xref: /freebsd/sys/i386/i386/pmap.c (revision a3557ef0)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * the Systems Programming Group of the University of Utah Computer
15  * Science Department and William Jolitz of UUNET Technologies Inc.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46  */
47 /*-
48  * Copyright (c) 2003 Networks Associates Technology, Inc.
49  * All rights reserved.
50  * Copyright (c) 2018 The FreeBSD Foundation
51  * All rights reserved.
52  *
53  * This software was developed for the FreeBSD Project by Jake Burkholder,
54  * Safeport Network Services, and Network Associates Laboratories, the
55  * Security Research Division of Network Associates, Inc. under
56  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
57  * CHATS research program.
58  *
59  * Portions of this software were developed by
60  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
61  * the FreeBSD Foundation.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  * 1. Redistributions of source code must retain the above copyright
67  *    notice, this list of conditions and the following disclaimer.
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in the
70  *    documentation and/or other materials provided with the distribution.
71  *
72  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
73  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
74  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
75  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
76  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
77  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
78  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
80  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
81  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
82  * SUCH DAMAGE.
83  */
84 
85 #include <sys/cdefs.h>
86 __FBSDID("$FreeBSD$");
87 
88 /*
89  *	Manages physical address maps.
90  *
91  *	Since the information managed by this module is
92  *	also stored by the logical address mapping module,
93  *	this module may throw away valid virtual-to-physical
94  *	mappings at almost any time.  However, invalidations
95  *	of virtual-to-physical mappings must be done as
96  *	requested.
97  *
98  *	In order to cope with hardware architectures which
99  *	make virtual-to-physical map invalidates expensive,
100  *	this module may delay invalidate or reduced protection
101  *	operations until such time as they are actually
102  *	necessary.  This module is given full information as
103  *	to which processors are currently using which maps,
104  *	and to when physical maps must be made correct.
105  */
106 
107 #include "opt_apic.h"
108 #include "opt_cpu.h"
109 #include "opt_pmap.h"
110 #include "opt_smp.h"
111 #include "opt_vm.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/kernel.h>
116 #include <sys/ktr.h>
117 #include <sys/lock.h>
118 #include <sys/malloc.h>
119 #include <sys/mman.h>
120 #include <sys/msgbuf.h>
121 #include <sys/mutex.h>
122 #include <sys/proc.h>
123 #include <sys/rwlock.h>
124 #include <sys/sbuf.h>
125 #include <sys/sf_buf.h>
126 #include <sys/sx.h>
127 #include <sys/vmmeter.h>
128 #include <sys/sched.h>
129 #include <sys/sysctl.h>
130 #include <sys/smp.h>
131 #include <sys/vmem.h>
132 
133 #include <vm/vm.h>
134 #include <vm/vm_param.h>
135 #include <vm/vm_kern.h>
136 #include <vm/vm_page.h>
137 #include <vm/vm_map.h>
138 #include <vm/vm_object.h>
139 #include <vm/vm_extern.h>
140 #include <vm/vm_pageout.h>
141 #include <vm/vm_pager.h>
142 #include <vm/vm_phys.h>
143 #include <vm/vm_radix.h>
144 #include <vm/vm_reserv.h>
145 #include <vm/uma.h>
146 
147 #ifdef DEV_APIC
148 #include <sys/bus.h>
149 #include <machine/intr_machdep.h>
150 #include <x86/apicvar.h>
151 #endif
152 #include <x86/ifunc.h>
153 #include <machine/bootinfo.h>
154 #include <machine/cpu.h>
155 #include <machine/cputypes.h>
156 #include <machine/md_var.h>
157 #include <machine/pcb.h>
158 #include <machine/specialreg.h>
159 #ifdef SMP
160 #include <machine/smp.h>
161 #endif
162 #include <machine/pmap_base.h>
163 
164 #if !defined(DIAGNOSTIC)
165 #ifdef __GNUC_GNU_INLINE__
166 #define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
167 #else
168 #define PMAP_INLINE	extern inline
169 #endif
170 #else
171 #define PMAP_INLINE
172 #endif
173 
174 #ifdef PV_STATS
175 #define PV_STAT(x)	do { x ; } while (0)
176 #else
177 #define PV_STAT(x)	do { } while (0)
178 #endif
179 
180 #define	pa_index(pa)	((pa) >> PDRSHIFT)
181 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
182 
183 /*
184  * PTmap is recursive pagemap at top of virtual address space.
185  * Within PTmap, the page directory can be found (third indirection).
186  */
187 #define	PTmap	((pt_entry_t *)(PTDPTDI << PDRSHIFT))
188 #define	PTD	((pd_entry_t *)((PTDPTDI << PDRSHIFT) + (PTDPTDI * PAGE_SIZE)))
189 #define	PTDpde	((pd_entry_t *)((PTDPTDI << PDRSHIFT) + (PTDPTDI * PAGE_SIZE) + \
190     (PTDPTDI * PDESIZE)))
191 
192 /*
193  * Translate a virtual address to the kernel virtual address of its page table
194  * entry (PTE).  This can be used recursively.  If the address of a PTE as
195  * previously returned by this macro is itself given as the argument, then the
196  * address of the page directory entry (PDE) that maps the PTE will be
197  * returned.
198  *
199  * This macro may be used before pmap_bootstrap() is called.
200  */
201 #define	vtopte(va)	(PTmap + i386_btop(va))
202 
203 /*
204  * Get PDEs and PTEs for user/kernel address space
205  */
206 #define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
207 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
208 
209 #define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
210 #define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
211 #define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
212 #define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
213 #define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
214 
215 #define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
216     atomic_clear_int((u_int *)(pte), PG_W))
217 #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
218 
219 static int pgeflag = 0;		/* PG_G or-in */
220 static int pseflag = 0;		/* PG_PS or-in */
221 
222 static int nkpt = NKPT;
223 
224 #ifdef PMAP_PAE_COMP
225 pt_entry_t pg_nx;
226 static uma_zone_t pdptzone;
227 #else
228 #define	pg_nx	0
229 #endif
230 
231 _Static_assert(VM_MAXUSER_ADDRESS == VADDR(TRPTDI, 0), "VM_MAXUSER_ADDRESS");
232 _Static_assert(VM_MAX_KERNEL_ADDRESS <= VADDR(PTDPTDI, 0),
233     "VM_MAX_KERNEL_ADDRESS");
234 _Static_assert(PMAP_MAP_LOW == VADDR(LOWPTDI, 0), "PMAP_MAP_LOW");
235 _Static_assert(KERNLOAD == (KERNPTDI << PDRSHIFT), "KERNLOAD");
236 
237 extern int pat_works;
238 extern int pg_ps_enabled;
239 
240 extern int elf32_nxstack;
241 
242 #define	PAT_INDEX_SIZE	8
243 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
244 
245 /*
246  * pmap_mapdev support pre initialization (i.e. console)
247  */
248 #define	PMAP_PREINIT_MAPPING_COUNT	8
249 static struct pmap_preinit_mapping {
250 	vm_paddr_t	pa;
251 	vm_offset_t	va;
252 	vm_size_t	sz;
253 	int		mode;
254 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
255 static int pmap_initialized;
256 
257 static struct rwlock_padalign pvh_global_lock;
258 
259 /*
260  * Data for the pv entry allocation mechanism
261  */
262 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
263 extern int pv_entry_max, pv_entry_count;
264 static int pv_entry_high_water = 0;
265 static struct md_page *pv_table;
266 extern int shpgperproc;
267 
268 static struct pv_chunk *pv_chunkbase;	/* KVA block for pv_chunks */
269 static int pv_maxchunks;		/* How many chunks we have KVA for */
270 static vm_offset_t pv_vafree;		/* freelist stored in the PTE */
271 
272 /*
273  * All those kernel PT submaps that BSD is so fond of
274  */
275 static pt_entry_t *CMAP3;
276 static pd_entry_t *KPTD;
277 static caddr_t CADDR3;
278 
279 /*
280  * Crashdump maps.
