xref: /freebsd/sys/i386/i386/pmap.c (revision 780fb4a2)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * the Systems Programming Group of the University of Utah Computer
15  * Science Department and William Jolitz of UUNET Technologies Inc.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46  */
47 /*-
48  * Copyright (c) 2003 Networks Associates Technology, Inc.
49  * All rights reserved.
50  * Copyright (c) 2018 The FreeBSD Foundation
51  * All rights reserved.
52  *
53  * This software was developed for the FreeBSD Project by Jake Burkholder,
54  * Safeport Network Services, and Network Associates Laboratories, the
55  * Security Research Division of Network Associates, Inc. under
56  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
57  * CHATS research program.
58  *
59  * Portions of this software were developed by
60  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
61  * the FreeBSD Foundation.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  * 1. Redistributions of source code must retain the above copyright
67  *    notice, this list of conditions and the following disclaimer.
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in the
70  *    documentation and/or other materials provided with the distribution.
71  *
72  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
73  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
74  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
75  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
76  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
77  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
78  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
80  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
81  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
82  * SUCH DAMAGE.
83  */
84 
85 #include <sys/cdefs.h>
86 __FBSDID("$FreeBSD$");
87 
88 /*
89  *	Manages physical address maps.
90  *
91  *	Since the information managed by this module is
92  *	also stored by the logical address mapping module,
93  *	this module may throw away valid virtual-to-physical
94  *	mappings at almost any time.  However, invalidations
95  *	of virtual-to-physical mappings must be done as
96  *	requested.
97  *
98  *	In order to cope with hardware architectures which
99  *	make virtual-to-physical map invalidates expensive,
100  *	this module may delay invalidate or reduced protection
101  *	operations until such time as they are actually
102  *	necessary.  This module is given full information as
103  *	to which processors are currently using which maps,
104  *	and to when physical maps must be made correct.
105  */
106 
107 #include "opt_apic.h"
108 #include "opt_cpu.h"
109 #include "opt_pmap.h"
110 #include "opt_smp.h"
111 #include "opt_vm.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/kernel.h>
116 #include <sys/ktr.h>
117 #include <sys/lock.h>
118 #include <sys/malloc.h>
119 #include <sys/mman.h>
120 #include <sys/msgbuf.h>
121 #include <sys/mutex.h>
122 #include <sys/proc.h>
123 #include <sys/rwlock.h>
124 #include <sys/sf_buf.h>
125 #include <sys/sx.h>
126 #include <sys/vmmeter.h>
127 #include <sys/sched.h>
128 #include <sys/sysctl.h>
129 #include <sys/smp.h>
130 #include <sys/vmem.h>
131 
132 #include <vm/vm.h>
133 #include <vm/vm_param.h>
134 #include <vm/vm_kern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_map.h>
137 #include <vm/vm_object.h>
138 #include <vm/vm_extern.h>
139 #include <vm/vm_pageout.h>
140 #include <vm/vm_pager.h>
141 #include <vm/vm_phys.h>
142 #include <vm/vm_radix.h>
143 #include <vm/vm_reserv.h>
144 #include <vm/uma.h>
145 
146 #ifdef DEV_APIC
147 #include <sys/bus.h>
148 #include <machine/intr_machdep.h>
149 #include <x86/apicvar.h>
150 #endif
151 #include <machine/bootinfo.h>
152 #include <machine/cpu.h>
153 #include <machine/cputypes.h>
154 #include <machine/md_var.h>
155 #include <machine/pcb.h>
156 #include <machine/specialreg.h>
157 #ifdef SMP
158 #include <machine/smp.h>
159 #endif
160 
161 #ifndef PMAP_SHPGPERPROC
162 #define PMAP_SHPGPERPROC 200
163 #endif
164 
165 #if !defined(DIAGNOSTIC)
166 #ifdef __GNUC_GNU_INLINE__
167 #define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
168 #else
169 #define PMAP_INLINE	extern inline
170 #endif
171 #else
172 #define PMAP_INLINE
173 #endif
174 
175 #ifdef PV_STATS
176 #define PV_STAT(x)	do { x ; } while (0)
177 #else
178 #define PV_STAT(x)	do { } while (0)
179 #endif
180 
181 #define	pa_index(pa)	((pa) >> PDRSHIFT)
182 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
183 
184 /*
185  * Get PDEs and PTEs for user/kernel address space
186  */
187 #define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
188 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
189 
190 #define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
191 #define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
192 #define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
193 #define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
194 #define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
195 
196 #define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
197     atomic_clear_int((u_int *)(pte), PG_W))
198 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
199 
200 struct pmap kernel_pmap_store;
201 
202 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
203 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
204 int pgeflag = 0;		/* PG_G or-in */
205 int pseflag = 0;		/* PG_PS or-in */
206 
207 static int nkpt = NKPT;
208 vm_offset_t kernel_vm_end = /* 0 + */ NKPT * NBPDR;
209 
210 #if defined(PAE) || defined(PAE_TABLES)
211 pt_entry_t pg_nx;
212 static uma_zone_t pdptzone;
213 #endif
214 
215 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
216 
217 static int pat_works = 1;
218 SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
219     "Is page attribute table fully functional?");
220 
221 static int pg_ps_enabled = 1;
222 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
223     &pg_ps_enabled, 0, "Are large page mappings enabled?");
224 
225 #define	PAT_INDEX_SIZE	8
226 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
227 
228 /*
229  * pmap_mapdev support pre initialization (i.e. console)
230  */
231 #define	PMAP_PREINIT_MAPPING_COUNT	8
232 static struct pmap_preinit_mapping {
233 	vm_paddr_t	pa;
234 	vm_offset_t	va;
235 	vm_size_t	sz;
236 	int		mode;
237 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
238 static int pmap_initialized;
239 
240 static struct rwlock_padalign pvh_global_lock;
241 
242 /*
243  * Data for the pv entry allocation mechanism
244  */
245 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
246 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
247 static struct md_page *pv_table;
248 static int shpgperproc = PMAP_SHPGPERPROC;
249 
250 struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
251 int pv_maxchunks;			/* How many chunks we have KVA for */
252 vm_offset_t pv_vafree;			/* freelist stored in the PTE */
253 
254 /*
255  * All those kernel PT submaps that BSD is so fond of
256  */
257 pt_entry_t *CMAP3;
258 static pd_entry_t *KPTD;
259 caddr_t ptvmmap = 0;
260 caddr_t CADDR3;
261 
262 /*
263  * Crashdump maps.
264  */
265 static caddr_t crashdumpmap;
266 
267 static pt_entry_t *PMAP1 = NULL, *PMAP2, *PMAP3;
268 static pt_entry_t *PADDR1 = NULL, *PADDR2, *PADDR3;
269 #ifdef SMP
270 static int PMAP1cpu, PMAP3cpu;
271 static int PMAP1changedcpu;
272 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
273 	   &PMAP1changedcpu, 0,
274 	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
275 #endif
276 static int PMAP1changed;
277 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
278 	   &PMAP1changed, 0,
279 	   "Number of times pmap_pte_quick changed PMAP1");
280 static int PMAP1unchanged;
281 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
282 	   &PMAP1unchanged, 0,
283 	   "Number of times pmap_pte_quick didn't change PMAP1");
284 static struct mtx PMAP2mutex;
285 
286 int pti;
287 
288 static void	free_pv_chunk(struct pv_chunk *pc);
289 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
290 static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
291 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
292 static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
293 #if VM_NRESERVLEVEL > 0
294 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
295 #endif
296 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
297 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
298 		    vm_offset_t va);
299 static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
300 
301 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
302 static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
303     vm_prot_t prot);
304 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
305     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
306 static void pmap_flush_page(vm_page_t m);
307 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
308 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
309 		    pd_entry_t pde);
310 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
311 static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
312 static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
313 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
314 static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
315 static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
316 #if VM_NRESERVLEVEL > 0
317 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
318 #endif
319 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
320     vm_prot_t prot);
321 static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
322 static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
323     struct spglist *free);
324 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
325     struct spglist *free);
326 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
327 static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
328     struct spglist *free);
329 static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
330 					vm_offset_t va);
331 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
332 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
333     vm_page_t m);
334 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
335     pd_entry_t newpde);
336 static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
337 
338 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
339 
340 static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
341 static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
342 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
343 static void pmap_pte_release(pt_entry_t *pte);
344 static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
345 #if defined(PAE) || defined(PAE_TABLES)
346 static void *pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain,
347     uint8_t *flags, int wait);
348 #endif
349 static void pmap_init_trm(void);
350 
351 static __inline void pagezero(void *page);
352 
353 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
354 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
355 
356 void pmap_cold(void);
357 extern char _end[];
358 u_long physfree;	/* phys addr of next free page */
359 u_long vm86phystk;	/* PA of vm86/bios stack */
360 u_long vm86paddr;	/* address of vm86 region */
361 int vm86pa;		/* phys addr of vm86 region */
362 u_long KERNend;		/* phys addr end of kernel (just after bss) */
363 pd_entry_t *IdlePTD;	/* phys addr of kernel PTD */
364 #if defined(PAE) || defined(PAE_TABLES)
365 pdpt_entry_t *IdlePDPT;	/* phys addr of kernel PDPT */
366 #endif
367 pt_entry_t *KPTmap;	/* address of kernel page tables */
368 u_long KPTphys;		/* phys addr of kernel page tables */
369 extern u_long tramp_idleptd;
370 
371 static u_long
372 allocpages(u_int cnt, u_long *physfree)
373 {
374 	u_long res;
375 
376 	res = *physfree;
377 	*physfree += PAGE_SIZE * cnt;
378 	bzero((void *)res, PAGE_SIZE * cnt);
379 	return (res);
380 }
381 
382 static void
383 pmap_cold_map(u_long pa, u_long va, u_long cnt)
384 {
385 	pt_entry_t *pt;
386 
387 	for (pt = (pt_entry_t *)KPTphys + atop(va); cnt > 0;
388 	    cnt--, pt++, va += PAGE_SIZE, pa += PAGE_SIZE)
389 		*pt = pa | PG_V | PG_RW | PG_A | PG_M;
390 }
391 
392 static void
393 pmap_cold_mapident(u_long pa, u_long cnt)
394 {
395 
396 	pmap_cold_map(pa, pa, cnt);
397 }
398 
399 _Static_assert(2 * NBPDR == KERNBASE, "Broken double-map of zero PTD");
400 
401 /*
402  * Called from locore.s before paging is enabled.  Sets up the first
403  * kernel page table.  Since kernel is mapped with PA == VA, this code
404  * does not require relocations.
405  */
406 void
407 pmap_cold(void)
408 {
409 	pt_entry_t *pt;
410 	u_long a;
411 	u_int cr3, ncr4;
412 
413 	physfree = (u_long)&_end;
414 	if (bootinfo.bi_esymtab != 0)
415 		physfree = bootinfo.bi_esymtab;
416 	if (bootinfo.bi_kernend != 0)
417 		physfree = bootinfo.bi_kernend;
418 	physfree = roundup2(physfree, NBPDR);
419 	KERNend = physfree;
420 
421 	/* Allocate Kernel Page Tables */
422 	KPTphys = allocpages(NKPT, &physfree);
423 	KPTmap = (pt_entry_t *)KPTphys;
424 
425 	/* Allocate Page Table Directory */
426 #if defined(PAE) || defined(PAE_TABLES)
427 	/* XXX only need 32 bytes (easier for now) */
428 	IdlePDPT = (pdpt_entry_t *)allocpages(1, &physfree);
429 #endif
430 	IdlePTD = (pd_entry_t *)allocpages(NPGPTD, &physfree);
431 
432 	/*
433 	 * Allocate KSTACK.  Leave a guard page between IdlePTD and
434 	 * proc0kstack, to control stack overflow for thread0 and
435 	 * prevent corruption of the page table.  We leak the guard
436 	 * physical memory due to 1:1 mappings.
437 	 */
438 	allocpages(1, &physfree);
439 	proc0kstack = allocpages(TD0_KSTACK_PAGES, &physfree);
440 
441 	/* vm86/bios stack */
442 	vm86phystk = allocpages(1, &physfree);
443 
444 	/* pgtable + ext + IOPAGES */
445 	vm86paddr = vm86pa = allocpages(3, &physfree);
446 
447 	/* Install page tables into PTD.  Page table page 1 is wasted. */
448 	for (a = 0; a < NKPT; a++)
449 		IdlePTD[a] = (KPTphys + ptoa(a)) | PG_V | PG_RW | PG_A | PG_M;
450 
451 #if defined(PAE) || defined(PAE_TABLES)
452 	/* PAE install PTD pointers into PDPT */
453 	for (a = 0; a < NPGPTD; a++)
454 		IdlePDPT[a] = ((u_int)IdlePTD + ptoa(a)) | PG_V;
455 #endif
456 
457 	/*
458 	 * Install recursive mapping for kernel page tables into
459 	 * itself.
460 	 */
461 	for (a = 0; a < NPGPTD; a++)
462 		IdlePTD[PTDPTDI + a] = ((u_int)IdlePTD + ptoa(a)) | PG_V |
463 		    PG_RW;
464 
465 	/*
466 	 * Initialize page table pages mapping physical address zero
467 	 * through the (physical) end of the kernel.  Many of these
468 	 * pages must be reserved, and we reserve them all and map
469 	 * them linearly for convenience.  We do this even if we've
470 	 * enabled PSE above; we'll just switch the corresponding
471 	 * kernel PDEs before we turn on paging.
472 	 *
473 	 * This and all other page table entries allow read and write
474 	 * access for various reasons.  Kernel mappings never have any
475 	 * access restrictions.
476 	 */
477 	pmap_cold_mapident(0, atop(NBPDR));
478 	pmap_cold_map(0, NBPDR, atop(NBPDR));
479 	pmap_cold_mapident(KERNBASE, atop(KERNend - KERNBASE));
480 
481 	/* Map page table directory */
482 #if defined(PAE) || defined(PAE_TABLES)
483 	pmap_cold_mapident((u_long)IdlePDPT, 1);
484 #endif
485 	pmap_cold_mapident((u_long)IdlePTD, NPGPTD);
486 
487 	/* Map early KPTmap.  It is really pmap_cold_mapident. */
488 	pmap_cold_map(KPTphys, (u_long)KPTmap, NKPT);
489 
490 	/* Map proc0kstack */
491 	pmap_cold_mapident(proc0kstack, TD0_KSTACK_PAGES);
492 	/* ISA hole already mapped */
493 
494 	pmap_cold_mapident(vm86phystk, 1);
495 	pmap_cold_mapident(vm86pa, 3);
496 
497 	/* Map page 0 into the vm86 page table */
498 	*(pt_entry_t *)vm86pa = 0 | PG_RW | PG_U | PG_A | PG_M | PG_V;
499 
500 	/* ...likewise for the ISA hole for vm86 */
501 	for (pt = (pt_entry_t *)vm86pa + atop(ISA_HOLE_START), a = 0;
502 	    a < atop(ISA_HOLE_LENGTH); a++, pt++)
503 		*pt = (ISA_HOLE_START + ptoa(a)) | PG_RW | PG_U | PG_A |
504 		    PG_M | PG_V;
505 
506 	/* Enable PSE, PGE, VME, and PAE if configured. */
507 	ncr4 = 0;
508 	if ((cpu_feature & CPUID_PSE) != 0) {
509 		ncr4 |= CR4_PSE;
510 		/*
511 		 * Superpage mapping of the kernel text.  Existing 4k
512 		 * page table pages are wasted.
513 		 */
514 		for (a = KERNBASE; a < KERNend; a += NBPDR)
515 			IdlePTD[a >> PDRSHIFT] = a | PG_PS | PG_A | PG_M |
516 			    PG_RW | PG_V;
517 	}
518 	if ((cpu_feature & CPUID_PGE) != 0) {
519 		ncr4 |= CR4_PGE;
520 		pgeflag = PG_G;
521 	}
522 	ncr4 |= (cpu_feature & CPUID_VME) != 0 ? CR4_VME : 0;
523 #if defined(PAE) || defined(PAE_TABLES)
524 	ncr4 |= CR4_PAE;
525 #endif
526 	if (ncr4 != 0)
527 		load_cr4(rcr4() | ncr4);
528 
529 	/* Now enable paging */
530 #if defined(PAE) || defined(PAE_TABLES)
531 	cr3 = (u_int)IdlePDPT;
532 #else
533 	cr3 = (u_int)IdlePTD;
534 #endif
535 	tramp_idleptd = cr3;
536 	load_cr3(cr3);
537 	load_cr0(rcr0() | CR0_PG);
538 
539 	/*
540 	 * Now running relocated at KERNBASE where the system is
541 	 * linked to run.
542 	 */
543 
544 	/*
545 	 * Remove the lowest part of the double mapping of low memory
546 	 * to get some null pointer checks.
547 	 */
548 	IdlePTD[0] = 0;
549 	load_cr3(cr3);		/* invalidate TLB */
550 }
551 
552 /*
553  *	Bootstrap the system enough to run with virtual memory.
554  *
555  *	On the i386 this is called after mapping has already been enabled
556  *	in locore.s with the page table created in pmap_cold(),
557  *	and just syncs the pmap module with what has already been done.
558  */
559 void
560 pmap_bootstrap(vm_paddr_t firstaddr)
561 {
562 	vm_offset_t va;
563 	pt_entry_t *pte, *unused;
564 	struct pcpu *pc;
565 	int i;
566 
567 	/*
568 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
569 	 * preallocated kernel page table pages so that vm_page structures
570 	 * representing these pages will be created.  The vm_page structures
571 	 * are required for promotion of the corresponding kernel virtual
572 	 * addresses to superpage mappings.
573 	 */
574 	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
575 
576 	/*
577 	 * Initialize the first available kernel virtual address.  However,
578 	 * using "firstaddr" may waste a few pages of the kernel virtual
579 	 * address space, because locore may not have mapped every physical
580 	 * page that it allocated.  Preferably, locore would provide a first
581 	 * unused virtual address in addition to "firstaddr".
582 	 */
583 	virtual_avail = (vm_offset_t)firstaddr;
584 
585 	virtual_end = VM_MAX_KERNEL_ADDRESS;
586 
587 	/*
588 	 * Initialize the kernel pmap (which is statically allocated).
589 	 */
590 	PMAP_LOCK_INIT(kernel_pmap);
591 	kernel_pmap->pm_pdir = IdlePTD;
592 #if defined(PAE) || defined(PAE_TABLES)
593 	kernel_pmap->pm_pdpt = IdlePDPT;
594 #endif
595 	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
596 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
597 
598  	/*
599 	 * Initialize the global pv list lock.
600 	 */
601 	rw_init(&pvh_global_lock, "pmap pv global");
602 
603 	/*
604 	 * Reserve some special page table entries/VA space for temporary
605 	 * mapping of pages.
606 	 */
607 #define	SYSMAP(c, p, v, n)	\
608 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
609 
610 	va = virtual_avail;
611 	pte = vtopte(va);
612 
613 
614 	/*
615 	 * Initialize temporary map objects on the current CPU for use
616 	 * during early boot.
617 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
618 	 * CMAP3 is used for the boot-time memory test.
619 	 */
620 	pc = get_pcpu();
621 	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
622 	SYSMAP(caddr_t, pc->pc_cmap_pte1, pc->pc_cmap_addr1, 1)
623 	SYSMAP(caddr_t, pc->pc_cmap_pte2, pc->pc_cmap_addr2, 1)
624 	SYSMAP(vm_offset_t, pte, pc->pc_qmap_addr, 1)
625 
626 	SYSMAP(caddr_t, CMAP3, CADDR3, 1);
627 
628 	/*
629 	 * Crashdump maps.
630 	 */
631 	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
632 
633 	/*
634 	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
635 	 */
636 	SYSMAP(caddr_t, unused, ptvmmap, 1)
637 
638 	/*
639 	 * msgbufp is used to map the system message buffer.
640 	 */
641 	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
642 
643 	/*
644 	 * KPTmap is used by pmap_kextract().
645 	 *
646 	 * KPTmap is first initialized by locore.  However, that initial
647 	 * KPTmap can only support NKPT page table pages.  Here, a larger
648 	 * KPTmap is created that can support KVA_PAGES page table pages.
649 	 */
650 	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
651 
652 	for (i = 0; i < NKPT; i++)
653 		KPTD[i] = (KPTphys + ptoa(i)) | PG_RW | PG_V;
654 
655 	/*
656 	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
657 	 * respectively.
658 	 */
659 	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
660 	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
661 	SYSMAP(pt_entry_t *, PMAP3, PADDR3, 1)
662 
663 	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
664 
665 	virtual_avail = va;
666 
667 	/*
668 	 * Initialize the PAT MSR if present.
669 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
670 	 * side-effect, invalidates stale PG_G TLB entries that might
671 	 * have been created in our pre-boot environment.  We assume
672 	 * that PAT support implies PGE and in reverse, PGE presence
673 	 * comes with PAT.  Both features were added for Pentium Pro.
674 	 */
675 	pmap_init_pat();
676 }
677 
678 static void
679 pmap_init_reserved_pages(void)
680 {
681 	struct pcpu *pc;
682 	vm_offset_t pages;
683 	int i;
684 
685 	CPU_FOREACH(i) {
686 		pc = pcpu_find(i);
687 		mtx_init(&pc->pc_copyout_mlock, "cpmlk", NULL, MTX_DEF |
688 		    MTX_NEW);
689 		pc->pc_copyout_maddr = kva_alloc(ptoa(2));
690 		if (pc->pc_copyout_maddr == 0)
691 			panic("unable to allocate non-sleepable copyout KVA");
692 		sx_init(&pc->pc_copyout_slock, "cpslk");
693 		pc->pc_copyout_saddr = kva_alloc(ptoa(2));
694 		if (pc->pc_copyout_saddr == 0)
695 			panic("unable to allocate sleepable copyout KVA");
696 		pc->pc_pmap_eh_va = kva_alloc(ptoa(1));
697 		if (pc->pc_pmap_eh_va == 0)
698 			panic("unable to allocate pmap_extract_and_hold KVA");
699 		pc->pc_pmap_eh_ptep = (char *)vtopte(pc->pc_pmap_eh_va);
700 
701 		/*
702 		 * Skip if the mappings have already been initialized,
703 		 * i.e. this is the BSP.
704 		 */
705 		if (pc->pc_cmap_addr1 != 0)
706 			continue;
707 
708 		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
709 		pages = kva_alloc(PAGE_SIZE * 3);
710 		if (pages == 0)
711 			panic("unable to allocate CMAP KVA");
712 		pc->pc_cmap_pte1 = vtopte(pages);
713 		pc->pc_cmap_pte2 = vtopte(pages + PAGE_SIZE);
714 		pc->pc_cmap_addr1 = (caddr_t)pages;
715 		pc->pc_cmap_addr2 = (caddr_t)(pages + PAGE_SIZE);
716 		pc->pc_qmap_addr = pages + atop(2);
717 	}
718 }
719 
720 SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
721 
722 /*
723  * Setup the PAT MSR.
724  */
725 void
726 pmap_init_pat(void)
727 {
728 	int pat_table[PAT_INDEX_SIZE];
729 	uint64_t pat_msr;
730 	u_long cr0, cr4;
731 	int i;
732 
733 	/* Set default PAT index table. */
734 	for (i = 0; i < PAT_INDEX_SIZE; i++)
735 		pat_table[i] = -1;
736 	pat_table[PAT_WRITE_BACK] = 0;
737 	pat_table[PAT_WRITE_THROUGH] = 1;
738 	pat_table[PAT_UNCACHEABLE] = 3;
739 	pat_table[PAT_WRITE_COMBINING] = 3;
740 	pat_table[PAT_WRITE_PROTECTED] = 3;
741 	pat_table[PAT_UNCACHED] = 3;
742 
743 	/*
744 	 * Bail if this CPU doesn't implement PAT.
745 	 * We assume that PAT support implies PGE.
746 	 */
747 	if ((cpu_feature & CPUID_PAT) == 0) {
748 		for (i = 0; i < PAT_INDEX_SIZE; i++)
749 			pat_index[i] = pat_table[i];
750 		pat_works = 0;
751 		return;
752 	}
753 
754 	/*
755 	 * Due to some Intel errata, we can only safely use the lower 4
756 	 * PAT entries.
