((flags & PMAP_ENTER_WIRED) != 0)
3681 		newpte |= PG_W;
3682 	if (pmap != kernel_pmap)
3683 		newpte |= PG_U;
3684 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
3685 	if ((m->oflags & VPO_UNMANAGED) == 0)
3686 		newpte |= PG_MANAGED;
3687 
3688 	rw_wlock(&pvh_global_lock);
3689 	PMAP_LOCK(pmap);
3690 	sched_pin();
3691 	if (psind == 1) {
3692 		/* Assert the required virtual and physical alignment. */
3693 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
3694 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
3695 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m);
3696 		goto out;
3697 	}
3698 
3699 	pde = pmap_pde(pmap, va);
3700 	if (pmap != kernel_pmap) {
3701 		/*
3702 		 * va is for UVA.
3703 		 * In the case that a page table page is not resident,
3704 		 * we are creating it here.  pmap_allocpte() handles
3705 		 * demotion.
3706 		 */
3707 		mpte = pmap_allocpte(pmap, va, flags);
3708 		if (mpte == NULL) {
3709 			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3710 			    ("pmap_allocpte failed with sleep allowed"));
3711 			rv = KERN_RESOURCE_SHORTAGE;
3712 			goto out;
3713 		}
3714 	} else {
3715 		/*
3716 		 * va is for KVA, so pmap_demote_pde() will never fail
3717 		 * to install a page table page.  PG_V is also
3718 		 * asserted by pmap_demote_pde().
3719 		 */
3720 		mpte = NULL;
3721 		KASSERT(pde != NULL && (*pde & PG_V) != 0,
3722 		    ("KVA %#x invalid pde pdir %#jx", va,
3723 		    (uintmax_t)pmap->pm_pdir[PTDPTDI]));
3724 		if ((*pde & PG_PS) != 0)
3725 			pmap_demote_pde(pmap, pde, va);
3726 	}
3727 	pte = pmap_pte_quick(pmap, va);
3728 
3729 	/*
3730 	 * Page Directory table entry is not valid, which should not
3731 	 * happen.  We should have either allocated the page table
3732 	 * page or demoted the existing mapping above.
3733 	 */
3734 	if (pte == NULL) {
3735 		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3736 		    (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3737 	}
3738 
3739 	origpte = *pte;
3740 	pv = NULL;
3741 
3742 	/*
3743 	 * Is the specified virtual address already mapped?
3744 	 */
3745 	if ((origpte & PG_V) != 0) {
3746 		/*
3747 		 * Wiring change, just update stats. We don't worry about
3748 		 * wiring PT pages as they remain resident as long as there
3749 		 * are valid mappings in them. Hence, if a user page is wired,
3750 		 * the PT page will be also.
3751 		 */
3752 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
3753 			pmap->pm_stats.wired_count++;
3754 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
3755 			pmap->pm_stats.wired_count--;
3756 
3757 		/*
3758 		 * Remove the extra PT page reference.
3759 		 */
3760 		if (mpte != NULL) {
3761 			mpte->ref_count--;
3762 			KASSERT(mpte->ref_count > 0,
3763 			    ("pmap_enter: missing reference to page table page,"
3764 			     " va: 0x%x", va));
3765 		}
3766 
3767 		/*
3768 		 * Has the physical page changed?
3769 		 */
3770 		opa = origpte & PG_FRAME;
3771 		if (opa == pa) {
3772 			/*
3773 			 * No, might be a protection or wiring change.
3774 			 */
3775 			if ((origpte & PG_MANAGED) != 0 &&
3776 			    (newpte & PG_RW) != 0)
3777 				vm_page_aflag_set(m, PGA_WRITEABLE);
3778 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
3779 				goto unchanged;
3780 			goto validate;
3781 		}
3782 
3783 		/*
3784 		 * The physical page has changed.  Temporarily invalidate
3785 		 * the mapping.  This ensures that all threads sharing the
3786 		 * pmap keep a consistent view of the mapping, which is
3787 		 * necessary for the correct handling of COW faults.  It
3788 		 * also permits reuse of the old mapping's PV entry,
3789 		 * avoiding an allocation.
3790 		 *
3791 		 * For consistency, handle unmanaged mappings the same way.
3792 		 */
3793 		origpte = pte_load_clear(pte);
3794 		KASSERT((origpte & PG_FRAME) == opa,
3795 		    ("pmap_enter: unexpected pa update for %#x", va));
3796 		if ((origpte & PG_MANAGED) != 0) {
3797 			om = PHYS_TO_VM_PAGE(opa);
3798 
3799 			/*
3800 			 * The pmap lock is sufficient to synchronize with
3801 			 * concurrent calls to pmap_page_test_mappings() and
3802 			 * pmap_ts_referenced().
3803 			 */
3804 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3805 				vm_page_dirty(om);
3806 			if ((origpte & PG_A) != 0) {
3807 				pmap_invalidate_page_int(pmap, va);
3808 				vm_page_aflag_set(om, PGA_REFERENCED);
3809 			}
3810 			pv = pmap_pvh_remove(&om->md, pmap, va);
3811 			KASSERT(pv != NULL,
3812 			    ("pmap_enter: no PV entry for %#x", va));
3813 			if ((newpte & PG_MANAGED) == 0)
3814 				free_pv_entry(pmap, pv);
3815 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3816 			    TAILQ_EMPTY(&om->md.pv_list) &&
3817 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3818 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3819 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3820 		} else {
3821 			/*
3822 			 * Since this mapping is unmanaged, assume that PG_A
3823 			 * is set.
3824 			 */
3825 			pmap_invalidate_page_int(pmap, va);
3826 		}
3827 		origpte = 0;
3828 	} else {
3829 		/*
3830 		 * Increment the counters.
3831 		 */
3832 		if ((newpte & PG_W) != 0)
3833 			pmap->pm_stats.wired_count++;
3834 		pmap->pm_stats.resident_count++;
3835 	}
3836 
3837 	/*
3838 	 * Enter on the PV list if part of our managed memory.
3839 	 */
3840 	if ((newpte & PG_MANAGED) != 0) {
3841 		if (pv == NULL) {
3842 			pv = get_pv_entry(pmap, FALSE);
3843 			pv->pv_va = va;
3844 		}
3845 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3846 		if ((newpte & PG_RW) != 0)
3847 			vm_page_aflag_set(m, PGA_WRITEABLE);
3848 	}
3849 
3850 	/*
3851 	 * Update the PTE.
3852 	 */
3853 	if ((origpte & PG_V) != 0) {
3854 validate:
3855 		origpte = pte_load_store(pte, newpte);
3856 		KASSERT((origpte & PG_FRAME) == pa,
3857 		    ("pmap_enter: unexpected pa update for %#x", va));
3858 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3859 		    (PG_M | PG_RW)) {
3860 			if ((origpte & PG_MANAGED) != 0)
3861 				vm_page_dirty(m);
3862 
3863 			/*
3864 			 * Although the PTE may still have PG_RW set, TLB
3865 			 * invalidation may nonetheless be required because
3866 			 * the PTE no longer has PG_M set.
3867 			 */
3868 		}
3869 #ifdef PMAP_PAE_COMP
3870 		else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
3871 			/*
3872 			 * This PTE change does not require TLB invalidation.
3873 			 */
3874 			goto unchanged;
3875 		}
3876 #endif
3877 		if ((origpte & PG_A) != 0)
3878 			pmap_invalidate_page_int(pmap, va);
3879 	} else
3880 		pte_store_zero(pte, newpte);
3881 
3882 unchanged:
3883 
3884 #if VM_NRESERVLEVEL > 0
3885 	/*
3886 	 * If both the page table page and the reservation are fully
3887 	 * populated, then attempt promotion.
3888 	 */
3889 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3890 	    pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
3891 	    vm_reserv_level_iffullpop(m) == 0)
3892 		pmap_promote_pde(pmap, pde, va);
3893 #endif
3894 
3895 	rv = KERN_SUCCESS;
3896 out:
3897 	sched_unpin();
3898 	rw_wunlock(&pvh_global_lock);
3899 	PMAP_UNLOCK(pmap);
3900 	return (rv);
3901 }
3902 
3903 /*
3904  * Tries to create a read- and/or execute-only 2 or 4 MB page mapping.  Returns
3905  * true if successful.  Returns false if (1) a mapping already exists at the
3906  * specified virtual address or (2) a PV entry cannot be allocated without
3907  * reclaiming another PV entry.
3908  */
3909 static bool
3910 pmap_enter_4mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3911 {
3912 	pd_entry_t newpde;
3913 
3914 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3915 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
3916 	    PG_PS | PG_V;
3917 	if ((m->oflags & VPO_UNMANAGED) == 0)
3918 		newpde |= PG_MANAGED;
3919 #ifdef PMAP_PAE_COMP
3920 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3921 		newpde |= pg_nx;
3922 #endif
3923 	if (pmap != kernel_pmap)
3924 		newpde |= PG_U;
3925 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3926 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL) ==
3927 	    KERN_SUCCESS);
3928 }
3929 
3930 /*
3931  * Returns true if every page table entry in the page table page that maps
3932  * the specified kernel virtual address is zero.
3933  */
3934 static bool
3935 pmap_every_pte_zero(vm_offset_t va)
3936 {
3937 	pt_entry_t *pt_end, *pte;
3938 
3939 	KASSERT((va & PDRMASK) == 0, ("va is misaligned"));
3940 	pte = vtopte(va);
3941 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
3942 		if (*pte != 0)
3943 			return (false);
3944 	}
3945 	return (true);
3946 }
3947 
3948 /*
3949  * Tries to create the specified 2 or 4 MB page mapping.  Returns KERN_SUCCESS
3950  * if the mapping was created, and either KERN_FAILURE or
3951  * KERN_RESOURCE_SHORTAGE otherwise.  Returns KERN_FAILURE if
3952  * PMAP_ENTER_NOREPLACE was specified and a mapping already exists at the
3953  * specified virtual address.  Returns KERN_RESOURCE_SHORTAGE if
3954  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3955  *
3956  * The parameter "m" is only used when creating a managed, writeable mapping.
3957  */
3958 static int
3959 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
3960     vm_page_t m)
3961 {
3962 	struct spglist free;
3963 	pd_entry_t oldpde, *pde;
3964 	vm_page_t mt;
3965 
3966 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3967 	KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3968 	    ("pmap_enter_pde: newpde is missing PG_M"));
3969 	KASSERT(pmap == kernel_pmap || (newpde & PG_W) == 0,
3970 	    ("pmap_enter_pde: cannot create wired user mapping"));
3971 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3972 	pde = pmap_pde(pmap, va);
3973 	oldpde = *pde;
3974 	if ((oldpde & PG_V) != 0) {
3975 		if ((flags & PMAP_ENTER_NOREPLACE) != 0 && (pmap !=
3976 		    kernel_pmap || (oldpde & PG_PS) != 0 ||
3977 		    !pmap_every_pte_zero(va))) {
3978 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3979 			    " in pmap %p", va, pmap);
3980 			return (KERN_FAILURE);
3981 		}
3982 		/* Break the existing mapping(s). */
3983 		SLIST_INIT(&free);
3984 		if ((oldpde & PG_PS) != 0) {
3985 			/*
3986 			 * If the PDE resulted from a promotion, then a
3987 			 * reserved PT page could be freed.
3988 			 */
3989 			(void)pmap_remove_pde(pmap, pde, va, &free);
3990 			if ((oldpde & PG_G) == 0)
3991 				pmap_invalidate_pde_page(pmap, va, oldpde);
3992 		} else {
3993 			if (pmap_remove_ptes(pmap, va, va + NBPDR, &free))
3994 		               pmap_invalidate_all_int(pmap);
3995 		}
3996 		if (pmap != kernel_pmap) {
3997 			vm_page_free_pages_toq(&free, true);
3998 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
3999 			    pde));
4000 		} else {
4001 			KASSERT(SLIST_EMPTY(&free),
4002 			    ("pmap_enter_pde: freed kernel page table page"));
4003 
4004 			/*
4005 			 * Both pmap_remove_pde() and pmap_remove_ptes() will
4006 			 * leave the kernel page table page zero filled.
4007 			 */
4008 			mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
4009 			if (pmap_insert_pt_page(pmap, mt, false))
4010 				panic("pmap_enter_pde: trie insert failed");
4011 		}
4012 	}
4013 	if ((newpde & PG_MANAGED) != 0) {
4014 		/*
4015 		 * Abort this mapping if its PV entry could not be created.