281  */
282 static caddr_t crashdumpmap;
283 
284 static pt_entry_t *PMAP1 = NULL, *PMAP2, *PMAP3;
285 static pt_entry_t *PADDR1 = NULL, *PADDR2, *PADDR3;
286 #ifdef SMP
287 static int PMAP1cpu, PMAP3cpu;
288 extern int PMAP1changedcpu;
289 #endif
290 extern int PMAP1changed;
291 extern int PMAP1unchanged;
292 static struct mtx PMAP2mutex;
293 
294 /*
295  * Internal flags for pmap_enter()'s helper functions.
296  */
297 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
298 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
299 
300 static void	free_pv_chunk(struct pv_chunk *pc);
301 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
302 static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
303 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
304 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
305 		    u_int flags);
306 #if VM_NRESERVLEVEL > 0
307 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
308 #endif
309 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
310 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
311 		    vm_offset_t va);
312 static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
313 
314 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
315 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
316 static bool	pmap_enter_4mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
317 		    vm_prot_t prot);
318 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
319 		    u_int flags, vm_page_t m);
320 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
321     vm_page_t m, vm_prot_t prot, vm_page_t mpte);
322 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted);
323 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
324 		    pd_entry_t pde);
325 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
326 static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
327 static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
328 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
329 static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
330 static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
331 #if VM_NRESERVLEVEL > 0
332 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
333 #endif
334 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
335     vm_prot_t prot);
336 static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
337 static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
338     struct spglist *free);
339 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
340     struct spglist *free);
341 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
342 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free);
343 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
344 		    struct spglist *free);
345 static void pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va);
346 static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
347 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
348     vm_page_t m);
349 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
350     pd_entry_t newpde);
351 static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
352 
353 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
354 
355 static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
356 static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
357 static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
358 static void pmap_pte_release(pt_entry_t *pte);
359 static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
360 #ifdef PMAP_PAE_COMP
361 static void *pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain,
362     uint8_t *flags, int wait);
363 #endif
364 static void pmap_init_trm(void);
365 static void pmap_invalidate_all_int(pmap_t pmap);
366 
367 static __inline void pagezero(void *page);
368 
369 CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
370 CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
371 
372 extern char _end[];
373 extern u_long physfree;	/* phys addr of next free page */
374 extern u_long vm86phystk;/* PA of vm86/bios stack */
375 extern u_long vm86paddr;/* address of vm86 region */
376 extern int vm86pa;	/* phys addr of vm86 region */
377 extern u_long KERNend;	/* phys addr end of kernel (just after bss) */
378 #ifdef PMAP_PAE_COMP
379 pd_entry_t *IdlePTD_pae;	/* phys addr of kernel PTD */
380 pdpt_entry_t *IdlePDPT;	/* phys addr of kernel PDPT */
381 pt_entry_t *KPTmap_pae;	/* address of kernel page tables */
382 #define	IdlePTD	IdlePTD_pae
383 #define	KPTmap	KPTmap_pae
384 #else
385 pd_entry_t *IdlePTD_nopae;
386 pt_entry_t *KPTmap_nopae;
387 #define	IdlePTD	IdlePTD_nopae
388 #define	KPTmap	KPTmap_nopae
389 #endif
390 extern u_long KPTphys;	/* phys addr of kernel page tables */
391 extern u_long tramp_idleptd;
392 
393 static u_long
394 allocpages(u_int cnt, u_long *physfree)
395 {
396 	u_long res;
397 
398 	res = *physfree;
399 	*physfree += PAGE_SIZE * cnt;
400 	bzero((void *)res, PAGE_SIZE * cnt);
401 	return (res);
402 }
403 
404 static void
405 pmap_cold_map(u_long pa, u_long va, u_long cnt)
406 {
407 	pt_entry_t *pt;
408 
409 	for (pt = (pt_entry_t *)KPTphys + atop(va); cnt > 0;
410 	    cnt--, pt++, va += PAGE_SIZE, pa += PAGE_SIZE)
411 		*pt = pa | PG_V | PG_RW | PG_A | PG_M;
412 }
413 
414 static void
415 pmap_cold_mapident(u_long pa, u_long cnt)
416 {
417 
418 	pmap_cold_map(pa, pa, cnt);
419 }
420 
421 _Static_assert(LOWPTDI * 2 * NBPDR == KERNBASE,
422     "Broken double-map of zero PTD");
423 
424 static void
425 __CONCAT(PMTYPE, remap_lower)(bool enable)
426 {
427 	int i;
428 
429 	for (i = 0; i < LOWPTDI; i++)
430 		IdlePTD[i] = enable ? IdlePTD[LOWPTDI + i] : 0;
431 	load_cr3(rcr3());		/* invalidate TLB */
432 }
433 
434 /*
435  * Called from locore.s before paging is enabled.  Sets up the first
436  * kernel page table.  Since kernel is mapped with PA == VA, this code
437  * does not require relocations.
438  */
439 void
440 __CONCAT(PMTYPE, cold)(void)
441 {
442 	pt_entry_t *pt;
443 	u_long a;
444 	u_int cr3, ncr4;
445 
446 	physfree = (u_long)&_end;
447 	if (bootinfo.bi_esymtab != 0)
448 		physfree = bootinfo.bi_esymtab;
449 	if (bootinfo.bi_kernend != 0)
450 		physfree = bootinfo.bi_kernend;
451 	physfree = roundup2(physfree, NBPDR);
452 	KERNend = physfree;
453 
454 	/* Allocate Kernel Page Tables */
455 	KPTphys = allocpages(NKPT, &physfree);
456 	KPTmap = (pt_entry_t *)KPTphys;
457 
458 	/* Allocate Page Table Directory */
459 #ifdef PMAP_PAE_COMP
460 	/* XXX only need 32 bytes (easier for now) */
461 	IdlePDPT = (pdpt_entry_t *)allocpages(1, &physfree);
462 #endif
463 	IdlePTD = (pd_entry_t *)allocpages(NPGPTD, &physfree);
464 
465 	/*
466 	 * Allocate KSTACK.  Leave a guard page between IdlePTD and
467 	 * proc0kstack, to control stack overflow for thread0 and
468 	 * prevent corruption of the page table.  We leak the guard
469 	 * physical memory due to 1:1 mappings.
470 	 */
471 	allocpages(1, &physfree);
472 	proc0kstack = allocpages(TD0_KSTACK_PAGES, &physfree);
473 
474 	/* vm86/bios stack */
475 	vm86phystk = allocpages(1, &physfree);
476 
477 	/* pgtable + ext + IOPAGES */
478 	vm86paddr = vm86pa = allocpages(3, &physfree);
479 
480 	/* Install page tables into PTD.  Page table page 1 is wasted. */
481 	for (a = 0; a < NKPT; a++)
482 		IdlePTD[a] = (KPTphys + ptoa(a)) | PG_V | PG_RW | PG_A | PG_M;
483 
484 #ifdef PMAP_PAE_COMP
485 	/* PAE install PTD pointers into PDPT */
486 	for (a = 0; a < NPGPTD; a++)
487 		IdlePDPT[a] = ((u_int)IdlePTD + ptoa(a)) | PG_V;
488 #endif
489 
490 	/*
491 	 * Install recursive mapping for kernel page tables into
492 	 * itself.
493 	 */
494 	for (a = 0; a < NPGPTD; a++)
495 		IdlePTD[PTDPTDI + a] = ((u_int)IdlePTD + ptoa(a)) | PG_V |
496 		    PG_RW;
497 
498 	/*
499 	 * Initialize page table pages mapping physical address zero
500 	 * through the (physical) end of the kernel.  Many of these
501 	 * pages must be reserved, and we reserve them all and map
502 	 * them linearly for convenience.  We do this even if we've
503 	 * enabled PSE above; we'll just switch the corresponding
504 	 * kernel PDEs before we turn on paging.