757 	 *
758 	 *   Intel Pentium III Processor Specification Update
759 	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
760 	 * or Mode C Paging)
761 	 *
762 	 *   Intel Pentium IV  Processor Specification Update
763 	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
764 	 */
765 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
766 	    !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
767 		pat_works = 0;
768 
769 	/* Initialize default PAT entries. */
770 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
771 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
772 	    PAT_VALUE(2, PAT_UNCACHED) |
773 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
774 	    PAT_VALUE(4, PAT_WRITE_BACK) |
775 	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
776 	    PAT_VALUE(6, PAT_UNCACHED) |
777 	    PAT_VALUE(7, PAT_UNCACHEABLE);
778 
779 	if (pat_works) {
780 		/*
781 		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
782 		 * Program 5 and 6 as WP and WC.
783 		 * Leave 4 and 7 as WB and UC.
784 		 */
785 		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
786 		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
787 		    PAT_VALUE(6, PAT_WRITE_COMBINING);
788 		pat_table[PAT_UNCACHED] = 2;
789 		pat_table[PAT_WRITE_PROTECTED] = 5;
790 		pat_table[PAT_WRITE_COMBINING] = 6;
791 	} else {
792 		/*
793 		 * Just replace PAT Index 2 with WC instead of UC-.
794 		 */
795 		pat_msr &= ~PAT_MASK(2);
796 		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
797 		pat_table[PAT_WRITE_COMBINING] = 2;
798 	}
799 
800 	/* Disable PGE. */
801 	cr4 = rcr4();
802 	load_cr4(cr4 & ~CR4_PGE);
803 
804 	/* Disable caches (CD = 1, NW = 0). */
805 	cr0 = rcr0();
806 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
807 
808 	/* Flushes caches and TLBs. */
809 	wbinvd();
810 	invltlb();
811 
812 	/* Update PAT and index table. */
813 	wrmsr(MSR_PAT, pat_msr);
814 	for (i = 0; i < PAT_INDEX_SIZE; i++)
815 		pat_index[i] = pat_table[i];
816 
817 	/* Flush caches and TLBs again. */
818 	wbinvd();
819 	invltlb();
820 
821 	/* Restore caches and PGE. */
822 	load_cr0(cr0);
823 	load_cr4(cr4);
824 }
825 
826 /*
827  * Initialize a vm_page's machine-dependent fields.
828  */
829 void
830 pmap_page_init(vm_page_t m)
831 {
832 
833 	TAILQ_INIT(&m->md.pv_list);
834 	m->md.pat_mode = PAT_WRITE_BACK;
835 }
836 
837 #if defined(PAE) || defined(PAE_TABLES)
838 static void *
839 pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
840     int wait)
841 {
842 
843 	/* Inform UMA that this allocator uses kernel_map/object. */
844 	*flags = UMA_SLAB_KERNEL;
845 	return ((void *)kmem_alloc_contig_domain(domain, bytes, wait, 0x0ULL,
846 	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
847 }
848 #endif
849 
850 /*
851  * Abuse the pte nodes for unmapped kva to thread a kva freelist through.
852  * Requirements:
853  *  - Must deal with pages in order to ensure that none of the PG_* bits
854  *    are ever set, PG_V in particular.
855  *  - Assumes we can write to ptes without pte_store() atomic ops, even
856  *    on PAE systems.  This should be ok.
857  *  - Assumes nothing will ever test these addresses for 0 to indicate
858  *    no mapping instead of correctly checking PG_V.
859  *  - Assumes a vm_offset_t will fit in a pte (true for i386).
860  * Because PG_V is never set, there can be no mappings to invalidate.
861  */
862 static vm_offset_t
863 pmap_ptelist_alloc(vm_offset_t *head)
864 {
865 	pt_entry_t *pte;
866 	vm_offset_t va;
867 
868 	va = *head;
869 	if (va == 0)
870 		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
871 	pte = vtopte(va);
872 	*head = *pte;
873 	if (*head & PG_V)
874 		panic("pmap_ptelist_alloc: va with PG_V set!");
875 	*pte = 0;
876 	return (va);
877 }
878 
879 static void
880 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
881 {
882 	pt_entry_t *pte;
883 
884 	if (va & PG_V)
885 		panic("pmap_ptelist_free: freeing va with PG_V set!");
886 	pte = vtopte(va);
887 	*pte = *head;		/* virtual! PG_V is 0 though */
888 	*head = va;
889 }
890 
891 static void
892 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
893 {
894 	int i;
895 	vm_offset_t va;
896 
897 	*head = 0;
898 	for (i = npages - 1; i >= 0; i--) {
899 		va = (vm_offset_t)base + i * PAGE_SIZE;
900 		pmap_ptelist_free(head, va);
901 	}
902 }
903 
904 
905 /*
906  *	Initialize the pmap module.
907  *	Called by vm_init, to initialize any structures that the pmap
908  *	system needs to map virtual memory.
909  */
910 void
911 pmap_init(void)
912 {
913 	struct pmap_preinit_mapping *ppim;
914 	vm_page_t mpte;
915 	vm_size_t s;
916 	int i, pv_npg;
917 
918 	/*
919 	 * Initialize the vm page array entries for the kernel pmap's
920 	 * page table pages.
921 	 */
922 	for (i = 0; i < NKPT; i++) {
923 		mpte = PHYS_TO_VM_PAGE(KPTphys + ptoa(i));
924 		KASSERT(mpte >= vm_page_array &&
925 		    mpte < &vm_page_array[vm_page_array_size],
926 		    ("pmap_init: page table page is out of range"));
927 		mpte->pindex = i + KPTDI;
928 		mpte->phys_addr = KPTphys + ptoa(i);
929 	}
930 
931 	/*
932 	 * Initialize the address space (zone) for the pv entries.  Set a
933 	 * high water mark so that the system can recover from excessive
934 	 * numbers of pv entries.
935 	 */
936 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
937 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
938 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
939 	pv_entry_max = roundup(pv_entry_max, _NPCPV);
940 	pv_entry_high_water = 9 * (pv_entry_max / 10);
941 
942 	/*
943 	 * If the kernel is running on a virtual machine, then it must assume
944 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
945 	 * be prepared for the hypervisor changing the vendor and family that
946 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
947 	 * 10h Erratum 383 is enabled if the processor's feature set does not
948 	 * include at least one feature that is only supported by older Intel
949 	 * or newer AMD processors.
950 	 */
951 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
952 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
953 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
954 	    AMDID2_FMA4)) == 0)
955 		workaround_erratum383 = 1;
956 
957 	/*
958 	 * Are large page mappings supported and enabled?
959 	 */
960 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
961 	if (pseflag == 0)
962 		pg_ps_enabled = 0;
963 	else if (pg_ps_enabled) {
964 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
965 		    ("pmap_init: can't assign to pagesizes[1]"));
966 		pagesizes[1] = NBPDR;
967 	}
968 
969 	/*
970 	 * Calculate the size of the pv head table for superpages.
971 	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
972 	 */
973 	pv_npg = trunc_4mpage(vm_phys_segs[vm_phys_nsegs - 1].end -
974 	    PAGE_SIZE) / NBPDR + 1;
975 
976 	/*
977 	 * Allocate memory for the pv head table for superpages.
978 	 */
979 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
980 	s = round_page(s);
981 	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
982 	    M_WAITOK | M_ZERO);
983 	for (i = 0; i < pv_npg; i++)
984 		TAILQ_INIT(&pv_table[i].pv_list);
985 
986 	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
987 	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
988 	if (pv_chunkbase == NULL)
989 		panic("pmap_init: not enough kvm for pv chunks");
990 	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
991 #if defined(PAE) || defined(PAE_TABLES)
992 	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
993 	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
994 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
995 	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
996 #endif
997 
998 	pmap_initialized = 1;
999 	pmap_init_trm();
1000 
1001 	if (!bootverbose)
1002 		return;
1003 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
1004 		ppim = pmap_preinit_mapping + i;
1005 		if (ppim->va == 0)
1006 			continue;
1007 		printf("PPIM %u: PA=%#jx, VA=%#x, size=%#x, mode=%#x\n", i,
1008 		    (uintmax_t)ppim->pa, ppim->va, ppim->sz, ppim->mode);
1009 	}
1010 
1011 }
1012 
1013 
1014 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
1015 	"Max number of PV entries");
1016 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
1017 	"Page share factor per proc");
1018 
1019 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
1020     "2/4MB page mapping counters");
1021 
1022 static u_long pmap_pde_demotions;
1023 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
1024     &pmap_pde_demotions, 0, "2/4MB page demotions");
1025 
1026 static u_long pmap_pde_mappings;
1027 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
1028     &pmap_pde_mappings, 0, "2/4MB page mappings");
1029 
1030 static u_long pmap_pde_p_failures;
1031 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
1032     &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
1033 
1034 static u_long pmap_pde_promotions;
1035 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
1036     &pmap_pde_promotions, 0, "2/4MB page promotions");
1037 
1038 /***************************************************
1039  * Low level helper routines.....
1040  ***************************************************/
1041 
1042 /*
1043  * Determine the appropriate bits to set in a PTE or PDE for a specified
1044  * caching mode.
1045  */
1046 int
1047 pmap_cache_bits(int mode, boolean_t is_pde)
1048 {
1049 	int cache_bits, pat_flag, pat_idx;
1050 
1051 	if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
1052 		panic("Unknown caching mode %d\n", mode);
1053 
1054 	/* The PAT bit is different for PTE's and PDE's. */
1055 	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
1056 
1057 	/* Map the caching mode to a PAT index. */
1058 	pat_idx = pat_index[mode];
1059 
1060 	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
1061 	cache_bits = 0;
1062 	if (pat_idx & 0x4)
1063 		cache_bits |= pat_flag;
1064 	if (pat_idx & 0x2)
1065 		cache_bits |= PG_NC_PCD;
1066 	if (pat_idx & 0x1)
1067 		cache_bits |= PG_NC_PWT;
1068 	return (cache_bits);
1069 }
1070 
1071 /*
1072  * The caller is responsible for maintaining TLB consistency.
1073  */
1074 static void
1075 pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
1076 {
1077 	pd_entry_t *pde;
1078 
1079 	pde = pmap_pde(kernel_pmap, va);
1080 	pde_store(pde, newpde);
1081 }
1082 
1083 /*
1084  * After changing the page size for the specified virtual address in the page
1085  * table, flush the corresponding entries from the processor's TLB.  Only the
1086  * calling processor's TLB is affected.
1087  *
1088  * The calling thread must be pinned to a processor.
1089  */
1090 static void
1091 pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
1092 {
1093 
1094 	if ((newpde & PG_PS) == 0)
1095 		/* Demotion: flush a specific 2MB page mapping. */
1096 		invlpg(va);
1097 	else /* if ((newpde & PG_G) == 0) */
1098 		/*
1099 		 * Promotion: flush every 4KB page mapping from the TLB
1100 		 * because there are too many to flush individually.
1101 		 */
1102 		invltlb();
1103 }
1104 
1105 void
1106 invltlb_glob(void)
1107 {
1108 
1109 	invltlb();
1110 }
1111 
1112 
1113 #ifdef SMP
1114 /*
1115  * For SMP, these functions have to use the IPI mechanism for coherence.
1116  *
1117  * N.B.: Before calling any of the following TLB invalidation functions,
1118  * the calling processor must ensure that all stores updating a non-
1119  * kernel page table are globally performed.  Otherwise, another
1120  * processor could cache an old, pre-update entry without being
1121  * invalidated.  This can happen one of two ways: (1) The pmap becomes
1122  * active on another processor after its pm_active field is checked by
1123  * one of the following functions but before a store updating the page
1124  * table is globally performed. (2) The pmap becomes active on another
1125  * processor before its pm_active field is checked but due to
1126  * speculative loads one of the following functions stills reads the
1127  * pmap as inactive on the other processor.
1128  *
1129  * The kernel page table is exempt because its pm_active field is
1130  * immutable.  The kernel page table is always active on every
1131  * processor.
1132  */
1133 void
1134 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1135 {
1136 	cpuset_t *mask, other_cpus;
1137 	u_int cpuid;
1138 
1139 	sched_pin();
1140 	if (pmap == kernel_pmap) {
1141 		invlpg(va);
1142 		mask = &all_cpus;
1143 	} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1144 		mask = &all_cpus;
1145 	} else {
1146 		cpuid = PCPU_GET(cpuid);
1147 		other_cpus = all_cpus;
1148 		CPU_CLR(cpuid, &other_cpus);
1149 		CPU_AND(&other_cpus, &pmap->pm_active);
1150 		mask = &other_cpus;
1151 	}
1152 	smp_masked_invlpg(*mask, va, pmap);
1153 	sched_unpin();
1154 }
1155 
1156 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
1157 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
1158 
1159 void
1160 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1161 {
1162 	cpuset_t *mask, other_cpus;
1163 	vm_offset_t addr;
1164 	u_int cpuid;
1165 
1166 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
1167 		pmap_invalidate_all(pmap);
1168 		return;
1169 	}
1170 
1171 	sched_pin();
1172 	if (pmap == kernel_pmap) {
1173 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1174 			invlpg(addr);
1175 		mask = &all_cpus;
1176 	} else  if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1177 		mask = &all_cpus;
1178 	} else {
1179 		cpuid = PCPU_GET(cpuid);
1180 		other_cpus = all_cpus;
1181 		CPU_CLR(cpuid, &other_cpus);
1182 		CPU_AND(&other_cpus, &pmap->pm_active);
1183 		mask = &other_cpus;
1184 	}
1185 	smp_masked_invlpg_range(*mask, sva, eva, pmap);
1186 	sched_unpin();
1187 }
1188 
1189 void
1190 pmap_invalidate_all(pmap_t pmap)
1191 {
1192 	cpuset_t *mask, other_cpus;
1193 	u_int cpuid;
1194 
1195 	sched_pin();
1196 	if (pmap == kernel_pmap) {
1197 		invltlb();
1198 		mask = &all_cpus;
1199 	} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1200 		mask = &all_cpus;
1201 	} else {
1202 		cpuid = PCPU_GET(cpuid);
1203 		other_cpus = all_cpus;
1204 		CPU_CLR(cpuid, &other_cpus);
1205 		CPU_AND(&other_cpus, &pmap->pm_active);
1206 		mask = &other_cpus;
1207 	}
1208 	smp_masked_invltlb(*mask, pmap);
1209 	sched_unpin();
1210 }
1211 
1212 void
1213 pmap_invalidate_cache(void)
1214 {
1215 
1216 	sched_pin();
1217 	wbinvd();
1218 	smp_cache_flush();
1219 	sched_unpin();
1220 }
1221 
1222 struct pde_action {
1223 	cpuset_t invalidate;	/* processors that invalidate their TLB */
1224 	vm_offset_t va;
1225 	pd_entry_t *pde;
1226 	pd_entry_t newpde;
1227 	u_int store;		/* processor that updates the PDE */
1228 };
1229 
1230 static void
1231 pmap_update_pde_kernel(void *arg)
1232 {
1233 	struct pde_action *act = arg;
1234 	pd_entry_t *pde;
1235 
1236 	if (act->store == PCPU_GET(cpuid)) {
1237 		pde = pmap_pde(kernel_pmap, act->va);
1238 		pde_store(pde, act->newpde);
1239 	}
1240 }
1241 
1242 static void
1243 pmap_update_pde_user(void *arg)
1244 {
1245 	struct pde_action *act = arg;
1246 
1247 	if (act->store == PCPU_GET(cpuid))
1248 		pde_store(act->pde, act->newpde);
1249 }
1250 
1251 static void
1252 pmap_update_pde_teardown(void *arg)
1253 {
1254 	struct pde_action *act = arg;
1255 
1256 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1257 		pmap_update_pde_invalidate(act->va, act->newpde);
1258 }
1259 
1260 /*
1261  * Change the page size for the specified virtual address in a way that
1262  * prevents any possibility of the TLB ever having two entries that map the
1263  * same virtual address using different page sizes.  This is the recommended
1264  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1265  * machine check exception for a TLB state that is improperly diagnosed as a
1266  * hardware error.
1267  */
1268 static void
1269 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1270 {
1271 	struct pde_action act;
1272 	cpuset_t active, other_cpus;
1273 	u_int cpuid;
1274 
1275 	sched_pin();
1276 	cpuid = PCPU_GET(cpuid);
1277 	other_cpus = all_cpus;
1278 	CPU_CLR(cpuid, &other_cpus);
1279 	if (pmap == kernel_pmap)
1280 		active = all_cpus;
1281 	else
1282 		active = pmap->pm_active;
1283 	if (CPU_OVERLAP(&active, &other_cpus)) {
1284 		act.store = cpuid;
1285 		act.invalidate = active;
1286 		act.va = va;
1287 		act.pde = pde;
1288 		act.newpde = newpde;
1289 		CPU_SET(cpuid, &active);
1290 		smp_rendezvous_cpus(active,
1291 		    smp_no_rendezvous_barrier, pmap == kernel_pmap ?
1292 		    pmap_update_pde_kernel : pmap_update_pde_user,
1293 		    pmap_update_pde_teardown, &act);
1294 	} else {
1295 		if (pmap == kernel_pmap)
1296 			pmap_kenter_pde(va, newpde);
1297 		else
1298 			pde_store(pde, newpde);
1299 		if (CPU_ISSET(cpuid, &active))
1300 			pmap_update_pde_invalidate(va, newpde);
1301 	}
1302 	sched_unpin();
1303 }
1304 #else /* !SMP */
1305 /*
1306  * Normal, non-SMP, 486+ invalidation functions.
1307  * We inline these within pmap.c for speed.
1308  */
1309 PMAP_INLINE void
1310 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1311 {
1312 
1313 	if (pmap == kernel_pmap)
1314 		invlpg(va);
1315 }
1316 
1317 PMAP_INLINE void
1318 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1319 {
1320 	vm_offset_t addr;
1321 
1322 	if (pmap == kernel_pmap)
1323 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1324 			invlpg(addr);
1325 }
1326 
1327 PMAP_INLINE void
1328 pmap_invalidate_all(pmap_t pmap)
1329 {
1330 
1331 	if (pmap == kernel_pmap)
1332 		invltlb();
1333 }
1334 
1335 PMAP_INLINE void
1336 pmap_invalidate_cache(void)
1337 {
1338 
1339 	wbinvd();
1340 }
1341 
1342 static void
1343 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1344 {
1345 
1346 	if (pmap == kernel_pmap)
1347 		pmap_kenter_pde(va, newpde);
1348 	else
1349 		pde_store(pde, newpde);
1350 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1351 		pmap_update_pde_invalidate(va, newpde);
1352 }
1353 #endif /* !SMP */
1354 
1355 static void
1356 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1357 {
1358 
1359 	/*
1360 	 * When the PDE has PG_PROMOTED set, the 2- or 4MB page mapping was
1361 	 * created by a promotion that did not invalidate the 512 or 1024 4KB
1362 	 * page mappings that might exist in the TLB.  Consequently, at this
1363 	 * point, the TLB may hold both 4KB and 2- or 4MB page mappings for
1364 	 * the address range [va, va + NBPDR).  Therefore, the entire range
1365 	 * must be invalidated here.  In contrast, when PG_PROMOTED is clear,
1366 	 * the TLB will not hold any 4KB page mappings for the address range
1367 	 * [va, va + NBPDR), and so a single INVLPG suffices to invalidate the
1368 	 * 2- or 4MB page mapping from the TLB.
1369 	 */
1370 	if ((pde & PG_PROMOTED) != 0)
1371 		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
1372 	else
1373 		pmap_invalidate_page(pmap, va);
1374 }
1375 
1376 #define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
1377 
1378 void
1379 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva, boolean_t force)
1380 {
1381 
1382 	if (force) {
1383 		sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
1384 	} else {
1385 		KASSERT((sva & PAGE_MASK) == 0,
1386 		    ("pmap_invalidate_cache_range: sva not page-aligned"));
1387 		KASSERT((eva & PAGE_MASK) == 0,
1388 		    ("pmap_invalidate_cache_range: eva not page-aligned"));
1389 	}
1390 
1391 	if ((cpu_feature & CPUID_SS) != 0 && !force)
1392 		; /* If "Self Snoop" is supported and allowed, do nothing. */
1393 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0 &&
1394 	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1395 #ifdef DEV_APIC
1396 		/*
1397 		 * XXX: Some CPUs fault, hang, or trash the local APIC
1398 		 * registers if we use CLFLUSH on the local APIC
1399 		 * range.  The local APIC is always uncached, so we
1400 		 * don't need to flush for that range anyway.
1401 		 */
1402 		if (pmap_kextract(sva) == lapic_paddr)
1403 			return;
1404 #endif
1405 		/*
1406 		 * Otherwise, do per-cache line flush.  Use the sfence
1407 		 * instruction to insure that previous stores are
1408 		 * included in the write-back.  The processor
1409 		 * propagates flush to other processors in the cache
1410 		 * coherence domain.
1411 		 */
1412 		sfence();
1413 		for (; sva < eva; sva += cpu_clflush_line_size)
1414 			clflushopt(sva);
1415 		sfence();
1416 	} else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1417 	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1418 #ifdef DEV_APIC
1419 		if (pmap_kextract(sva) == lapic_paddr)
1420 			return;
1421 #endif
1422 		/*
1423 		 * Writes are ordered by CLFLUSH on Intel CPUs.
1424 		 */
1425 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
1426 			mfence();
1427 		for (; sva < eva; sva += cpu_clflush_line_size)
1428 			clflush(sva);
1429 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
1430 			mfence();
1431 	} else {
1432 
1433 		/*
1434 		 * No targeted cache flush methods are supported by CPU,
1435 		 * or the supplied range is bigger than 2MB.
1436 		 * Globally invalidate cache.
1437 		 */
1438 		pmap_invalidate_cache();
1439 	}
1440 }
1441 
1442 void
1443 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1444 {
1445 	int i;
1446 
1447 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1448 	    (cpu_feature & CPUID_CLFSH) == 0) {
1449 		pmap_invalidate_cache();
1450 	} else {
1451 		for (i = 0; i < count; i++)
1452 			pmap_flush_page(pages[i]);
1453 	}
1454 }
1455 
1456 /*
1457  * Are we current address space or kernel?
1458  */
1459 static __inline int
1460 pmap_is_current(pmap_t pmap)
1461 {
1462 
1463 	return (pmap == kernel_pmap);
1464 }
1465 
1466 /*
1467  * If the given pmap is not the current or kernel pmap, the returned pte must
1468  * be released by passing it to pmap_pte_release().
1469  */
1470 pt_entry_t *
1471 pmap_pte(pmap_t pmap, vm_offset_t va)
1472 {
1473 	pd_entry_t newpf;
1474 	pd_entry_t *pde;
1475 
1476 	pde = pmap_pde(pmap, va);
1477 	if (*pde & PG_PS)
1478 		return (pde);
1479 	if (*pde != 0) {
1480 		/* are we current address space or kernel? */
1481 		if (pmap_is_current(pmap))
1482 			return (vtopte(va));
1483 		mtx_lock(&PMAP2mutex);
1484 		newpf = *pde & PG_FRAME;
1485 		if ((*PMAP2 & PG_FRAME) != newpf) {
1486 			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1487 			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1488 		}
1489 		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1490 	}
1491 	return (NULL);
1492 }
1493 
1494 /*
1495  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1496  * being NULL.
1497  */
1498 static __inline void
1499 pmap_pte_release(pt_entry_t *pte)
1500 {
1501 
1502 	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1503 		mtx_unlock(&PMAP2mutex);
1504 }
1505 
1506 /*
1507  * NB:  The sequence of updating a page table followed by accesses to the
1508  * corresponding pages is subject to the situation described in the "AMD64
1509  * Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
1510  * "7.3.1 Special Coherency Considerations".  Therefore, issuing the INVLPG
1511  * right after modifying the PTE bits is crucial.
1512  */
1513 static __inline void
1514 invlcaddr(void *caddr)
1515 {
1516 
1517 	invlpg((u_int)caddr);
1518 }
1519 
1520 /*
1521  * Super fast pmap_pte routine best used when scanning
1522  * the pv lists.  This eliminates many coarse-grained
1523  * invltlb calls.  Note that many of the pv list
1524  * scans are across different pmaps.  It is very wasteful
1525  * to do an entire invltlb for checking a single mapping.
1526  *
1527  * If the given pmap is not the current pmap, pvh_global_lock
1528  * must be held and curthread pinned to a CPU.