4016 		 */
4017 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags)) {
4018 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
4019 			    " in pmap %p", va, pmap);
4020 			return (KERN_RESOURCE_SHORTAGE);
4021 		}
4022 		if ((newpde & PG_RW) != 0) {
4023 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4024 				vm_page_aflag_set(mt, PGA_WRITEABLE);
4025 		}
4026 	}
4027 
4028 	/*
4029 	 * Increment counters.
4030 	 */
4031 	if ((newpde & PG_W) != 0)
4032 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
4033 	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
4034 
4035 	/*
4036 	 * Map the superpage.  (This is not a promoted mapping; there will not
4037 	 * be any lingering 4KB page mappings in the TLB.)
4038 	 */
4039 	pde_store(pde, newpde);
4040 
4041 	pmap_pde_mappings++;
4042 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
4043 	    va, pmap);
4044 	return (KERN_SUCCESS);
4045 }
4046 
4047 /*
4048  * Maps a sequence of resident pages belonging to the same object.
4049  * The sequence begins with the given page m_start.  This page is
4050  * mapped at the given virtual address start.  Each subsequent page is
4051  * mapped at a virtual address that is offset from start by the same
4052  * amount as the page is offset from m_start within the object.  The
4053  * last page in the sequence is the page with the largest offset from
4054  * m_start that can be mapped at a virtual address less than the given
4055  * virtual address end.  Not every virtual page between start and end
4056  * is mapped; only those for which a resident page exists with the
4057  * corresponding offset from m_start are mapped.
4058  */
4059 static void
4060 __CONCAT(PMTYPE, enter_object)(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4061     vm_page_t m_start, vm_prot_t prot)
4062 {
4063 	vm_offset_t va;
4064 	vm_page_t m, mpte;
4065 	vm_pindex_t diff, psize;
4066 
4067 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4068 
4069 	psize = atop(end - start);
4070 	mpte = NULL;
4071 	m = m_start;
4072 	rw_wlock(&pvh_global_lock);
4073 	PMAP_LOCK(pmap);
4074 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4075 		va = start + ptoa(diff);
4076 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
4077 		    m->psind == 1 && pg_ps_enabled &&
4078 		    pmap_enter_4mpage(pmap, va, m, prot))
4079 			m = &m[NBPDR / PAGE_SIZE - 1];
4080 		else
4081 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
4082 			    mpte);
4083 		m = TAILQ_NEXT(m, listq);
4084 	}
4085 	rw_wunlock(&pvh_global_lock);
4086 	PMAP_UNLOCK(pmap);
4087 }
4088 
4089 /*
4090  * this code makes some *MAJOR* assumptions:
4091  * 1. Current pmap & pmap exists.
4092  * 2. Not wired.
4093  * 3. Read access.
4094  * 4. No page table pages.
4095  * but is *MUCH* faster than pmap_enter...
4096  */
4097 
4098 static void
4099 __CONCAT(PMTYPE, enter_quick)(pmap_t pmap, vm_offset_t va, vm_page_t m,
4100     vm_prot_t prot)
4101 {
4102 
4103 	rw_wlock(&pvh_global_lock);
4104 	PMAP_LOCK(pmap);
4105 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4106 	rw_wunlock(&pvh_global_lock);
4107 	PMAP_UNLOCK(pmap);
4108 }
4109 
4110 static vm_page_t
4111 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4112     vm_prot_t prot, vm_page_t mpte)
4113 {
4114 	pt_entry_t newpte, *pte;
4115 
4116 	KASSERT(pmap != kernel_pmap || va < kmi.clean_sva ||
4117 	    va >= kmi.clean_eva || (m->oflags & VPO_UNMANAGED) != 0,
4118 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
4119 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4120 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4121 
4122 	/*
4123 	 * In the case that a page table page is not
4124 	 * resident, we are creating it here.
4125 	 */
4126 	if (pmap != kernel_pmap) {
4127 		u_int ptepindex;
4128 		pd_entry_t ptepa;
4129 
4130 		/*
4131 		 * Calculate pagetable page index
4132 		 */
4133 		ptepindex = va >> PDRSHIFT;
4134 		if (mpte && (mpte->pindex == ptepindex)) {
4135 			mpte->ref_count++;
4136 		} else {
4137 			/*
4138 			 * Get the page directory entry
4139 			 */
4140 			ptepa = pmap->pm_pdir[ptepindex];
4141 
4142 			/*
4143 			 * If the page table page is mapped, we just increment
4144 			 * the hold count, and activate it.
4145 			 */
4146 			if (ptepa) {
4147 				if (ptepa & PG_PS)
4148 					return (NULL);
4149 				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
4150 				mpte->ref_count++;
4151 			} else {
4152 				mpte = _pmap_allocpte(pmap, ptepindex,
4153 				    PMAP_ENTER_NOSLEEP);
4154 				if (mpte == NULL)
4155 					return (mpte);
4156 			}
4157 		}
4158 	} else {
4159 		mpte = NULL;
4160 	}
4161 
4162 	sched_pin();
4163 	pte = pmap_pte_quick(pmap, va);
4164 	if (*pte) {
4165 		if (mpte != NULL)
4166 			mpte->ref_count--;
4167 		sched_unpin();
4168 		return (NULL);
4169 	}
4170 
4171 	/*
4172 	 * Enter on the PV list if part of our managed memory.
4173 	 */
4174 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4175 	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4176 		if (mpte != NULL)
4177 			pmap_abort_ptp(pmap, va, mpte);
4178 		sched_unpin();
4179 		return (NULL);
4180 	}
4181 
4182 	/*
4183 	 * Increment counters
4184 	 */
4185 	pmap->pm_stats.resident_count++;
4186 
4187 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
4188 	    pmap_cache_bits(pmap, m->md.pat_mode, 0);
4189 	if ((m->oflags & VPO_UNMANAGED) == 0)
4190 		newpte |= PG_MANAGED;
4191 #ifdef PMAP_PAE_COMP
4192 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
4193 		newpte |= pg_nx;
4194 #endif
4195 	if (pmap != kernel_pmap)
4196 		newpte |= PG_U;
4197 	pte_store_zero(pte, newpte);
4198 	sched_unpin();
4199 	return (mpte);
4200 }
4201 
4202 /*
4203  * Make a temporary mapping for a physical address.  This is only intended
4204  * to be used for panic dumps.
4205  */
4206 static void *
4207 __CONCAT(PMTYPE, kenter_temporary)(vm_paddr_t pa, int i)
4208 {
4209 	vm_offset_t va;
4210 
4211 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
4212 	pmap_kenter(va, pa);
4213 	invlpg(va);
4214 	return ((void *)crashdumpmap);
4215 }
4216 
4217 /*
4218  * This code maps large physical mmap regions into the
4219  * processor address space.  Note that some shortcuts
4220  * are taken, but the code works.
4221  */
4222 static void
4223 __CONCAT(PMTYPE, object_init_pt)(pmap_t pmap, vm_offset_t addr,
4224     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
4225 {
4226 	pd_entry_t *pde;
4227 	vm_paddr_t pa, ptepa;
4228 	vm_page_t p;
4229 	int pat_mode;
4230 
4231 	VM_OBJECT_ASSERT_WLOCKED(object);
4232 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4233 	    ("pmap_object_init_pt: non-device object"));
4234 	if (pg_ps_enabled &&
4235 	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
4236 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4237 			return;
4238 		p = vm_page_lookup(object, pindex);
4239 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4240 		    ("pmap_object_init_pt: invalid page %p", p));
4241 		pat_mode = p->md.pat_mode;
4242 
4243 		/*
4244 		 * Abort the mapping if the first page is not physically
4245 		 * aligned to a 2/4MB page boundary.
4246 		 */
4247 		ptepa = VM_PAGE_TO_PHYS(p);
4248 		if (ptepa & (NBPDR - 1))
4249 			return;
4250 
4251 		/*
4252 		 * Skip the first page.  Abort the mapping if the rest of
4253 		 * the pages are not physically contiguous or have differing
4254 		 * memory attributes.
4255 		 */
4256 		p = TAILQ_NEXT(p, listq);
4257 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4258 		    pa += PAGE_SIZE) {
4259 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4260 			    ("pmap_object_init_pt: invalid page %p", p));
4261 			if (pa != VM_PAGE_TO_PHYS(p) ||
4262 			    pat_mode != p->md.pat_mode)
4263 				return;
4264 			p = TAILQ_NEXT(p, listq);
4265 		}
4266 
4267 		/*
4268 		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
4269 		 * "size" is a multiple of 2/4M, adding the PAT setting to
4270 		 * "pa" will not affect the termination of this loop.
4271 		 */
4272 		PMAP_LOCK(pmap);
4273 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
4274 		    pa < ptepa + size; pa += NBPDR) {
4275 			pde = pmap_pde(pmap, addr);
4276 			if (*pde == 0) {
4277 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
4278 				    PG_U | PG_RW | PG_V);
4279 				pmap->pm_stats.resident_count += NBPDR /
4280 				    PAGE_SIZE;
4281 				pmap_pde_mappings++;
4282 			}
4283 			/* Else continue on if the PDE is already valid. */
4284 			addr += NBPDR;
4285 		}
4286 		PMAP_UNLOCK(pmap);
4287 	}
4288 }
4289 
4290 /*
4291  *	Clear the wired attribute from the mappings for the specified range of
4292  *	addresses in the given pmap.  Every valid mapping within that range
4293  *	must have the wired attribute set.  In contrast, invalid mappings
4294  *	cannot have the wired attribute set, so they are ignored.
4295  *
4296  *	The wired attribute of the page table entry is not a hardware feature,
4297  *	so there is no need to invalidate any TLB entries.
4298  */
4299 static void
4300 __CONCAT(PMTYPE, unwire)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4301 {
4302 	vm_offset_t pdnxt;
4303 	pd_entry_t *pde;
4304 	pt_entry_t *pte;
4305 	boolean_t pv_lists_locked;
4306 
4307 	if (pmap_is_current(pmap))
4308 		pv_lists_locked = FALSE;
4309 	else {
4310 		pv_lists_locked = TRUE;
4311 resume:
4312 		rw_wlock(&pvh_global_lock);
4313 		sched_pin();
4314 	}
4315 	PMAP_LOCK(pmap);
4316 	for (; sva < eva; sva = pdnxt) {
4317 		pdnxt = (sva + NBPDR) & ~PDRMASK;
4318 		if (pdnxt < sva)
4319 			pdnxt = eva;
4320 		pde = pmap_pde(pmap, sva);
4321 		if ((*pde & PG_V) == 0)
4322 			continue;
4323 		if ((*pde & PG_PS) != 0) {
4324 			if ((*pde & PG_W) == 0)
4325 				panic("pmap_unwire: pde %#jx is missing PG_W",
4326 				    (uintmax_t)*pde);
4327 
4328 			/*
4329 			 * Are we unwiring the entire large page?  If not,
4330 			 * demote the mapping and fall through.
4331 			 */
4332 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
4333 				/*
4334 				 * Regardless of whether a pde (or pte) is 32
4335 				 * or 64 bits in size, PG_W is among the least
4336 				 * significant 32 bits.
4337 				 */
4338 				atomic_clear_int((u_int *)pde, PG_W);
4339 				pmap->pm_stats.wired_count -= NBPDR /
4340 				    PAGE_SIZE;
4341 				continue;
4342 			} else {
4343 				if (!pv_lists_locked) {
4344 					pv_lists_locked = TRUE;
4345 					if (!rw_try_wlock(&pvh_global_lock)) {
4346 						PMAP_UNLOCK(pmap);
4347 						/* Repeat sva. */
4348 						goto resume;
4349 					}
4350 					sched_pin();
4351 				}
4352 				if (!pmap_demote_pde(pmap, pde, sva))
4353 					panic("pmap_unwire: demotion failed");
4354 			}
4355 		}
4356 		if (pdnxt > eva)
4357 			pdnxt = eva;
4358 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
4359 		    sva += PAGE_SIZE) {
4360 			if ((*pte & PG_V) == 0)
4361 				continue;
4362 			if ((*pte & PG_W) == 0)
4363 				panic("pmap_unwire: pte %#jx is missing PG_W",
4364 				    (uintmax_t)*pte);
4365 
4366 			/*
4367 			 * PG_W must be cleared atomically.  Although the pmap
4368 			 * lock synchronizes access to PG_W, another processor
4369 			 * could be setting PG_M and/or PG_A concurrently.
4370 			 *
4371 			 * PG_W is among the least significant 32 bits.