505 	 *
506 	 * This and all other page table entries allow read and write
507 	 * access for various reasons.  Kernel mappings never have any
508 	 * access restrictions.
509 	 */
510 	pmap_cold_mapident(0, atop(NBPDR) * LOWPTDI);
511 	pmap_cold_map(0, NBPDR * LOWPTDI, atop(NBPDR) * LOWPTDI);
512 	pmap_cold_mapident(KERNBASE, atop(KERNend - KERNBASE));
513 
514 	/* Map page table directory */
515 #ifdef PMAP_PAE_COMP
516 	pmap_cold_mapident((u_long)IdlePDPT, 1);
517 #endif
518 	pmap_cold_mapident((u_long)IdlePTD, NPGPTD);
519 
520 	/* Map early KPTmap.  It is really pmap_cold_mapident. */
521 	pmap_cold_map(KPTphys, (u_long)KPTmap, NKPT);
522 
523 	/* Map proc0kstack */
524 	pmap_cold_mapident(proc0kstack, TD0_KSTACK_PAGES);
525 	/* ISA hole already mapped */
526 
527 	pmap_cold_mapident(vm86phystk, 1);
528 	pmap_cold_mapident(vm86pa, 3);
529 
530 	/* Map page 0 into the vm86 page table */
531 	*(pt_entry_t *)vm86pa = 0 | PG_RW | PG_U | PG_A | PG_M | PG_V;
532 
533 	/* ...likewise for the ISA hole for vm86 */
534 	for (pt = (pt_entry_t *)vm86pa + atop(ISA_HOLE_START), a = 0;
535 	    a < atop(ISA_HOLE_LENGTH); a++, pt++)
536 		*pt = (ISA_HOLE_START + ptoa(a)) | PG_RW | PG_U | PG_A |
537 		    PG_M | PG_V;
538 
539 	/* Enable PSE, PGE, VME, and PAE if configured. */
540 	ncr4 = 0;
541 	if ((cpu_feature & CPUID_PSE) != 0) {
542 		ncr4 |= CR4_PSE;
543 		pseflag = PG_PS;
544 		/*
545 		 * Superpage mapping of the kernel text.  Existing 4k
546 		 * page table pages are wasted.
547 		 */
548 		for (a = KERNBASE; a < KERNend; a += NBPDR)
549 			IdlePTD[a >> PDRSHIFT] = a | PG_PS | PG_A | PG_M |
550 			    PG_RW | PG_V;
551 	}
552 	if ((cpu_feature & CPUID_PGE) != 0) {
553 		ncr4 |= CR4_PGE;
554 		pgeflag = PG_G;
555 	}
556 	ncr4 |= (cpu_feature & CPUID_VME) != 0 ? CR4_VME : 0;
557 #ifdef PMAP_PAE_COMP
558 	ncr4 |= CR4_PAE;
559 #endif
560 	if (ncr4 != 0)
561 		load_cr4(rcr4() | ncr4);
562 
563 	/* Now enable paging */
564 #ifdef PMAP_PAE_COMP
565 	cr3 = (u_int)IdlePDPT;
566 	if ((cpu_feature & CPUID_PAT) == 0)
567 		wbinvd();
568 #else
569 	cr3 = (u_int)IdlePTD;
570 #endif
571 	tramp_idleptd = cr3;
572 	load_cr3(cr3);
573 	load_cr0(rcr0() | CR0_PG);
574 
575 	/*
576 	 * Now running relocated at KERNBASE where the system is
577 	 * linked to run.
578 	 */
579 
580 	/*
581 	 * Remove the lowest part of the double mapping of low memory
582 	 * to get some null pointer checks.
583 	 */
584 	__CONCAT(PMTYPE, remap_lower)(false);
585 
586 	kernel_vm_end = /* 0 + */ NKPT * NBPDR;
587 #ifdef PMAP_PAE_COMP
588 	i386_pmap_VM_NFREEORDER = VM_NFREEORDER_PAE;
589 	i386_pmap_VM_LEVEL_0_ORDER = VM_LEVEL_0_ORDER_PAE;
590 	i386_pmap_PDRSHIFT = PDRSHIFT_PAE;
591 #else
592 	i386_pmap_VM_NFREEORDER = VM_NFREEORDER_NOPAE;
593 	i386_pmap_VM_LEVEL_0_ORDER = VM_LEVEL_0_ORDER_NOPAE;
594 	i386_pmap_PDRSHIFT = PDRSHIFT_NOPAE;
595 #endif
596 }
597 
598 static void
599 __CONCAT(PMTYPE, set_nx)(void)
600 {
601 
602 #ifdef PMAP_PAE_COMP
603 	if ((amd_feature & AMDID_NX) == 0)
604 		return;
605 	pg_nx = PG_NX;
606 	elf32_nxstack = 1;
607 	/* EFER.EFER_NXE is set in initializecpu(). */
608 #endif
609 }
610 
611 /*
612  *	Bootstrap the system enough to run with virtual memory.
613  *
614  *	On the i386 this is called after pmap_cold() created initial
615  *	kernel page table and enabled paging, and just syncs the pmap
616  *	module with what has already been done.
617  */
618 static void
619 __CONCAT(PMTYPE, bootstrap)(vm_paddr_t firstaddr)
620 {
621 	vm_offset_t va;
622 	pt_entry_t *pte, *unused;
623 	struct pcpu *pc;
624 	u_long res;
625 	int i;
626 
627 	res = atop(firstaddr - (vm_paddr_t)KERNLOAD);
628 
629 	/*
630 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
631 	 * preallocated kernel page table pages so that vm_page structures
632 	 * representing these pages will be created.  The vm_page structures
633 	 * are required for promotion of the corresponding kernel virtual
634 	 * addresses to superpage mappings.
635 	 */
636 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
637 
638 	/*
639 	 * Initialize the first available kernel virtual address.
640 	 * However, using "firstaddr" may waste a few pages of the
641 	 * kernel virtual address space, because pmap_cold() may not
642 	 * have mapped every physical page that it allocated.
643 	 * Preferably, pmap_cold() would provide a first unused
644 	 * virtual address in addition to "firstaddr".
645 	 */
646 	virtual_avail = (vm_offset_t)firstaddr;
647 	virtual_end = VM_MAX_KERNEL_ADDRESS;
648 
649 	/*
650 	 * Initialize the kernel pmap (which is statically allocated).
651 	 * Count bootstrap data as being resident in case any of this data is
652 	 * later unmapped (using pmap_remove()) and freed.
653 	 */
654 	PMAP_LOCK_INIT(kernel_pmap);
655 	kernel_pmap->pm_pdir = IdlePTD;
656 #ifdef PMAP_PAE_COMP
657 	kernel_pmap->pm_pdpt = IdlePDPT;
658 #endif
659 	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
660 	kernel_pmap->pm_stats.resident_count = res;
661 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
662 
663  	/*
664 	 * Initialize the global pv list lock.
665 	 */
666 	rw_init(&pvh_global_lock, "pmap pv global");
667 
668 	/*
669 	 * Reserve some special page table entries/VA space for temporary
670 	 * mapping of pages.
671 	 */
672 #define	SYSMAP(c, p, v, n)	\
673 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
674 
675 	va = virtual_avail;
676 	pte = vtopte(va);
677 
678 
679 	/*
680 	 * Initialize temporary map objects on the current CPU for use
681 	 * during early boot.
682 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
683 	 * CMAP3 is used for the boot-time memory test.
684 	 */
685 	pc = get_pcpu();
686 	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
687 	SYSMAP(caddr_t, pc->pc_cmap_pte1, pc->pc_cmap_addr1, 1)
688 	SYSMAP(caddr_t, pc->pc_cmap_pte2, pc->pc_cmap_addr2, 1)
689 	SYSMAP(vm_offset_t, pte, pc->pc_qmap_addr, 1)
690 
691 	SYSMAP(caddr_t, CMAP3, CADDR3, 1);
692 
693 	/*
694 	 * Crashdump maps.