1529  */
1530 static pt_entry_t *
1531 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1532 {
1533 	pd_entry_t newpf;
1534 	pd_entry_t *pde;
1535 
1536 	pde = pmap_pde(pmap, va);
1537 	if (*pde & PG_PS)
1538 		return (pde);
1539 	if (*pde != 0) {
1540 		/* are we current address space or kernel? */
1541 		if (pmap_is_current(pmap))
1542 			return (vtopte(va));
1543 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1544 		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1545 		newpf = *pde & PG_FRAME;
1546 		if ((*PMAP1 & PG_FRAME) != newpf) {
1547 			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1548 #ifdef SMP
1549 			PMAP1cpu = PCPU_GET(cpuid);
1550 #endif
1551 			invlcaddr(PADDR1);
1552 			PMAP1changed++;
1553 		} else
1554 #ifdef SMP
1555 		if (PMAP1cpu != PCPU_GET(cpuid)) {
1556 			PMAP1cpu = PCPU_GET(cpuid);
1557 			invlcaddr(PADDR1);
1558 			PMAP1changedcpu++;
1559 		} else
1560 #endif
1561 			PMAP1unchanged++;
1562 		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1563 	}
1564 	return (0);
1565 }
1566 
1567 static pt_entry_t *
1568 pmap_pte_quick3(pmap_t pmap, vm_offset_t va)
1569 {
1570 	pd_entry_t newpf;
1571 	pd_entry_t *pde;
1572 
1573 	pde = pmap_pde(pmap, va);
1574 	if (*pde & PG_PS)
1575 		return (pde);
1576 	if (*pde != 0) {
1577 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1578 		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1579 		newpf = *pde & PG_FRAME;
1580 		if ((*PMAP3 & PG_FRAME) != newpf) {
1581 			*PMAP3 = newpf | PG_RW | PG_V | PG_A | PG_M;
1582 #ifdef SMP
1583 			PMAP3cpu = PCPU_GET(cpuid);
1584 #endif
1585 			invlcaddr(PADDR3);
1586 			PMAP1changed++;
1587 		} else
1588 #ifdef SMP
1589 		if (PMAP3cpu != PCPU_GET(cpuid)) {
1590 			PMAP3cpu = PCPU_GET(cpuid);
1591 			invlcaddr(PADDR3);
1592 			PMAP1changedcpu++;
1593 		} else
1594 #endif
1595 			PMAP1unchanged++;
1596 		return (PADDR3 + (i386_btop(va) & (NPTEPG - 1)));
1597 	}
1598 	return (0);
1599 }
1600 
1601 static pt_entry_t
1602 pmap_pte_ufast(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1603 {
1604 	pt_entry_t *eh_ptep, pte, *ptep;
1605 
1606 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1607 	pde &= PG_FRAME;
1608 	critical_enter();
1609 	eh_ptep = (pt_entry_t *)PCPU_GET(pmap_eh_ptep);
1610 	if ((*eh_ptep & PG_FRAME) != pde) {
1611 		*eh_ptep = pde | PG_RW | PG_V | PG_A | PG_M;
1612 		invlcaddr((void *)PCPU_GET(pmap_eh_va));
1613 	}
1614 	ptep = (pt_entry_t *)PCPU_GET(pmap_eh_va) + (i386_btop(va) &
1615 	    (NPTEPG - 1));
1616 	pte = *ptep;
1617 	critical_exit();
1618 	return (pte);
1619 }
1620 
1621 /*
1622  *	Routine:	pmap_extract
1623  *	Function:
1624  *		Extract the physical page address associated
1625  *		with the given map/virtual_address pair.
1626  */
1627 vm_paddr_t
1628 pmap_extract(pmap_t pmap, vm_offset_t va)
1629 {
1630 	vm_paddr_t rtval;
1631 	pt_entry_t pte;
1632 	pd_entry_t pde;
1633 
1634 	rtval = 0;
1635 	PMAP_LOCK(pmap);
1636 	pde = pmap->pm_pdir[va >> PDRSHIFT];
1637 	if (pde != 0) {
1638 		if ((pde & PG_PS) != 0)
1639 			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1640 		else {
1641 			pte = pmap_pte_ufast(pmap, va, pde);
1642 			rtval = (pte & PG_FRAME) | (va & PAGE_MASK);
1643 		}
1644 	}
1645 	PMAP_UNLOCK(pmap);
1646 	return (rtval);
1647 }
1648 
1649 /*
1650  *	Routine:	pmap_extract_and_hold
1651  *	Function:
1652  *		Atomically extract and hold the physical page
1653  *		with the given pmap and virtual address pair
1654  *		if that mapping permits the given protection.
1655  */
1656 vm_page_t
1657 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1658 {
1659 	pd_entry_t pde;
1660 	pt_entry_t pte;
1661 	vm_page_t m;
1662 	vm_paddr_t pa;
1663 
1664 	pa = 0;
1665 	m = NULL;
1666 	PMAP_LOCK(pmap);
1667 retry:
1668 	pde = *pmap_pde(pmap, va);
1669 	if (pde != 0) {
1670 		if (pde & PG_PS) {
1671 			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1672 				if (vm_page_pa_tryrelock(pmap, (pde &
1673 				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1674 					goto retry;
1675 				m = PHYS_TO_VM_PAGE(pa);
1676 			}
1677 		} else {
1678 			pte = pmap_pte_ufast(pmap, va, pde);
1679 			if (pte != 0 &&
1680 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1681 				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1682 				    &pa))
1683 					goto retry;
1684 				m = PHYS_TO_VM_PAGE(pa);
1685 			}
1686 		}
1687 		if (m != NULL)
1688 			vm_page_hold(m);
1689 	}
1690 	PA_UNLOCK_COND(pa);
1691 	PMAP_UNLOCK(pmap);
1692 	return (m);
1693 }
1694 
1695 /***************************************************
1696  * Low level mapping routines.....
1697  ***************************************************/
1698 
1699 /*
1700  * Add a wired page to the kva.
1701  * Note: not SMP coherent.
1702  *
1703  * This function may be used before pmap_bootstrap() is called.
1704  */
1705 PMAP_INLINE void
1706 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1707 {
1708 	pt_entry_t *pte;
1709 
1710 	pte = vtopte(va);
1711 	pte_store(pte, pa | PG_RW | PG_V);
1712 }
1713 
1714 static __inline void
1715 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1716 {
1717 	pt_entry_t *pte;
1718 
1719 	pte = vtopte(va);
1720 	pte_store(pte, pa | PG_RW | PG_V | pmap_cache_bits(mode, 0));
1721 }
1722 
1723 /*
1724  * Remove a page from the kernel pagetables.
1725  * Note: not SMP coherent.
1726  *
1727  * This function may be used before pmap_bootstrap() is called.
1728  */
1729 PMAP_INLINE void
1730 pmap_kremove(vm_offset_t va)
1731 {
1732 	pt_entry_t *pte;
1733 
1734 	pte = vtopte(va);
1735 	pte_clear(pte);
1736 }
1737 
1738 /*
1739  *	Used to map a range of physical addresses into kernel
1740  *	virtual address space.
1741  *
1742  *	The value passed in '*virt' is a suggested virtual address for
1743  *	the mapping. Architectures which can support a direct-mapped
1744  *	physical to virtual region can return the appropriate address
1745  *	within that region, leaving '*virt' unchanged. Other
1746  *	architectures should map the pages starting at '*virt' and
1747  *	update '*virt' with the first usable address after the mapped
1748  *	region.
1749  */
1750 vm_offset_t
1751 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1752 {
1753 	vm_offset_t va, sva;
1754 	vm_paddr_t superpage_offset;
1755 	pd_entry_t newpde;
1756 
1757 	va = *virt;
1758 	/*
1759 	 * Does the physical address range's size and alignment permit at
1760 	 * least one superpage mapping to be created?
1761 	 */
1762 	superpage_offset = start & PDRMASK;
1763 	if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
1764 		/*
1765 		 * Increase the starting virtual address so that its alignment
1766 		 * does not preclude the use of superpage mappings.
1767 		 */
1768 		if ((va & PDRMASK) < superpage_offset)
1769 			va = (va & ~PDRMASK) + superpage_offset;
1770 		else if ((va & PDRMASK) > superpage_offset)
1771 			va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
1772 	}
1773 	sva = va;
1774 	while (start < end) {
1775 		if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
1776 		    pseflag) {
1777 			KASSERT((va & PDRMASK) == 0,
1778 			    ("pmap_map: misaligned va %#x", va));
1779 			newpde = start | PG_PS | PG_RW | PG_V;
1780 			pmap_kenter_pde(va, newpde);
1781 			va += NBPDR;
1782 			start += NBPDR;
1783 		} else {
1784 			pmap_kenter(va, start);
1785 			va += PAGE_SIZE;
1786 			start += PAGE_SIZE;
1787 		}
1788 	}
1789 	pmap_invalidate_range(kernel_pmap, sva, va);
1790 	*virt = va;
1791 	return (sva);
1792 }
1793 
1794 
1795 /*
1796  * Add a list of wired pages to the kva
1797  * this routine is only used for temporary
1798  * kernel mappings that do not need to have
1799  * page modification or references recorded.
1800  * Note that old mappings are simply written
1801  * over.  The page *must* be wired.
1802  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1803  */
1804 void
1805 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1806 {
1807 	pt_entry_t *endpte, oldpte, pa, *pte;
1808 	vm_page_t m;
1809 
1810 	oldpte = 0;
1811 	pte = vtopte(sva);
1812 	endpte = pte + count;
1813 	while (pte < endpte) {
1814 		m = *ma++;
1815 		pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
1816 		if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1817 			oldpte |= *pte;
1818 #if defined(PAE) || defined(PAE_TABLES)
1819 			pte_store(pte, pa | pg_nx | PG_RW | PG_V);
1820 #else
1821 			pte_store(pte, pa | PG_RW | PG_V);
1822 #endif
1823 		}
1824 		pte++;
1825 	}
1826 	if (__predict_false((oldpte & PG_V) != 0))
1827 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1828 		    PAGE_SIZE);
1829 }
1830 
1831 /*
1832  * This routine tears out page mappings from the
1833  * kernel -- it is meant only for temporary mappings.
1834  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1835  */
1836 void
1837 pmap_qremove(vm_offset_t sva, int count)
1838 {
1839 	vm_offset_t va;
1840 
1841 	va = sva;
1842 	while (count-- > 0) {
1843 		pmap_kremove(va);
1844 		va += PAGE_SIZE;
1845 	}
1846 	pmap_invalidate_range(kernel_pmap, sva, va);
1847 }
1848 
1849 /***************************************************
1850  * Page table page management routines.....
1851  ***************************************************/
1852 /*
1853  * Schedule the specified unused page table page to be freed.  Specifically,
1854  * add the page to the specified list of pages that will be released to the
1855  * physical memory manager after the TLB has been updated.
1856  */
1857 static __inline void
1858 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1859     boolean_t set_PG_ZERO)
1860 {
1861 
1862 	if (set_PG_ZERO)
1863 		m->flags |= PG_ZERO;
1864 	else
1865 		m->flags &= ~PG_ZERO;
1866 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1867 }
1868 
1869 /*
1870  * Inserts the specified page table page into the specified pmap's collection
1871  * of idle page table pages.  Each of a pmap's page table pages is responsible
1872  * for mapping a distinct range of virtual addresses.  The pmap's collection is
1873  * ordered by this virtual address range.
1874  */
1875 static __inline int
1876 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1877 {
1878 
1879 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1880 	return (vm_radix_insert(&pmap->pm_root, mpte));
1881 }
1882 
1883 /*
1884  * Removes the page table page mapping the specified virtual address from the
1885  * specified pmap's collection of idle page table pages, and returns it.
1886  * Otherwise, returns NULL if there is no page table page corresponding to the
1887  * specified virtual address.
1888  */
1889 static __inline vm_page_t
1890 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
1891 {
1892 
1893 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1894 	return (vm_radix_remove(&pmap->pm_root, va >> PDRSHIFT));
1895 }
1896 
1897 /*
1898  * Decrements a page table page's wire count, which is used to record the
1899  * number of valid page table entries within the page.  If the wire count
1900  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1901  * page table page was unmapped and FALSE otherwise.
1902  */
1903 static inline boolean_t
1904 pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1905 {
1906 
1907 	--m->wire_count;
1908 	if (m->wire_count == 0) {
1909 		_pmap_unwire_ptp(pmap, m, free);
1910 		return (TRUE);
1911 	} else
1912 		return (FALSE);
1913 }
1914 
1915 static void
1916 _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1917 {
1918 
1919 	/*
1920 	 * unmap the page table page
1921 	 */
1922 	pmap->pm_pdir[m->pindex] = 0;
1923 	--pmap->pm_stats.resident_count;
1924 
1925 	/*
1926 	 * There is not need to invalidate the recursive mapping since
1927 	 * we never instantiate such mapping for the usermode pmaps,
1928 	 * and never remove page table pages from the kernel pmap.
1929 	 * Put page on a list so that it is released since all TLB
1930 	 * shootdown is done.
1931 	 */
1932 	MPASS(pmap != kernel_pmap);
1933 	pmap_add_delayed_free_list(m, free, TRUE);
1934 }
1935 
1936 /*
1937  * After removing a page table entry, this routine is used to
1938  * conditionally free the page, and manage the hold/wire counts.
1939  */
1940 static int
1941 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
1942 {
1943 	pd_entry_t ptepde;
1944 	vm_page_t mpte;
1945 
1946 	if (pmap == kernel_pmap)
1947 		return (0);
1948 	ptepde = *pmap_pde(pmap, va);
1949 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1950 	return (pmap_unwire_ptp(pmap, mpte, free));
1951 }
1952 
1953 /*
1954  * Initialize the pmap for the swapper process.
1955  */
1956 void
1957 pmap_pinit0(pmap_t pmap)
1958 {
1959 
1960 	PMAP_LOCK_INIT(pmap);
1961 	pmap->pm_pdir = IdlePTD;
1962 #if defined(PAE) || defined(PAE_TABLES)
1963 	pmap->pm_pdpt = IdlePDPT;
1964 #endif
1965 	pmap->pm_root.rt_root = 0;
1966 	CPU_ZERO(&pmap->pm_active);
1967 	PCPU_SET(curpmap, pmap);
1968 	TAILQ_INIT(&pmap->pm_pvchunk);
1969 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1970 }
1971 
1972 /*
1973  * Initialize a preallocated and zeroed pmap structure,
1974  * such as one in a vmspace structure.
1975  */
1976 int
1977 pmap_pinit(pmap_t pmap)
1978 {
1979 	vm_page_t m;
1980 	int i;
1981 
1982 	/*
1983 	 * No need to allocate page table space yet but we do need a valid
1984 	 * page directory table.
1985 	 */
1986 	if (pmap->pm_pdir == NULL) {
1987 		pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
1988 		if (pmap->pm_pdir == NULL)
1989 			return (0);
1990 #if defined(PAE) || defined(PAE_TABLES)
1991 		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1992 		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1993 		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1994 		    ("pmap_pinit: pdpt misaligned"));
1995 		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1996 		    ("pmap_pinit: pdpt above 4g"));
1997 #endif
1998 		pmap->pm_root.rt_root = 0;
1999 	}
2000 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2001 	    ("pmap_pinit: pmap has reserved page table page(s)"));
2002 
2003 	/*
2004 	 * allocate the page directory page(s)
2005 	 */
2006 	for (i = 0; i < NPGPTD;) {
2007 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2008 		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2009 		if (m == NULL) {
2010 			vm_wait(NULL);
2011 		} else {
2012 			pmap->pm_ptdpg[i] = m;
2013 #if defined(PAE) || defined(PAE_TABLES)
2014 			pmap->pm_pdpt[i] = VM_PAGE_TO_PHYS(m) | PG_V;
2015 #endif
2016 			i++;
2017 		}
2018 	}
2019 
2020 	pmap_qenter((vm_offset_t)pmap->pm_pdir, pmap->pm_ptdpg, NPGPTD);
2021 
2022 	for (i = 0; i < NPGPTD; i++)
2023 		if ((pmap->pm_ptdpg[i]->flags & PG_ZERO) == 0)
2024 			pagezero(pmap->pm_pdir + (i * NPDEPG));
2025 
2026 	/* Install the trampoline mapping. */
2027 	pmap->pm_pdir[TRPTDI] = PTD[TRPTDI];
2028 
2029 	CPU_ZERO(&pmap->pm_active);
2030 	TAILQ_INIT(&pmap->pm_pvchunk);
2031 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2032 
2033 	return (1);
2034 }
2035 
2036 /*
2037  * this routine is called if the page table page is not
2038  * mapped correctly.
2039  */
2040 static vm_page_t
2041 _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
2042 {
2043 	vm_paddr_t ptepa;
2044 	vm_page_t m;
2045 
2046 	/*
2047 	 * Allocate a page table page.
2048 	 */
2049 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
2050 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
2051 		if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2052 			PMAP_UNLOCK(pmap);
2053 			rw_wunlock(&pvh_global_lock);
2054 			vm_wait(NULL);
2055 			rw_wlock(&pvh_global_lock);
2056 			PMAP_LOCK(pmap);
2057 		}
2058 
2059 		/*
2060 		 * Indicate the need to retry.  While waiting, the page table
2061 		 * page may have been allocated.
2062 		 */
2063 		return (NULL);
2064 	}
2065 	if ((m->flags & PG_ZERO) == 0)
2066 		pmap_zero_page(m);
2067 
2068 	/*
2069 	 * Map the pagetable page into the process address space, if
2070 	 * it isn't already there.
2071 	 */
2072 
2073 	pmap->pm_stats.resident_count++;
2074 
2075 	ptepa = VM_PAGE_TO_PHYS(m);
2076 	pmap->pm_pdir[ptepindex] =
2077 		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
2078 
2079 	return (m);
2080 }
2081 
2082 static vm_page_t
2083 pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
2084 {
2085 	u_int ptepindex;
2086 	pd_entry_t ptepa;
2087 	vm_page_t m;
2088 
2089 	/*
2090 	 * Calculate pagetable page index
2091 	 */
2092 	ptepindex = va >> PDRSHIFT;
2093 retry:
2094 	/*
2095 	 * Get the page directory entry
2096 	 */
2097 	ptepa = pmap->pm_pdir[ptepindex];
2098 
2099 	/*
2100 	 * This supports switching from a 4MB page to a
2101 	 * normal 4K page.
2102 	 */
2103 	if (ptepa & PG_PS) {
2104 		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
2105 		ptepa = pmap->pm_pdir[ptepindex];
2106 	}
2107 
2108 	/*
2109 	 * If the page table page is mapped, we just increment the
2110 	 * hold count, and activate it.
2111 	 */
2112 	if (ptepa) {
2113 		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
2114 		m->wire_count++;
2115 	} else {
2116 		/*
2117 		 * Here if the pte page isn't mapped, or if it has
2118 		 * been deallocated.
2119 		 */
2120 		m = _pmap_allocpte(pmap, ptepindex, flags);
2121 		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2122 			goto retry;
2123 	}
2124 	return (m);
2125 }
2126 
2127 
2128 /***************************************************
2129 * Pmap allocation/deallocation routines.
2130  ***************************************************/
2131 
2132 /*
2133  * Release any resources held by the given physical map.
2134  * Called when a pmap initialized by pmap_pinit is being released.
2135  * Should only be called if the map contains no valid mappings.
2136  */
2137 void
2138 pmap_release(pmap_t pmap)
2139 {
2140 	vm_page_t m;
2141 	int i;
2142 
2143 	KASSERT(pmap->pm_stats.resident_count == 0,
2144 	    ("pmap_release: pmap resident count %ld != 0",
2145 	    pmap->pm_stats.resident_count));
2146 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2147 	    ("pmap_release: pmap has reserved page table page(s)"));
2148 	KASSERT(CPU_EMPTY(&pmap->pm_active),
2149 	    ("releasing active pmap %p", pmap));
2150 
2151 	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2152 
2153 	for (i = 0; i < NPGPTD; i++) {
2154 		m = pmap->pm_ptdpg[i];
2155 #if defined(PAE) || defined(PAE_TABLES)
2156 		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2157 		    ("pmap_release: got wrong ptd page"));
2158 #endif
2159 		vm_page_unwire_noq(m);
2160 		vm_page_free(m);
2161 	}
2162 }
2163 
2164 static int
2165 kvm_size(SYSCTL_HANDLER_ARGS)
2166 {
2167 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
2168 
2169 	return (sysctl_handle_long(oidp, &ksize, 0, req));
2170 }
2171 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2172     0, 0, kvm_size, "IU", "Size of KVM");
2173 
2174 static int
2175 kvm_free(SYSCTL_HANDLER_ARGS)
2176 {
2177 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2178 
2179 	return (sysctl_handle_long(oidp, &kfree, 0, req));
2180 }
2181 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2182     0, 0, kvm_free, "IU", "Amount of KVM free");
2183 
2184 /*
2185  * grow the number of kernel page table entries, if needed
2186  */
2187 void
2188 pmap_growkernel(vm_offset_t addr)
2189 {
2190 	vm_paddr_t ptppaddr;
2191 	vm_page_t nkpg;
2192 	pd_entry_t newpdir;
2193 
2194 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2195 	addr = roundup2(addr, NBPDR);
2196 	if (addr - 1 >= kernel_map->max_offset)
2197 		addr = kernel_map->max_offset;
2198 	while (kernel_vm_end < addr) {
2199 		if (pdir_pde(PTD, kernel_vm_end)) {
2200 			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2201 			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2202 				kernel_vm_end = kernel_map->max_offset;
2203 				break;
2204 			}
2205 			continue;
2206 		}
2207 
2208 		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2209 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2210 		    VM_ALLOC_ZERO);
2211 		if (nkpg == NULL)
2212 			panic("pmap_growkernel: no memory to grow kernel");
2213 
2214 		nkpt++;
2215 
2216 		if ((nkpg->flags & PG_ZERO) == 0)
2217 			pmap_zero_page(nkpg);
2218 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2219 		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2220 		pdir_pde(KPTD, kernel_vm_end) = newpdir;
2221 
2222 		pmap_kenter_pde(kernel_vm_end, newpdir);
2223 		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2224 		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2225 			kernel_vm_end = kernel_map->max_offset;
2226 			break;
2227 		}
2228 	}
2229 }
2230 
2231 
2232 /***************************************************
2233  * page management routines.
2234  ***************************************************/
2235 
2236 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2237 CTASSERT(_NPCM == 11);
2238 CTASSERT(_NPCPV == 336);
2239 
2240 static __inline struct pv_chunk *
2241 pv_to_chunk(pv_entry_t pv)
2242 {
2243 
2244 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2245 }
2246 
2247 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2248 
2249 #define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2250 #define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2251 
2252 static const uint32_t pc_freemask[_NPCM] = {
2253 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2254 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2255 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2256 	PC_FREE0_9, PC_FREE10
2257 };
2258 
2259 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2260 	"Current number of pv entries");
2261 
2262 #ifdef PV_STATS
2263 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2264 
2265 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2266 	"Current number of pv entry chunks");
2267 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2268 	"Current number of pv entry chunks allocated");
2269 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2270 	"Current number of pv entry chunks frees");
2271 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2272 	"Number of times tried to get a chunk page but failed.");
2273 
2274 static long pv_entry_frees, pv_entry_allocs;
2275 static int pv_entry_spare;
2276 
2277 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2278 	"Current number of pv entry frees");
2279 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2280 	"Current number of pv entry allocs");
2281 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2282 	"Current number of spare pv entries");
2283 #endif
2284 
2285 /*
2286  * We are in a serious low memory condition.  Resort to
2287  * drastic measures to free some pages so we can allocate
2288  * another pv entry chunk.