4372 			 */
4373 			atomic_clear_int((u_int *)pte, PG_W);
4374 			pmap->pm_stats.wired_count--;
4375 		}
4376 	}
4377 	if (pv_lists_locked) {
4378 		sched_unpin();
4379 		rw_wunlock(&pvh_global_lock);
4380 	}
4381 	PMAP_UNLOCK(pmap);
4382 }
4383 
4384 
4385 /*
4386  *	Copy the range specified by src_addr/len
4387  *	from the source map to the range dst_addr/len
4388  *	in the destination map.
4389  *
4390  *	This routine is only advisory and need not do anything.  Since
4391  *	current pmap is always the kernel pmap when executing in
4392  *	kernel, and we do not copy from the kernel pmap to a user
4393  *	pmap, this optimization is not usable in 4/4G full split i386
4394  *	world.
4395  */
4396 
4397 static void
4398 __CONCAT(PMTYPE, copy)(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
4399     vm_size_t len, vm_offset_t src_addr)
4400 {
4401 	pt_entry_t *src_pte, *dst_pte, ptetemp;
4402 	pd_entry_t srcptepaddr;
4403 	vm_page_t dstmpte, srcmpte;
4404 	vm_offset_t addr, end_addr, pdnxt;
4405 	u_int ptepindex;
4406 
4407 	if (dst_addr != src_addr)
4408 		return;
4409 
4410 	end_addr = src_addr + len;
4411 
4412 	rw_wlock(&pvh_global_lock);
4413 	if (dst_pmap < src_pmap) {
4414 		PMAP_LOCK(dst_pmap);
4415 		PMAP_LOCK(src_pmap);
4416 	} else {
4417 		PMAP_LOCK(src_pmap);
4418 		PMAP_LOCK(dst_pmap);
4419 	}
4420 	sched_pin();
4421 	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
4422 		KASSERT(addr < PMAP_TRM_MIN_ADDRESS,
4423 		    ("pmap_copy: invalid to pmap_copy the trampoline"));
4424 
4425 		pdnxt = (addr + NBPDR) & ~PDRMASK;
4426 		if (pdnxt < addr)
4427 			pdnxt = end_addr;
4428 		ptepindex = addr >> PDRSHIFT;
4429 
4430 		srcptepaddr = src_pmap->pm_pdir[ptepindex];
4431 		if (srcptepaddr == 0)
4432 			continue;
4433 
4434 		if (srcptepaddr & PG_PS) {
4435 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4436 				continue;
4437 			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
4438 			    ((srcptepaddr & PG_MANAGED) == 0 ||
4439 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
4440 			    PMAP_ENTER_NORECLAIM))) {
4441 				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
4442 				    ~PG_W;
4443 				dst_pmap->pm_stats.resident_count +=
4444 				    NBPDR / PAGE_SIZE;
4445 				pmap_pde_mappings++;
4446 			}
4447 			continue;
4448 		}
4449 
4450 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
4451 		KASSERT(srcmpte->ref_count > 0,
4452 		    ("pmap_copy: source page table page is unused"));
4453 
4454 		if (pdnxt > end_addr)
4455 			pdnxt = end_addr;
4456 
4457 		src_pte = pmap_pte_quick3(src_pmap, addr);
4458 		while (addr < pdnxt) {
4459 			ptetemp = *src_pte;
4460 			/*
4461 			 * we only virtual copy managed pages
4462 			 */
4463 			if ((ptetemp & PG_MANAGED) != 0) {
4464 				dstmpte = pmap_allocpte(dst_pmap, addr,
4465 				    PMAP_ENTER_NOSLEEP);
4466 				if (dstmpte == NULL)
4467 					goto out;
4468 				dst_pte = pmap_pte_quick(dst_pmap, addr);
4469 				if (*dst_pte == 0 &&
4470 				    pmap_try_insert_pv_entry(dst_pmap, addr,
4471 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
4472 					/*
4473 					 * Clear the wired, modified, and
4474 					 * accessed (referenced) bits
4475 					 * during the copy.
4476 					 */
4477 					*dst_pte = ptetemp & ~(PG_W | PG_M |
4478 					    PG_A);
4479 					dst_pmap->pm_stats.resident_count++;
4480 				} else {
4481 					pmap_abort_ptp(dst_pmap, addr, dstmpte);
4482 					goto out;
4483 				}
4484 				if (dstmpte->ref_count >= srcmpte->ref_count)
4485 					break;
4486 			}
4487 			addr += PAGE_SIZE;
4488 			src_pte++;
4489 		}
4490 	}
4491 out:
4492 	sched_unpin();
4493 	rw_wunlock(&pvh_global_lock);
4494 	PMAP_UNLOCK(src_pmap);
4495 	PMAP_UNLOCK(dst_pmap);
4496 }
4497 
4498 /*
4499  * Zero 1 page of virtual memory mapped from a hardware page by the caller.
4500  */
4501 static __inline void
4502 pagezero(void *page)
4503 {
4504 #if defined(I686_CPU)
4505 	if (cpu_class == CPUCLASS_686) {
4506 		if (cpu_feature & CPUID_SSE2)
4507 			sse2_pagezero(page);
4508 		else
4509 			i686_pagezero(page);
4510 	} else
4511 #endif
4512 		bzero(page, PAGE_SIZE);
4513 }
4514 
4515 /*
4516  * Zero the specified hardware page.
4517  */
4518 static void
4519 __CONCAT(PMTYPE, zero_page)(vm_page_t m)
4520 {
4521 	pt_entry_t *cmap_pte2;
4522 	struct pcpu *pc;
4523 
4524 	sched_pin();
4525 	pc = get_pcpu();
4526 	cmap_pte2 = pc->pc_cmap_pte2;
4527 	mtx_lock(&pc->pc_cmap_lock);
4528 	if (*cmap_pte2)
4529 		panic("pmap_zero_page: CMAP2 busy");
4530 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4531 	    pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
4532 	invlcaddr(pc->pc_cmap_addr2);
4533 	pagezero(pc->pc_cmap_addr2);
4534 	*cmap_pte2 = 0;
4535 
4536 	/*
4537 	 * Unpin the thread before releasing the lock.  Otherwise the thread
4538 	 * could be rescheduled while still bound to the current CPU, only
4539 	 * to unpin itself immediately upon resuming execution.
4540 	 */
4541 	sched_unpin();
4542 	mtx_unlock(&pc->pc_cmap_lock);
4543 }
4544 
4545 /*
4546  * Zero an an area within a single hardware page.  off and size must not
4547  * cover an area beyond a single hardware page.
4548  */
4549 static void
4550 __CONCAT(PMTYPE, zero_page_area)(vm_page_t m, int off, int size)
4551 {
4552 	pt_entry_t *cmap_pte2;
4553 	struct pcpu *pc;
4554 
4555 	sched_pin();
4556 	pc = get_pcpu();
4557 	cmap_pte2 = pc->pc_cmap_pte2;
4558 	mtx_lock(&pc->pc_cmap_lock);
4559 	if (*cmap_pte2)
4560 		panic("pmap_zero_page_area: CMAP2 busy");
4561 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4562 	    pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
4563 	invlcaddr(pc->pc_cmap_addr2);
4564 	if (off == 0 && size == PAGE_SIZE)
4565 		pagezero(pc->pc_cmap_addr2);
4566 	else
4567 		bzero(pc->pc_cmap_addr2 + off, size);
4568 	*cmap_pte2 = 0;
4569 	sched_unpin();
4570 	mtx_unlock(&pc->pc_cmap_lock);
4571 }
4572 
4573 /*
4574  * Copy 1 specified hardware page to another.
4575  */
4576 static void
4577 __CONCAT(PMTYPE, copy_page)(vm_page_t src, vm_page_t dst)
4578 {
4579 	pt_entry_t *cmap_pte1, *cmap_pte2;
4580 	struct pcpu *pc;
4581 
4582 	sched_pin();
4583 	pc = get_pcpu();
4584 	cmap_pte1 = pc->pc_cmap_pte1;
4585 	cmap_pte2 = pc->pc_cmap_pte2;
4586 	mtx_lock(&pc->pc_cmap_lock);
4587 	if (*cmap_pte1)
4588 		panic("pmap_copy_page: CMAP1 busy");
4589 	if (*cmap_pte2)
4590 		panic("pmap_copy_page: CMAP2 busy");
4591 	*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4592 	    pmap_cache_bits(kernel_pmap, src->md.pat_mode, 0);
4593 	invlcaddr(pc->pc_cmap_addr1);
4594 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4595 	    pmap_cache_bits(kernel_pmap, dst->md.pat_mode, 0);
4596 	invlcaddr(pc->pc_cmap_addr2);
4597 	bcopy(pc->pc_cmap_addr1, pc->pc_cmap_addr2, PAGE_SIZE);
4598 	*cmap_pte1 = 0;
4599 	*cmap_pte2 = 0;
4600 	sched_unpin();
4601 	mtx_unlock(&pc->pc_cmap_lock);
4602 }
4603 
4604 static void
4605 __CONCAT(PMTYPE, copy_pages)(vm_page_t ma[], vm_offset_t a_offset,
4606     vm_page_t mb[], vm_offset_t b_offset, int xfersize)
4607 {
4608 	vm_page_t a_pg, b_pg;
4609 	char *a_cp, *b_cp;
4610 	vm_offset_t a_pg_offset, b_pg_offset;
4611 	pt_entry_t *cmap_pte1, *cmap_pte2;
4612 	struct pcpu *pc;
4613 	int cnt;
4614 
4615 	sched_pin();
4616 	pc = get_pcpu();
4617 	cmap_pte1 = pc->pc_cmap_pte1;
4618 	cmap_pte2 = pc->pc_cmap_pte2;
4619 	mtx_lock(&pc->pc_cmap_lock);
4620 	if (*cmap_pte1 != 0)
4621 		panic("pmap_copy_pages: CMAP1 busy");
4622 	if (*cmap_pte2 != 0)
4623 		panic("pmap_copy_pages: CMAP2 busy");
4624 	while (xfersize > 0) {
4625 		a_pg = ma[a_offset >> PAGE_SHIFT];
4626 		a_pg_offset = a_offset & PAGE_MASK;
4627 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4628 		b_pg = mb[b_offset >> PAGE_SHIFT];
4629 		b_pg_offset = b_offset & PAGE_MASK;
4630 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4631 		*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
4632 		    pmap_cache_bits(kernel_pmap, a_pg->md.pat_mode, 0);
4633 		invlcaddr(pc->pc_cmap_addr1);
4634 		*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
4635 		    PG_M | pmap_cache_bits(kernel_pmap, b_pg->md.pat_mode, 0);
4636 		invlcaddr(pc->pc_cmap_addr2);
4637 		a_cp = pc->pc_cmap_addr1 + a_pg_offset;
4638 		b_cp = pc->pc_cmap_addr2 + b_pg_offset;
4639 		bcopy(a_cp, b_cp, cnt);
4640 		a_offset += cnt;
4641 		b_offset += cnt;
4642 		xfersize -= cnt;
4643 	}
4644 	*cmap_pte1 = 0;
4645 	*cmap_pte2 = 0;
4646 	sched_unpin();
4647 	mtx_unlock(&pc->pc_cmap_lock);
4648 }
4649 
4650 /*
4651  * Returns true if the pmap's pv is one of the first
4652  * 16 pvs linked to from this page.  This count may
4653  * be changed upwards or downwards in the future; it
4654  * is only necessary that true be returned for a small
4655  * subset of pmaps for proper page aging.
4656  */
4657 static boolean_t
4658 __CONCAT(PMTYPE, page_exists_quick)(pmap_t pmap, vm_page_t m)
4659 {
4660 	struct md_page *pvh;
4661 	pv_entry_t pv;
4662 	int loops = 0;
4663 	boolean_t rv;
4664 
4665 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4666 	    ("pmap_page_exists_quick: page %p is not managed", m));
4667 	rv = FALSE;
4668 	rw_wlock(&pvh_global_lock);
4669 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4670 		if (PV_PMAP(pv) == pmap) {
4671 			rv = TRUE;
4672 			break;
4673 		}
4674 		loops++;
4675 		if (loops >= 16)
4676 			break;
4677 	}
4678 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4679 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4680 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4681 			if (PV_PMAP(pv) == pmap) {
4682 				rv = TRUE;
4683 				break;
4684 			}
4685 			loops++;
4686 			if (loops >= 16)
4687 				break;
4688 		}
4689 	}
4690 	rw_wunlock(&pvh_global_lock);
4691 	return (rv);
4692 }
4693 
4694 /*
4695  *	pmap_page_wired_mappings:
4696  *
4697  *	Return the number of managed mappings to the given physical page
4698  *	that are wired.