695 	 */
696 	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
697 
698 	/*
699 	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
700 	 */
701 	SYSMAP(caddr_t, unused, ptvmmap, 1)
702 
703 	/*
704 	 * msgbufp is used to map the system message buffer.
705 	 */
706 	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
707 
708 	/*
709 	 * KPTmap is used by pmap_kextract().
710 	 *
711 	 * KPTmap is first initialized by pmap_cold().  However, that initial
712 	 * KPTmap can only support NKPT page table pages.  Here, a larger
713 	 * KPTmap is created that can support KVA_PAGES page table pages.
714 	 */
715 	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
716 
717 	for (i = 0; i < NKPT; i++)
718 		KPTD[i] = (KPTphys + ptoa(i)) | PG_RW | PG_V;
719 
720 	/*
721 	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
722 	 * respectively.
723 	 */
724 	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
725 	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
726 	SYSMAP(pt_entry_t *, PMAP3, PADDR3, 1)
727 
728 	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
729 
730 	virtual_avail = va;
731 
732 	/*
733 	 * Initialize the PAT MSR if present.
734 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
735 	 * side-effect, invalidates stale PG_G TLB entries that might
736 	 * have been created in our pre-boot environment.  We assume
737 	 * that PAT support implies PGE and in reverse, PGE presence
738 	 * comes with PAT.  Both features were added for Pentium Pro.
739 	 */
740 	pmap_init_pat();
741 }
742 
743 static void
744 pmap_init_reserved_pages(void)
745 {
746 	struct pcpu *pc;
747 	vm_offset_t pages;
748 	int i;
749 
750 #ifdef PMAP_PAE_COMP
751 	if (!pae_mode)
752 		return;
753 #else
754 	if (pae_mode)
755 		return;
756 #endif
757 	CPU_FOREACH(i) {
758 		pc = pcpu_find(i);
759 		mtx_init(&pc->pc_copyout_mlock, "cpmlk", NULL, MTX_DEF |
760 		    MTX_NEW);
761 		pc->pc_copyout_maddr = kva_alloc(ptoa(2));
762 		if (pc->pc_copyout_maddr == 0)
763 			panic("unable to allocate non-sleepable copyout KVA");
764 		sx_init(&pc->pc_copyout_slock, "cpslk");
765 		pc->pc_copyout_saddr = kva_alloc(ptoa(2));
766 		if (pc->pc_copyout_saddr == 0)
767 			panic("unable to allocate sleepable copyout KVA");
768 		pc->pc_pmap_eh_va = kva_alloc(ptoa(1));
769 		if (pc->pc_pmap_eh_va == 0)
770 			panic("unable to allocate pmap_extract_and_hold KVA");
771 		pc->pc_pmap_eh_ptep = (char *)vtopte(pc->pc_pmap_eh_va);
772 
773 		/*
774 		 * Skip if the mappings have already been initialized,
775 		 * i.e. this is the BSP.
776 		 */
777 		if (pc->pc_cmap_addr1 != 0)
778 			continue;
779 
780 		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
781 		pages = kva_alloc(PAGE_SIZE * 3);
782 		if (pages == 0)
783 			panic("unable to allocate CMAP KVA");
784 		pc->pc_cmap_pte1 = vtopte(pages);
785 		pc->pc_cmap_pte2 = vtopte(pages + PAGE_SIZE);
786 		pc->pc_cmap_addr1 = (caddr_t)pages;
787 		pc->pc_cmap_addr2 = (caddr_t)(pages + PAGE_SIZE);
788 		pc->pc_qmap_addr = pages + ptoa(2);
789 	}
790 }
791 
792 SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
793 
794 /*
795  * Setup the PAT MSR.
796  */
797 static void
798 __CONCAT(PMTYPE, init_pat)(void)
799 {
800 	int pat_table[PAT_INDEX_SIZE];
801 	uint64_t pat_msr;
802 	u_long cr0, cr4;
803 	int i;
804 
805 	/* Set default PAT index table. */
806 	for (i = 0; i < PAT_INDEX_SIZE; i++)
807 		pat_table[i] = -1;
808 	pat_table[PAT_WRITE_BACK] = 0;
809 	pat_table[PAT_WRITE_THROUGH] = 1;
810 	pat_table[PAT_UNCACHEABLE] = 3;
811 	pat_table[PAT_WRITE_COMBINING] = 3;
812 	pat_table[PAT_WRITE_PROTECTED] = 3;
813 	pat_table[PAT_UNCACHED] = 3;
814 
815 	/*
816 	 * Bail if this CPU doesn't implement PAT.
817 	 * We assume that PAT support implies PGE.
818 	 */
819 	if ((cpu_feature & CPUID_PAT) == 0) {
820 		for (i = 0; i < PAT_INDEX_SIZE; i++)
821 			pat_index[i] = pat_table[i];
822 		pat_works = 0;
823 		return;
824 	}
825 
826 	/*
827 	 * Due to some Intel errata, we can only safely use the lower 4
828 	 * PAT entries.
829 	 *
830 	 *   Intel Pentium III Processor Specification Update
831 	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
832 	 * or Mode C Paging)
833 	 *
834 	 *   Intel Pentium IV  Processor Specification Update
835 	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
836 	 */
837 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
838 	    !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
839 		pat_works = 0;
840 
841 	/* Initialize default PAT entries. */
842 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
843 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
844 	    PAT_VALUE(2, PAT_UNCACHED) |
845 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
846 	    PAT_VALUE(4, PAT_WRITE_BACK) |
847 	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
848 	    PAT_VALUE(6, PAT_UNCACHED) |
849 	    PAT_VALUE(7, PAT_UNCACHEABLE);
850 
851 	if (pat_works) {
852 		/*
853 		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
854 		 * Program 5 and 6 as WP and WC.
855 		 * Leave 4 and 7 as WB and UC.
856 		 */
857 		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
858 		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
859 		    PAT_VALUE(6, PAT_WRITE_COMBINING);
860 		pat_table[PAT_UNCACHED] = 2;
861 		pat_table[PAT_WRITE_PROTECTED] = 5;
862 		pat_table[PAT_WRITE_COMBINING] = 6;
863 	} else {
864 		/*
865 		 * Just replace PAT Index 2 with WC instead of UC-.
866 		 */
867 		pat_msr &= ~PAT_MASK(2);
868 		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
869 		pat_table[PAT_WRITE_COMBINING] = 2;
870 	}
871 
872 	/* Disable PGE. */
873 	cr4 = rcr4();
874 	load_cr4(cr4 & ~CR4_PGE);
875 
876 	/* Disable caches (CD = 1, NW = 0). */
877 	cr0 = rcr0();
878 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
879 
880 	/* Flushes caches and TLBs. */
881 	wbinvd();
882 	invltlb();
883 
884 	/* Update PAT and index table. */
885 	wrmsr(MSR_PAT, pat_msr);
886 	for (i = 0; i < PAT_INDEX_SIZE; i++)
887 		pat_index[i] = pat_table[i];
888 
889 	/* Flush caches and TLBs again. */
890 	wbinvd();
891 	invltlb();
892 
893 	/* Restore caches and PGE. */
894 	load_cr0(cr0);
895 	load_cr4(cr4);
896 }
897 
898 #ifdef PMAP_PAE_COMP
899 static void *
900 pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
901     int wait)
902 {
903 
904 	/* Inform UMA that this allocator uses kernel_map/object. */
905 	*flags = UMA_SLAB_KERNEL;
906 	return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
907 	    bytes, wait, 0x0ULL, 0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
908 }
909 #endif
910 
911 /*
912  * Abuse the pte nodes for unmapped kva to thread a kva freelist through.
913  * Requirements:
914  *  - Must deal with pages in order to ensure that none of the PG_* bits
915  *    are ever set, PG_V in particular.
916  *  - Assumes we can write to ptes without pte_store() atomic ops, even
917  *    on PAE systems.  This should be ok.