2289  */
2290 static vm_page_t
2291 pmap_pv_reclaim(pmap_t locked_pmap)
2292 {
2293 	struct pch newtail;
2294 	struct pv_chunk *pc;
2295 	struct md_page *pvh;
2296 	pd_entry_t *pde;
2297 	pmap_t pmap;
2298 	pt_entry_t *pte, tpte;
2299 	pv_entry_t pv;
2300 	vm_offset_t va;
2301 	vm_page_t m, m_pc;
2302 	struct spglist free;
2303 	uint32_t inuse;
2304 	int bit, field, freed;
2305 
2306 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2307 	pmap = NULL;
2308 	m_pc = NULL;
2309 	SLIST_INIT(&free);
2310 	TAILQ_INIT(&newtail);
2311 	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2312 	    SLIST_EMPTY(&free))) {
2313 		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2314 		if (pmap != pc->pc_pmap) {
2315 			if (pmap != NULL) {
2316 				pmap_invalidate_all(pmap);
2317 				if (pmap != locked_pmap)
2318 					PMAP_UNLOCK(pmap);
2319 			}
2320 			pmap = pc->pc_pmap;
2321 			/* Avoid deadlock and lock recursion. */
2322 			if (pmap > locked_pmap)
2323 				PMAP_LOCK(pmap);
2324 			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2325 				pmap = NULL;
2326 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2327 				continue;
2328 			}
2329 		}
2330 
2331 		/*
2332 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2333 		 */
2334 		freed = 0;
2335 		for (field = 0; field < _NPCM; field++) {
2336 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2337 			    inuse != 0; inuse &= ~(1UL << bit)) {
2338 				bit = bsfl(inuse);
2339 				pv = &pc->pc_pventry[field * 32 + bit];
2340 				va = pv->pv_va;
2341 				pde = pmap_pde(pmap, va);
2342 				if ((*pde & PG_PS) != 0)
2343 					continue;
2344 				pte = pmap_pte(pmap, va);
2345 				tpte = *pte;
2346 				if ((tpte & PG_W) == 0)
2347 					tpte = pte_load_clear(pte);
2348 				pmap_pte_release(pte);
2349 				if ((tpte & PG_W) != 0)
2350 					continue;
2351 				KASSERT(tpte != 0,
2352 				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2353 				    pmap, va));
2354 				if ((tpte & PG_G) != 0)
2355 					pmap_invalidate_page(pmap, va);
2356 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2357 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2358 					vm_page_dirty(m);
2359 				if ((tpte & PG_A) != 0)
2360 					vm_page_aflag_set(m, PGA_REFERENCED);
2361 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2362 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2363 				    (m->flags & PG_FICTITIOUS) == 0) {
2364 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2365 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2366 						vm_page_aflag_clear(m,
2367 						    PGA_WRITEABLE);
2368 					}
2369 				}
2370 				pc->pc_map[field] |= 1UL << bit;
2371 				pmap_unuse_pt(pmap, va, &free);
2372 				freed++;
2373 			}
2374 		}
2375 		if (freed == 0) {
2376 			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2377 			continue;
2378 		}
2379 		/* Every freed mapping is for a 4 KB page. */
2380 		pmap->pm_stats.resident_count -= freed;
2381 		PV_STAT(pv_entry_frees += freed);
2382 		PV_STAT(pv_entry_spare += freed);
2383 		pv_entry_count -= freed;
2384 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2385 		for (field = 0; field < _NPCM; field++)
2386 			if (pc->pc_map[field] != pc_freemask[field]) {
2387 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2388 				    pc_list);
2389 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2390 
2391 				/*
2392 				 * One freed pv entry in locked_pmap is
2393 				 * sufficient.
2394 				 */
2395 				if (pmap == locked_pmap)
2396 					goto out;
2397 				break;
2398 			}
2399 		if (field == _NPCM) {
2400 			PV_STAT(pv_entry_spare -= _NPCPV);
2401 			PV_STAT(pc_chunk_count--);
2402 			PV_STAT(pc_chunk_frees++);
2403 			/* Entire chunk is free; return it. */
2404 			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2405 			pmap_qremove((vm_offset_t)pc, 1);
2406 			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2407 			break;
2408 		}
2409 	}
2410 out:
2411 	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2412 	if (pmap != NULL) {
2413 		pmap_invalidate_all(pmap);
2414 		if (pmap != locked_pmap)
2415 			PMAP_UNLOCK(pmap);
2416 	}
2417 	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2418 		m_pc = SLIST_FIRST(&free);
2419 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2420 		/* Recycle a freed page table page. */
2421 		m_pc->wire_count = 1;
2422 	}
2423 	vm_page_free_pages_toq(&free, true);
2424 	return (m_pc);
2425 }
2426 
2427 /*
2428  * free the pv_entry back to the free list
2429  */
2430 static void
2431 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2432 {
2433 	struct pv_chunk *pc;
2434 	int idx, field, bit;
2435 
2436 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2437 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2438 	PV_STAT(pv_entry_frees++);
2439 	PV_STAT(pv_entry_spare++);
2440 	pv_entry_count--;
2441 	pc = pv_to_chunk(pv);
2442 	idx = pv - &pc->pc_pventry[0];
2443 	field = idx / 32;
2444 	bit = idx % 32;
2445 	pc->pc_map[field] |= 1ul << bit;
2446 	for (idx = 0; idx < _NPCM; idx++)
2447 		if (pc->pc_map[idx] != pc_freemask[idx]) {
2448 			/*
2449 			 * 98% of the time, pc is already at the head of the
2450 			 * list.  If it isn't already, move it to the head.
2451 			 */
2452 			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2453 			    pc)) {
2454 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2455 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2456 				    pc_list);
2457 			}
2458 			return;
2459 		}
2460 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2461 	free_pv_chunk(pc);
2462 }
2463 
2464 static void
2465 free_pv_chunk(struct pv_chunk *pc)
2466 {
2467 	vm_page_t m;
2468 
2469  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2470 	PV_STAT(pv_entry_spare -= _NPCPV);
2471 	PV_STAT(pc_chunk_count--);
2472 	PV_STAT(pc_chunk_frees++);
2473 	/* entire chunk is free, return it */
2474 	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2475 	pmap_qremove((vm_offset_t)pc, 1);
2476 	vm_page_unwire(m, PQ_NONE);
2477 	vm_page_free(m);
2478 	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2479 }
2480 
2481 /*
2482  * get a new pv_entry, allocating a block from the system
2483  * when needed.
2484  */
2485 static pv_entry_t
2486 get_pv_entry(pmap_t pmap, boolean_t try)
2487 {
2488 	static const struct timeval printinterval = { 60, 0 };
2489 	static struct timeval lastprint;
2490 	int bit, field;
2491 	pv_entry_t pv;
2492 	struct pv_chunk *pc;
2493 	vm_page_t m;
2494 
2495 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2496 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2497 	PV_STAT(pv_entry_allocs++);
2498 	pv_entry_count++;
2499 	if (pv_entry_count > pv_entry_high_water)
2500 		if (ratecheck(&lastprint, &printinterval))
2501 			printf("Approaching the limit on PV entries, consider "
2502 			    "increasing either the vm.pmap.shpgperproc or the "
2503 			    "vm.pmap.pv_entry_max tunable.\n");
2504 retry:
2505 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2506 	if (pc != NULL) {
2507 		for (field = 0; field < _NPCM; field++) {
2508 			if (pc->pc_map[field]) {
2509 				bit = bsfl(pc->pc_map[field]);
2510 				break;
2511 			}
2512 		}
2513 		if (field < _NPCM) {
2514 			pv = &pc->pc_pventry[field * 32 + bit];
2515 			pc->pc_map[field] &= ~(1ul << bit);
2516 			/* If this was the last item, move it to tail */
2517 			for (field = 0; field < _NPCM; field++)
2518 				if (pc->pc_map[field] != 0) {
2519 					PV_STAT(pv_entry_spare--);
2520 					return (pv);	/* not full, return */
2521 				}
2522 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2523 			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2524 			PV_STAT(pv_entry_spare--);
2525 			return (pv);
2526 		}
2527 	}
2528 	/*
2529 	 * Access to the ptelist "pv_vafree" is synchronized by the pvh
2530 	 * global lock.  If "pv_vafree" is currently non-empty, it will
2531 	 * remain non-empty until pmap_ptelist_alloc() completes.
2532 	 */
2533 	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2534 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2535 		if (try) {
2536 			pv_entry_count--;
2537 			PV_STAT(pc_chunk_tryfail++);
2538 			return (NULL);
2539 		}
2540 		m = pmap_pv_reclaim(pmap);
2541 		if (m == NULL)
2542 			goto retry;
2543 	}
2544 	PV_STAT(pc_chunk_count++);
2545 	PV_STAT(pc_chunk_allocs++);
2546 	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2547 	pmap_qenter((vm_offset_t)pc, &m, 1);
2548 	pc->pc_pmap = pmap;
2549 	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2550 	for (field = 1; field < _NPCM; field++)
2551 		pc->pc_map[field] = pc_freemask[field];
2552 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2553 	pv = &pc->pc_pventry[0];
2554 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2555 	PV_STAT(pv_entry_spare += _NPCPV - 1);
2556 	return (pv);
2557 }
2558 
2559 static __inline pv_entry_t
2560 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2561 {
2562 	pv_entry_t pv;
2563 
2564 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2565 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2566 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2567 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2568 			break;
2569 		}
2570 	}
2571 	return (pv);
2572 }
2573 
2574 static void
2575 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2576 {
2577 	struct md_page *pvh;
2578 	pv_entry_t pv;
2579 	vm_offset_t va_last;
2580 	vm_page_t m;
2581 
2582 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2583 	KASSERT((pa & PDRMASK) == 0,
2584 	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2585 
2586 	/*
2587 	 * Transfer the 4mpage's pv entry for this mapping to the first
2588 	 * page's pv list.
2589 	 */
2590 	pvh = pa_to_pvh(pa);
2591 	va = trunc_4mpage(va);
2592 	pv = pmap_pvh_remove(pvh, pmap, va);
2593 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2594 	m = PHYS_TO_VM_PAGE(pa);
2595 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2596 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2597 	va_last = va + NBPDR - PAGE_SIZE;
2598 	do {
2599 		m++;
2600 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2601 		    ("pmap_pv_demote_pde: page %p is not managed", m));
2602 		va += PAGE_SIZE;
2603 		pmap_insert_entry(pmap, va, m);
2604 	} while (va < va_last);
2605 }
2606 
2607 #if VM_NRESERVLEVEL > 0
2608 static void
2609 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2610 {
2611 	struct md_page *pvh;
2612 	pv_entry_t pv;
2613 	vm_offset_t va_last;
2614 	vm_page_t m;
2615 
2616 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2617 	KASSERT((pa & PDRMASK) == 0,
2618 	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2619 
2620 	/*
2621 	 * Transfer the first page's pv entry for this mapping to the
2622 	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2623 	 * to get_pv_entry(), a transfer avoids the possibility that
2624 	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2625 	 * removes one of the mappings that is being promoted.
2626 	 */
2627 	m = PHYS_TO_VM_PAGE(pa);
2628 	va = trunc_4mpage(va);
2629 	pv = pmap_pvh_remove(&m->md, pmap, va);
2630 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2631 	pvh = pa_to_pvh(pa);
2632 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2633 	/* Free the remaining NPTEPG - 1 pv entries. */
2634 	va_last = va + NBPDR - PAGE_SIZE;
2635 	do {
2636 		m++;
2637 		va += PAGE_SIZE;
2638 		pmap_pvh_free(&m->md, pmap, va);
2639 	} while (va < va_last);
2640 }
2641 #endif /* VM_NRESERVLEVEL > 0 */
2642 
2643 static void
2644 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2645 {
2646 	pv_entry_t pv;
2647 
2648 	pv = pmap_pvh_remove(pvh, pmap, va);
2649 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2650 	free_pv_entry(pmap, pv);
2651 }
2652 
2653 static void
2654 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2655 {
2656 	struct md_page *pvh;
2657 
2658 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2659 	pmap_pvh_free(&m->md, pmap, va);
2660 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
2661 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2662 		if (TAILQ_EMPTY(&pvh->pv_list))
2663 			vm_page_aflag_clear(m, PGA_WRITEABLE);
2664 	}
2665 }
2666 
2667 /*
2668  * Create a pv entry for page at pa for
2669  * (pmap, va).
2670  */
2671 static void
2672 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2673 {
2674 	pv_entry_t pv;
2675 
2676 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2677 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2678 	pv = get_pv_entry(pmap, FALSE);
2679 	pv->pv_va = va;
2680 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2681 }
2682 
2683 /*
2684  * Conditionally create a pv entry.
2685  */
2686 static boolean_t
2687 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2688 {
2689 	pv_entry_t pv;
2690 
2691 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2692 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2693 	if (pv_entry_count < pv_entry_high_water &&
2694 	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2695 		pv->pv_va = va;
2696 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2697 		return (TRUE);
2698 	} else
2699 		return (FALSE);
2700 }
2701 
2702 /*
2703  * Create the pv entries for each of the pages within a superpage.
2704  */
2705 static boolean_t
2706 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2707 {
2708 	struct md_page *pvh;
2709 	pv_entry_t pv;
2710 
2711 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2712 	if (pv_entry_count < pv_entry_high_water &&
2713 	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2714 		pv->pv_va = va;
2715 		pvh = pa_to_pvh(pa);
2716 		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2717 		return (TRUE);
2718 	} else
2719 		return (FALSE);
2720 }
2721 
2722 /*
2723  * Fills a page table page with mappings to consecutive physical pages.
2724  */
2725 static void
2726 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2727 {
2728 	pt_entry_t *pte;
2729 
2730 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2731 		*pte = newpte;
2732 		newpte += PAGE_SIZE;
2733 	}
2734 }
2735 
2736 /*
2737  * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2738  * 2- or 4MB page mapping is invalidated.
2739  */
2740 static boolean_t
2741 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2742 {
2743 	pd_entry_t newpde, oldpde;
2744 	pt_entry_t *firstpte, newpte;
2745 	vm_paddr_t mptepa;
2746 	vm_page_t mpte;
2747 	struct spglist free;
2748 	vm_offset_t sva;
2749 
2750 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2751 	oldpde = *pde;
2752 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2753 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2754 	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
2755 	    NULL) {
2756 		KASSERT((oldpde & PG_W) == 0,
2757 		    ("pmap_demote_pde: page table page for a wired mapping"
2758 		    " is missing"));
2759 
2760 		/*
2761 		 * Invalidate the 2- or 4MB page mapping and return
2762 		 * "failure" if the mapping was never accessed or the
2763 		 * allocation of the new page table page fails.
2764 		 */
2765 		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2766 		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2767 		    VM_ALLOC_WIRED)) == NULL) {
2768 			SLIST_INIT(&free);
2769 			sva = trunc_4mpage(va);
2770 			pmap_remove_pde(pmap, pde, sva, &free);
2771 			if ((oldpde & PG_G) == 0)
2772 				pmap_invalidate_pde_page(pmap, sva, oldpde);
2773 			vm_page_free_pages_toq(&free, true);
2774 			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2775 			    " in pmap %p", va, pmap);
2776 			return (FALSE);
2777 		}
2778 		if (pmap != kernel_pmap)
2779 			pmap->pm_stats.resident_count++;
2780 	}
2781 	mptepa = VM_PAGE_TO_PHYS(mpte);
2782 
2783 	/*
2784 	 * If the page mapping is in the kernel's address space, then the
2785 	 * KPTmap can provide access to the page table page.  Otherwise,
2786 	 * temporarily map the page table page (mpte) into the kernel's
2787 	 * address space at either PADDR1 or PADDR2.
2788 	 */
2789 	if (pmap == kernel_pmap)
2790 		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2791 	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
2792 		if ((*PMAP1 & PG_FRAME) != mptepa) {
2793 			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2794 #ifdef SMP
2795 			PMAP1cpu = PCPU_GET(cpuid);
2796 #endif
2797 			invlcaddr(PADDR1);
2798 			PMAP1changed++;
2799 		} else
2800 #ifdef SMP
2801 		if (PMAP1cpu != PCPU_GET(cpuid)) {
2802 			PMAP1cpu = PCPU_GET(cpuid);
2803 			invlcaddr(PADDR1);
2804 			PMAP1changedcpu++;
2805 		} else
2806 #endif
2807 			PMAP1unchanged++;
2808 		firstpte = PADDR1;
2809 	} else {
2810 		mtx_lock(&PMAP2mutex);
2811 		if ((*PMAP2 & PG_FRAME) != mptepa) {
2812 			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2813 			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2814 		}
2815 		firstpte = PADDR2;
2816 	}
2817 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2818 	KASSERT((oldpde & PG_A) != 0,
2819 	    ("pmap_demote_pde: oldpde is missing PG_A"));
2820 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2821 	    ("pmap_demote_pde: oldpde is missing PG_M"));
2822 	newpte = oldpde & ~PG_PS;
2823 	if ((newpte & PG_PDE_PAT) != 0)
2824 		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2825 
2826 	/*
2827 	 * If the page table page is new, initialize it.
2828 	 */
2829 	if (mpte->wire_count == 1) {
2830 		mpte->wire_count = NPTEPG;
2831 		pmap_fill_ptp(firstpte, newpte);
2832 	}
2833 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2834 	    ("pmap_demote_pde: firstpte and newpte map different physical"
2835 	    " addresses"));
2836 
2837 	/*
2838 	 * If the mapping has changed attributes, update the page table
2839 	 * entries.
2840 	 */
2841 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2842 		pmap_fill_ptp(firstpte, newpte);
2843 
2844 	/*
2845 	 * Demote the mapping.  This pmap is locked.  The old PDE has
2846 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2847 	 * set.  Thus, there is no danger of a race with another
2848 	 * processor changing the setting of PG_A and/or PG_M between
2849 	 * the read above and the store below.
2850 	 */
2851 	if (workaround_erratum383)
2852 		pmap_update_pde(pmap, va, pde, newpde);
2853 	else if (pmap == kernel_pmap)
2854 		pmap_kenter_pde(va, newpde);
2855 	else
2856 		pde_store(pde, newpde);
2857 	if (firstpte == PADDR2)
2858 		mtx_unlock(&PMAP2mutex);
2859 
2860 	/*
2861 	 * Invalidate the recursive mapping of the page table page.
2862 	 */
2863 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2864 
2865 	/*
2866 	 * Demote the pv entry.  This depends on the earlier demotion
2867 	 * of the mapping.  Specifically, the (re)creation of a per-
2868 	 * page pv entry might trigger the execution of pmap_collect(),
2869 	 * which might reclaim a newly (re)created per-page pv entry
2870 	 * and destroy the associated mapping.  In order to destroy
2871 	 * the mapping, the PDE must have already changed from mapping
2872 	 * the 2mpage to referencing the page table page.
2873 	 */
2874 	if ((oldpde & PG_MANAGED) != 0)
2875 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2876 
2877 	pmap_pde_demotions++;
2878 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2879 	    " in pmap %p", va, pmap);
2880 	return (TRUE);
2881 }
2882 
2883 /*
2884  * Removes a 2- or 4MB page mapping from the kernel pmap.
2885  */
2886 static void
2887 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2888 {
2889 	pd_entry_t newpde;
2890 	vm_paddr_t mptepa;
2891 	vm_page_t mpte;
2892 
2893 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2894 	mpte = pmap_remove_pt_page(pmap, va);
2895 	if (mpte == NULL)
2896 		panic("pmap_remove_kernel_pde: Missing pt page.");
2897 
2898 	mptepa = VM_PAGE_TO_PHYS(mpte);
2899 	newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
2900 
2901 	/*
2902 	 * Initialize the page table page.
2903 	 */
2904 	pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
2905 
2906 	/*
2907 	 * Remove the mapping.
2908 	 */
2909 	if (workaround_erratum383)
2910 		pmap_update_pde(pmap, va, pde, newpde);
2911 	else
2912 		pmap_kenter_pde(va, newpde);
2913 
2914 	/*
2915 	 * Invalidate the recursive mapping of the page table page.
2916 	 */
2917 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2918 }
2919 
2920 /*
2921  * pmap_remove_pde: do the things to unmap a superpage in a process
2922  */
2923 static void
2924 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2925     struct spglist *free)
2926 {
2927 	struct md_page *pvh;
2928 	pd_entry_t oldpde;
2929 	vm_offset_t eva, va;
2930 	vm_page_t m, mpte;
2931 
2932 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2933 	KASSERT((sva & PDRMASK) == 0,
2934 	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2935 	oldpde = pte_load_clear(pdq);
2936 	if (oldpde & PG_W)
2937 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2938 
2939 	/*
2940 	 * Machines that don't support invlpg, also don't support
2941 	 * PG_G.
2942 	 */
2943 	if ((oldpde & PG_G) != 0)
2944 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
2945 
2946 	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2947 	if (oldpde & PG_MANAGED) {
2948 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2949 		pmap_pvh_free(pvh, pmap, sva);
2950 		eva = sva + NBPDR;
2951 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2952 		    va < eva; va += PAGE_SIZE, m++) {
2953 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2954 				vm_page_dirty(m);
2955 			if (oldpde & PG_A)
2956 				vm_page_aflag_set(m, PGA_REFERENCED);
2957 			if (TAILQ_EMPTY(&m->md.pv_list) &&
2958 			    TAILQ_EMPTY(&pvh->pv_list))
2959 				vm_page_aflag_clear(m, PGA_WRITEABLE);
2960 		}
2961 	}
2962 	if (pmap == kernel_pmap) {
2963 		pmap_remove_kernel_pde(pmap, pdq, sva);
2964 	} else {
2965 		mpte = pmap_remove_pt_page(pmap, sva);
2966 		if (mpte != NULL) {
2967 			pmap->pm_stats.resident_count--;
2968 			KASSERT(mpte->wire_count == NPTEPG,
2969 			    ("pmap_remove_pde: pte page wire count error"));
2970 			mpte->wire_count = 0;
2971 			pmap_add_delayed_free_list(mpte, free, FALSE);
2972 		}
2973 	}
2974 }
2975 
2976 /*
2977  * pmap_remove_pte: do the things to unmap a page in a process
2978  */
2979 static int
2980 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
2981     struct spglist *free)
2982 {
2983 	pt_entry_t oldpte;
2984 	vm_page_t m;
2985 
2986 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2987 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2988 	oldpte = pte_load_clear(ptq);
2989 	KASSERT(oldpte != 0,
2990 	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
2991 	if (oldpte & PG_W)
2992 		pmap->pm_stats.wired_count -= 1;
2993 	/*
2994 	 * Machines that don't support invlpg, also don't support
2995 	 * PG_G.
2996 	 */
2997 	if (oldpte & PG_G)
2998 		pmap_invalidate_page(kernel_pmap, va);
2999 	pmap->pm_stats.resident_count -= 1;
3000 	if (oldpte & PG_MANAGED) {
3001 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
3002 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3003 			vm_page_dirty(m);
3004 		if (oldpte & PG_A)
3005 			vm_page_aflag_set(m, PGA_REFERENCED);
3006 		pmap_remove_entry(pmap, m, va);
3007 	}
3008 	return (pmap_unuse_pt(pmap, va, free));
3009 }
3010 
3011 /*
3012  * Remove a single page from a process address space
3013  */
3014 static void
3015 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
3016 {
3017 	pt_entry_t *pte;
3018 
3019 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3020 	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
3021 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3022 	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
3023 		return;
3024 	pmap_remove_pte(pmap, pte, va, free);
3025 	pmap_invalidate_page(pmap, va);
3026 }
3027 
3028 /*
3029  *	Remove the given range of addresses from the specified map.
3030  *
3031  *	It is assumed that the start and end are properly
3032  *	rounded to the page size.
3033  */
3034 void
3035 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3036 {
3037 	vm_offset_t pdnxt;
3038 	pd_entry_t ptpaddr;
3039 	pt_entry_t *pte;
3040 	struct spglist free;
3041 	int anyvalid;
3042 
3043 	/*
3044 	 * Perform an unsynchronized read.  This is, however, safe.
3045 	 */
3046 	if (pmap->pm_stats.resident_count == 0)
3047 		return;
3048 
3049 	anyvalid = 0;
3050 	SLIST_INIT(&free);
3051 
3052 	rw_wlock(&pvh_global_lock);
3053 	sched_pin();
3054 	PMAP_LOCK(pmap);
3055 
3056 	/*
3057 	 * special handling of removing one page.  a very
3058 	 * common operation and easy to short circuit some
3059 	 * code.
3060 	 */
3061 	if ((sva + PAGE_SIZE == eva) &&
3062 	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
3063 		pmap_remove_page(pmap, sva, &free);
3064 		goto out;
3065 	}
3066 
3067 	for (; sva < eva; sva = pdnxt) {
3068 		u_int pdirindex;
3069 
3070 		/*
3071 		 * Calculate index for next page table.