4699  */
4700 static int
4701 __CONCAT(PMTYPE, page_wired_mappings)(vm_page_t m)
4702 {
4703 	int count;
4704 
4705 	count = 0;
4706 	if ((m->oflags & VPO_UNMANAGED) != 0)
4707 		return (count);
4708 	rw_wlock(&pvh_global_lock);
4709 	count = pmap_pvh_wired_mappings(&m->md, count);
4710 	if ((m->flags & PG_FICTITIOUS) == 0) {
4711 	    count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4712 	        count);
4713 	}
4714 	rw_wunlock(&pvh_global_lock);
4715 	return (count);
4716 }
4717 
4718 /*
4719  *	pmap_pvh_wired_mappings:
4720  *
4721  *	Return the updated number "count" of managed mappings that are wired.
4722  */
4723 static int
4724 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4725 {
4726 	pmap_t pmap;
4727 	pt_entry_t *pte;
4728 	pv_entry_t pv;
4729 
4730 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4731 	sched_pin();
4732 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4733 		pmap = PV_PMAP(pv);
4734 		PMAP_LOCK(pmap);
4735 		pte = pmap_pte_quick(pmap, pv->pv_va);
4736 		if ((*pte & PG_W) != 0)
4737 			count++;
4738 		PMAP_UNLOCK(pmap);
4739 	}
4740 	sched_unpin();
4741 	return (count);
4742 }
4743 
4744 /*
4745  * Returns TRUE if the given page is mapped individually or as part of
4746  * a 4mpage.  Otherwise, returns FALSE.
4747  */
4748 static boolean_t
4749 __CONCAT(PMTYPE, page_is_mapped)(vm_page_t m)
4750 {
4751 	boolean_t rv;
4752 
4753 	if ((m->oflags & VPO_UNMANAGED) != 0)
4754 		return (FALSE);
4755 	rw_wlock(&pvh_global_lock);
4756 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4757 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4758 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4759 	rw_wunlock(&pvh_global_lock);
4760 	return (rv);
4761 }
4762 
4763 /*
4764  * Remove all pages from specified address space
4765  * this aids process exit speeds.  Also, this code
4766  * is special cased for current process only, but
4767  * can have the more generic (and slightly slower)
4768  * mode enabled.  This is much faster than pmap_remove
4769  * in the case of running down an entire address space.
4770  */
4771 static void
4772 __CONCAT(PMTYPE, remove_pages)(pmap_t pmap)
4773 {
4774 	pt_entry_t *pte, tpte;
4775 	vm_page_t m, mpte, mt;
4776 	pv_entry_t pv;
4777 	struct md_page *pvh;
4778 	struct pv_chunk *pc, *npc;
4779 	struct spglist free;
4780 	int field, idx;
4781 	int32_t bit;
4782 	uint32_t inuse, bitmask;
4783 	int allfree;
4784 
4785 	if (pmap != PCPU_GET(curpmap)) {
4786 		printf("warning: pmap_remove_pages called with non-current pmap\n");
4787 		return;
4788 	}
4789 	SLIST_INIT(&free);
4790 	rw_wlock(&pvh_global_lock);
4791 	PMAP_LOCK(pmap);
4792 	sched_pin();
4793 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4794 		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
4795 		    pc->pc_pmap));
4796 		allfree = 1;
4797 		for (field = 0; field < _NPCM; field++) {
4798 			inuse = ~pc->pc_map[field] & pc_freemask[field];
4799 			while (inuse != 0) {
4800 				bit = bsfl(inuse);
4801 				bitmask = 1UL << bit;
4802 				idx = field * 32 + bit;
4803 				pv = &pc->pc_pventry[idx];
4804 				inuse &= ~bitmask;
4805 
4806 				pte = pmap_pde(pmap, pv->pv_va);
4807 				tpte = *pte;
4808 				if ((tpte & PG_PS) == 0) {
4809 					pte = pmap_pte_quick(pmap, pv->pv_va);
4810 					tpte = *pte & ~PG_PTE_PAT;
4811 				}
4812 
4813 				if (tpte == 0) {
4814 					printf(
4815 					    "TPTE at %p  IS ZERO @ VA %08x\n",
4816 					    pte, pv->pv_va);
4817 					panic("bad pte");
4818 				}
4819 
4820 /*
4821  * We cannot remove wired pages from a process' mapping at this time
4822  */
4823 				if (tpte & PG_W) {
4824 					allfree = 0;
4825 					continue;
4826 				}
4827 
4828 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4829 				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4830 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4831 				    m, (uintmax_t)m->phys_addr,
4832 				    (uintmax_t)tpte));
4833 
4834 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4835 				    m < &vm_page_array[vm_page_array_size],
4836 				    ("pmap_remove_pages: bad tpte %#jx",
4837 				    (uintmax_t)tpte));
4838 
4839 				pte_clear(pte);
4840 
4841 				/*
4842 				 * Update the vm_page_t clean/reference bits.
4843 				 */
4844 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4845 					if ((tpte & PG_PS) != 0) {
4846 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4847 							vm_page_dirty(mt);
4848 					} else
4849 						vm_page_dirty(m);
4850 				}
4851 
4852 				/* Mark free */
4853 				PV_STAT(pv_entry_frees++);
4854 				PV_STAT(pv_entry_spare++);
4855 				pv_entry_count--;
4856 				pc->pc_map[field] |= bitmask;
4857 				if ((tpte & PG_PS) != 0) {
4858 					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4859 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4860 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4861 					if (TAILQ_EMPTY(&pvh->pv_list)) {
4862 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4863 							if (TAILQ_EMPTY(&mt->md.pv_list))
4864 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
4865 					}
4866 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
4867 					if (mpte != NULL) {
4868 						KASSERT(mpte->valid == VM_PAGE_BITS_ALL,
4869 						    ("pmap_remove_pages: pte page not promoted"));
4870 						pmap->pm_stats.resident_count--;
4871 						KASSERT(mpte->ref_count == NPTEPG,
4872 						    ("pmap_remove_pages: pte page ref count error"));
4873 						mpte->ref_count = 0;
4874 						pmap_add_delayed_free_list(mpte, &free, FALSE);
4875 					}
4876 				} else {
4877 					pmap->pm_stats.resident_count--;
4878 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4879 					if (TAILQ_EMPTY(&m->md.pv_list) &&
4880 					    (m->flags & PG_FICTITIOUS) == 0) {
4881 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4882 						if (TAILQ_EMPTY(&pvh->pv_list))
4883 							vm_page_aflag_clear(m, PGA_WRITEABLE);
4884 					}
4885 					pmap_unuse_pt(pmap, pv->pv_va, &free);
4886 				}
4887 			}
4888 		}
4889 		if (allfree) {
4890 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4891 			free_pv_chunk(pc);
4892 		}
4893 	}
4894 	sched_unpin();
4895 	pmap_invalidate_all_int(pmap);
4896 	rw_wunlock(&pvh_global_lock);
4897 	PMAP_UNLOCK(pmap);
4898 	vm_page_free_pages_toq(&free, true);
4899 }
4900 
4901 /*
4902  *	pmap_is_modified:
4903  *
4904  *	Return whether or not the specified physical page was modified
4905  *	in any physical maps.
4906  */
4907 static boolean_t
4908 __CONCAT(PMTYPE, is_modified)(vm_page_t m)
4909 {
4910 	boolean_t rv;
4911 
4912 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4913 	    ("pmap_is_modified: page %p is not managed", m));
4914 
4915 	/*
4916 	 * If the page is not busied then this check is racy.
4917 	 */
4918 	if (!pmap_page_is_write_mapped(m))
4919 		return (FALSE);
4920 	rw_wlock(&pvh_global_lock);
4921 	rv = pmap_is_modified_pvh(&m->md) ||
4922 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4923 	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4924 	rw_wunlock(&pvh_global_lock);
4925 	return (rv);
4926 }
4927 
4928 /*
4929  * Returns TRUE if any of the given mappings were used to modify
4930  * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4931  * mappings are supported.
4932  */
4933 static boolean_t
4934 pmap_is_modified_pvh(struct md_page *pvh)
4935 {
4936 	pv_entry_t pv;
4937 	pt_entry_t *pte;
4938 	pmap_t pmap;
4939 	boolean_t rv;
4940 
4941 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4942 	rv = FALSE;
4943 	sched_pin();
4944 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4945 		pmap = PV_PMAP(pv);
4946 		PMAP_LOCK(pmap);
4947 		pte = pmap_pte_quick(pmap, pv->pv_va);
4948 		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4949 		PMAP_UNLOCK(pmap);
4950 		if (rv)
4951 			break;
4952 	}
4953 	sched_unpin();
4954 	return (rv);
4955 }
4956 
4957 /*
4958  *	pmap_is_prefaultable:
4959  *
4960  *	Return whether or not the specified virtual address is elgible
4961  *	for prefault.
4962  */
4963 static boolean_t
4964 __CONCAT(PMTYPE, is_prefaultable)(pmap_t pmap, vm_offset_t addr)
4965 {
4966 	pd_entry_t pde;
4967 	boolean_t rv;
4968 
4969 	rv = FALSE;
4970 	PMAP_LOCK(pmap);
4971 	pde = *pmap_pde(pmap, addr);
4972 	if (pde != 0 && (pde & PG_PS) == 0)
4973 		rv = pmap_pte_ufast(pmap, addr, pde) == 0;
4974 	PMAP_UNLOCK(pmap);
4975 	return (rv);
4976 }
4977 
4978 /*
4979  *	pmap_is_referenced:
4980  *
4981  *	Return whether or not the specified physical page was referenced
4982  *	in any physical maps.
4983  */
4984 static boolean_t
4985 __CONCAT(PMTYPE, is_referenced)(vm_page_t m)
4986 {
4987 	boolean_t rv;
4988 
4989 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4990 	    ("pmap_is_referenced: page %p is not managed", m));
4991 	rw_wlock(&pvh_global_lock);
4992 	rv = pmap_is_referenced_pvh(&m->md) ||
4993 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4994 	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4995 	rw_wunlock(&pvh_global_lock);
4996 	return (rv);
4997 }
4998 
4999 /*
5000  * Returns TRUE if any of the given mappings were referenced and FALSE
5001  * otherwise.  Both page and 4mpage mappings are supported.
5002  */
5003 static boolean_t
5004 pmap_is_referenced_pvh(struct md_page *pvh)
5005 {
5006 	pv_entry_t pv;
5007 	pt_entry_t *pte;
5008 	pmap_t pmap;
5009 	boolean_t rv;
5010 
5011 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5012 	rv = FALSE;
5013 	sched_pin();
5014 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5015 		pmap = PV_PMAP(pv);
5016 		PMAP_LOCK(pmap);
5017 		pte = pmap_pte_quick(pmap, pv->pv_va);
5018 		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
5019 		PMAP_UNLOCK(pmap);
5020 		if (rv)
5021 			break;
5022 	}
5023 	sched_unpin();
5024 	return (rv);
5025 }
5026 
5027 /*
5028  * Clear the write and modified bits in each of the given page's mappings.
5029  */
5030 static void
5031 __CONCAT(PMTYPE, remove_write)(vm_page_t m)
5032 {
5033 	struct md_page *pvh;
5034 	pv_entry_t next_pv, pv;
5035 	pmap_t pmap;
5036 	pd_entry_t *pde;
5037 	pt_entry_t oldpte, *pte;
5038 	vm_offset_t va;
5039 
5040 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5041 	    ("pmap_remove_write: page %p is not managed", m));
5042 	vm_page_assert_busied(m);
5043 
5044 	if (!pmap_page_is_write_mapped(m))
5045 		return;
5046 	rw_wlock(&pvh_global_lock);
5047 	sched_pin();
5048 	if ((m->flags & PG_FICTITIOUS) != 0)
5049 		goto small_mappings;
5050 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5051 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5052 		va = pv->pv_va;
5053 		pmap = PV_PMAP(pv);
5054 		PMAP_LOCK(pmap);
5055 		pde = pmap_pde(pmap, va);
5056 		if ((*pde & PG_RW) != 0)
5057 			(void)pmap_demote_pde(pmap, pde, va);
5058 		PMAP_UNLOCK(pmap);
5059 	}
5060 small_mappings:
5061 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5062 		pmap = PV_PMAP(pv);
5063 		PMAP_LOCK(pmap);
5064 		pde = pmap_pde(pmap, pv->pv_va);
5065 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
5066 		    " a 4mpage in page %p's pv list", m));
5067 		pte = pmap_pte_quick(pmap, pv->pv_va);
5068 retry:
5069 		oldpte = *pte;
5070 		if ((oldpte & PG_RW) != 0) {
5071 			/*
5072 			 * Regardless of whether a pte is 32 or 64 bits
5073 			 * in size, PG_RW and PG_M are among the least
5074 			 * significant 32 bits.