918  *  - Assumes nothing will ever test these addresses for 0 to indicate
919  *    no mapping instead of correctly checking PG_V.
920  *  - Assumes a vm_offset_t will fit in a pte (true for i386).
921  * Because PG_V is never set, there can be no mappings to invalidate.
922  */
923 static vm_offset_t
924 pmap_ptelist_alloc(vm_offset_t *head)
925 {
926 	pt_entry_t *pte;
927 	vm_offset_t va;
928 
929 	va = *head;
930 	if (va == 0)
931 		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
932 	pte = vtopte(va);
933 	*head = *pte;
934 	if (*head & PG_V)
935 		panic("pmap_ptelist_alloc: va with PG_V set!");
936 	*pte = 0;
937 	return (va);
938 }
939 
940 static void
941 pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
942 {
943 	pt_entry_t *pte;
944 
945 	if (va & PG_V)
946 		panic("pmap_ptelist_free: freeing va with PG_V set!");
947 	pte = vtopte(va);
948 	*pte = *head;		/* virtual! PG_V is 0 though */
949 	*head = va;
950 }
951 
952 static void
953 pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
954 {
955 	int i;
956 	vm_offset_t va;
957 
958 	*head = 0;
959 	for (i = npages - 1; i >= 0; i--) {
960 		va = (vm_offset_t)base + i * PAGE_SIZE;
961 		pmap_ptelist_free(head, va);
962 	}
963 }
964 
965 
966 /*
967  *	Initialize the pmap module.
968  *	Called by vm_init, to initialize any structures that the pmap
969  *	system needs to map virtual memory.
970  */
971 static void
972 __CONCAT(PMTYPE, init)(void)
973 {
974 	struct pmap_preinit_mapping *ppim;
975 	vm_page_t mpte;
976 	vm_size_t s;
977 	int i, pv_npg;
978 
979 	/*
980 	 * Initialize the vm page array entries for the kernel pmap's
981 	 * page table pages.
982 	 */
983 	PMAP_LOCK(kernel_pmap);
984 	for (i = 0; i < NKPT; i++) {
985 		mpte = PHYS_TO_VM_PAGE(KPTphys + ptoa(i));
986 		KASSERT(mpte >= vm_page_array &&
987 		    mpte < &vm_page_array[vm_page_array_size],
988 		    ("pmap_init: page table page is out of range"));
989 		mpte->pindex = i + KPTDI;
990 		mpte->phys_addr = KPTphys + ptoa(i);
991 		mpte->ref_count = 1;
992 
993 		/*
994 		 * Collect the page table pages that were replaced by a 2/4MB
995 		 * page.  They are filled with equivalent 4KB page mappings.
996 		 */
997 		if (pseflag != 0 &&
998 		    KERNBASE <= i << PDRSHIFT && i << PDRSHIFT < KERNend &&
999 		    pmap_insert_pt_page(kernel_pmap, mpte, true))
1000 			panic("pmap_init: pmap_insert_pt_page failed");
1001 	}
1002 	PMAP_UNLOCK(kernel_pmap);
1003 	vm_wire_add(NKPT);
1004 
1005 	/*
1006 	 * Initialize the address space (zone) for the pv entries.  Set a
1007 	 * high water mark so that the system can recover from excessive
1008 	 * numbers of pv entries.
1009 	 */
1010 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1011 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1012 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1013 	pv_entry_max = roundup(pv_entry_max, _NPCPV);
1014 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1015 
1016 	/*
1017 	 * If the kernel is running on a virtual machine, then it must assume
1018 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
1019 	 * be prepared for the hypervisor changing the vendor and family that
1020 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
1021 	 * 10h Erratum 383 is enabled if the processor's feature set does not
1022 	 * include at least one feature that is only supported by older Intel
1023 	 * or newer AMD processors.
1024 	 */
1025 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
1026 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
1027 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
1028 	    AMDID2_FMA4)) == 0)
1029 		workaround_erratum383 = 1;
1030 
1031 	/*
1032 	 * Are large page mappings supported and enabled?
1033 	 */
1034 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
1035 	if (pseflag == 0)
1036 		pg_ps_enabled = 0;
1037 	else if (pg_ps_enabled) {
1038 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1039 		    ("pmap_init: can't assign to pagesizes[1]"));
1040 		pagesizes[1] = NBPDR;
1041 	}
1042 
1043 	/*
1044 	 * Calculate the size of the pv head table for superpages.
1045 	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1046 	 */
1047 	pv_npg = trunc_4mpage(vm_phys_segs[vm_phys_nsegs - 1].end -
1048 	    PAGE_SIZE) / NBPDR + 1;
1049 
1050 	/*
1051 	 * Allocate memory for the pv head table for superpages.
1052 	 */
1053 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1054 	s = round_page(s);
1055 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
1056 	for (i = 0; i < pv_npg; i++)
1057 		TAILQ_INIT(&pv_table[i].pv_list);
1058 
1059 	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1060 	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1061 	if (pv_chunkbase == NULL)
1062 		panic("pmap_init: not enough kvm for pv chunks");
1063 	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1064 #ifdef PMAP_PAE_COMP
1065 	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
1066 	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
1067 	    UMA_ZONE_CONTIG | UMA_ZONE_VM | UMA_ZONE_NOFREE);
1068 	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
1069 #endif
1070 
1071 	pmap_initialized = 1;
1072 	pmap_init_trm();
1073 
1074 	if (!bootverbose)
1075 		return;
1076 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
1077 		ppim = pmap_preinit_mapping + i;
1078 		if (ppim->va == 0)
1079 			continue;
1080 		printf("PPIM %u: PA=%#jx, VA=%#x, size=%#x, mode=%#x\n", i,
1081 		    (uintmax_t)ppim->pa, ppim->va, ppim->sz, ppim->mode);
1082 	}
1083 
1084 }
1085 
1086 extern u_long pmap_pde_demotions;
1087 extern u_long pmap_pde_mappings;
1088 extern u_long pmap_pde_p_failures;
1089 extern u_long pmap_pde_promotions;
1090 
1091 /***************************************************
1092  * Low level helper routines.....
1093  ***************************************************/
1094 
1095 static boolean_t
1096 __CONCAT(PMTYPE, is_valid_memattr)(pmap_t pmap __unused, vm_memattr_t mode)
1097 {
1098 
1099 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
1100 	    pat_index[(int)mode] >= 0);
1101 }
1102 
1103 /*
1104  * Determine the appropriate bits to set in a PTE or PDE for a specified
1105  * caching mode.
1106  */
1107 static int
1108 __CONCAT(PMTYPE, cache_bits)(pmap_t pmap, int mode, boolean_t is_pde)
1109 {
1110 	int cache_bits, pat_flag, pat_idx;
1111 
1112 	if (!pmap_is_valid_memattr(pmap, mode))
1113 		panic("Unknown caching mode %d\n", mode);
1114 
1115 	/* The PAT bit is different for PTE's and PDE's. */
1116 	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
1117 
1118 	/* Map the caching mode to a PAT index. */
1119 	pat_idx = pat_index[mode];
1120 
1121 	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
1122 	cache_bits = 0;
1123 	if (pat_idx & 0x4)
1124 		cache_bits |= pat_flag;
1125 	if (pat_idx & 0x2)
1126 		cache_bits |= PG_NC_PCD;
1127 	if (pat_idx & 0x1)
1128 		cache_bits |= PG_NC_PWT;
1129 	return (cache_bits);
1130 }
1131 
1132 static int
1133 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
1134 {
1135 	int pat_flag, pat_idx;
1136 
1137 	if ((cpu_feature & CPUID_PAT) == 0)
1138 		return (0);
1139 
1140 	pat_idx = 0;
1141 	/* The PAT bit is different for PTE's and PDE's. */
1142 	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
1143 
1144 	if ((pte & pat_flag) != 0)
1145 		pat_idx |= 0x4;
1146 	if ((pte & PG_NC_PCD) != 0)
1147 		pat_idx |= 0x2;
1148 	if ((pte & PG_NC_PWT) != 0)
1149 		pat_idx |= 0x1;
1150 
1151 	/* See pmap_init_pat(). */
1152 	if (pat_works) {
1153 		if (pat_idx == 4)
1154 			pat_idx = 0;
1155 		if (pat_idx == 7)
1156 			pat_idx = 3;
1157 	} else {
1158 		/* XXXKIB */
1159 	}
1160 
1161 	return (pat_idx);
1162 }
1163 
1164 static bool
1165 __CONCAT(PMTYPE, ps_enabled)(pmap_t pmap __unused)
1166 {
1167 
1168 	return (pg_ps_enabled);
1169 }
1170 
1171 /*
1172  * The caller is responsible for maintaining TLB consistency.