3072 		 */
3073 		pdnxt = (sva + NBPDR) & ~PDRMASK;
3074 		if (pdnxt < sva)
3075 			pdnxt = eva;
3076 		if (pmap->pm_stats.resident_count == 0)
3077 			break;
3078 
3079 		pdirindex = sva >> PDRSHIFT;
3080 		ptpaddr = pmap->pm_pdir[pdirindex];
3081 
3082 		/*
3083 		 * Weed out invalid mappings. Note: we assume that the page
3084 		 * directory table is always allocated, and in kernel virtual.
3085 		 */
3086 		if (ptpaddr == 0)
3087 			continue;
3088 
3089 		/*
3090 		 * Check for large page.
3091 		 */
3092 		if ((ptpaddr & PG_PS) != 0) {
3093 			/*
3094 			 * Are we removing the entire large page?  If not,
3095 			 * demote the mapping and fall through.
3096 			 */
3097 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3098 				/*
3099 				 * The TLB entry for a PG_G mapping is
3100 				 * invalidated by pmap_remove_pde().
3101 				 */
3102 				if ((ptpaddr & PG_G) == 0)
3103 					anyvalid = 1;
3104 				pmap_remove_pde(pmap,
3105 				    &pmap->pm_pdir[pdirindex], sva, &free);
3106 				continue;
3107 			} else if (!pmap_demote_pde(pmap,
3108 			    &pmap->pm_pdir[pdirindex], sva)) {
3109 				/* The large page mapping was destroyed. */
3110 				continue;
3111 			}
3112 		}
3113 
3114 		/*
3115 		 * Limit our scan to either the end of the va represented
3116 		 * by the current page table page, or to the end of the
3117 		 * range being removed.
3118 		 */
3119 		if (pdnxt > eva)
3120 			pdnxt = eva;
3121 
3122 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3123 		    sva += PAGE_SIZE) {
3124 			if (*pte == 0)
3125 				continue;
3126 
3127 			/*
3128 			 * The TLB entry for a PG_G mapping is invalidated
3129 			 * by pmap_remove_pte().
3130 			 */
3131 			if ((*pte & PG_G) == 0)
3132 				anyvalid = 1;
3133 			if (pmap_remove_pte(pmap, pte, sva, &free))
3134 				break;
3135 		}
3136 	}
3137 out:
3138 	sched_unpin();
3139 	if (anyvalid)
3140 		pmap_invalidate_all(pmap);
3141 	rw_wunlock(&pvh_global_lock);
3142 	PMAP_UNLOCK(pmap);
3143 	vm_page_free_pages_toq(&free, true);
3144 }
3145 
3146 /*
3147  *	Routine:	pmap_remove_all
3148  *	Function:
3149  *		Removes this physical page from
3150  *		all physical maps in which it resides.
3151  *		Reflects back modify bits to the pager.
3152  *
3153  *	Notes:
3154  *		Original versions of this routine were very
3155  *		inefficient because they iteratively called
3156  *		pmap_remove (slow...)
3157  */
3158 
3159 void
3160 pmap_remove_all(vm_page_t m)
3161 {
3162 	struct md_page *pvh;
3163 	pv_entry_t pv;
3164 	pmap_t pmap;
3165 	pt_entry_t *pte, tpte;
3166 	pd_entry_t *pde;
3167 	vm_offset_t va;
3168 	struct spglist free;
3169 
3170 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3171 	    ("pmap_remove_all: page %p is not managed", m));
3172 	SLIST_INIT(&free);
3173 	rw_wlock(&pvh_global_lock);
3174 	sched_pin();
3175 	if ((m->flags & PG_FICTITIOUS) != 0)
3176 		goto small_mappings;
3177 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3178 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3179 		va = pv->pv_va;
3180 		pmap = PV_PMAP(pv);
3181 		PMAP_LOCK(pmap);
3182 		pde = pmap_pde(pmap, va);
3183 		(void)pmap_demote_pde(pmap, pde, va);
3184 		PMAP_UNLOCK(pmap);
3185 	}
3186 small_mappings:
3187 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3188 		pmap = PV_PMAP(pv);
3189 		PMAP_LOCK(pmap);
3190 		pmap->pm_stats.resident_count--;
3191 		pde = pmap_pde(pmap, pv->pv_va);
3192 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3193 		    " a 4mpage in page %p's pv list", m));
3194 		pte = pmap_pte_quick(pmap, pv->pv_va);
3195 		tpte = pte_load_clear(pte);
3196 		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
3197 		    pmap, pv->pv_va));
3198 		if (tpte & PG_W)
3199 			pmap->pm_stats.wired_count--;
3200 		if (tpte & PG_A)
3201 			vm_page_aflag_set(m, PGA_REFERENCED);
3202 
3203 		/*
3204 		 * Update the vm_page_t clean and reference bits.
3205 		 */
3206 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3207 			vm_page_dirty(m);
3208 		pmap_unuse_pt(pmap, pv->pv_va, &free);
3209 		pmap_invalidate_page(pmap, pv->pv_va);
3210 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3211 		free_pv_entry(pmap, pv);
3212 		PMAP_UNLOCK(pmap);
3213 	}
3214 	vm_page_aflag_clear(m, PGA_WRITEABLE);
3215 	sched_unpin();
3216 	rw_wunlock(&pvh_global_lock);
3217 	vm_page_free_pages_toq(&free, true);
3218 }
3219 
3220 /*
3221  * pmap_protect_pde: do the things to protect a 4mpage in a process
3222  */
3223 static boolean_t
3224 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3225 {
3226 	pd_entry_t newpde, oldpde;
3227 	vm_offset_t eva, va;
3228 	vm_page_t m;
3229 	boolean_t anychanged;
3230 
3231 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3232 	KASSERT((sva & PDRMASK) == 0,
3233 	    ("pmap_protect_pde: sva is not 4mpage aligned"));
3234 	anychanged = FALSE;
3235 retry:
3236 	oldpde = newpde = *pde;
3237 	if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
3238 	    (PG_MANAGED | PG_M | PG_RW)) {
3239 		eva = sva + NBPDR;
3240 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3241 		    va < eva; va += PAGE_SIZE, m++)
3242 			vm_page_dirty(m);
3243 	}
3244 	if ((prot & VM_PROT_WRITE) == 0)
3245 		newpde &= ~(PG_RW | PG_M);
3246 #if defined(PAE) || defined(PAE_TABLES)
3247 	if ((prot & VM_PROT_EXECUTE) == 0)
3248 		newpde |= pg_nx;
3249 #endif
3250 	if (newpde != oldpde) {
3251 		/*
3252 		 * As an optimization to future operations on this PDE, clear
3253 		 * PG_PROMOTED.  The impending invalidation will remove any
3254 		 * lingering 4KB page mappings from the TLB.
3255 		 */
3256 		if (!pde_cmpset(pde, oldpde, newpde & ~PG_PROMOTED))
3257 			goto retry;
3258 		if ((oldpde & PG_G) != 0)
3259 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
3260 		else
3261 			anychanged = TRUE;
3262 	}
3263 	return (anychanged);
3264 }
3265 
3266 /*
3267  *	Set the physical protection on the
3268  *	specified range of this map as requested.
3269  */
3270 void
3271 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3272 {
3273 	vm_offset_t pdnxt;
3274 	pd_entry_t ptpaddr;
3275 	pt_entry_t *pte;
3276 	boolean_t anychanged, pv_lists_locked;
3277 
3278 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3279 	if (prot == VM_PROT_NONE) {
3280 		pmap_remove(pmap, sva, eva);
3281 		return;
3282 	}
3283 
3284 #if defined(PAE) || defined(PAE_TABLES)
3285 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
3286 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
3287 		return;
3288 #else
3289 	if (prot & VM_PROT_WRITE)
3290 		return;
3291 #endif
3292 
3293 	if (pmap_is_current(pmap))
3294 		pv_lists_locked = FALSE;
3295 	else {
3296 		pv_lists_locked = TRUE;
3297 resume:
3298 		rw_wlock(&pvh_global_lock);
3299 		sched_pin();
3300 	}
3301 	anychanged = FALSE;
3302 
3303 	PMAP_LOCK(pmap);
3304 	for (; sva < eva; sva = pdnxt) {
3305 		pt_entry_t obits, pbits;
3306 		u_int pdirindex;
3307 
3308 		pdnxt = (sva + NBPDR) & ~PDRMASK;
3309 		if (pdnxt < sva)
3310 			pdnxt = eva;
3311 
3312 		pdirindex = sva >> PDRSHIFT;
3313 		ptpaddr = pmap->pm_pdir[pdirindex];
3314 
3315 		/*
3316 		 * Weed out invalid mappings. Note: we assume that the page
3317 		 * directory table is always allocated, and in kernel virtual.
3318 		 */
3319 		if (ptpaddr == 0)
3320 			continue;
3321 
3322 		/*
3323 		 * Check for large page.
3324 		 */
3325 		if ((ptpaddr & PG_PS) != 0) {
3326 			/*
3327 			 * Are we protecting the entire large page?  If not,
3328 			 * demote the mapping and fall through.
3329 			 */
3330 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3331 				/*
3332 				 * The TLB entry for a PG_G mapping is
3333 				 * invalidated by pmap_protect_pde().
3334 				 */
3335 				if (pmap_protect_pde(pmap,
3336 				    &pmap->pm_pdir[pdirindex], sva, prot))
3337 					anychanged = TRUE;
3338 				continue;
3339 			} else {
3340 				if (!pv_lists_locked) {
3341 					pv_lists_locked = TRUE;
3342 					if (!rw_try_wlock(&pvh_global_lock)) {
3343 						if (anychanged)
3344 							pmap_invalidate_all(
3345 							    pmap);
3346 						PMAP_UNLOCK(pmap);
3347 						goto resume;
3348 					}
3349 					sched_pin();
3350 				}
3351 				if (!pmap_demote_pde(pmap,
3352 				    &pmap->pm_pdir[pdirindex], sva)) {
3353 					/*
3354 					 * The large page mapping was
3355 					 * destroyed.
3356 					 */
3357 					continue;
3358 				}
3359 			}
3360 		}
3361 
3362 		if (pdnxt > eva)
3363 			pdnxt = eva;
3364 
3365 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3366 		    sva += PAGE_SIZE) {
3367 			vm_page_t m;
3368 
3369 retry:
3370 			/*
3371 			 * Regardless of whether a pte is 32 or 64 bits in
3372 			 * size, PG_RW, PG_A, and PG_M are among the least
3373 			 * significant 32 bits.
3374 			 */
3375 			obits = pbits = *pte;
3376 			if ((pbits & PG_V) == 0)
3377 				continue;
3378 
3379 			if ((prot & VM_PROT_WRITE) == 0) {
3380 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3381 				    (PG_MANAGED | PG_M | PG_RW)) {
3382 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3383 					vm_page_dirty(m);
3384 				}
3385 				pbits &= ~(PG_RW | PG_M);
3386 			}
3387 #if defined(PAE) || defined(PAE_TABLES)
3388 			if ((prot & VM_PROT_EXECUTE) == 0)
3389 				pbits |= pg_nx;
3390 #endif
3391 
3392 			if (pbits != obits) {
3393 #if defined(PAE) || defined(PAE_TABLES)
3394 				if (!atomic_cmpset_64(pte, obits, pbits))
3395 					goto retry;
3396 #else
3397 				if (!atomic_cmpset_int((u_int *)pte, obits,
3398 				    pbits))
3399 					goto retry;
3400 #endif
3401 				if (obits & PG_G)
3402 					pmap_invalidate_page(pmap, sva);
3403 				else
3404 					anychanged = TRUE;
3405 			}
3406 		}
3407 	}
3408 	if (anychanged)
3409 		pmap_invalidate_all(pmap);
3410 	if (pv_lists_locked) {
3411 		sched_unpin();
3412 		rw_wunlock(&pvh_global_lock);
3413 	}
3414 	PMAP_UNLOCK(pmap);
3415 }
3416 
3417 #if VM_NRESERVLEVEL > 0
3418 /*
3419  * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3420  * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3421  * For promotion to occur, two conditions must be met: (1) the 4KB page
3422  * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3423  * mappings must have identical characteristics.
3424  *
3425  * Managed (PG_MANAGED) mappings within the kernel address space are not
3426  * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3427  * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3428  * pmap.
3429  */
3430 static void
3431 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3432 {
3433 	pd_entry_t newpde;
3434 	pt_entry_t *firstpte, oldpte, pa, *pte;
3435 	vm_offset_t oldpteva;
3436 	vm_page_t mpte;
3437 
3438 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3439 
3440 	/*
3441 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3442 	 * either invalid, unused, or does not map the first 4KB physical page
3443 	 * within a 2- or 4MB page.
3444 	 */
3445 	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3446 setpde:
3447 	newpde = *firstpte;
3448 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3449 		pmap_pde_p_failures++;
3450 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3451 		    " in pmap %p", va, pmap);
3452 		return;
3453 	}
3454 	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3455 		pmap_pde_p_failures++;
3456 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3457 		    " in pmap %p", va, pmap);
3458 		return;
3459 	}
3460 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3461 		/*
3462 		 * When PG_M is already clear, PG_RW can be cleared without
3463 		 * a TLB invalidation.
3464 		 */
3465 		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3466 		    ~PG_RW))
3467 			goto setpde;
3468 		newpde &= ~PG_RW;
3469 	}
3470 
3471 	/*
3472 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3473 	 * PTE maps an unexpected 4KB physical page or does not have identical
3474 	 * characteristics to the first PTE.
3475 	 */
3476 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3477 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3478 setpte:
3479 		oldpte = *pte;
3480 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3481 			pmap_pde_p_failures++;
3482 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3483 			    " in pmap %p", va, pmap);
3484 			return;
3485 		}
3486 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3487 			/*
3488 			 * When PG_M is already clear, PG_RW can be cleared
3489 			 * without a TLB invalidation.
3490 			 */
3491 			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3492 			    oldpte & ~PG_RW))
3493 				goto setpte;
3494 			oldpte &= ~PG_RW;
3495 			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3496 			    (va & ~PDRMASK);
3497 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3498 			    " in pmap %p", oldpteva, pmap);
3499 		}
3500 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3501 			pmap_pde_p_failures++;
3502 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3503 			    " in pmap %p", va, pmap);
3504 			return;
3505 		}
3506 		pa -= PAGE_SIZE;
3507 	}
3508 
3509 	/*
3510 	 * Save the page table page in its current state until the PDE
3511 	 * mapping the superpage is demoted by pmap_demote_pde() or
3512 	 * destroyed by pmap_remove_pde().
3513 	 */
3514 	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3515 	KASSERT(mpte >= vm_page_array &&
3516 	    mpte < &vm_page_array[vm_page_array_size],
3517 	    ("pmap_promote_pde: page table page is out of range"));
3518 	KASSERT(mpte->pindex == va >> PDRSHIFT,
3519 	    ("pmap_promote_pde: page table page's pindex is wrong"));
3520 	if (pmap_insert_pt_page(pmap, mpte)) {
3521 		pmap_pde_p_failures++;
3522 		CTR2(KTR_PMAP,
3523 		    "pmap_promote_pde: failure for va %#x in pmap %p", va,
3524 		    pmap);
3525 		return;
3526 	}
3527 
3528 	/*
3529 	 * Promote the pv entries.
3530 	 */
3531 	if ((newpde & PG_MANAGED) != 0)
3532 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3533 
3534 	/*
3535 	 * Propagate the PAT index to its proper position.
3536 	 */
3537 	if ((newpde & PG_PTE_PAT) != 0)
3538 		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3539 
3540 	/*
3541 	 * Map the superpage.
3542 	 */
3543 	if (workaround_erratum383)
3544 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3545 	else if (pmap == kernel_pmap)
3546 		pmap_kenter_pde(va, PG_PROMOTED | PG_PS | newpde);
3547 	else
3548 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
3549 
3550 	pmap_pde_promotions++;
3551 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3552 	    " in pmap %p", va, pmap);
3553 }
3554 #endif /* VM_NRESERVLEVEL > 0 */
3555 
3556 /*
3557  *	Insert the given physical page (p) at
3558  *	the specified virtual address (v) in the
3559  *	target physical map with the protection requested.
3560  *
3561  *	If specified, the page will be wired down, meaning
3562  *	that the related pte can not be reclaimed.
3563  *
3564  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3565  *	or lose information.  That is, this routine must actually
3566  *	insert this page into the given map NOW.
3567  */
3568 int
3569 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3570     u_int flags, int8_t psind)
3571 {
3572 	pd_entry_t *pde;
3573 	pt_entry_t *pte;
3574 	pt_entry_t newpte, origpte;
3575 	pv_entry_t pv;
3576 	vm_paddr_t opa, pa;
3577 	vm_page_t mpte, om;
3578 	int rv;
3579 
3580 	va = trunc_page(va);
3581 	KASSERT((pmap == kernel_pmap && va < VM_MAX_KERNEL_ADDRESS) ||
3582 	    (pmap != kernel_pmap && va < VM_MAXUSER_ADDRESS),
3583 	    ("pmap_enter: toobig k%d %#x", pmap == kernel_pmap, va));
3584 	KASSERT(va < PMAP_TRM_MIN_ADDRESS,
3585 	    ("pmap_enter: invalid to pmap_enter into trampoline (va: 0x%x)",
3586 	    va));
3587 	KASSERT(pmap != kernel_pmap || (m->oflags & VPO_UNMANAGED) != 0 ||
3588 	    va < kmi.clean_sva || va >= kmi.clean_eva,
3589 	    ("pmap_enter: managed mapping within the clean submap"));
3590 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3591 		VM_OBJECT_ASSERT_LOCKED(m->object);
3592 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
3593 	    ("pmap_enter: flags %u has reserved bits set", flags));
3594 	pa = VM_PAGE_TO_PHYS(m);
3595 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
3596 	if ((flags & VM_PROT_WRITE) != 0)
3597 		newpte |= PG_M;
3598 	if ((prot & VM_PROT_WRITE) != 0)
3599 		newpte |= PG_RW;
3600 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
3601 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
3602 #if defined(PAE) || defined(PAE_TABLES)
3603 	if ((prot & VM_PROT_EXECUTE) == 0)
3604 		newpte |= pg_nx;
3605 #endif
3606 	if ((flags & PMAP_ENTER_WIRED) != 0)
3607 		newpte |= PG_W;
3608 	if (pmap != kernel_pmap)
3609 		newpte |= PG_U;
3610 	newpte |= pmap_cache_bits(m->md.pat_mode, psind > 0);
3611 	if ((m->oflags & VPO_UNMANAGED) == 0)
3612 		newpte |= PG_MANAGED;
3613 
3614 	rw_wlock(&pvh_global_lock);
3615 	PMAP_LOCK(pmap);
3616 	sched_pin();
3617 
3618 	pde = pmap_pde(pmap, va);
3619 	if (pmap != kernel_pmap) {
3620 		/*
3621 		 * va is for UVA.
3622 		 * In the case that a page table page is not resident,
3623 		 * we are creating it here.  pmap_allocpte() handles
3624 		 * demotion.
3625 		 */
3626 		mpte = pmap_allocpte(pmap, va, flags);
3627 		if (mpte == NULL) {
3628 			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3629 			    ("pmap_allocpte failed with sleep allowed"));
3630 			rv = KERN_RESOURCE_SHORTAGE;
3631 			goto out;
3632 		}
3633 	} else {
3634 		/*
3635 		 * va is for KVA, so pmap_demote_pde() will never fail
3636 		 * to install a page table page.  PG_V is also
3637 		 * asserted by pmap_demote_pde().
3638 		 */
3639 		mpte = NULL;
3640 		KASSERT(pde != NULL && (*pde & PG_V) != 0,
3641 		    ("KVA %#x invalid pde pdir %#jx", va,
3642 		    (uintmax_t)pmap->pm_pdir[PTDPTDI]));
3643 		if ((*pde & PG_PS) != 0)
3644 			pmap_demote_pde(pmap, pde, va);
3645 	}
3646 	pte = pmap_pte_quick(pmap, va);
3647 
3648 	/*
3649 	 * Page Directory table entry is not valid, which should not
3650 	 * happen.  We should have either allocated the page table
3651 	 * page or demoted the existing mapping above.
3652 	 */
3653 	if (pte == NULL) {
3654 		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3655 		    (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3656 	}
3657 
3658 	origpte = *pte;
3659 	pv = NULL;
3660 
3661 	/*
3662 	 * Is the specified virtual address already mapped?
3663 	 */
3664 	if ((origpte & PG_V) != 0) {
3665 		/*
3666 		 * Wiring change, just update stats. We don't worry about
3667 		 * wiring PT pages as they remain resident as long as there
3668 		 * are valid mappings in them. Hence, if a user page is wired,
3669 		 * the PT page will be also.
3670 		 */
3671 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
3672 			pmap->pm_stats.wired_count++;
3673 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
3674 			pmap->pm_stats.wired_count--;
3675 
3676 		/*
3677 		 * Remove the extra PT page reference.
3678 		 */
3679 		if (mpte != NULL) {
3680 			mpte->wire_count--;
3681 			KASSERT(mpte->wire_count > 0,
3682 			    ("pmap_enter: missing reference to page table page,"
3683 			     " va: 0x%x", va));
3684 		}
3685 
3686 		/*
3687 		 * Has the physical page changed?
3688 		 */
3689 		opa = origpte & PG_FRAME;
3690 		if (opa == pa) {
3691 			/*
3692 			 * No, might be a protection or wiring change.
3693 			 */
3694 			if ((origpte & PG_MANAGED) != 0 &&
3695 			    (newpte & PG_RW) != 0)
3696 				vm_page_aflag_set(m, PGA_WRITEABLE);
3697 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
3698 				goto unchanged;
3699 			goto validate;
3700 		}
3701 
3702 		/*
3703 		 * The physical page has changed.  Temporarily invalidate
3704 		 * the mapping.  This ensures that all threads sharing the
3705 		 * pmap keep a consistent view of the mapping, which is
3706 		 * necessary for the correct handling of COW faults.  It
3707 		 * also permits reuse of the old mapping's PV entry,
3708 		 * avoiding an allocation.
3709 		 *
3710 		 * For consistency, handle unmanaged mappings the same way.
3711 		 */
3712 		origpte = pte_load_clear(pte);
3713 		KASSERT((origpte & PG_FRAME) == opa,
3714 		    ("pmap_enter: unexpected pa update for %#x", va));
3715 		if ((origpte & PG_MANAGED) != 0) {
3716 			om = PHYS_TO_VM_PAGE(opa);
3717 
3718 			/*
3719 			 * The pmap lock is sufficient to synchronize with
3720 			 * concurrent calls to pmap_page_test_mappings() and
3721 			 * pmap_ts_referenced().
3722 			 */
3723 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3724 				vm_page_dirty(om);
3725 			if ((origpte & PG_A) != 0)
3726 				vm_page_aflag_set(om, PGA_REFERENCED);
3727 			pv = pmap_pvh_remove(&om->md, pmap, va);
3728 			if ((newpte & PG_MANAGED) == 0)
3729 				free_pv_entry(pmap, pv);
3730 			if ((om->aflags & PGA_WRITEABLE) != 0 &&
3731 			    TAILQ_EMPTY(&om->md.pv_list) &&
3732 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3733 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3734 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3735 		}
3736 		if ((origpte & PG_A) != 0)
3737 			pmap_invalidate_page(pmap, va);
3738 		origpte = 0;
3739 	} else {
3740 		/*
3741 		 * Increment the counters.
3742 		 */
3743 		if ((newpte & PG_W) != 0)
3744 			pmap->pm_stats.wired_count++;
3745 		pmap->pm_stats.resident_count++;
3746 	}
3747 
3748 	/*
3749 	 * Enter on the PV list if part of our managed memory.
3750 	 */
3751 	if ((newpte & PG_MANAGED) != 0) {
3752 		if (pv == NULL) {
3753 			pv = get_pv_entry(pmap, FALSE);
3754 			pv->pv_va = va;
3755 		}
3756 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3757 		if ((newpte & PG_RW) != 0)
3758 			vm_page_aflag_set(m, PGA_WRITEABLE);
3759 	}
3760 
3761 	/*
3762 	 * Update the PTE.