5075 			 */
5076 			if (!atomic_cmpset_int((u_int *)pte, oldpte,
5077 			    oldpte & ~(PG_RW | PG_M)))
5078 				goto retry;
5079 			if ((oldpte & PG_M) != 0)
5080 				vm_page_dirty(m);
5081 			pmap_invalidate_page_int(pmap, pv->pv_va);
5082 		}
5083 		PMAP_UNLOCK(pmap);
5084 	}
5085 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5086 	sched_unpin();
5087 	rw_wunlock(&pvh_global_lock);
5088 }
5089 
5090 /*
5091  *	pmap_ts_referenced:
5092  *
5093  *	Return a count of reference bits for a page, clearing those bits.
5094  *	It is not necessary for every reference bit to be cleared, but it
5095  *	is necessary that 0 only be returned when there are truly no
5096  *	reference bits set.
5097  *
5098  *	As an optimization, update the page's dirty field if a modified bit is
5099  *	found while counting reference bits.  This opportunistic update can be
5100  *	performed at low cost and can eliminate the need for some future calls
5101  *	to pmap_is_modified().  However, since this function stops after
5102  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5103  *	dirty pages.  Those dirty pages will only be detected by a future call
5104  *	to pmap_is_modified().
5105  */
5106 static int
5107 __CONCAT(PMTYPE, ts_referenced)(vm_page_t m)
5108 {
5109 	struct md_page *pvh;
5110 	pv_entry_t pv, pvf;
5111 	pmap_t pmap;
5112 	pd_entry_t *pde;
5113 	pt_entry_t *pte;
5114 	vm_paddr_t pa;
5115 	int rtval = 0;
5116 
5117 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5118 	    ("pmap_ts_referenced: page %p is not managed", m));
5119 	pa = VM_PAGE_TO_PHYS(m);
5120 	pvh = pa_to_pvh(pa);
5121 	rw_wlock(&pvh_global_lock);
5122 	sched_pin();
5123 	if ((m->flags & PG_FICTITIOUS) != 0 ||
5124 	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5125 		goto small_mappings;
5126 	pv = pvf;
5127 	do {
5128 		pmap = PV_PMAP(pv);
5129 		PMAP_LOCK(pmap);
5130 		pde = pmap_pde(pmap, pv->pv_va);
5131 		if ((*pde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5132 			/*
5133 			 * Although "*pde" is mapping a 2/4MB page, because
5134 			 * this function is called at a 4KB page granularity,
5135 			 * we only update the 4KB page under test.
5136 			 */
5137 			vm_page_dirty(m);
5138 		}
5139 		if ((*pde & PG_A) != 0) {
5140 			/*
5141 			 * Since this reference bit is shared by either 1024
5142 			 * or 512 4KB pages, it should not be cleared every
5143 			 * time it is tested.  Apply a simple "hash" function
5144 			 * on the physical page number, the virtual superpage
5145 			 * number, and the pmap address to select one 4KB page
5146 			 * out of the 1024 or 512 on which testing the
5147 			 * reference bit will result in clearing that bit.
5148 			 * This function is designed to avoid the selection of
5149 			 * the same 4KB page for every 2- or 4MB page mapping.
5150 			 *
5151 			 * On demotion, a mapping that hasn't been referenced
5152 			 * is simply destroyed.  To avoid the possibility of a
5153 			 * subsequent page fault on a demoted wired mapping,
5154 			 * always leave its reference bit set.  Moreover,
5155 			 * since the superpage is wired, the current state of
5156 			 * its reference bit won't affect page replacement.
5157 			 */
5158 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
5159 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
5160 			    (*pde & PG_W) == 0) {
5161 				atomic_clear_int((u_int *)pde, PG_A);
5162 				pmap_invalidate_page_int(pmap, pv->pv_va);
5163 			}
5164 			rtval++;
5165 		}
5166 		PMAP_UNLOCK(pmap);
5167 		/* Rotate the PV list if it has more than one entry. */
5168 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5169 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5170 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5171 		}
5172 		if (rtval >= PMAP_TS_REFERENCED_MAX)
5173 			goto out;
5174 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5175 small_mappings:
5176 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5177 		goto out;
5178 	pv = pvf;
5179 	do {
5180 		pmap = PV_PMAP(pv);
5181 		PMAP_LOCK(pmap);
5182 		pde = pmap_pde(pmap, pv->pv_va);
5183 		KASSERT((*pde & PG_PS) == 0,
5184 		    ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
5185 		    m));
5186 		pte = pmap_pte_quick(pmap, pv->pv_va);
5187 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5188 			vm_page_dirty(m);
5189 		if ((*pte & PG_A) != 0) {
5190 			atomic_clear_int((u_int *)pte, PG_A);
5191 			pmap_invalidate_page_int(pmap, pv->pv_va);
5192 			rtval++;
5193 		}
5194 		PMAP_UNLOCK(pmap);
5195 		/* Rotate the PV list if it has more than one entry. */
5196 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5197 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5198 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5199 		}
5200 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5201 	    PMAP_TS_REFERENCED_MAX);
5202 out:
5203 	sched_unpin();
5204 	rw_wunlock(&pvh_global_lock);
5205 	return (rtval);
5206 }
5207 
5208 /*
5209  *	Apply the given advice to the specified range of addresses within the
5210  *	given pmap.  Depending on the advice, clear the referenced and/or
5211  *	modified flags in each mapping and set the mapped page's dirty field.
5212  */
5213 static void
5214 __CONCAT(PMTYPE, advise)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5215     int advice)
5216 {
5217 	pd_entry_t oldpde, *pde;
5218 	pt_entry_t *pte;
5219 	vm_offset_t va, pdnxt;
5220 	vm_page_t m;
5221 	bool anychanged, pv_lists_locked;
5222 
5223 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5224 		return;
5225 	if (pmap_is_current(pmap))
5226 		pv_lists_locked = false;
5227 	else {
5228 		pv_lists_locked = true;
5229 resume:
5230 		rw_wlock(&pvh_global_lock);
5231 		sched_pin();
5232 	}
5233 	anychanged = false;
5234 	PMAP_LOCK(pmap);
5235 	for (; sva < eva; sva = pdnxt) {
5236 		pdnxt = (sva + NBPDR) & ~PDRMASK;
5237 		if (pdnxt < sva)
5238 			pdnxt = eva;
5239 		pde = pmap_pde(pmap, sva);
5240 		oldpde = *pde;
5241 		if ((oldpde & PG_V) == 0)
5242 			continue;
5243 		else if ((oldpde & PG_PS) != 0) {
5244 			if ((oldpde & PG_MANAGED) == 0)
5245 				continue;
5246 			if (!pv_lists_locked) {
5247 				pv_lists_locked = true;
5248 				if (!rw_try_wlock(&pvh_global_lock)) {
5249 					if (anychanged)
5250 						pmap_invalidate_all_int(pmap);
5251 					PMAP_UNLOCK(pmap);
5252 					goto resume;
5253 				}
5254 				sched_pin();
5255 			}
5256 			if (!pmap_demote_pde(pmap, pde, sva)) {
5257 				/*
5258 				 * The large page mapping was destroyed.
5259 				 */
5260 				continue;
5261 			}
5262 
5263 			/*
5264 			 * Unless the page mappings are wired, remove the
5265 			 * mapping to a single page so that a subsequent
5266 			 * access may repromote.  Choosing the last page
5267 			 * within the address range [sva, min(pdnxt, eva))
5268 			 * generally results in more repromotions.  Since the
5269 			 * underlying page table page is fully populated, this
5270 			 * removal never frees a page table page.
5271 			 */
5272 			if ((oldpde & PG_W) == 0) {
5273 				va = eva;
5274 				if (va > pdnxt)
5275 					va = pdnxt;
5276 				va -= PAGE_SIZE;
5277 				KASSERT(va >= sva,
5278 				    ("pmap_advise: no address gap"));
5279 				pte = pmap_pte_quick(pmap, va);
5280 				KASSERT((*pte & PG_V) != 0,
5281 				    ("pmap_advise: invalid PTE"));
5282 				pmap_remove_pte(pmap, pte, va, NULL);
5283 				anychanged = true;
5284 			}
5285 		}
5286 		if (pdnxt > eva)
5287 			pdnxt = eva;
5288 		va = pdnxt;
5289 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
5290 		    sva += PAGE_SIZE) {
5291 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
5292 				goto maybe_invlrng;
5293 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5294 				if (advice == MADV_DONTNEED) {
5295 					/*
5296 					 * Future calls to pmap_is_modified()
5297 					 * can be avoided by making the page
5298 					 * dirty now.
5299 					 */
5300 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
5301 					vm_page_dirty(m);
5302 				}
5303 				atomic_clear_int((u_int *)pte, PG_M | PG_A);
5304 			} else if ((*pte & PG_A) != 0)
5305 				atomic_clear_int((u_int *)pte, PG_A);
5306 			else
5307 				goto maybe_invlrng;
5308 			if ((*pte & PG_G) != 0) {
5309 				if (va == pdnxt)
5310 					va = sva;
5311 			} else
5312 				anychanged = true;
5313 			continue;
5314 maybe_invlrng:
5315 			if (va != pdnxt) {
5316 				pmap_invalidate_range_int(pmap, va, sva);
5317 				va = pdnxt;
5318 			}
5319 		}
5320 		if (va != pdnxt)
5321 			pmap_invalidate_range_int(pmap, va, sva);
5322 	}
5323 	if (anychanged)
5324 		pmap_invalidate_all_int(pmap);
5325 	if (pv_lists_locked) {
5326 		sched_unpin();
5327 		rw_wunlock(&pvh_global_lock);
5328 	}
5329 	PMAP_UNLOCK(pmap);
5330 }
5331 
5332 /*
5333  *	Clear the modify bits on the specified physical page.
5334  */
5335 static void
5336 __CONCAT(PMTYPE, clear_modify)(vm_page_t m)
5337 {
5338 	struct md_page *pvh;
5339 	pv_entry_t next_pv, pv;
5340 	pmap_t pmap;
5341 	pd_entry_t oldpde, *pde;
5342 	pt_entry_t *pte;
5343 	vm_offset_t va;
5344 
5345 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5346 	    ("pmap_clear_modify: page %p is not managed", m));
5347 	vm_page_assert_busied(m);
5348 
5349 	if (!pmap_page_is_write_mapped(m))
5350 		return;
5351 	rw_wlock(&pvh_global_lock);
5352 	sched_pin();
5353 	if ((m->flags & PG_FICTITIOUS) != 0)
5354 		goto small_mappings;
5355 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5356 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5357 		va = pv->pv_va;
5358 		pmap = PV_PMAP(pv);
5359 		PMAP_LOCK(pmap);
5360 		pde = pmap_pde(pmap, va);
5361 		oldpde = *pde;
5362 		/* If oldpde has PG_RW set, then it also has PG_M set. */
5363 		if ((oldpde & PG_RW) != 0 &&
5364 		    pmap_demote_pde(pmap, pde, va) &&
5365 		    (oldpde & PG_W) == 0) {
5366 			/*
5367 			 * Write protect the mapping to a single page so that
5368 			 * a subsequent write access may repromote.
5369 			 */
5370 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
5371 			pte = pmap_pte_quick(pmap, va);
5372 			/*
5373 			 * Regardless of whether a pte is 32 or 64 bits
5374 			 * in size, PG_RW and PG_M are among the least
5375 			 * significant 32 bits.
5376 			 */
5377 			atomic_clear_int((u_int *)pte, PG_M | PG_RW);
5378 			vm_page_dirty(m);
5379 			pmap_invalidate_page_int(pmap, va);
5380 		}
5381 		PMAP_UNLOCK(pmap);
5382 	}
5383 small_mappings:
5384 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5385 		pmap = PV_PMAP(pv);
5386 		PMAP_LOCK(pmap);
5387 		pde = pmap_pde(pmap, pv->pv_va);
5388 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
5389 		    " a 4mpage in page %p's pv list", m));
5390 		pte = pmap_pte_quick(pmap, pv->pv_va);
5391 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5392 			/*
5393 			 * Regardless of whether a pte is 32 or 64 bits
5394 			 * in size, PG_M is among the least significant
5395 			 * 32 bits.