1173  */
1174 static void
1175 pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
1176 {
1177 	pd_entry_t *pde;
1178 
1179 	pde = pmap_pde(kernel_pmap, va);
1180 	pde_store(pde, newpde);
1181 }
1182 
1183 /*
1184  * After changing the page size for the specified virtual address in the page
1185  * table, flush the corresponding entries from the processor's TLB.  Only the
1186  * calling processor's TLB is affected.
1187  *
1188  * The calling thread must be pinned to a processor.
1189  */
1190 static void
1191 pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
1192 {
1193 
1194 	if ((newpde & PG_PS) == 0)
1195 		/* Demotion: flush a specific 2MB page mapping. */
1196 		invlpg(va);
1197 	else /* if ((newpde & PG_G) == 0) */
1198 		/*
1199 		 * Promotion: flush every 4KB page mapping from the TLB
1200 		 * because there are too many to flush individually.
1201 		 */
1202 		invltlb();
1203 }
1204 
1205 #ifdef SMP
1206 /*
1207  * For SMP, these functions have to use the IPI mechanism for coherence.
1208  *
1209  * N.B.: Before calling any of the following TLB invalidation functions,
1210  * the calling processor must ensure that all stores updating a non-
1211  * kernel page table are globally performed.  Otherwise, another
1212  * processor could cache an old, pre-update entry without being
1213  * invalidated.  This can happen one of two ways: (1) The pmap becomes
1214  * active on another processor after its pm_active field is checked by
1215  * one of the following functions but before a store updating the page
1216  * table is globally performed. (2) The pmap becomes active on another
1217  * processor before its pm_active field is checked but due to
1218  * speculative loads one of the following functions stills reads the
1219  * pmap as inactive on the other processor.
1220  *
1221  * The kernel page table is exempt because its pm_active field is
1222  * immutable.  The kernel page table is always active on every
1223  * processor.
1224  */
1225 static void
1226 pmap_invalidate_page_int(pmap_t pmap, vm_offset_t va)
1227 {
1228 	cpuset_t *mask, other_cpus;
1229 	u_int cpuid;
1230 
1231 	sched_pin();
1232 	if (pmap == kernel_pmap) {
1233 		invlpg(va);
1234 		mask = &all_cpus;
1235 	} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1236 		mask = &all_cpus;
1237 	} else {
1238 		cpuid = PCPU_GET(cpuid);
1239 		other_cpus = all_cpus;
1240 		CPU_CLR(cpuid, &other_cpus);
1241 		CPU_AND(&other_cpus, &pmap->pm_active);
1242 		mask = &other_cpus;
1243 	}
1244 	smp_masked_invlpg(*mask, va, pmap);
1245 	sched_unpin();
1246 }
1247 
1248 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
1249 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
1250 
1251 static void
1252 pmap_invalidate_range_int(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1253 {
1254 	cpuset_t *mask, other_cpus;
1255 	vm_offset_t addr;
1256 	u_int cpuid;
1257 
1258 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
1259 		pmap_invalidate_all_int(pmap);
1260 		return;
1261 	}
1262 
1263 	sched_pin();
1264 	if (pmap == kernel_pmap) {
1265 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1266 			invlpg(addr);
1267 		mask = &all_cpus;
1268 	} else  if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1269 		mask = &all_cpus;
1270 	} else {
1271 		cpuid = PCPU_GET(cpuid);
1272 		other_cpus = all_cpus;
1273 		CPU_CLR(cpuid, &other_cpus);
1274 		CPU_AND(&other_cpus, &pmap->pm_active);
1275 		mask = &other_cpus;
1276 	}
1277 	smp_masked_invlpg_range(*mask, sva, eva, pmap);
1278 	sched_unpin();
1279 }
1280 
1281 static void
1282 pmap_invalidate_all_int(pmap_t pmap)
1283 {
1284 	cpuset_t *mask, other_cpus;
1285 	u_int cpuid;
1286 
1287 	sched_pin();
1288 	if (pmap == kernel_pmap) {
1289 		invltlb();
1290 		mask = &all_cpus;
1291 	} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1292 		mask = &all_cpus;
1293 	} else {
1294 		cpuid = PCPU_GET(cpuid);
1295 		other_cpus = all_cpus;
1296 		CPU_CLR(cpuid, &other_cpus);
1297 		CPU_AND(&other_cpus, &pmap->pm_active);
1298 		mask = &other_cpus;
1299 	}
1300 	smp_masked_invltlb(*mask, pmap);
1301 	sched_unpin();
1302 }
1303 
1304 static void
1305 __CONCAT(PMTYPE, invalidate_cache)(void)
1306 {
1307 
1308 	sched_pin();
1309 	wbinvd();
1310 	smp_cache_flush();
1311 	sched_unpin();
1312 }
1313 
1314 struct pde_action {
1315 	cpuset_t invalidate;	/* processors that invalidate their TLB */
1316 	vm_offset_t va;
1317 	pd_entry_t *pde;
1318 	pd_entry_t newpde;
1319 	u_int store;		/* processor that updates the PDE */
1320 };
1321 
1322 static void
1323 pmap_update_pde_kernel(void *arg)
1324 {
1325 	struct pde_action *act = arg;
1326 	pd_entry_t *pde;
1327 
1328 	if (act->store == PCPU_GET(cpuid)) {
1329 		pde = pmap_pde(kernel_pmap, act->va);
1330 		pde_store(pde, act->newpde);
1331 	}
1332 }
1333 
1334 static void
1335 pmap_update_pde_user(void *arg)
1336 {
1337 	struct pde_action *act = arg;
1338 
1339 	if (act->store == PCPU_GET(cpuid))
1340 		pde_store(act->pde, act->newpde);
1341 }
1342 
1343 static void
1344 pmap_update_pde_teardown(void *arg)
1345 {
1346 	struct pde_action *act = arg;
1347 
1348 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1349 		pmap_update_pde_invalidate(act->va, act->newpde);
1350 }
1351 
1352 /*
1353  * Change the page size for the specified virtual address in a way that
1354  * prevents any possibility of the TLB ever having two entries that map the
1355  * same virtual address using different page sizes.  This is the recommended
1356  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1357  * machine check exception for a TLB state that is improperly diagnosed as a
1358  * hardware error.
1359  */
1360 static void
1361 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1362 {
1363 	struct pde_action act;
1364 	cpuset_t active, other_cpus;
1365 	u_int cpuid;
1366 
1367 	sched_pin();
1368 	cpuid = PCPU_GET(cpuid);
1369 	other_cpus = all_cpus;
1370 	CPU_CLR(cpuid, &other_cpus);
1371 	if (pmap == kernel_pmap)
1372 		active = all_cpus;
1373 	else
1374 		active = pmap->pm_active;
1375 	if (CPU_OVERLAP(&active, &other_cpus)) {
1376 		act.store = cpuid;
1377 		act.invalidate = active;
1378 		act.va = va;
1379 		act.pde = pde;
1380 		act.newpde = newpde;
1381 		CPU_SET(cpuid, &active);
1382 		smp_rendezvous_cpus(active,
1383 		    smp_no_rendezvous_barrier, pmap == kernel_pmap ?