3763 	 */
3764 	if ((origpte & PG_V) != 0) {
3765 validate:
3766 		origpte = pte_load_store(pte, newpte);
3767 		KASSERT((origpte & PG_FRAME) == pa,
3768 		    ("pmap_enter: unexpected pa update for %#x", va));
3769 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3770 		    (PG_M | PG_RW)) {
3771 			if ((origpte & PG_MANAGED) != 0)
3772 				vm_page_dirty(m);
3773 
3774 			/*
3775 			 * Although the PTE may still have PG_RW set, TLB
3776 			 * invalidation may nonetheless be required because
3777 			 * the PTE no longer has PG_M set.
3778 			 */
3779 		}
3780 #if defined(PAE) || defined(PAE_TABLES)
3781 		else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
3782 			/*
3783 			 * This PTE change does not require TLB invalidation.
3784 			 */
3785 			goto unchanged;
3786 		}
3787 #endif
3788 		if ((origpte & PG_A) != 0)
3789 			pmap_invalidate_page(pmap, va);
3790 	} else
3791 		pte_store(pte, newpte);
3792 
3793 unchanged:
3794 
3795 #if VM_NRESERVLEVEL > 0
3796 	/*
3797 	 * If both the page table page and the reservation are fully
3798 	 * populated, then attempt promotion.
3799 	 */
3800 	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3801 	    pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
3802 	    vm_reserv_level_iffullpop(m) == 0)
3803 		pmap_promote_pde(pmap, pde, va);
3804 #endif
3805 
3806 	rv = KERN_SUCCESS;
3807 out:
3808 	sched_unpin();
3809 	rw_wunlock(&pvh_global_lock);
3810 	PMAP_UNLOCK(pmap);
3811 	return (rv);
3812 }
3813 
3814 /*
3815  * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3816  * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3817  * blocking, (2) a mapping already exists at the specified virtual address, or
3818  * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3819  */
3820 static boolean_t
3821 pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3822 {
3823 	pd_entry_t *pde, newpde;
3824 
3825 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3826 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3827 	pde = pmap_pde(pmap, va);
3828 	if (*pde != 0) {
3829 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3830 		    " in pmap %p", va, pmap);
3831 		return (FALSE);
3832 	}
3833 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3834 	    PG_PS | PG_V;
3835 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3836 		newpde |= PG_MANAGED;
3837 
3838 		/*
3839 		 * Abort this mapping if its PV entry could not be created.
3840 		 */
3841 		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3842 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3843 			    " in pmap %p", va, pmap);
3844 			return (FALSE);
3845 		}
3846 	}
3847 #if defined(PAE) || defined(PAE_TABLES)
3848 	if ((prot & VM_PROT_EXECUTE) == 0)
3849 		newpde |= pg_nx;
3850 #endif
3851 	if (va < VM_MAXUSER_ADDRESS)
3852 		newpde |= PG_U;
3853 
3854 	/*
3855 	 * Increment counters.
3856 	 */
3857 	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3858 
3859 	/*
3860 	 * Map the superpage.  (This is not a promoted mapping; there will not
3861 	 * be any lingering 4KB page mappings in the TLB.)
3862 	 */
3863 	pde_store(pde, newpde);
3864 
3865 	pmap_pde_mappings++;
3866 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3867 	    " in pmap %p", va, pmap);
3868 	return (TRUE);
3869 }
3870 
3871 /*
3872  * Maps a sequence of resident pages belonging to the same object.
3873  * The sequence begins with the given page m_start.  This page is
3874  * mapped at the given virtual address start.  Each subsequent page is
3875  * mapped at a virtual address that is offset from start by the same
3876  * amount as the page is offset from m_start within the object.  The
3877  * last page in the sequence is the page with the largest offset from
3878  * m_start that can be mapped at a virtual address less than the given
3879  * virtual address end.  Not every virtual page between start and end
3880  * is mapped; only those for which a resident page exists with the
3881  * corresponding offset from m_start are mapped.
3882  */
3883 void
3884 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3885     vm_page_t m_start, vm_prot_t prot)
3886 {
3887 	vm_offset_t va;
3888 	vm_page_t m, mpte;
3889 	vm_pindex_t diff, psize;
3890 
3891 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3892 
3893 	psize = atop(end - start);
3894 	mpte = NULL;
3895 	m = m_start;
3896 	rw_wlock(&pvh_global_lock);
3897 	PMAP_LOCK(pmap);
3898 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3899 		va = start + ptoa(diff);
3900 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3901 		    m->psind == 1 && pg_ps_enabled &&
3902 		    pmap_enter_pde(pmap, va, m, prot))
3903 			m = &m[NBPDR / PAGE_SIZE - 1];
3904 		else
3905 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3906 			    mpte);
3907 		m = TAILQ_NEXT(m, listq);
3908 	}
3909 	rw_wunlock(&pvh_global_lock);
3910 	PMAP_UNLOCK(pmap);
3911 }
3912 
3913 /*
3914  * this code makes some *MAJOR* assumptions:
3915  * 1. Current pmap & pmap exists.
3916  * 2. Not wired.
3917  * 3. Read access.
3918  * 4. No page table pages.
3919  * but is *MUCH* faster than pmap_enter...
3920  */
3921 
3922 void
3923 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3924 {
3925 
3926 	rw_wlock(&pvh_global_lock);
3927 	PMAP_LOCK(pmap);
3928 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3929 	rw_wunlock(&pvh_global_lock);
3930 	PMAP_UNLOCK(pmap);
3931 }
3932 
3933 static vm_page_t
3934 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3935     vm_prot_t prot, vm_page_t mpte)
3936 {
3937 	pt_entry_t *pte;
3938 	vm_paddr_t pa;
3939 	struct spglist free;
3940 
3941 	KASSERT(pmap != kernel_pmap || va < kmi.clean_sva ||
3942 	    va >= kmi.clean_eva || (m->oflags & VPO_UNMANAGED) != 0,
3943 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3944 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3945 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3946 
3947 	/*
3948 	 * In the case that a page table page is not
3949 	 * resident, we are creating it here.
3950 	 */
3951 	if (pmap != kernel_pmap) {
3952 		u_int ptepindex;
3953 		pd_entry_t ptepa;
3954 
3955 		/*
3956 		 * Calculate pagetable page index
3957 		 */
3958 		ptepindex = va >> PDRSHIFT;
3959 		if (mpte && (mpte->pindex == ptepindex)) {
3960 			mpte->wire_count++;
3961 		} else {
3962 			/*
3963 			 * Get the page directory entry
3964 			 */
3965 			ptepa = pmap->pm_pdir[ptepindex];
3966 
3967 			/*
3968 			 * If the page table page is mapped, we just increment
3969 			 * the hold count, and activate it.
3970 			 */
3971 			if (ptepa) {
3972 				if (ptepa & PG_PS)
3973 					return (NULL);
3974 				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3975 				mpte->wire_count++;
3976 			} else {
3977 				mpte = _pmap_allocpte(pmap, ptepindex,
3978 				    PMAP_ENTER_NOSLEEP);
3979 				if (mpte == NULL)
3980 					return (mpte);
3981 			}
3982 		}
3983 	} else {
3984 		mpte = NULL;
3985 	}
3986 
3987 	sched_pin();
3988 	pte = pmap_pte_quick(pmap, va);
3989 	if (*pte) {
3990 		if (mpte != NULL) {
3991 			mpte->wire_count--;
3992 			mpte = NULL;
3993 		}
3994 		sched_unpin();
3995 		return (mpte);
3996 	}
3997 
3998 	/*
3999 	 * Enter on the PV list if part of our managed memory.
4000 	 */
4001 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4002 	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4003 		if (mpte != NULL) {
4004 			SLIST_INIT(&free);
4005 			if (pmap_unwire_ptp(pmap, mpte, &free)) {
4006 				pmap_invalidate_page(pmap, va);
4007 				vm_page_free_pages_toq(&free, true);
4008 			}
4009 
4010 			mpte = NULL;
4011 		}
4012 		sched_unpin();
4013 		return (mpte);
4014 	}
4015 
4016 	/*
4017 	 * Increment counters
4018 	 */
4019 	pmap->pm_stats.resident_count++;
4020 
4021 	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
4022 #if defined(PAE) || defined(PAE_TABLES)
4023 	if ((prot & VM_PROT_EXECUTE) == 0)
4024 		pa |= pg_nx;
4025 #endif
4026 
4027 	/*
4028 	 * Now validate mapping with RO protection
4029 	 */
4030 	if ((m->oflags & VPO_UNMANAGED) != 0)
4031 		pte_store(pte, pa | PG_V | PG_U);
4032 	else
4033 		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
4034 	sched_unpin();
4035 	return (mpte);
4036 }
4037 
4038 /*
4039  * Make a temporary mapping for a physical address.  This is only intended
4040  * to be used for panic dumps.
4041  */
4042 void *
4043 pmap_kenter_temporary(vm_paddr_t pa, int i)
4044 {
4045 	vm_offset_t va;
4046 
4047 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
4048 	pmap_kenter(va, pa);
4049 	invlpg(va);
4050 	return ((void *)crashdumpmap);
4051 }
4052 
4053 /*
4054  * This code maps large physical mmap regions into the
4055  * processor address space.  Note that some shortcuts
4056  * are taken, but the code works.
4057  */
4058 void
4059 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4060     vm_pindex_t pindex, vm_size_t size)
4061 {
4062 	pd_entry_t *pde;
4063 	vm_paddr_t pa, ptepa;
4064 	vm_page_t p;
4065 	int pat_mode;
4066 
4067 	VM_OBJECT_ASSERT_WLOCKED(object);
4068 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4069 	    ("pmap_object_init_pt: non-device object"));
4070 	if (pseflag &&
4071 	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
4072 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4073 			return;
4074 		p = vm_page_lookup(object, pindex);
4075 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4076 		    ("pmap_object_init_pt: invalid page %p", p));
4077 		pat_mode = p->md.pat_mode;
4078 
4079 		/*
4080 		 * Abort the mapping if the first page is not physically
4081 		 * aligned to a 2/4MB page boundary.
4082 		 */
4083 		ptepa = VM_PAGE_TO_PHYS(p);
4084 		if (ptepa & (NBPDR - 1))
4085 			return;
4086 
4087 		/*
4088 		 * Skip the first page.  Abort the mapping if the rest of
4089 		 * the pages are not physically contiguous or have differing
4090 		 * memory attributes.
4091 		 */
4092 		p = TAILQ_NEXT(p, listq);
4093 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4094 		    pa += PAGE_SIZE) {
4095 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4096 			    ("pmap_object_init_pt: invalid page %p", p));
4097 			if (pa != VM_PAGE_TO_PHYS(p) ||
4098 			    pat_mode != p->md.pat_mode)
4099 				return;
4100 			p = TAILQ_NEXT(p, listq);
4101 		}
4102 
4103 		/*
4104 		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
4105 		 * "size" is a multiple of 2/4M, adding the PAT setting to
4106 		 * "pa" will not affect the termination of this loop.
4107 		 */
4108 		PMAP_LOCK(pmap);
4109 		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
4110 		    size; pa += NBPDR) {
4111 			pde = pmap_pde(pmap, addr);
4112 			if (*pde == 0) {
4113 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
4114 				    PG_U | PG_RW | PG_V);
4115 				pmap->pm_stats.resident_count += NBPDR /
4116 				    PAGE_SIZE;
4117 				pmap_pde_mappings++;
4118 			}
4119 			/* Else continue on if the PDE is already valid. */
4120 			addr += NBPDR;
4121 		}
4122 		PMAP_UNLOCK(pmap);
4123 	}
4124 }
4125 
4126 /*
4127  *	Clear the wired attribute from the mappings for the specified range of
4128  *	addresses in the given pmap.  Every valid mapping within that range
4129  *	must have the wired attribute set.  In contrast, invalid mappings
4130  *	cannot have the wired attribute set, so they are ignored.
4131  *
4132  *	The wired attribute of the page table entry is not a hardware feature,
4133  *	so there is no need to invalidate any TLB entries.
4134  */
4135 void
4136 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4137 {
4138 	vm_offset_t pdnxt;
4139 	pd_entry_t *pde;
4140 	pt_entry_t *pte;
4141 	boolean_t pv_lists_locked;
4142 
4143 	if (pmap_is_current(pmap))
4144 		pv_lists_locked = FALSE;
4145 	else {
4146 		pv_lists_locked = TRUE;
4147 resume:
4148 		rw_wlock(&pvh_global_lock);
4149 		sched_pin();
4150 	}
4151 	PMAP_LOCK(pmap);
4152 	for (; sva < eva; sva = pdnxt) {
4153 		pdnxt = (sva + NBPDR) & ~PDRMASK;
4154 		if (pdnxt < sva)
4155 			pdnxt = eva;
4156 		pde = pmap_pde(pmap, sva);
4157 		if ((*pde & PG_V) == 0)
4158 			continue;
4159 		if ((*pde & PG_PS) != 0) {
4160 			if ((*pde & PG_W) == 0)
4161 				panic("pmap_unwire: pde %#jx is missing PG_W",
4162 				    (uintmax_t)*pde);
4163 
4164 			/*
4165 			 * Are we unwiring the entire large page?  If not,
4166 			 * demote the mapping and fall through.
4167 			 */
4168 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
4169 				/*
4170 				 * Regardless of whether a pde (or pte) is 32
4171 				 * or 64 bits in size, PG_W is among the least
4172 				 * significant 32 bits.
4173 				 */
4174 				atomic_clear_int((u_int *)pde, PG_W);
4175 				pmap->pm_stats.wired_count -= NBPDR /
4176 				    PAGE_SIZE;
4177 				continue;
4178 			} else {
4179 				if (!pv_lists_locked) {
4180 					pv_lists_locked = TRUE;
4181 					if (!rw_try_wlock(&pvh_global_lock)) {
4182 						PMAP_UNLOCK(pmap);
4183 						/* Repeat sva. */
4184 						goto resume;
4185 					}
4186 					sched_pin();
4187 				}
4188 				if (!pmap_demote_pde(pmap, pde, sva))
4189 					panic("pmap_unwire: demotion failed");
4190 			}
4191 		}
4192 		if (pdnxt > eva)
4193 			pdnxt = eva;
4194 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
4195 		    sva += PAGE_SIZE) {
4196 			if ((*pte & PG_V) == 0)
4197 				continue;
4198 			if ((*pte & PG_W) == 0)
4199 				panic("pmap_unwire: pte %#jx is missing PG_W",
4200 				    (uintmax_t)*pte);
4201 
4202 			/*
4203 			 * PG_W must be cleared atomically.  Although the pmap
4204 			 * lock synchronizes access to PG_W, another processor
4205 			 * could be setting PG_M and/or PG_A concurrently.
4206 			 *
4207 			 * PG_W is among the least significant 32 bits.
4208 			 */
4209 			atomic_clear_int((u_int *)pte, PG_W);
4210 			pmap->pm_stats.wired_count--;
4211 		}
4212 	}
4213 	if (pv_lists_locked) {
4214 		sched_unpin();
4215 		rw_wunlock(&pvh_global_lock);
4216 	}
4217 	PMAP_UNLOCK(pmap);
4218 }
4219 
4220 
4221 /*
4222  *	Copy the range specified by src_addr/len
4223  *	from the source map to the range dst_addr/len
4224  *	in the destination map.
4225  *
4226  *	This routine is only advisory and need not do anything.  Since
4227  *	current pmap is always the kernel pmap when executing in
4228  *	kernel, and we do not copy from the kernel pmap to a user
4229  *	pmap, this optimization is not usable in 4/4G full split i386
4230  *	world.
4231  */
4232 
4233 void
4234 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
4235     vm_offset_t src_addr)
4236 {
4237 	struct spglist free;
4238 	pt_entry_t *src_pte, *dst_pte, ptetemp;
4239 	pd_entry_t srcptepaddr;
4240 	vm_page_t dstmpte, srcmpte;
4241 	vm_offset_t addr, end_addr, pdnxt;
4242 	u_int ptepindex;
4243 
4244 	if (dst_addr != src_addr)
4245 		return;
4246 
4247 	end_addr = src_addr + len;
4248 
4249 	rw_wlock(&pvh_global_lock);
4250 	if (dst_pmap < src_pmap) {
4251 		PMAP_LOCK(dst_pmap);
4252 		PMAP_LOCK(src_pmap);
4253 	} else {
4254 		PMAP_LOCK(src_pmap);
4255 		PMAP_LOCK(dst_pmap);
4256 	}
4257 	sched_pin();
4258 	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
4259 		KASSERT(addr < PMAP_TRM_MIN_ADDRESS,
4260 		    ("pmap_copy: invalid to pmap_copy the trampoline"));
4261 
4262 		pdnxt = (addr + NBPDR) & ~PDRMASK;
4263 		if (pdnxt < addr)
4264 			pdnxt = end_addr;
4265 		ptepindex = addr >> PDRSHIFT;
4266 
4267 		srcptepaddr = src_pmap->pm_pdir[ptepindex];
4268 		if (srcptepaddr == 0)
4269 			continue;
4270 
4271 		if (srcptepaddr & PG_PS) {
4272 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4273 				continue;
4274 			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
4275 			    ((srcptepaddr & PG_MANAGED) == 0 ||
4276 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
4277 			    PG_PS_FRAME))) {
4278 				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
4279 				    ~PG_W;
4280 				dst_pmap->pm_stats.resident_count +=
4281 				    NBPDR / PAGE_SIZE;
4282 				pmap_pde_mappings++;
4283 			}
4284 			continue;
4285 		}
4286 
4287 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
4288 		KASSERT(srcmpte->wire_count > 0,
4289 		    ("pmap_copy: source page table page is unused"));
4290 
4291 		if (pdnxt > end_addr)
4292 			pdnxt = end_addr;
4293 
4294 		src_pte = pmap_pte_quick3(src_pmap, addr);
4295 		while (addr < pdnxt) {
4296 			ptetemp = *src_pte;
4297 			/*
4298 			 * we only virtual copy managed pages
4299 			 */
4300 			if ((ptetemp & PG_MANAGED) != 0) {
4301 				dstmpte = pmap_allocpte(dst_pmap, addr,
4302 				    PMAP_ENTER_NOSLEEP);
4303 				if (dstmpte == NULL)
4304 					goto out;
4305 				dst_pte = pmap_pte_quick(dst_pmap, addr);
4306 				if (*dst_pte == 0 &&
4307 				    pmap_try_insert_pv_entry(dst_pmap, addr,
4308 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
4309 					/*
4310 					 * Clear the wired, modified, and
4311 					 * accessed (referenced) bits
4312 					 * during the copy.
4313 					 */
4314 					*dst_pte = ptetemp & ~(PG_W | PG_M |
4315 					    PG_A);
4316 					dst_pmap->pm_stats.resident_count++;
4317 				} else {
4318 					SLIST_INIT(&free);
4319 					if (pmap_unwire_ptp(dst_pmap, dstmpte,
4320 					    &free)) {
4321 						pmap_invalidate_page(dst_pmap,
4322 						    addr);
4323 						vm_page_free_pages_toq(&free,
4324 						    true);
4325 					}
4326 					goto out;
4327 				}
4328 				if (dstmpte->wire_count >= srcmpte->wire_count)
4329 					break;
4330 			}
4331 			addr += PAGE_SIZE;
4332 			src_pte++;
4333 		}
4334 	}
4335 out:
4336 	sched_unpin();
4337 	rw_wunlock(&pvh_global_lock);
4338 	PMAP_UNLOCK(src_pmap);
4339 	PMAP_UNLOCK(dst_pmap);
4340 }
4341 
4342 /*
4343  * Zero 1 page of virtual memory mapped from a hardware page by the caller.
4344  */
4345 static __inline void
4346 pagezero(void *page)
4347 {
4348 #if defined(I686_CPU)
4349 	if (cpu_class == CPUCLASS_686) {
4350 		if (cpu_feature & CPUID_SSE2)
4351 			sse2_pagezero(page);
4352 		else
4353 			i686_pagezero(page);
4354 	} else
4355 #endif
4356 		bzero(page, PAGE_SIZE);
4357 }
4358 
4359 /*
4360  * Zero the specified hardware page.
4361  */
4362 void
4363 pmap_zero_page(vm_page_t m)
4364 {
4365 	pt_entry_t *cmap_pte2;
4366 	struct pcpu *pc;
4367 
4368 	sched_pin();
4369 	pc = get_pcpu();
4370 	cmap_pte2 = pc->pc_cmap_pte2;
4371 	mtx_lock(&pc->pc_cmap_lock);
4372 	if (*cmap_pte2)
4373 		panic("pmap_zero_page: CMAP2 busy");
4374 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4375 	    pmap_cache_bits(m->md.pat_mode, 0);
4376 	invlcaddr(pc->pc_cmap_addr2);
4377 	pagezero(pc->pc_cmap_addr2);
4378 	*cmap_pte2 = 0;
4379 
4380 	/*
4381 	 * Unpin the thread before releasing the lock.  Otherwise the thread
4382 	 * could be rescheduled while still bound to the current CPU, only
4383 	 * to unpin itself immediately upon resuming execution.
4384 	 */
4385 	sched_unpin();
4386 	mtx_unlock(&pc->pc_cmap_lock);
4387 }
4388 
4389 /*
4390  * Zero an an area within a single hardware page.  off and size must not
4391  * cover an area beyond a single hardware page.
4392  */
4393 void
4394 pmap_zero_page_area(vm_page_t m, int off, int size)
4395 {
4396 	pt_entry_t *cmap_pte2;
4397 	struct pcpu *pc;
4398 
4399 	sched_pin();
4400 	pc = get_pcpu();
4401 	cmap_pte2 = pc->pc_cmap_pte2;
4402 	mtx_lock(&pc->pc_cmap_lock);
4403 	if (*cmap_pte2)
4404 		panic("pmap_zero_page_area: CMAP2 busy");
4405 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4406 	    pmap_cache_bits(m->md.pat_mode, 0);
4407 	invlcaddr(pc->pc_cmap_addr2);
4408 	if (off == 0 && size == PAGE_SIZE)
4409 		pagezero(pc->pc_cmap_addr2);
4410 	else
4411 		bzero(pc->pc_cmap_addr2 + off, size);
4412 	*cmap_pte2 = 0;
4413 	sched_unpin();
4414 	mtx_unlock(&pc->pc_cmap_lock);
4415 }
4416 
4417 /*
4418  * Copy 1 specified hardware page to another.
4419  */
4420 void
4421 pmap_copy_page(vm_page_t src, vm_page_t dst)
4422 {
4423 	pt_entry_t *cmap_pte1, *cmap_pte2;
4424 	struct pcpu *pc;
4425 
4426 	sched_pin();
4427 	pc = get_pcpu();
4428 	cmap_pte1 = pc->pc_cmap_pte1;
4429 	cmap_pte2 = pc->pc_cmap_pte2;
4430 	mtx_lock(&pc->pc_cmap_lock);
4431 	if (*cmap_pte1)
4432 		panic("pmap_copy_page: CMAP1 busy");
4433 	if (*cmap_pte2)
4434 		panic("pmap_copy_page: CMAP2 busy");
4435 	*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4436 	    pmap_cache_bits(src->md.pat_mode, 0);
4437 	invlcaddr(pc->pc_cmap_addr1);
4438 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4439 	    pmap_cache_bits(dst->md.pat_mode, 0);
4440 	invlcaddr(pc->pc_cmap_addr2);
4441 	bcopy(pc->pc_cmap_addr1, pc->pc_cmap_addr2, PAGE_SIZE);
4442 	*cmap_pte1 = 0;
4443 	*cmap_pte2 = 0;
4444 	sched_unpin();
4445 	mtx_unlock(&pc->pc_cmap_lock);
4446 }
4447 
4448 int unmapped_buf_allowed = 1;
4449 
4450 void
4451 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4452     vm_offset_t b_offset, int xfersize)
4453 {
4454 	vm_page_t a_pg, b_pg;
4455 	char *a_cp, *b_cp;
4456 	vm_offset_t a_pg_offset, b_pg_offset;
4457 	pt_entry_t *cmap_pte1, *cmap_pte2;
4458 	struct pcpu *pc;
4459 	int cnt;
4460 
4461 	sched_pin();
4462 	pc = get_pcpu();
4463 	cmap_pte1 = pc->pc_cmap_pte1;
4464 	cmap_pte2 = pc->pc_cmap_pte2;
4465 	mtx_lock(&pc->pc_cmap_lock);
4466 	if (*cmap_pte1 != 0)
4467 		panic("pmap_copy_pages: CMAP1 busy");
4468 	if (*cmap_pte2 != 0)
4469 		panic("pmap_copy_pages: CMAP2 busy");
4470 	while (xfersize > 0) {
4471 		a_pg = ma[a_offset >> PAGE_SHIFT];
4472 		a_pg_offset = a_offset & PAGE_MASK;
4473 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4474 		b_pg = mb[b_offset >> PAGE_SHIFT];
4475 		b_pg_offset = b_offset & PAGE_MASK;
4476 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4477 		*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
4478 		    pmap_cache_bits(a_pg->md.pat_mode, 0);
4479 		invlcaddr(pc->pc_cmap_addr1);
4480 		*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
4481 		    PG_M | pmap_cache_bits(b_pg->md.pat_mode, 0);
4482 		invlcaddr(pc->pc_cmap_addr2);
4483 		a_cp = pc->pc_cmap_addr1 + a_pg_offset;
4484 		b_cp = pc->pc_cmap_addr2 + b_pg_offset;
4485 		bcopy(a_cp, b_cp, cnt);
4486 		a_offset += cnt;
4487 		b_offset += cnt;
4488 		xfersize -= cnt;
4489 	}
4490 	*cmap_pte1 = 0;
4491 	*cmap_pte2 = 0;
4492 	sched_unpin();
4493 	mtx_unlock(&pc->pc_cmap_lock);
4494 }
4495 
4496 /*
4497  * Returns true if the pmap's pv is one of the first
4498  * 16 pvs linked to from this page.  This count may
4499  * be changed upwards or downwards in the future; it
4500  * is only necessary that true be returned for a small
4501  * subset of pmaps for proper page aging.