5396 			 */
5397 			atomic_clear_int((u_int *)pte, PG_M);
5398 			pmap_invalidate_page_int(pmap, pv->pv_va);
5399 		}
5400 		PMAP_UNLOCK(pmap);
5401 	}
5402 	sched_unpin();
5403 	rw_wunlock(&pvh_global_lock);
5404 }
5405 
5406 /*
5407  * Miscellaneous support routines follow
5408  */
5409 
5410 /* Adjust the cache mode for a 4KB page mapped via a PTE. */
5411 static __inline void
5412 pmap_pte_attr(pt_entry_t *pte, int cache_bits)
5413 {
5414 	u_int opte, npte;
5415 
5416 	/*
5417 	 * The cache mode bits are all in the low 32-bits of the
5418 	 * PTE, so we can just spin on updating the low 32-bits.
5419 	 */
5420 	do {
5421 		opte = *(u_int *)pte;
5422 		npte = opte & ~PG_PTE_CACHE;
5423 		npte |= cache_bits;
5424 	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
5425 }
5426 
5427 /* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
5428 static __inline void
5429 pmap_pde_attr(pd_entry_t *pde, int cache_bits)
5430 {
5431 	u_int opde, npde;
5432 
5433 	/*
5434 	 * The cache mode bits are all in the low 32-bits of the
5435 	 * PDE, so we can just spin on updating the low 32-bits.
5436 	 */
5437 	do {
5438 		opde = *(u_int *)pde;
5439 		npde = opde & ~PG_PDE_CACHE;
5440 		npde |= cache_bits;
5441 	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
5442 }
5443 
5444 /*
5445  * Map a set of physical memory pages into the kernel virtual
5446  * address space. Return a pointer to where it is mapped. This
5447  * routine is intended to be used for mapping device memory,
5448  * NOT real memory.
5449  */
5450 static void *
5451 __CONCAT(PMTYPE, mapdev_attr)(vm_paddr_t pa, vm_size_t size, int mode,
5452     int flags)
5453 {
5454 	struct pmap_preinit_mapping *ppim;
5455 	vm_offset_t va, offset;
5456 	vm_page_t m;
5457 	vm_size_t tmpsize;
5458 	int i;
5459 
5460 	offset = pa & PAGE_MASK;
5461 	size = round_page(offset + size);
5462 	pa = pa & PG_FRAME;
5463 
5464 	if (pa < PMAP_MAP_LOW && pa + size <= PMAP_MAP_LOW) {
5465 		va = pa + PMAP_MAP_LOW;
5466 		if ((flags & MAPDEV_SETATTR) == 0)
5467 			return ((void *)(va + offset));
5468 	} else if (!pmap_initialized) {
5469 		va = 0;
5470 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5471 			ppim = pmap_preinit_mapping + i;
5472 			if (ppim->va == 0) {
5473 				ppim->pa = pa;
5474 				ppim->sz = size;
5475 				ppim->mode = mode;
5476 				ppim->va = virtual_avail;
5477 				virtual_avail += size;
5478 				va = ppim->va;
5479 				break;
5480 			}
5481 		}
5482 		if (va == 0)
5483 			panic("%s: too many preinit mappings", __func__);
5484 	} else {
5485 		/*
5486 		 * If we have a preinit mapping, re-use it.
5487 		 */
5488 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5489 			ppim = pmap_preinit_mapping + i;
5490 			if (ppim->pa == pa && ppim->sz == size &&
5491 			    (ppim->mode == mode ||
5492 			    (flags & MAPDEV_SETATTR) == 0))
5493 				return ((void *)(ppim->va + offset));
5494 		}
5495 		va = kva_alloc(size);
5496 		if (va == 0)
5497 			panic("%s: Couldn't allocate KVA", __func__);
5498 	}
5499 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE) {
5500 		if ((flags & MAPDEV_SETATTR) == 0 && pmap_initialized) {
5501 			m = PHYS_TO_VM_PAGE(pa);
5502 			if (m != NULL && VM_PAGE_TO_PHYS(m) == pa) {
5503 				pmap_kenter_attr(va + tmpsize, pa + tmpsize,
5504 				    m->md.pat_mode);
5505 				continue;
5506 			}
5507 		}
5508 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
5509 	}
5510 	pmap_invalidate_range_int(kernel_pmap, va, va + tmpsize);
5511 	pmap_invalidate_cache_range(va, va + size);
5512 	return ((void *)(va + offset));
5513 }
5514 
5515 static void
5516 __CONCAT(PMTYPE, unmapdev)(vm_offset_t va, vm_size_t size)
5517 {
5518 	struct pmap_preinit_mapping *ppim;
5519 	vm_offset_t offset;
5520 	int i;
5521 
5522 	if (va >= PMAP_MAP_LOW && va <= KERNBASE && va + size <= KERNBASE)
5523 		return;
5524 	offset = va & PAGE_MASK;
5525 	size = round_page(offset + size);
5526 	va = trunc_page(va);
5527 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5528 		ppim = pmap_preinit_mapping + i;
5529 		if (ppim->va == va && ppim->sz == size) {
5530 			if (pmap_initialized)
5531 				return;
5532 			ppim->pa = 0;
5533 			ppim->va = 0;
5534 			ppim->sz = 0;
5535 			ppim->mode = 0;
5536 			if (va + size == virtual_avail)
5537 				virtual_avail = va;
5538 			return;
5539 		}
5540 	}
5541 	if (pmap_initialized)
5542 		kva_free(va, size);
5543 }
5544 
5545 /*
5546  * Sets the memory attribute for the specified page.
5547  */
5548 static void
5549 __CONCAT(PMTYPE, page_set_memattr)(vm_page_t m, vm_memattr_t ma)
5550 {
5551 
5552 	m->md.pat_mode = ma;
5553 	if ((m->flags & PG_FICTITIOUS) != 0)
5554 		return;
5555 
5556 	/*
5557 	 * If "m" is a normal page, flush it from the cache.
5558 	 * See pmap_invalidate_cache_range().
5559 	 *
5560 	 * First, try to find an existing mapping of the page by sf
5561 	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5562 	 * flushes the cache.
5563 	 */
5564 	if (sf_buf_invalidate_cache(m))
5565 		return;
5566 
5567 	/*
5568 	 * If page is not mapped by sf buffer, but CPU does not
5569 	 * support self snoop, map the page transient and do
5570 	 * invalidation. In the worst case, whole cache is flushed by
5571 	 * pmap_invalidate_cache_range().
5572 	 */
5573 	if ((cpu_feature & CPUID_SS) == 0)
5574 		pmap_flush_page(m);
5575 }
5576 
5577 static void
5578 __CONCAT(PMTYPE, flush_page)(vm_page_t m)
5579 {
5580 	pt_entry_t *cmap_pte2;
5581 	struct pcpu *pc;
5582 	vm_offset_t sva, eva;
5583 	bool useclflushopt;
5584 
5585 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
5586 	if (useclflushopt || (cpu_feature & CPUID_CLFSH) != 0) {
5587 		sched_pin();
5588 		pc = get_pcpu();
5589 		cmap_pte2 = pc->pc_cmap_pte2;
5590 		mtx_lock(&pc->pc_cmap_lock);
5591 		if (*cmap_pte2)
5592 			panic("pmap_flush_page: CMAP2 busy");
5593 		*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
5594 		    PG_A | PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode,
5595 		    0);
5596 		invlcaddr(pc->pc_cmap_addr2);
5597 		sva = (vm_offset_t)pc->pc_cmap_addr2;
5598 		eva = sva + PAGE_SIZE;
5599 
5600 		/*
5601 		 * Use mfence or sfence despite the ordering implied by
5602 		 * mtx_{un,}lock() because clflush on non-Intel CPUs
5603 		 * and clflushopt are not guaranteed to be ordered by
5604 		 * any other instruction.
5605 		 */
5606 		if (useclflushopt)
5607 			sfence();
5608 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5609 			mfence();
5610 		for (; sva < eva; sva += cpu_clflush_line_size) {
5611 			if (useclflushopt)
5612 				clflushopt(sva);
5613 			else
5614 				clflush(sva);
5615 		}
5616 		if (useclflushopt)
5617 			sfence();
5618 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5619 			mfence();
5620 		*cmap_pte2 = 0;
5621 		sched_unpin();
5622 		mtx_unlock(&pc->pc_cmap_lock);
5623 	} else
5624 		pmap_invalidate_cache();
5625 }
5626 
5627 /*
5628  * Changes the specified virtual address range's memory type to that given by
5629  * the parameter "mode".  The specified virtual address range must be
5630  * completely contained within either the kernel map.
5631  *
5632  * Returns zero if the change completed successfully, and either EINVAL or
5633  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5634  * of the virtual address range was not mapped, and ENOMEM is returned if
5635  * there was insufficient memory available to complete the change.
5636  */
5637 static int
5638 __CONCAT(PMTYPE, change_attr)(vm_offset_t va, vm_size_t size, int mode)
5639 {
5640 	vm_offset_t base, offset, tmpva;
5641 	pd_entry_t *pde;
5642 	pt_entry_t *pte;
5643 	int cache_bits_pte, cache_bits_pde;
5644 	boolean_t changed;
5645 
5646 	base = trunc_page(va);
5647 	offset = va & PAGE_MASK;
5648 	size = round_page(offset + size);
5649 
5650 	/*
5651 	 * Only supported on kernel virtual addresses above the recursive map.
5652 	 */
5653 	if (base < VM_MIN_KERNEL_ADDRESS)
5654 		return (EINVAL);
5655 
5656 	cache_bits_pde = pmap_cache_bits(kernel_pmap, mode, 1);
5657 	cache_bits_pte = pmap_cache_bits(kernel_pmap, mode, 0);
5658 	changed = FALSE;
5659 
5660 	/*
5661 	 * Pages that aren't mapped aren't supported.  Also break down
5662 	 * 2/4MB pages into 4KB pages if required.
5663 	 */
5664 	PMAP_LOCK(kernel_pmap);
5665 	for (tmpva = base; tmpva < base + size; ) {
5666 		pde = pmap_pde(kernel_pmap, tmpva);
5667 		if (*pde == 0) {
5668 			PMAP_UNLOCK(kernel_pmap);
5669 			return (EINVAL);
5670 		}
5671 		if (*pde & PG_PS) {
5672 			/*
5673 			 * If the current 2/4MB page already has
5674 			 * the required memory type, then we need not
5675 			 * demote this page.  Just increment tmpva to
5676 			 * the next 2/4MB page frame.
5677 			 */
5678 			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
5679 				tmpva = trunc_4mpage(tmpva) + NBPDR;
5680 				continue;
5681 			}
5682 
5683 			/*
5684 			 * If the current offset aligns with a 2/4MB
5685 			 * page frame and there is at least 2/4MB left
5686 			 * within the range, then we need not break
5687 			 * down this page into 4KB pages.
5688 			 */
5689 			if ((tmpva & PDRMASK) == 0 &&
5690 			    tmpva + PDRMASK < base + size) {
5691 				tmpva += NBPDR;
5692 				continue;
5693 			}
5694 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
5695 				PMAP_UNLOCK(kernel_pmap);
5696 				return (ENOMEM);
5697 			}
5698 		}
5699 		pte = vtopte(tmpva);
5700 		if (*pte == 0) {
5701 			PMAP_UNLOCK(kernel_pmap);
5702 			return (EINVAL);
5703 		}
5704 		tmpva += PAGE_SIZE;
5705 	}
5706 	PMAP_UNLOCK(kernel_pmap);
5707 
5708 	/*
5709 	 * Ok, all the pages exist, so run through them updating their
5710 	 * cache mode if required.
5711 	 */
5712 	for (tmpva = base; tmpva < base + size; ) {
5713 		pde = pmap_pde(kernel_pmap, tmpva);
5714 		if (*pde & PG_PS) {
5715 			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
5716 				pmap_pde_attr(pde, cache_bits_pde);
5717 				changed = TRUE;
5718 			}
5719 			tmpva = trunc_4mpage(tmpva) + NBPDR;
5720 		} else {
5721 			pte = vtopte(tmpva);
5722 			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
5723 				pmap_pte_attr(pte, cache_bits_pte);
5724 				changed = TRUE;
5725 			}
5726 			tmpva += PAGE_SIZE;
5727 		}
5728 	}
5729 
5730 	/*
5731 	 * Flush CPU caches to make sure any data isn't cached that
5732 	 * shouldn't be, etc.