1384 		    pmap_update_pde_kernel : pmap_update_pde_user,
1385 		    pmap_update_pde_teardown, &act);
1386 	} else {
1387 		if (pmap == kernel_pmap)
1388 			pmap_kenter_pde(va, newpde);
1389 		else
1390 			pde_store(pde, newpde);
1391 		if (CPU_ISSET(cpuid, &active))
1392 			pmap_update_pde_invalidate(va, newpde);
1393 	}
1394 	sched_unpin();
1395 }
1396 #else /* !SMP */
1397 /*
1398  * Normal, non-SMP, 486+ invalidation functions.
1399  * We inline these within pmap.c for speed.
1400  */
1401 static void
1402 pmap_invalidate_page_int(pmap_t pmap, vm_offset_t va)
1403 {
1404 
1405 	if (pmap == kernel_pmap)
1406 		invlpg(va);
1407 }
1408 
1409 static void
1410 pmap_invalidate_range_int(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1411 {
1412 	vm_offset_t addr;
1413 
1414 	if (pmap == kernel_pmap)
1415 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1416 			invlpg(addr);
1417 }
1418 
1419 static void
1420 pmap_invalidate_all_int(pmap_t pmap)
1421 {
1422 
1423 	if (pmap == kernel_pmap)
1424 		invltlb();
1425 }
1426 
1427 static void
1428 __CONCAT(PMTYPE, invalidate_cache)(void)
1429 {
1430 
1431 	wbinvd();
1432 }
1433 
1434 static void
1435 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1436 {
1437 
1438 	if (pmap == kernel_pmap)
1439 		pmap_kenter_pde(va, newpde);
1440 	else
1441 		pde_store(pde, newpde);
1442 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1443 		pmap_update_pde_invalidate(va, newpde);
1444 }
1445 #endif /* !SMP */
1446 
1447 static void
1448 __CONCAT(PMTYPE, invalidate_page)(pmap_t pmap, vm_offset_t va)
1449 {
1450 
1451 	pmap_invalidate_page_int(pmap, va);
1452 }
1453 
1454 static void
1455 __CONCAT(PMTYPE, invalidate_range)(pmap_t pmap, vm_offset_t sva,
1456     vm_offset_t eva)
1457 {
1458 
1459 	pmap_invalidate_range_int(pmap, sva, eva);
1460 }
1461 
1462 static void
1463 __CONCAT(PMTYPE, invalidate_all)(pmap_t pmap)
1464 {
1465 
1466 	pmap_invalidate_all_int(pmap);
1467 }
1468 
1469 static void
1470 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1471 {
1472 
1473 	/*
1474 	 * When the PDE has PG_PROMOTED set, the 2- or 4MB page mapping was
1475 	 * created by a promotion that did not invalidate the 512 or 1024 4KB
1476 	 * page mappings that might exist in the TLB.  Consequently, at this
1477 	 * point, the TLB may hold both 4KB and 2- or 4MB page mappings for
1478 	 * the address range [va, va + NBPDR).  Therefore, the entire range
1479 	 * must be invalidated here.  In contrast, when PG_PROMOTED is clear,
1480 	 * the TLB will not hold any 4KB page mappings for the address range
1481 	 * [va, va + NBPDR), and so a single INVLPG suffices to invalidate the
1482 	 * 2- or 4MB page mapping from the TLB.
1483 	 */
1484 	if ((pde & PG_PROMOTED) != 0)
1485 		pmap_invalidate_range_int(pmap, va, va + NBPDR - 1);
1486 	else
1487 		pmap_invalidate_page_int(pmap, va);
1488 }
1489 
1490 /*
1491  * Are we current address space or kernel?
1492  */
1493 static __inline int
1494 pmap_is_current(pmap_t pmap)
1495 {
1496 
1497 	return (pmap == kernel_pmap);
1498 }
1499 
1500 /*
1501  * If the given pmap is not the current or kernel pmap, the returned pte must
1502  * be released by passing it to pmap_pte_release().
1503  */
1504 static pt_entry_t *
1505 __CONCAT(PMTYPE, pte)(pmap_t pmap, vm_offset_t va)
1506 {
1507 	pd_entry_t newpf;
1508 	pd_entry_t *pde;
1509 
1510 	pde = pmap_pde(pmap, va);
1511 	if (*pde & PG_PS)
1512 		return (pde);
1513 	if (*pde != 0) {
1514 		/* are we current address space or kernel? */
1515 		if (pmap_is_current(pmap))
1516 			return (vtopte(va));
1517 		mtx_lock(&PMAP2mutex);
1518 		newpf = *pde & PG_FRAME;
1519 		if ((*PMAP2 & PG_FRAME) != newpf) {
1520 			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1521 			pmap_invalidate_page_int(kernel_pmap,
1522 			    (vm_offset_t)PADDR2);
1523 		}
1524 		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1525 	}
1526 	return (NULL);
1527 }
1528 
1529 /*
1530  * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1531  * being NULL.
1532  */
1533 static __inline void
1534 pmap_pte_release(pt_entry_t *pte)
1535 {
1536 
1537 	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1538 		mtx_unlock(&PMAP2mutex);
1539 }
1540 
1541 /*
1542  * NB:  The sequence of updating a page table followed by accesses to the
1543  * corresponding pages is subject to the situation described in the "AMD64
1544  * Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
1545  * "7.3.1 Special Coherency Considerations".  Therefore, issuing the INVLPG
1546  * right after modifying the PTE bits is crucial.
1547  */
1548 static __inline void
1549 invlcaddr(void *caddr)
1550 {
1551 
1552 	invlpg((u_int)caddr);
1553 }
1554 
1555 /*
1556  * Super fast pmap_pte routine best used when scanning
1557  * the pv lists.  This eliminates many coarse-grained
1558  * invltlb calls.  Note that many of the pv list
1559  * scans are across different pmaps.  It is very wasteful
1560  * to do an entire invltlb for checking a single mapping.
1561  *
1562  * If the given pmap is not the current pmap, pvh_global_lock
1563  * must be held and curthread pinned to a CPU.
1564  */
1565 static pt_entry_t *
1566 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1567 {
1568 	pd_entry_t newpf;
1569 	pd_entry_t *pde;
1570 
1571 	pde = pmap_pde(pmap, va);
1572 	if (*pde & PG_PS)
1573 		return (pde);
1574 	if (*pde != 0) {
1575 		/* are we current address space or kernel? */
1576 		if (pmap_is_current(pmap))
1577 			return (vtopte(va));
1578 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1579 		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1580 		newpf = *pde & PG_FRAME;
1581 		if ((*PMAP1 & PG_FRAME) != newpf) {
1582 			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1583 #ifdef SMP
1584 			PMAP1cpu = PCPU_GET(cpuid);
1585 #endif
1586 			invlcaddr(PADDR1);
1587 			PMAP1changed++;
1588 		} else
1589 #ifdef SMP
1590 		if (PMAP1cpu != PCPU_GET(cpuid)) {
1591 			PMAP1cpu = PCPU_GET(cpuid);
1592 			invlcaddr(PADDR1);
1593 			PMAP1changedcpu++;
1594 		} else
1595 #endif
1596 			PMAP1unchanged++;
1597 		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1598 	}
1599 	return (0);
1600 }
1601 
1602 static pt_entry_t *
1603 pmap_pte_quick3(pmap_t pmap, vm_offset_t va)
1604 {
1605 	pd_entry_t newpf;
1606 	pd_entry_t *pde;
1607 
1608 	pde = pmap_pde(pmap, va);
1609 	if (*pde & PG_PS)
1610 		return (pde);
1611 	if (*pde != 0) {
1612 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1613 		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1614 		newpf = *pde & PG_FRAME;
1615 		if ((*PMAP3 & PG_FRAME) != newpf) {
1616 			*PMAP3 = newpf | PG_RW | PG_V | PG_A | PG_M;
1617 #ifdef SMP
1618 			PMAP3cpu = PCPU_GET(cpuid);
1619 #endif
1620 			invlcaddr(PADDR3);
1621 			PMAP1changed++;
1622 		} else
1623 #ifdef SMP
1624 		if (PMAP3cpu != PCPU_GET(cpuid)) {
1625 			PMAP3cpu = PCPU_GET(cpuid);
1626 			invlcaddr(PADDR3);
1627 			PMAP1changedcpu++;
1628 		} else
1629 #endif
1630 			PMAP1unchanged++;
1631 		return (PADDR3 + (i386_btop(va) & (NPTEPG - 1)));
1632 	}
1633 	return (0);
1634 }
1635 
1636 static pt_entry_t
1637 pmap_pte_ufast(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1638 {
1639 	pt_entry_t *eh_ptep, pte, *ptep;
1640 
1641 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1642 	pde &= PG_FRAME;
1643 	critical_enter();
1644 	eh_ptep = (pt_entry_t *)PCPU_GET(pmap_eh_ptep);
1645 	if ((*eh_ptep & PG_FRAME) != pde) {
1646 		*eh_ptep = pde | PG_RW | PG_V | PG_A | PG_M;
1647 		invlcaddr((void *)PCPU_GET(pmap_eh_va));
1648 	}
1649 	ptep = (pt_entry_t *)PCPU_GET(pmap_eh_va) + (i386_btop(va) &
1650 	    (NPTEPG - 1));
1651 	pte = *ptep;
1652 	critical_exit();
1653 	return (pte);
1654 }
1655 
1656 /*
1657  * Extract from the kernel page table the physical address that is mapped by
1658  * the given virtual address "va".