4502  */
4503 boolean_t
4504 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4505 {
4506 	struct md_page *pvh;
4507 	pv_entry_t pv;
4508 	int loops = 0;
4509 	boolean_t rv;
4510 
4511 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4512 	    ("pmap_page_exists_quick: page %p is not managed", m));
4513 	rv = FALSE;
4514 	rw_wlock(&pvh_global_lock);
4515 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4516 		if (PV_PMAP(pv) == pmap) {
4517 			rv = TRUE;
4518 			break;
4519 		}
4520 		loops++;
4521 		if (loops >= 16)
4522 			break;
4523 	}
4524 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4525 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4526 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4527 			if (PV_PMAP(pv) == pmap) {
4528 				rv = TRUE;
4529 				break;
4530 			}
4531 			loops++;
4532 			if (loops >= 16)
4533 				break;
4534 		}
4535 	}
4536 	rw_wunlock(&pvh_global_lock);
4537 	return (rv);
4538 }
4539 
4540 /*
4541  *	pmap_page_wired_mappings:
4542  *
4543  *	Return the number of managed mappings to the given physical page
4544  *	that are wired.
4545  */
4546 int
4547 pmap_page_wired_mappings(vm_page_t m)
4548 {
4549 	int count;
4550 
4551 	count = 0;
4552 	if ((m->oflags & VPO_UNMANAGED) != 0)
4553 		return (count);
4554 	rw_wlock(&pvh_global_lock);
4555 	count = pmap_pvh_wired_mappings(&m->md, count);
4556 	if ((m->flags & PG_FICTITIOUS) == 0) {
4557 	    count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4558 	        count);
4559 	}
4560 	rw_wunlock(&pvh_global_lock);
4561 	return (count);
4562 }
4563 
4564 /*
4565  *	pmap_pvh_wired_mappings:
4566  *
4567  *	Return the updated number "count" of managed mappings that are wired.
4568  */
4569 static int
4570 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4571 {
4572 	pmap_t pmap;
4573 	pt_entry_t *pte;
4574 	pv_entry_t pv;
4575 
4576 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4577 	sched_pin();
4578 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4579 		pmap = PV_PMAP(pv);
4580 		PMAP_LOCK(pmap);
4581 		pte = pmap_pte_quick(pmap, pv->pv_va);
4582 		if ((*pte & PG_W) != 0)
4583 			count++;
4584 		PMAP_UNLOCK(pmap);
4585 	}
4586 	sched_unpin();
4587 	return (count);
4588 }
4589 
4590 /*
4591  * Returns TRUE if the given page is mapped individually or as part of
4592  * a 4mpage.  Otherwise, returns FALSE.
4593  */
4594 boolean_t
4595 pmap_page_is_mapped(vm_page_t m)
4596 {
4597 	boolean_t rv;
4598 
4599 	if ((m->oflags & VPO_UNMANAGED) != 0)
4600 		return (FALSE);
4601 	rw_wlock(&pvh_global_lock);
4602 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4603 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4604 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4605 	rw_wunlock(&pvh_global_lock);
4606 	return (rv);
4607 }
4608 
4609 /*
4610  * Remove all pages from specified address space
4611  * this aids process exit speeds.  Also, this code
4612  * is special cased for current process only, but
4613  * can have the more generic (and slightly slower)
4614  * mode enabled.  This is much faster than pmap_remove
4615  * in the case of running down an entire address space.
4616  */
4617 void
4618 pmap_remove_pages(pmap_t pmap)
4619 {
4620 	pt_entry_t *pte, tpte;
4621 	vm_page_t m, mpte, mt;
4622 	pv_entry_t pv;
4623 	struct md_page *pvh;
4624 	struct pv_chunk *pc, *npc;
4625 	struct spglist free;
4626 	int field, idx;
4627 	int32_t bit;
4628 	uint32_t inuse, bitmask;
4629 	int allfree;
4630 
4631 	if (pmap != PCPU_GET(curpmap)) {
4632 		printf("warning: pmap_remove_pages called with non-current pmap\n");
4633 		return;
4634 	}
4635 	SLIST_INIT(&free);
4636 	rw_wlock(&pvh_global_lock);
4637 	PMAP_LOCK(pmap);
4638 	sched_pin();
4639 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4640 		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
4641 		    pc->pc_pmap));
4642 		allfree = 1;
4643 		for (field = 0; field < _NPCM; field++) {
4644 			inuse = ~pc->pc_map[field] & pc_freemask[field];
4645 			while (inuse != 0) {
4646 				bit = bsfl(inuse);
4647 				bitmask = 1UL << bit;
4648 				idx = field * 32 + bit;
4649 				pv = &pc->pc_pventry[idx];
4650 				inuse &= ~bitmask;
4651 
4652 				pte = pmap_pde(pmap, pv->pv_va);
4653 				tpte = *pte;
4654 				if ((tpte & PG_PS) == 0) {
4655 					pte = pmap_pte_quick(pmap, pv->pv_va);
4656 					tpte = *pte & ~PG_PTE_PAT;
4657 				}
4658 
4659 				if (tpte == 0) {
4660 					printf(
4661 					    "TPTE at %p  IS ZERO @ VA %08x\n",
4662 					    pte, pv->pv_va);
4663 					panic("bad pte");
4664 				}
4665 
4666 /*
4667  * We cannot remove wired pages from a process' mapping at this time
4668  */
4669 				if (tpte & PG_W) {
4670 					allfree = 0;
4671 					continue;
4672 				}
4673 
4674 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4675 				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4676 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4677 				    m, (uintmax_t)m->phys_addr,
4678 				    (uintmax_t)tpte));
4679 
4680 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4681 				    m < &vm_page_array[vm_page_array_size],
4682 				    ("pmap_remove_pages: bad tpte %#jx",
4683 				    (uintmax_t)tpte));
4684 
4685 				pte_clear(pte);
4686 
4687 				/*
4688 				 * Update the vm_page_t clean/reference bits.
4689 				 */
4690 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4691 					if ((tpte & PG_PS) != 0) {
4692 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4693 							vm_page_dirty(mt);
4694 					} else
4695 						vm_page_dirty(m);
4696 				}
4697 
4698 				/* Mark free */
4699 				PV_STAT(pv_entry_frees++);
4700 				PV_STAT(pv_entry_spare++);
4701 				pv_entry_count--;
4702 				pc->pc_map[field] |= bitmask;
4703 				if ((tpte & PG_PS) != 0) {
4704 					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4705 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4706 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4707 					if (TAILQ_EMPTY(&pvh->pv_list)) {
4708 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4709 							if (TAILQ_EMPTY(&mt->md.pv_list))
4710 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
4711 					}
4712 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
4713 					if (mpte != NULL) {
4714 						pmap->pm_stats.resident_count--;
4715 						KASSERT(mpte->wire_count == NPTEPG,
4716 						    ("pmap_remove_pages: pte page wire count error"));
4717 						mpte->wire_count = 0;
4718 						pmap_add_delayed_free_list(mpte, &free, FALSE);
4719 					}
4720 				} else {
4721 					pmap->pm_stats.resident_count--;
4722 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4723 					if (TAILQ_EMPTY(&m->md.pv_list) &&
4724 					    (m->flags & PG_FICTITIOUS) == 0) {
4725 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4726 						if (TAILQ_EMPTY(&pvh->pv_list))
4727 							vm_page_aflag_clear(m, PGA_WRITEABLE);
4728 					}
4729 					pmap_unuse_pt(pmap, pv->pv_va, &free);
4730 				}
4731 			}
4732 		}
4733 		if (allfree) {
4734 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4735 			free_pv_chunk(pc);
4736 		}
4737 	}
4738 	sched_unpin();
4739 	pmap_invalidate_all(pmap);
4740 	rw_wunlock(&pvh_global_lock);
4741 	PMAP_UNLOCK(pmap);
4742 	vm_page_free_pages_toq(&free, true);
4743 }
4744 
4745 /*
4746  *	pmap_is_modified:
4747  *
4748  *	Return whether or not the specified physical page was modified
4749  *	in any physical maps.
4750  */
4751 boolean_t
4752 pmap_is_modified(vm_page_t m)
4753 {
4754 	boolean_t rv;
4755 
4756 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4757 	    ("pmap_is_modified: page %p is not managed", m));
4758 
4759 	/*
4760 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4761 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
4762 	 * is clear, no PTEs can have PG_M set.
4763 	 */
4764 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4765 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4766 		return (FALSE);
4767 	rw_wlock(&pvh_global_lock);
4768 	rv = pmap_is_modified_pvh(&m->md) ||
4769 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4770 	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4771 	rw_wunlock(&pvh_global_lock);
4772 	return (rv);
4773 }
4774 
4775 /*
4776  * Returns TRUE if any of the given mappings were used to modify
4777  * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4778  * mappings are supported.
4779  */
4780 static boolean_t
4781 pmap_is_modified_pvh(struct md_page *pvh)
4782 {
4783 	pv_entry_t pv;
4784 	pt_entry_t *pte;
4785 	pmap_t pmap;
4786 	boolean_t rv;
4787 
4788 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4789 	rv = FALSE;
4790 	sched_pin();
4791 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4792 		pmap = PV_PMAP(pv);
4793 		PMAP_LOCK(pmap);
4794 		pte = pmap_pte_quick(pmap, pv->pv_va);
4795 		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4796 		PMAP_UNLOCK(pmap);
4797 		if (rv)
4798 			break;
4799 	}
4800 	sched_unpin();
4801 	return (rv);
4802 }
4803 
4804 /*
4805  *	pmap_is_prefaultable:
4806  *
4807  *	Return whether or not the specified virtual address is elgible
4808  *	for prefault.
4809  */
4810 boolean_t
4811 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4812 {
4813 	pd_entry_t pde;
4814 	boolean_t rv;
4815 
4816 	rv = FALSE;
4817 	PMAP_LOCK(pmap);
4818 	pde = *pmap_pde(pmap, addr);
4819 	if (pde != 0 && (pde & PG_PS) == 0)
4820 		rv = pmap_pte_ufast(pmap, addr, pde) == 0;
4821 	PMAP_UNLOCK(pmap);
4822 	return (rv);
4823 }
4824 
4825 /*
4826  *	pmap_is_referenced:
4827  *
4828  *	Return whether or not the specified physical page was referenced
4829  *	in any physical maps.
4830  */
4831 boolean_t
4832 pmap_is_referenced(vm_page_t m)
4833 {
4834 	boolean_t rv;
4835 
4836 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4837 	    ("pmap_is_referenced: page %p is not managed", m));
4838 	rw_wlock(&pvh_global_lock);
4839 	rv = pmap_is_referenced_pvh(&m->md) ||
4840 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4841 	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4842 	rw_wunlock(&pvh_global_lock);
4843 	return (rv);
4844 }
4845 
4846 /*
4847  * Returns TRUE if any of the given mappings were referenced and FALSE
4848  * otherwise.  Both page and 4mpage mappings are supported.
4849  */
4850 static boolean_t
4851 pmap_is_referenced_pvh(struct md_page *pvh)
4852 {
4853 	pv_entry_t pv;
4854 	pt_entry_t *pte;
4855 	pmap_t pmap;
4856 	boolean_t rv;
4857 
4858 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4859 	rv = FALSE;
4860 	sched_pin();
4861 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4862 		pmap = PV_PMAP(pv);
4863 		PMAP_LOCK(pmap);
4864 		pte = pmap_pte_quick(pmap, pv->pv_va);
4865 		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
4866 		PMAP_UNLOCK(pmap);
4867 		if (rv)
4868 			break;
4869 	}
4870 	sched_unpin();
4871 	return (rv);
4872 }
4873 
4874 /*
4875  * Clear the write and modified bits in each of the given page's mappings.
4876  */
4877 void
4878 pmap_remove_write(vm_page_t m)
4879 {
4880 	struct md_page *pvh;
4881 	pv_entry_t next_pv, pv;
4882 	pmap_t pmap;
4883 	pd_entry_t *pde;
4884 	pt_entry_t oldpte, *pte;
4885 	vm_offset_t va;
4886 
4887 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4888 	    ("pmap_remove_write: page %p is not managed", m));
4889 
4890 	/*
4891 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4892 	 * set by another thread while the object is locked.  Thus,
4893 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
4894 	 */
4895 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4896 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4897 		return;
4898 	rw_wlock(&pvh_global_lock);
4899 	sched_pin();
4900 	if ((m->flags & PG_FICTITIOUS) != 0)
4901 		goto small_mappings;
4902 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4903 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4904 		va = pv->pv_va;
4905 		pmap = PV_PMAP(pv);
4906 		PMAP_LOCK(pmap);
4907 		pde = pmap_pde(pmap, va);
4908 		if ((*pde & PG_RW) != 0)
4909 			(void)pmap_demote_pde(pmap, pde, va);
4910 		PMAP_UNLOCK(pmap);
4911 	}
4912 small_mappings:
4913 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4914 		pmap = PV_PMAP(pv);
4915 		PMAP_LOCK(pmap);
4916 		pde = pmap_pde(pmap, pv->pv_va);
4917 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4918 		    " a 4mpage in page %p's pv list", m));
4919 		pte = pmap_pte_quick(pmap, pv->pv_va);
4920 retry:
4921 		oldpte = *pte;
4922 		if ((oldpte & PG_RW) != 0) {
4923 			/*
4924 			 * Regardless of whether a pte is 32 or 64 bits
4925 			 * in size, PG_RW and PG_M are among the least
4926 			 * significant 32 bits.
4927 			 */
4928 			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4929 			    oldpte & ~(PG_RW | PG_M)))
4930 				goto retry;
4931 			if ((oldpte & PG_M) != 0)
4932 				vm_page_dirty(m);
4933 			pmap_invalidate_page(pmap, pv->pv_va);
4934 		}
4935 		PMAP_UNLOCK(pmap);
4936 	}
4937 	vm_page_aflag_clear(m, PGA_WRITEABLE);
4938 	sched_unpin();
4939 	rw_wunlock(&pvh_global_lock);
4940 }
4941 
4942 /*
4943  *	pmap_ts_referenced:
4944  *
4945  *	Return a count of reference bits for a page, clearing those bits.
4946  *	It is not necessary for every reference bit to be cleared, but it
4947  *	is necessary that 0 only be returned when there are truly no
4948  *	reference bits set.
4949  *
4950  *	As an optimization, update the page's dirty field if a modified bit is
4951  *	found while counting reference bits.  This opportunistic update can be
4952  *	performed at low cost and can eliminate the need for some future calls
4953  *	to pmap_is_modified().  However, since this function stops after
4954  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
4955  *	dirty pages.  Those dirty pages will only be detected by a future call
4956  *	to pmap_is_modified().
4957  */
4958 int
4959 pmap_ts_referenced(vm_page_t m)
4960 {
4961 	struct md_page *pvh;
4962 	pv_entry_t pv, pvf;
4963 	pmap_t pmap;
4964 	pd_entry_t *pde;
4965 	pt_entry_t *pte;
4966 	vm_paddr_t pa;
4967 	int rtval = 0;
4968 
4969 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4970 	    ("pmap_ts_referenced: page %p is not managed", m));
4971 	pa = VM_PAGE_TO_PHYS(m);
4972 	pvh = pa_to_pvh(pa);
4973 	rw_wlock(&pvh_global_lock);
4974 	sched_pin();
4975 	if ((m->flags & PG_FICTITIOUS) != 0 ||
4976 	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
4977 		goto small_mappings;
4978 	pv = pvf;
4979 	do {
4980 		pmap = PV_PMAP(pv);
4981 		PMAP_LOCK(pmap);
4982 		pde = pmap_pde(pmap, pv->pv_va);
4983 		if ((*pde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4984 			/*
4985 			 * Although "*pde" is mapping a 2/4MB page, because
4986 			 * this function is called at a 4KB page granularity,
4987 			 * we only update the 4KB page under test.
4988 			 */
4989 			vm_page_dirty(m);
4990 		}
4991 		if ((*pde & PG_A) != 0) {
4992 			/*
4993 			 * Since this reference bit is shared by either 1024
4994 			 * or 512 4KB pages, it should not be cleared every
4995 			 * time it is tested.  Apply a simple "hash" function
4996 			 * on the physical page number, the virtual superpage
4997 			 * number, and the pmap address to select one 4KB page
4998 			 * out of the 1024 or 512 on which testing the
4999 			 * reference bit will result in clearing that bit.
5000 			 * This function is designed to avoid the selection of
5001 			 * the same 4KB page for every 2- or 4MB page mapping.
5002 			 *
5003 			 * On demotion, a mapping that hasn't been referenced
5004 			 * is simply destroyed.  To avoid the possibility of a
5005 			 * subsequent page fault on a demoted wired mapping,
5006 			 * always leave its reference bit set.  Moreover,
5007 			 * since the superpage is wired, the current state of
5008 			 * its reference bit won't affect page replacement.
5009 			 */
5010 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
5011 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
5012 			    (*pde & PG_W) == 0) {
5013 				atomic_clear_int((u_int *)pde, PG_A);
5014 				pmap_invalidate_page(pmap, pv->pv_va);
5015 			}
5016 			rtval++;
5017 		}
5018 		PMAP_UNLOCK(pmap);
5019 		/* Rotate the PV list if it has more than one entry. */
5020 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5021 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5022 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5023 		}
5024 		if (rtval >= PMAP_TS_REFERENCED_MAX)
5025 			goto out;
5026 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5027 small_mappings:
5028 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5029 		goto out;
5030 	pv = pvf;
5031 	do {
5032 		pmap = PV_PMAP(pv);
5033 		PMAP_LOCK(pmap);
5034 		pde = pmap_pde(pmap, pv->pv_va);
5035 		KASSERT((*pde & PG_PS) == 0,
5036 		    ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
5037 		    m));
5038 		pte = pmap_pte_quick(pmap, pv->pv_va);
5039 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5040 			vm_page_dirty(m);
5041 		if ((*pte & PG_A) != 0) {
5042 			atomic_clear_int((u_int *)pte, PG_A);
5043 			pmap_invalidate_page(pmap, pv->pv_va);
5044 			rtval++;
5045 		}
5046 		PMAP_UNLOCK(pmap);
5047 		/* Rotate the PV list if it has more than one entry. */
5048 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5049 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5050 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5051 		}
5052 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5053 	    PMAP_TS_REFERENCED_MAX);
5054 out:
5055 	sched_unpin();
5056 	rw_wunlock(&pvh_global_lock);
5057 	return (rtval);
5058 }
5059 
5060 /*
5061  *	Apply the given advice to the specified range of addresses within the
5062  *	given pmap.  Depending on the advice, clear the referenced and/or
5063  *	modified flags in each mapping and set the mapped page's dirty field.
5064  */
5065 void
5066 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5067 {
5068 	pd_entry_t oldpde, *pde;
5069 	pt_entry_t *pte;
5070 	vm_offset_t va, pdnxt;
5071 	vm_page_t m;
5072 	boolean_t anychanged, pv_lists_locked;
5073 
5074 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5075 		return;
5076 	if (pmap_is_current(pmap))
5077 		pv_lists_locked = FALSE;
5078 	else {
5079 		pv_lists_locked = TRUE;
5080 resume:
5081 		rw_wlock(&pvh_global_lock);
5082 		sched_pin();
5083 	}
5084 	anychanged = FALSE;
5085 	PMAP_LOCK(pmap);
5086 	for (; sva < eva; sva = pdnxt) {
5087 		pdnxt = (sva + NBPDR) & ~PDRMASK;
5088 		if (pdnxt < sva)
5089 			pdnxt = eva;
5090 		pde = pmap_pde(pmap, sva);
5091 		oldpde = *pde;
5092 		if ((oldpde & PG_V) == 0)
5093 			continue;
5094 		else if ((oldpde & PG_PS) != 0) {
5095 			if ((oldpde & PG_MANAGED) == 0)
5096 				continue;
5097 			if (!pv_lists_locked) {
5098 				pv_lists_locked = TRUE;
5099 				if (!rw_try_wlock(&pvh_global_lock)) {
5100 					if (anychanged)
5101 						pmap_invalidate_all(pmap);
5102 					PMAP_UNLOCK(pmap);
5103 					goto resume;
5104 				}
5105 				sched_pin();
5106 			}
5107 			if (!pmap_demote_pde(pmap, pde, sva)) {
5108 				/*
5109 				 * The large page mapping was destroyed.
5110 				 */
5111 				continue;
5112 			}
5113 
5114 			/*
5115 			 * Unless the page mappings are wired, remove the
5116 			 * mapping to a single page so that a subsequent
5117 			 * access may repromote.  Since the underlying page
5118 			 * table page is fully populated, this removal never
5119 			 * frees a page table page.
5120 			 */
5121 			if ((oldpde & PG_W) == 0) {
5122 				pte = pmap_pte_quick(pmap, sva);
5123 				KASSERT((*pte & PG_V) != 0,
5124 				    ("pmap_advise: invalid PTE"));
5125 				pmap_remove_pte(pmap, pte, sva, NULL);
5126 				anychanged = TRUE;
5127 			}
5128 		}
5129 		if (pdnxt > eva)
5130 			pdnxt = eva;
5131 		va = pdnxt;
5132 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
5133 		    sva += PAGE_SIZE) {
5134 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
5135 				goto maybe_invlrng;
5136 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5137 				if (advice == MADV_DONTNEED) {
5138 					/*
5139 					 * Future calls to pmap_is_modified()
5140 					 * can be avoided by making the page
5141 					 * dirty now.
5142 					 */
5143 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
5144 					vm_page_dirty(m);
5145 				}
5146 				atomic_clear_int((u_int *)pte, PG_M | PG_A);
5147 			} else if ((*pte & PG_A) != 0)
5148 				atomic_clear_int((u_int *)pte, PG_A);
5149 			else
5150 				goto maybe_invlrng;
5151 			if ((*pte & PG_G) != 0) {
5152 				if (va == pdnxt)
5153 					va = sva;
5154 			} else
5155 				anychanged = TRUE;
5156 			continue;
5157 maybe_invlrng:
5158 			if (va != pdnxt) {
5159 				pmap_invalidate_range(pmap, va, sva);
5160 				va = pdnxt;
5161 			}
5162 		}
5163 		if (va != pdnxt)
5164 			pmap_invalidate_range(pmap, va, sva);
5165 	}
5166 	if (anychanged)
5167 		pmap_invalidate_all(pmap);
5168 	if (pv_lists_locked) {
5169 		sched_unpin();
5170 		rw_wunlock(&pvh_global_lock);
5171 	}
5172 	PMAP_UNLOCK(pmap);
5173 }
5174 
5175 /*
5176  *	Clear the modify bits on the specified physical page.