5733 	 */
5734 	if (changed) {
5735 		pmap_invalidate_range_int(kernel_pmap, base, tmpva);
5736 		pmap_invalidate_cache_range(base, tmpva);
5737 	}
5738 	return (0);
5739 }
5740 
5741 /*
5742  * Perform the pmap work for mincore(2).  If the page is not both referenced and
5743  * modified by this pmap, returns its physical address so that the caller can
5744  * find other mappings.
5745  */
5746 static int
5747 __CONCAT(PMTYPE, mincore)(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
5748 {
5749 	pd_entry_t pde;
5750 	pt_entry_t pte;
5751 	vm_paddr_t pa;
5752 	int val;
5753 
5754 	PMAP_LOCK(pmap);
5755 	pde = *pmap_pde(pmap, addr);
5756 	if (pde != 0) {
5757 		if ((pde & PG_PS) != 0) {
5758 			pte = pde;
5759 			/* Compute the physical address of the 4KB page. */
5760 			pa = ((pde & PG_PS_FRAME) | (addr & PDRMASK)) &
5761 			    PG_FRAME;
5762 			val = MINCORE_SUPER;
5763 		} else {
5764 			pte = pmap_pte_ufast(pmap, addr, pde);
5765 			pa = pte & PG_FRAME;
5766 			val = 0;
5767 		}
5768 	} else {
5769 		pte = 0;
5770 		pa = 0;
5771 		val = 0;
5772 	}
5773 	if ((pte & PG_V) != 0) {
5774 		val |= MINCORE_INCORE;
5775 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5776 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5777 		if ((pte & PG_A) != 0)
5778 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5779 	}
5780 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5781 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5782 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5783 		*pap = pa;
5784 	}
5785 	PMAP_UNLOCK(pmap);
5786 	return (val);
5787 }
5788 
5789 static void
5790 __CONCAT(PMTYPE, activate)(struct thread *td)
5791 {
5792 	pmap_t	pmap, oldpmap;
5793 	u_int	cpuid;
5794 	u_int32_t  cr3;
5795 
5796 	critical_enter();
5797 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5798 	oldpmap = PCPU_GET(curpmap);
5799 	cpuid = PCPU_GET(cpuid);
5800 #if defined(SMP)
5801 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
5802 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5803 #else
5804 	CPU_CLR(cpuid, &oldpmap->pm_active);
5805 	CPU_SET(cpuid, &pmap->pm_active);
5806 #endif
5807 #ifdef PMAP_PAE_COMP
5808 	cr3 = vtophys(pmap->pm_pdpt);
5809 #else
5810 	cr3 = vtophys(pmap->pm_pdir);
5811 #endif
5812 	/*
5813 	 * pmap_activate is for the current thread on the current cpu
5814 	 */
5815 	td->td_pcb->pcb_cr3 = cr3;
5816 	PCPU_SET(curpmap, pmap);
5817 	critical_exit();
5818 }
5819 
5820 static void
5821 __CONCAT(PMTYPE, activate_boot)(pmap_t pmap)
5822 {
5823 	u_int cpuid;
5824 
5825 	cpuid = PCPU_GET(cpuid);
5826 #if defined(SMP)
5827 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5828 #else
5829 	CPU_SET(cpuid, &pmap->pm_active);
5830 #endif
5831 	PCPU_SET(curpmap, pmap);
5832 }
5833 
5834 /*
5835  *	Increase the starting virtual address of the given mapping if a
5836  *	different alignment might result in more superpage mappings.
5837  */
5838 static void
5839 __CONCAT(PMTYPE, align_superpage)(vm_object_t object, vm_ooffset_t offset,
5840     vm_offset_t *addr, vm_size_t size)
5841 {
5842 	vm_offset_t superpage_offset;
5843 
5844 	if (size < NBPDR)
5845 		return;
5846 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5847 		offset += ptoa(object->pg_color);
5848 	superpage_offset = offset & PDRMASK;
5849 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5850 	    (*addr & PDRMASK) == superpage_offset)
5851 		return;
5852 	if ((*addr & PDRMASK) < superpage_offset)
5853 		*addr = (*addr & ~PDRMASK) + superpage_offset;
5854 	else
5855 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5856 }
5857 
5858 static vm_offset_t
5859 __CONCAT(PMTYPE, quick_enter_page)(vm_page_t m)
5860 {
5861 	vm_offset_t qaddr;
5862 	pt_entry_t *pte;
5863 
5864 	critical_enter();
5865 	qaddr = PCPU_GET(qmap_addr);
5866 	pte = vtopte(qaddr);
5867 
5868 	KASSERT(*pte == 0,
5869 	    ("pmap_quick_enter_page: PTE busy %#jx", (uintmax_t)*pte));
5870 	*pte = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
5871 	    pmap_cache_bits(kernel_pmap, pmap_page_get_memattr(m), 0);
5872 	invlpg(qaddr);
5873 
5874 	return (qaddr);
5875 }
5876 
5877 static void
5878 __CONCAT(PMTYPE, quick_remove_page)(vm_offset_t addr)
5879 {
5880 	vm_offset_t qaddr;
5881 	pt_entry_t *pte;
5882 
5883 	qaddr = PCPU_GET(qmap_addr);
5884 	pte = vtopte(qaddr);
5885 
5886 	KASSERT(*pte != 0, ("pmap_quick_remove_page: PTE not in use"));
5887 	KASSERT(addr == qaddr, ("pmap_quick_remove_page: invalid address"));
5888 
5889 	*pte = 0;
5890 	critical_exit();
5891 }
5892 
5893 static vmem_t *pmap_trm_arena;
5894 static vmem_addr_t pmap_trm_arena_last = PMAP_TRM_MIN_ADDRESS;
5895 static int trm_guard = PAGE_SIZE;
5896 
5897 static int
5898 pmap_trm_import(void *unused __unused, vmem_size_t size, int flags,
5899     vmem_addr_t *addrp)
5900 {
5901 	vm_page_t m;
5902 	vmem_addr_t af, addr, prev_addr;
5903 	pt_entry_t *trm_pte;
5904 
5905 	prev_addr = atomic_load_long(&pmap_trm_arena_last);
5906 	size = round_page(size) + trm_guard;
5907 	for (;;) {
5908 		if (prev_addr + size < prev_addr || prev_addr + size < size ||
5909 		    prev_addr + size > PMAP_TRM_MAX_ADDRESS)
5910 			return (ENOMEM);
5911 		addr = prev_addr + size;
5912 		if (atomic_fcmpset_int(&pmap_trm_arena_last, &prev_addr, addr))
5913 			break;
5914 	}
5915 	prev_addr += trm_guard;
5916 	trm_pte = PTmap + atop(prev_addr);
5917 	for (af = prev_addr; af < addr; af += PAGE_SIZE) {
5918 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_NOBUSY |
5919 		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
5920 		pte_store(&trm_pte[atop(af - prev_addr)], VM_PAGE_TO_PHYS(m) |
5921 		    PG_M | PG_A | PG_RW | PG_V | pgeflag |
5922 		    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE));
5923 	}
5924 	*addrp = prev_addr;
5925 	return (0);
5926 }
5927 
5928 void
5929 pmap_init_trm(void)
5930 {
5931 	vm_page_t pd_m;
5932 
5933 	TUNABLE_INT_FETCH("machdep.trm_guard", &trm_guard);
5934 	if ((trm_guard & PAGE_MASK) != 0)
5935 		trm_guard = 0;
5936 	pmap_trm_arena = vmem_create("i386trampoline", 0, 0, 1, 0, M_WAITOK);
5937 	vmem_set_import(pmap_trm_arena, pmap_trm_import, NULL, NULL, PAGE_SIZE);
5938 	pd_m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_NOBUSY |
5939 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_WAITOK | VM_ALLOC_ZERO);
5940 	if ((pd_m->flags & PG_ZERO) == 0)
5941 		pmap_zero_page(pd_m);
5942 	PTD[TRPTDI] = VM_PAGE_TO_PHYS(pd_m) | PG_M | PG_A | PG_RW | PG_V |
5943 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, TRUE);
5944 }
5945 
5946 static void *
5947 __CONCAT(PMTYPE, trm_alloc)(size_t size, int flags)
5948 {
5949 	vmem_addr_t res;
5950 	int error;
5951 
5952 	MPASS((flags & ~(M_WAITOK | M_NOWAIT | M_ZERO)) == 0);
5953 	error = vmem_xalloc(pmap_trm_arena, roundup2(size, 4), sizeof(int),
5954 	    0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags | M_FIRSTFIT, &res);
5955 	if (error != 0)
5956 		return (NULL);
5957 	if ((flags & M_ZERO) != 0)
5958 		bzero((void *)res, size);
5959 	return ((void *)res);
5960 }
5961 
5962 static void
5963 __CONCAT(PMTYPE, trm_free)(void *addr, size_t size)
5964 {
5965 
5966 	vmem_free(pmap_trm_arena, (uintptr_t)addr, roundup2(size, 4));
5967 }
5968 
5969 static void
5970 __CONCAT(PMTYPE, ksetrw)(vm_offset_t va)
5971 {
5972 
5973 	*vtopte(va) |= PG_RW;
5974 }
5975 
5976 static void
5977 __CONCAT(PMTYPE, remap_lowptdi)(bool enable)
5978 {
5979 
5980 	PTD[KPTDI] = enable ? PTD[LOWPTDI] : 0;
5981 	invltlb_glob();
5982 }
5983 
5984 static vm_offset_t
5985 __CONCAT(PMTYPE, get_map_low)(void)
5986 {
5987 
5988 	return (PMAP_MAP_LOW);
5989 }
5990 
5991 static vm_offset_t
5992 __CONCAT(PMTYPE, get_vm_maxuser_address)(void)
5993 {
5994 
5995 	return (VM_MAXUSER_ADDRESS);
5996 }
5997 
5998 static vm_paddr_t
5999 __CONCAT(PMTYPE, pg_frame)(vm_paddr_t pa)
6000 {
6001 
6002 	return (pa & PG_FRAME);
6003 }
6004 
6005 static void
6006 __CONCAT(PMTYPE, sf_buf_map)(struct sf_buf *sf)
6007 {
6008 	pt_entry_t opte, *ptep;
6009 
6010 	/*
6011 	 * Update the sf_buf's virtual-to-physical mapping, flushing the
6012 	 * virtual address from the TLB.  Since the reference count for
6013 	 * the sf_buf's old mapping was zero, that mapping is not
6014 	 * currently in use.  Consequently, there is no need to exchange
6015 	 * the old and new PTEs atomically, even under PAE.
6016 	 */
6017 	ptep = vtopte(sf->kva);
6018 	opte = *ptep;
6019 	*ptep = VM_PAGE_TO_PHYS(sf->m) | PG_RW | PG_V |
6020 	    pmap_cache_bits(kernel_pmap, sf->m->md.pat_mode, 0);
6021 
6022 	/*
6023 	 * Avoid unnecessary TLB invalidations: If the sf_buf's old
6024 	 * virtual-to-physical mapping was not used, then any processor
6025 	 * that has invalidated the sf_buf's virtual address from its TLB
6026 	 * since the last used mapping need not invalidate again.
6027 	 */
6028 #ifdef SMP
6029 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
6030 		CPU_ZERO(&sf->cpumask);
6031 #else
6032 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
6033 		pmap_invalidate_page_int(kernel_pmap, sf->kva);
6034 #endif
6035 }
6036 
6037 static void
6038 __CONCAT(PMTYPE, cp_slow0_map)(vm_offset_t kaddr, int plen, vm_page_t *ma)
6039 {
6040 	pt_entry_t *pte;
6041 	int i;
6042 
6043 	for (i = 0, pte = vtopte(kaddr); i < plen; i++, pte++) {
6044 		*pte = PG_V | PG_RW | PG_A | PG_M | VM_PAGE_TO_PHYS(ma[i]) |
6045 		    pmap_cache_bits(kernel_pmap, pmap_page_get_memattr(ma[i]),
6046 		    FALSE);
6047 		invlpg(kaddr + ptoa(i));
6048 	}
6049 }
6050 
6051 static u_int
6052 __CONCAT(PMTYPE, get_kcr3)(void)
6053 {
6054 
6055 #ifdef PMAP_PAE_COMP
6056 	return ((u_int)IdlePDPT);
6057 #else
6058 	return ((u_int)IdlePTD);
6059 #endif
6060 }
6061 
6062 static u_int
6063 __CONCAT(PMTYPE, get_cr3)(pmap_t pmap)
6064 {
6065 
6066 #ifdef PMAP_PAE_COMP
6067 	return ((u_int)vtophys(pmap->pm_pdpt));
6068 #else
6069 	return ((u_int)vtophys(pmap->pm_pdir));
6070 #endif
6071 }
6072 
6073 static caddr_t
6074 __CONCAT(PMTYPE, cmap3)(vm_paddr_t pa, u_int pte_bits)
6075 {
6076 	pt_entry_t *pte;
6077 
6078 	pte = CMAP3;
6079 	*pte = pa | pte_bits;
6080 	invltlb();
6081 	return (CADDR3);
6082 }
6083 
6084 static void
6085 __CONCAT(PMTYPE, basemem_setup)(u_int basemem)
6086 {
6087 	pt_entry_t *pte;
6088 	int i;
6089 
6090 	/*
6091 	 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
6092 	 * the vm86 page table so that vm86 can scribble on them using
6093 	 * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
6094 	 * page 0, at least as initialized here?
6095 	 */
6096 	pte = (pt_entry_t *)vm86paddr;
6097 	for (i = basemem / 4; i < 160; i++)
6098 		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
6099 }
6100 
6101 struct bios16_pmap_handle {
6102 	pt_entry_t	*pte;
6103 	pd_entry_t	*ptd;
6104 	pt_entry_t	orig_ptd;
6105 };
6106 
6107 static void *
6108 __CONCAT(PMTYPE, bios16_enter)(void)
6109 {
6110 	struct bios16_pmap_handle *h;
6111 
6112 	/*
6113 	 * no page table, so create one and install it.
6114 	 */
6115 	h = malloc(sizeof(struct bios16_pmap_handle), M_TEMP, M_WAITOK);
6116 	h->pte = (pt_entry_t *)malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
6117 	h->ptd = IdlePTD;
6118 	*h->pte = vm86phystk | PG_RW | PG_V;
6119 	h->orig_ptd = *h->ptd;
6120 	*h->ptd = vtophys(h->pte) | PG_RW | PG_V;
6121 	pmap_invalidate_all_int(kernel_pmap);	/* XXX insurance for now */
6122 	return (h);
6123 }
6124 
6125 static void
6126 __CONCAT(PMTYPE, bios16_leave)(void *arg)
6127 {
6128 	struct bios16_pmap_handle *h;
6129 
6130 	h = arg;
6131 	*h->ptd = h->orig_ptd;		/* remove page table */
6132 	/*
6133 	 * XXX only needs to be invlpg(0) but that doesn't work on the 386
6134 	 */
6135 	pmap_invalidate_all_int(kernel_pmap);
6136 	free(h->pte, M_TEMP);		/* ... and free it */
6137 }
6138 
6139 struct pmap_kernel_map_range {
6140 	vm_offset_t sva;
6141 	pt_entry_t attrs;
6142 	int ptes;
6143 	int pdes;
6144 	int pdpes;
6145 };
6146 
6147 static void
6148 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
6149     vm_offset_t eva)
6150 {
6151 	const char *mode;
6152 	int i, pat_idx;
6153 
6154 	if (eva <= range->sva)
6155 		return;
6156 
6157 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
6158 	for (i = 0; i < PAT_INDEX_SIZE; i++)
6159 		if (pat_index[i] == pat_idx)
6160 			break;
6161 
6162 	switch (i) {
6163 	case PAT_WRITE_BACK:
6164 		mode = "WB";
6165 		break;
6166 	case PAT_WRITE_THROUGH:
6167 		mode = "WT";
6168 		break;
6169 	case PAT_UNCACHEABLE:
6170 		mode = "UC";
6171 		break;
6172 	case PAT_UNCACHED:
6173 		mode = "U-";
6174 		break;
6175 	case PAT_WRITE_PROTECTED:
6176 		mode = "WP";
6177 		break;
6178 	case PAT_WRITE_COMBINING:
6179 		mode = "WC";
6180 		break;
6181 	default:
6182 		printf("%s: unknown PAT mode %#x for range 0x%08x-0x%08x\n",
6183 		    __func__, pat_idx, range->sva, eva);
6184 		mode = "??";
6185 		break;
6186 	}
6187 
6188 	sbuf_printf(sb, "0x%08x-0x%08x r%c%c%c%c %s %d %d %d\n",
6189 	    range->sva, eva,
6190 	    (range->attrs & PG_RW) != 0 ? 'w' : '-',
6191 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
6192 	    (range->attrs & PG_U) != 0 ? 'u' : 's',
6193 	    (range->attrs & PG_G) != 0 ? 'g' : '-',
6194 	    mode, range->pdpes, range->pdes, range->ptes);
6195 
6196 	/* Reset to sentinel value. */
6197 	range->sva = 0xffffffff;
6198 }
6199 
6200 /*
6201  * Determine whether the attributes specified by a page table entry match those
6202  * being tracked by the current range.  This is not quite as simple as a direct
6203  * flag comparison since some PAT modes have multiple representations.
6204  */
6205 static bool
6206 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
6207 {
6208 	pt_entry_t diff, mask;
6209 
6210 	mask = pg_nx | PG_G | PG_RW | PG_U | PG_PDE_CACHE;
6211 	diff = (range->attrs ^ attrs) & mask;
6212 	if (diff == 0)
6213 		return (true);
6214 	if ((diff & ~PG_PDE_PAT) == 0 &&
6215 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
6216 	    pmap_pat_index(kernel_pmap, attrs, true))
6217 		return (true);
6218 	return (false);
6219 }
6220 
6221 static void
6222 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
6223     pt_entry_t attrs)
6224 {
6225 
6226 	memset(range, 0, sizeof(*range));
6227 	range->sva = va;
6228 	range->attrs = attrs;
6229 }
6230 
6231 /*
6232  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
6233  * those of the current run, dump the address range and its attributes, and
6234  * begin a new run.
6235  */
6236 static void
6237 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
6238     vm_offset_t va, pd_entry_t pde, pt_entry_t pte)
6239 {
6240 	pt_entry_t attrs;
6241 
6242 	attrs = pde & (PG_RW | PG_U | pg_nx);
6243 
6244 	if ((pde & PG_PS) != 0) {
6245 		attrs |= pde & (PG_G | PG_PDE_CACHE);
6246 	} else if (pte != 0) {
6247 		attrs |= pte & pg_nx;
6248 		attrs &= pg_nx | (pte & (PG_RW | PG_U));
6249 		attrs |= pte & (PG_G | PG_PTE_CACHE);
6250 
6251 		/* Canonicalize by always using the PDE PAT bit. */
6252 		if ((attrs & PG_PTE_PAT) != 0)
6253 			attrs ^= PG_PDE_PAT | PG_PTE_PAT;
6254 	}
6255 
6256 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
6257 		sysctl_kmaps_dump(sb, range, va);
6258 		sysctl_kmaps_reinit(range, va, attrs);
6259 	}
6260 }
6261 
6262 static int
6263 __CONCAT(PMTYPE, sysctl_kmaps)(SYSCTL_HANDLER_ARGS)
6264 {
6265 	struct pmap_kernel_map_range range;
6266 	struct sbuf sbuf, *sb;
6267 	pd_entry_t pde;
6268 	pt_entry_t *pt, pte;
6269 	vm_offset_t sva;
6270 	vm_paddr_t pa;
6271 	int error;
6272 	u_int i, k;
6273 
6274 	error = sysctl_wire_old_buffer(req, 0);
6275 	if (error != 0)
6276 		return (error);
6277 	sb = &sbuf;
6278 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
6279 
6280 	/* Sentinel value. */
6281 	range.sva = 0xffffffff;
6282 
6283 	/*
6284 	 * Iterate over the kernel page tables without holding the
6285 	 * kernel pmap lock.  Kernel page table pages are never freed,
6286 	 * so at worst we will observe inconsistencies in the output.
6287 	 */
6288 	for (sva = 0, i = 0; i < NPTEPG * NPGPTD * NPDEPG ;) {
6289 		if (i == 0)
6290 			sbuf_printf(sb, "\nLow PDE:\n");
6291 		else if (i == LOWPTDI * NPTEPG)
6292 			sbuf_printf(sb, "Low PDE dup:\n");
6293 		else if (i == PTDPTDI * NPTEPG)
6294 			sbuf_printf(sb, "Recursive map:\n");
6295 		else if (i == KERNPTDI * NPTEPG)
6296 			sbuf_printf(sb, "Kernel base:\n");
6297 		else if (i == TRPTDI * NPTEPG)
6298 			sbuf_printf(sb, "Trampoline:\n");
6299 		pde = IdlePTD[sva >> PDRSHIFT];
6300 		if ((pde & PG_V) == 0) {
6301 			sva = rounddown2(sva, NBPDR);
6302 			sysctl_kmaps_dump(sb, &range, sva);
6303 			sva += NBPDR;
6304 			i += NPTEPG;
6305 			continue;
6306 		}
6307 		pa = pde & PG_FRAME;
6308 		if ((pde & PG_PS) != 0) {
6309 			sysctl_kmaps_check(sb, &range, sva, pde, 0);
6310 			range.pdes++;
6311 			sva += NBPDR;
6312 			i += NPTEPG;
6313 			continue;
6314 		}
6315 		for (pt = vtopte(sva), k = 0; k < NPTEPG; i++, k++, pt++,
6316 		    sva += PAGE_SIZE) {
6317 			pte = *pt;
6318 			if ((pte & PG_V) == 0) {
6319 				sysctl_kmaps_dump(sb, &range, sva);
6320 				continue;
6321 			}
6322 			sysctl_kmaps_check(sb, &range, sva, pde, pte);
6323 			range.ptes++;
6324 		}
6325 	}
6326 
6327 	error = sbuf_finish(sb);
6328 	sbuf_delete(sb);
6329 	return (error);
6330 }
6331 
6332 #define	PMM(a)					\
6333 	.pm_##a = __CONCAT(PMTYPE, a),
6334 
6335 struct pmap_methods __CONCAT(PMTYPE, methods) = {
6336 	PMM(ksetrw)
6337 	PMM(remap_lower)
6338 	PMM(remap_lowptdi)
6339 	PMM(align_superpage)
6340 	PMM(quick_enter_page)
6341 	PMM(quick_remove_page)
6342 	PMM(trm_alloc)
6343 	PMM(trm_free)
6344 	PMM(get_map_low)
6345 	PMM(get_vm_maxuser_address)
6346 	PMM(kextract)
6347 	PMM(pg_frame)
6348 	PMM(sf_buf_map)
6349 	PMM(cp_slow0_map)
6350 	PMM(get_kcr3)
6351 	PMM(get_cr3)
6352 	PMM(cmap3)
6353 	PMM(basemem_setup)
6354 	PMM(set_nx)
6355 	PMM(bios16_enter)
6356 	PMM(bios16_leave)
6357 	PMM(bootstrap)
6358 	PMM(is_valid_memattr)
6359 	PMM(cache_bits)
6360 	PMM(ps_enabled)
6361 	PMM(pinit0)
6362 	PMM(pinit)
6363 	PMM(activate)
6364 	PMM(activate_boot)
6365 	PMM(advise)
6366 	PMM(clear_modify)
6367 	PMM(change_attr)
6368 	PMM(mincore)
6369 	PMM(copy)
6370 	PMM(copy_page)
6371 	PMM(copy_pages)
6372 	PMM(zero_page)
6373 	PMM(zero_page_area)
6374 	PMM(enter)
6375 	PMM(enter_object)
6376 	PMM(enter_quick)
6377 	PMM(kenter_temporary)
6378 	PMM(object_init_pt)
6379 	PMM(unwire)
6380 	PMM(page_exists_quick)
6381 	PMM(page_wired_mappings)
6382 	PMM(page_is_mapped)
6383 	PMM(remove_pages)
6384 	PMM(is_modified)
6385 	PMM(is_prefaultable)
6386 	PMM(is_referenced)
6387 	PMM(remove_write)
6388 	PMM(ts_referenced)
6389 	PMM(mapdev_attr)
6390 	PMM(unmapdev)
6391 	PMM(page_set_memattr)
6392 	PMM(extract)
6393 	PMM(extract_and_hold)
6394 	PMM(map)
6395 	PMM(qenter)
6396 	PMM(qremove)
6397 	PMM(release)
6398 	PMM(remove)
6399 	PMM(protect)
6400 	PMM(remove_all)
6401 	PMM(init)
6402 	PMM(init_pat)
6403 	PMM(growkernel)
6404 	PMM(invalidate_page)
6405 	PMM(invalidate_range)
6406 	PMM(invalidate_all)
6407 	PMM(invalidate_cache)
6408 	PMM(flush_page)
6409 	PMM(kenter)
6410 	PMM(kremove)
6411 	PMM(sysctl_kmaps)
6412 };
6413