5177  */
5178 void
5179 pmap_clear_modify(vm_page_t m)
5180 {
5181 	struct md_page *pvh;
5182 	pv_entry_t next_pv, pv;
5183 	pmap_t pmap;
5184 	pd_entry_t oldpde, *pde;
5185 	pt_entry_t oldpte, *pte;
5186 	vm_offset_t va;
5187 
5188 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5189 	    ("pmap_clear_modify: page %p is not managed", m));
5190 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5191 	KASSERT(!vm_page_xbusied(m),
5192 	    ("pmap_clear_modify: page %p is exclusive busied", m));
5193 
5194 	/*
5195 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
5196 	 * If the object containing the page is locked and the page is not
5197 	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
5198 	 */
5199 	if ((m->aflags & PGA_WRITEABLE) == 0)
5200 		return;
5201 	rw_wlock(&pvh_global_lock);
5202 	sched_pin();
5203 	if ((m->flags & PG_FICTITIOUS) != 0)
5204 		goto small_mappings;
5205 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5206 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5207 		va = pv->pv_va;
5208 		pmap = PV_PMAP(pv);
5209 		PMAP_LOCK(pmap);
5210 		pde = pmap_pde(pmap, va);
5211 		oldpde = *pde;
5212 		if ((oldpde & PG_RW) != 0) {
5213 			if (pmap_demote_pde(pmap, pde, va)) {
5214 				if ((oldpde & PG_W) == 0) {
5215 					/*
5216 					 * Write protect the mapping to a
5217 					 * single page so that a subsequent
5218 					 * write access may repromote.
5219 					 */
5220 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
5221 					    PG_PS_FRAME);
5222 					pte = pmap_pte_quick(pmap, va);
5223 					oldpte = *pte;
5224 					if ((oldpte & PG_V) != 0) {
5225 						/*
5226 						 * Regardless of whether a pte is 32 or 64 bits
5227 						 * in size, PG_RW and PG_M are among the least
5228 						 * significant 32 bits.
5229 						 */
5230 						while (!atomic_cmpset_int((u_int *)pte,
5231 						    oldpte,
5232 						    oldpte & ~(PG_M | PG_RW)))
5233 							oldpte = *pte;
5234 						vm_page_dirty(m);
5235 						pmap_invalidate_page(pmap, va);
5236 					}
5237 				}
5238 			}
5239 		}
5240 		PMAP_UNLOCK(pmap);
5241 	}
5242 small_mappings:
5243 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5244 		pmap = PV_PMAP(pv);
5245 		PMAP_LOCK(pmap);
5246 		pde = pmap_pde(pmap, pv->pv_va);
5247 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
5248 		    " a 4mpage in page %p's pv list", m));
5249 		pte = pmap_pte_quick(pmap, pv->pv_va);
5250 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5251 			/*
5252 			 * Regardless of whether a pte is 32 or 64 bits
5253 			 * in size, PG_M is among the least significant
5254 			 * 32 bits.
5255 			 */
5256 			atomic_clear_int((u_int *)pte, PG_M);
5257 			pmap_invalidate_page(pmap, pv->pv_va);
5258 		}
5259 		PMAP_UNLOCK(pmap);
5260 	}
5261 	sched_unpin();
5262 	rw_wunlock(&pvh_global_lock);
5263 }
5264 
5265 /*
5266  * Miscellaneous support routines follow
5267  */
5268 
5269 /* Adjust the cache mode for a 4KB page mapped via a PTE. */
5270 static __inline void
5271 pmap_pte_attr(pt_entry_t *pte, int cache_bits)
5272 {
5273 	u_int opte, npte;
5274 
5275 	/*
5276 	 * The cache mode bits are all in the low 32-bits of the
5277 	 * PTE, so we can just spin on updating the low 32-bits.
5278 	 */
5279 	do {
5280 		opte = *(u_int *)pte;
5281 		npte = opte & ~PG_PTE_CACHE;
5282 		npte |= cache_bits;
5283 	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
5284 }
5285 
5286 /* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
5287 static __inline void
5288 pmap_pde_attr(pd_entry_t *pde, int cache_bits)
5289 {
5290 	u_int opde, npde;
5291 
5292 	/*
5293 	 * The cache mode bits are all in the low 32-bits of the
5294 	 * PDE, so we can just spin on updating the low 32-bits.
5295 	 */
5296 	do {
5297 		opde = *(u_int *)pde;
5298 		npde = opde & ~PG_PDE_CACHE;
5299 		npde |= cache_bits;
5300 	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
5301 }
5302 
5303 /*
5304  * Map a set of physical memory pages into the kernel virtual
5305  * address space. Return a pointer to where it is mapped. This
5306  * routine is intended to be used for mapping device memory,
5307  * NOT real memory.
5308  */
5309 void *
5310 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5311 {
5312 	struct pmap_preinit_mapping *ppim;
5313 	vm_offset_t va, offset;
5314 	vm_size_t tmpsize;
5315 	int i;
5316 
5317 	offset = pa & PAGE_MASK;
5318 	size = round_page(offset + size);
5319 	pa = pa & PG_FRAME;
5320 
5321 	if (pa < PMAP_MAP_LOW && pa + size <= PMAP_MAP_LOW)
5322 		va = pa + PMAP_MAP_LOW;
5323 	else if (!pmap_initialized) {
5324 		va = 0;
5325 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5326 			ppim = pmap_preinit_mapping + i;
5327 			if (ppim->va == 0) {
5328 				ppim->pa = pa;
5329 				ppim->sz = size;
5330 				ppim->mode = mode;
5331 				ppim->va = virtual_avail;
5332 				virtual_avail += size;
5333 				va = ppim->va;
5334 				break;
5335 			}
5336 		}
5337 		if (va == 0)
5338 			panic("%s: too many preinit mappings", __func__);
5339 	} else {
5340 		/*
5341 		 * If we have a preinit mapping, re-use it.
5342 		 */
5343 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5344 			ppim = pmap_preinit_mapping + i;
5345 			if (ppim->pa == pa && ppim->sz == size &&
5346 			    ppim->mode == mode)
5347 				return ((void *)(ppim->va + offset));
5348 		}
5349 		va = kva_alloc(size);
5350 		if (va == 0)
5351 			panic("%s: Couldn't allocate KVA", __func__);
5352 	}
5353 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
5354 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
5355 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
5356 	pmap_invalidate_cache_range(va, va + size, FALSE);
5357 	return ((void *)(va + offset));
5358 }
5359 
5360 void *
5361 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5362 {
5363 
5364 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5365 }
5366 
5367 void *
5368 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5369 {
5370 
5371 	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5372 }
5373 
5374 void
5375 pmap_unmapdev(vm_offset_t va, vm_size_t size)
5376 {
5377 	struct pmap_preinit_mapping *ppim;
5378 	vm_offset_t offset;
5379 	int i;
5380 
5381 	if (va >= PMAP_MAP_LOW && va <= KERNBASE && va + size <= KERNBASE)
5382 		return;
5383 	offset = va & PAGE_MASK;
5384 	size = round_page(offset + size);
5385 	va = trunc_page(va);
5386 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5387 		ppim = pmap_preinit_mapping + i;
5388 		if (ppim->va == va && ppim->sz == size) {
5389 			if (pmap_initialized)
5390 				return;
5391 			ppim->pa = 0;
5392 			ppim->va = 0;
5393 			ppim->sz = 0;
5394 			ppim->mode = 0;
5395 			if (va + size == virtual_avail)
5396 				virtual_avail = va;
5397 			return;
5398 		}
5399 	}
5400 	if (pmap_initialized)
5401 		kva_free(va, size);
5402 }
5403 
5404 /*
5405  * Sets the memory attribute for the specified page.
5406  */
5407 void
5408 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5409 {
5410 
5411 	m->md.pat_mode = ma;
5412 	if ((m->flags & PG_FICTITIOUS) != 0)
5413 		return;
5414 
5415 	/*
5416 	 * If "m" is a normal page, flush it from the cache.
5417 	 * See pmap_invalidate_cache_range().
5418 	 *
5419 	 * First, try to find an existing mapping of the page by sf
5420 	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5421 	 * flushes the cache.
5422 	 */
5423 	if (sf_buf_invalidate_cache(m))
5424 		return;
5425 
5426 	/*
5427 	 * If page is not mapped by sf buffer, but CPU does not
5428 	 * support self snoop, map the page transient and do
5429 	 * invalidation. In the worst case, whole cache is flushed by
5430 	 * pmap_invalidate_cache_range().
5431 	 */
5432 	if ((cpu_feature & CPUID_SS) == 0)
5433 		pmap_flush_page(m);
5434 }
5435 
5436 static void
5437 pmap_flush_page(vm_page_t m)
5438 {
5439 	pt_entry_t *cmap_pte2;
5440 	struct pcpu *pc;
5441 	vm_offset_t sva, eva;
5442 	bool useclflushopt;
5443 
5444 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
5445 	if (useclflushopt || (cpu_feature & CPUID_CLFSH) != 0) {
5446 		sched_pin();
5447 		pc = get_pcpu();
5448 		cmap_pte2 = pc->pc_cmap_pte2;
5449 		mtx_lock(&pc->pc_cmap_lock);
5450 		if (*cmap_pte2)
5451 			panic("pmap_flush_page: CMAP2 busy");
5452 		*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
5453 		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
5454 		invlcaddr(pc->pc_cmap_addr2);
5455 		sva = (vm_offset_t)pc->pc_cmap_addr2;
5456 		eva = sva + PAGE_SIZE;
5457 
5458 		/*
5459 		 * Use mfence or sfence despite the ordering implied by
5460 		 * mtx_{un,}lock() because clflush on non-Intel CPUs
5461 		 * and clflushopt are not guaranteed to be ordered by
5462 		 * any other instruction.
5463 		 */
5464 		if (useclflushopt)
5465 			sfence();
5466 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5467 			mfence();
5468 		for (; sva < eva; sva += cpu_clflush_line_size) {
5469 			if (useclflushopt)
5470 				clflushopt(sva);
5471 			else
5472 				clflush(sva);
5473 		}
5474 		if (useclflushopt)
5475 			sfence();
5476 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5477 			mfence();
5478 		*cmap_pte2 = 0;
5479 		sched_unpin();
5480 		mtx_unlock(&pc->pc_cmap_lock);
5481 	} else
5482 		pmap_invalidate_cache();
5483 }
5484 
5485 /*
5486  * Changes the specified virtual address range's memory type to that given by
5487  * the parameter "mode".  The specified virtual address range must be
5488  * completely contained within either the kernel map.
5489  *
5490  * Returns zero if the change completed successfully, and either EINVAL or
5491  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5492  * of the virtual address range was not mapped, and ENOMEM is returned if
5493  * there was insufficient memory available to complete the change.
5494  */
5495 int
5496 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
5497 {
5498 	vm_offset_t base, offset, tmpva;
5499 	pd_entry_t *pde;
5500 	pt_entry_t *pte;
5501 	int cache_bits_pte, cache_bits_pde;
5502 	boolean_t changed;
5503 
5504 	base = trunc_page(va);
5505 	offset = va & PAGE_MASK;
5506 	size = round_page(offset + size);
5507 
5508 	/*
5509 	 * Only supported on kernel virtual addresses above the recursive map.
5510 	 */
5511 	if (base < VM_MIN_KERNEL_ADDRESS)
5512 		return (EINVAL);
5513 
5514 	cache_bits_pde = pmap_cache_bits(mode, 1);
5515 	cache_bits_pte = pmap_cache_bits(mode, 0);
5516 	changed = FALSE;
5517 
5518 	/*
5519 	 * Pages that aren't mapped aren't supported.  Also break down
5520 	 * 2/4MB pages into 4KB pages if required.
5521 	 */
5522 	PMAP_LOCK(kernel_pmap);
5523 	for (tmpva = base; tmpva < base + size; ) {
5524 		pde = pmap_pde(kernel_pmap, tmpva);
5525 		if (*pde == 0) {
5526 			PMAP_UNLOCK(kernel_pmap);
5527 			return (EINVAL);
5528 		}
5529 		if (*pde & PG_PS) {
5530 			/*
5531 			 * If the current 2/4MB page already has
5532 			 * the required memory type, then we need not
5533 			 * demote this page.  Just increment tmpva to
5534 			 * the next 2/4MB page frame.
5535 			 */
5536 			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
5537 				tmpva = trunc_4mpage(tmpva) + NBPDR;
5538 				continue;
5539 			}
5540 
5541 			/*
5542 			 * If the current offset aligns with a 2/4MB
5543 			 * page frame and there is at least 2/4MB left
5544 			 * within the range, then we need not break
5545 			 * down this page into 4KB pages.
5546 			 */
5547 			if ((tmpva & PDRMASK) == 0 &&
5548 			    tmpva + PDRMASK < base + size) {
5549 				tmpva += NBPDR;
5550 				continue;
5551 			}
5552 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
5553 				PMAP_UNLOCK(kernel_pmap);
5554 				return (ENOMEM);
5555 			}
5556 		}
5557 		pte = vtopte(tmpva);
5558 		if (*pte == 0) {
5559 			PMAP_UNLOCK(kernel_pmap);
5560 			return (EINVAL);
5561 		}
5562 		tmpva += PAGE_SIZE;
5563 	}
5564 	PMAP_UNLOCK(kernel_pmap);
5565 
5566 	/*
5567 	 * Ok, all the pages exist, so run through them updating their
5568 	 * cache mode if required.
5569 	 */
5570 	for (tmpva = base; tmpva < base + size; ) {
5571 		pde = pmap_pde(kernel_pmap, tmpva);
5572 		if (*pde & PG_PS) {
5573 			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
5574 				pmap_pde_attr(pde, cache_bits_pde);
5575 				changed = TRUE;
5576 			}
5577 			tmpva = trunc_4mpage(tmpva) + NBPDR;
5578 		} else {
5579 			pte = vtopte(tmpva);
5580 			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
5581 				pmap_pte_attr(pte, cache_bits_pte);
5582 				changed = TRUE;
5583 			}
5584 			tmpva += PAGE_SIZE;
5585 		}
5586 	}
5587 
5588 	/*
5589 	 * Flush CPU caches to make sure any data isn't cached that
5590 	 * shouldn't be, etc.
5591 	 */
5592 	if (changed) {
5593 		pmap_invalidate_range(kernel_pmap, base, tmpva);
5594 		pmap_invalidate_cache_range(base, tmpva, FALSE);
5595 	}
5596 	return (0);
5597 }
5598 
5599 /*
5600  * perform the pmap work for mincore
5601  */
5602 int
5603 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5604 {
5605 	pd_entry_t pde;
5606 	pt_entry_t pte;
5607 	vm_paddr_t pa;
5608 	int val;
5609 
5610 	PMAP_LOCK(pmap);
5611 retry:
5612 	pde = *pmap_pde(pmap, addr);
5613 	if (pde != 0) {
5614 		if ((pde & PG_PS) != 0) {
5615 			pte = pde;
5616 			/* Compute the physical address of the 4KB page. */
5617 			pa = ((pde & PG_PS_FRAME) | (addr & PDRMASK)) &
5618 			    PG_FRAME;
5619 			val = MINCORE_SUPER;
5620 		} else {
5621 			pte = pmap_pte_ufast(pmap, addr, pde);
5622 			pa = pte & PG_FRAME;
5623 			val = 0;
5624 		}
5625 	} else {
5626 		pte = 0;
5627 		pa = 0;
5628 		val = 0;
5629 	}
5630 	if ((pte & PG_V) != 0) {
5631 		val |= MINCORE_INCORE;
5632 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5633 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5634 		if ((pte & PG_A) != 0)
5635 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5636 	}
5637 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5638 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5639 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5640 		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
5641 		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
5642 			goto retry;
5643 	} else
5644 		PA_UNLOCK_COND(*locked_pa);
5645 	PMAP_UNLOCK(pmap);
5646 	return (val);
5647 }
5648 
5649 void
5650 pmap_activate(struct thread *td)
5651 {
5652 	pmap_t	pmap, oldpmap;
5653 	u_int	cpuid;
5654 	u_int32_t  cr3;
5655 
5656 	critical_enter();
5657 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5658 	oldpmap = PCPU_GET(curpmap);
5659 	cpuid = PCPU_GET(cpuid);
5660 #if defined(SMP)
5661 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
5662 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5663 #else
5664 	CPU_CLR(cpuid, &oldpmap->pm_active);
5665 	CPU_SET(cpuid, &pmap->pm_active);
5666 #endif
5667 #if defined(PAE) || defined(PAE_TABLES)
5668 	cr3 = vtophys(pmap->pm_pdpt);
5669 #else
5670 	cr3 = vtophys(pmap->pm_pdir);
5671 #endif
5672 	/*
5673 	 * pmap_activate is for the current thread on the current cpu
5674 	 */
5675 	td->td_pcb->pcb_cr3 = cr3;
5676 	PCPU_SET(curpmap, pmap);
5677 	critical_exit();
5678 }
5679 
5680 void
5681 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5682 {
5683 }
5684 
5685 /*
5686  *	Increase the starting virtual address of the given mapping if a
5687  *	different alignment might result in more superpage mappings.
5688  */
5689 void
5690 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5691     vm_offset_t *addr, vm_size_t size)
5692 {
5693 	vm_offset_t superpage_offset;
5694 
5695 	if (size < NBPDR)
5696 		return;
5697 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5698 		offset += ptoa(object->pg_color);
5699 	superpage_offset = offset & PDRMASK;
5700 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5701 	    (*addr & PDRMASK) == superpage_offset)
5702 		return;
5703 	if ((*addr & PDRMASK) < superpage_offset)
5704 		*addr = (*addr & ~PDRMASK) + superpage_offset;
5705 	else
5706 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5707 }
5708 
5709 vm_offset_t
5710 pmap_quick_enter_page(vm_page_t m)
5711 {
5712 	vm_offset_t qaddr;
5713 	pt_entry_t *pte;
5714 
5715 	critical_enter();
5716 	qaddr = PCPU_GET(qmap_addr);
5717 	pte = vtopte(qaddr);
5718 
5719 	KASSERT(*pte == 0, ("pmap_quick_enter_page: PTE busy"));
5720 	*pte = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
5721 	    pmap_cache_bits(pmap_page_get_memattr(m), 0);
5722 	invlpg(qaddr);
5723 
5724 	return (qaddr);
5725 }
5726 
5727 void
5728 pmap_quick_remove_page(vm_offset_t addr)
5729 {
5730 	vm_offset_t qaddr;
5731 	pt_entry_t *pte;
5732 
5733 	qaddr = PCPU_GET(qmap_addr);
5734 	pte = vtopte(qaddr);
5735 
5736 	KASSERT(*pte != 0, ("pmap_quick_remove_page: PTE not in use"));
5737 	KASSERT(addr == qaddr, ("pmap_quick_remove_page: invalid address"));
5738 
5739 	*pte = 0;
5740 	critical_exit();
5741 }
5742 
5743 static vmem_t *pmap_trm_arena;
5744 static vmem_addr_t pmap_trm_arena_last = PMAP_TRM_MIN_ADDRESS;
5745 static int trm_guard = PAGE_SIZE;
5746 
5747 static int
5748 pmap_trm_import(void *unused __unused, vmem_size_t size, int flags,
5749     vmem_addr_t *addrp)
5750 {
5751 	vm_page_t m;
5752 	vmem_addr_t af, addr, prev_addr;
5753 	pt_entry_t *trm_pte;
5754 
5755 	prev_addr = atomic_load_long(&pmap_trm_arena_last);
5756 	size = round_page(size) + trm_guard;
5757 	for (;;) {
5758 		if (prev_addr + size < prev_addr || prev_addr + size < size ||
5759 		    prev_addr + size > PMAP_TRM_MAX_ADDRESS)
5760 			return (ENOMEM);
5761 		addr = prev_addr + size;
5762 		if (atomic_fcmpset_int(&pmap_trm_arena_last, &prev_addr, addr))
5763 			break;
5764 	}
5765 	prev_addr += trm_guard;
5766 	trm_pte = PTmap + atop(prev_addr);
5767 	for (af = prev_addr; af < addr; af += PAGE_SIZE) {
5768 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_NOBUSY |
5769 		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
5770 		pte_store(&trm_pte[atop(af - prev_addr)], VM_PAGE_TO_PHYS(m) |
5771 		    PG_M | PG_A | PG_RW | PG_V | pgeflag |
5772 		    pmap_cache_bits(VM_MEMATTR_DEFAULT, FALSE));
5773 	}
5774 	*addrp = prev_addr;
5775 	return (0);
5776 }
5777 
5778 static
5779 void pmap_init_trm(void)
5780 {
5781 	vm_page_t pd_m;
5782 
5783 	TUNABLE_INT_FETCH("machdep.trm_guard", &trm_guard);
5784 	if ((trm_guard & PAGE_MASK) != 0)
5785 		trm_guard = 0;
5786 	pmap_trm_arena = vmem_create("i386trampoline", 0, 0, 1, 0, M_WAITOK);
5787 	vmem_set_import(pmap_trm_arena, pmap_trm_import, NULL, NULL, PAGE_SIZE);
5788 	pd_m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_NOBUSY |
5789 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_WAITOK | VM_ALLOC_ZERO);
5790 	if ((pd_m->flags & PG_ZERO) == 0)
5791 		pmap_zero_page(pd_m);
5792 	PTD[TRPTDI] = VM_PAGE_TO_PHYS(pd_m) | PG_M | PG_A | PG_RW | PG_V |
5793 	    pmap_cache_bits(VM_MEMATTR_DEFAULT, TRUE);
5794 }
5795 
5796 void *
5797 pmap_trm_alloc(size_t size, int flags)
5798 {
5799 	vmem_addr_t res;
5800 	int error;
5801 
5802 	MPASS((flags & ~(M_WAITOK | M_NOWAIT | M_ZERO)) == 0);
5803 	error = vmem_xalloc(pmap_trm_arena, roundup2(size, 4), sizeof(int),
5804 	    0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags | M_FIRSTFIT, &res);
5805 	if (error != 0)
5806 		return (NULL);
5807 	if ((flags & M_ZERO) != 0)
5808 		bzero((void *)res, size);
5809 	return ((void *)res);
5810 }
5811 
5812 void
5813 pmap_trm_free(void *addr, size_t size)
5814 {
5815 
5816 	vmem_free(pmap_trm_arena, (uintptr_t)addr, roundup2(size, 4));
5817 }
5818 
5819 #if defined(PMAP_DEBUG)
5820 pmap_pid_dump(int pid)
5821 {
5822 	pmap_t pmap;
5823 	struct proc *p;
5824 	int npte = 0;
5825 	int index;
5826 
5827 	sx_slock(&allproc_lock);
5828 	FOREACH_PROC_IN_SYSTEM(p) {
5829 		if (p->p_pid != pid)
5830 			continue;
5831 
5832 		if (p->p_vmspace) {
5833 			int i,j;
5834 			index = 0;
5835 			pmap = vmspace_pmap(p->p_vmspace);
5836 			for (i = 0; i < NPDEPTD; i++) {
5837 				pd_entry_t *pde;
5838 				pt_entry_t *pte;
5839 				vm_offset_t base = i << PDRSHIFT;
5840 
5841 				pde = &pmap->pm_pdir[i];
5842 				if (pde && pmap_pde_v(pde)) {
5843 					for (j = 0; j < NPTEPG; j++) {
5844 						vm_offset_t va = base + (j << PAGE_SHIFT);
5845 						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
5846 							if (index) {
5847 								index = 0;
5848 								printf("\n");
5849 							}
5850 							sx_sunlock(&allproc_lock);
5851 							return (npte);
5852 						}
5853 						pte = pmap_pte(pmap, va);
5854 						if (pte && pmap_pte_v(pte)) {
5855 							pt_entry_t pa;
5856 							vm_page_t m;
5857 							pa = *pte;
5858 							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
5859 							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
5860 								va, pa, m->hold_count, m->wire_count, m->flags);
5861 							npte++;
5862 							index++;
5863 							if (index >= 2) {
5864 								index = 0;
5865 								printf("\n");
5866 							} else {
5867 								printf(" ");
5868 							}
5869 						}
5870 					}
5871 				}
5872 			}
5873 		}
5874 	}
5875 	sx_sunlock(&allproc_lock);
5876 	return (npte);
5877 }
5878 #endif
5879