1659  *
1660  * This function may be used before pmap_bootstrap() is called.
1661  */
1662 static vm_paddr_t
1663 __CONCAT(PMTYPE, kextract)(vm_offset_t va)
1664 {
1665 	vm_paddr_t pa;
1666 
1667 	if ((pa = pte_load(&PTD[va >> PDRSHIFT])) & PG_PS) {
1668 		pa = (pa & PG_PS_FRAME) | (va & PDRMASK);
1669 	} else {
1670 		/*
1671 		 * Beware of a concurrent promotion that changes the PDE at
1672 		 * this point!  For example, vtopte() must not be used to
1673 		 * access the PTE because it would use the new PDE.  It is,
1674 		 * however, safe to use the old PDE because the page table
1675 		 * page is preserved by the promotion.
1676 		 */
1677 		pa = KPTmap[i386_btop(va)];
1678 		pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1679 	}
1680 	return (pa);
1681 }
1682 
1683 /*
1684  *	Routine:	pmap_extract
1685  *	Function:
1686  *		Extract the physical page address associated
1687  *		with the given map/virtual_address pair.
1688  */
1689 static vm_paddr_t
1690 __CONCAT(PMTYPE, extract)(pmap_t pmap, vm_offset_t va)
1691 {
1692 	vm_paddr_t rtval;
1693 	pt_entry_t pte;
1694 	pd_entry_t pde;
1695 
1696 	rtval = 0;
1697 	PMAP_LOCK(pmap);
1698 	pde = pmap->pm_pdir[va >> PDRSHIFT];
1699 	if (pde != 0) {
1700 		if ((pde & PG_PS) != 0)
1701 			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1702 		else {
1703 			pte = pmap_pte_ufast(pmap, va, pde);
1704 			rtval = (pte & PG_FRAME) | (va & PAGE_MASK);
1705 		}
1706 	}
1707 	PMAP_UNLOCK(pmap);
1708 	return (rtval);
1709 }
1710 
1711 /*
1712  *	Routine:	pmap_extract_and_hold
1713  *	Function:
1714  *		Atomically extract and hold the physical page
1715  *		with the given pmap and virtual address pair
1716  *		if that mapping permits the given protection.
1717  */
1718 static vm_page_t
1719 __CONCAT(PMTYPE, extract_and_hold)(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1720 {
1721 	pd_entry_t pde;
1722 	pt_entry_t pte;
1723 	vm_page_t m;
1724 
1725 	m = NULL;
1726 	PMAP_LOCK(pmap);
1727 	pde = *pmap_pde(pmap, va);
1728 	if (pde != 0) {
1729 		if (pde & PG_PS) {
1730 			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0)
1731 				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1732 				    (va & PDRMASK));
1733 		} else {
1734 			pte = pmap_pte_ufast(pmap, va, pde);
1735 			if (pte != 0 &&
1736 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
1737 				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1738 		}
1739 		if (m != NULL && !vm_page_wire_mapped(m))
1740 			m = NULL;
1741 	}
1742 	PMAP_UNLOCK(pmap);
1743 	return (m);
1744 }
1745 
1746 /***************************************************
1747  * Low level mapping routines.....
1748  ***************************************************/
1749 
1750 /*
1751  * Add a wired page to the kva.
1752  * Note: not SMP coherent.
1753  *
1754  * This function may be used before pmap_bootstrap() is called.
1755  */
1756 static void
1757 __CONCAT(PMTYPE, kenter)(vm_offset_t va, vm_paddr_t pa)
1758 {
1759 	pt_entry_t *pte;
1760 
1761 	pte = vtopte(va);
1762 	pte_store(pte, pa | PG_RW | PG_V);
1763 }
1764 
1765 static __inline void
1766 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1767 {
1768 	pt_entry_t *pte;
1769 
1770 	pte = vtopte(va);
1771 	pte_store(pte, pa | PG_RW | PG_V | pmap_cache_bits(kernel_pmap,
1772 	    mode, 0));
1773 }
1774 
1775 /*
1776  * Remove a page from the kernel pagetables.
1777  * Note: not SMP coherent.
1778  *
1779  * This function may be used before pmap_bootstrap() is called.
1780  */
1781 static void
1782 __CONCAT(PMTYPE, kremove)(vm_offset_t va)
1783 {
1784 	pt_entry_t *pte;
1785 
1786 	pte = vtopte(va);
1787 	pte_clear(pte);
1788 }
1789 
1790 /*
1791  *	Used to map a range of physical addresses into kernel
1792  *	virtual address space.
1793  *
1794  *	The value passed in '*virt' is a suggested virtual address for
1795  *	the mapping. Architectures which can support a direct-mapped
1796  *	physical to virtual region can return the appropriate address
1797  *	within that region, leaving '*virt' unchanged. Other
1798  *	architectures should map the pages starting at '*virt' and
1799  *	update '*virt' with the first usable address after the mapped
1800  *	region.
1801  */
1802 static vm_offset_t
1803 __CONCAT(PMTYPE, map)(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1804     int prot)
1805 {
1806 	vm_offset_t va, sva;
1807 	vm_paddr_t superpage_offset;
1808 	pd_entry_t newpde;
1809 
1810 	va = *virt;
1811 	/*
1812 	 * Does the physical address range's size and alignment permit at
1813 	 * least one superpage mapping to be created?
1814 	 */
1815 	superpage_offset = start & PDRMASK;
1816 	if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
1817 		/*
1818 		 * Increase the starting virtual address so that its alignment
1819 		 * does not preclude the use of superpage mappings.
1820 		 */
1821 		if ((va & PDRMASK) < superpage_offset)
1822 			va = (va & ~PDRMASK) + superpage_offset;
1823 		else if ((va & PDRMASK) > superpage_offset)
1824 			va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
1825 	}
1826 	sva = va;
1827 	while (start < end) {
1828 		if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
1829 		    pseflag != 0) {
1830 			KASSERT((va & PDRMASK) == 0,
1831 			    ("pmap_map: misaligned va %#x", va));
1832 			newpde = start | PG_PS | PG_RW | PG_V;
1833 			pmap_kenter_pde(va, newpde);
1834 			va += NBPDR;
1835 			start += NBPDR;
1836 		} else {
1837 			pmap_kenter(va, start);
1838 			va += PAGE_SIZE;
1839 			start += PAGE_SIZE;
1840 		}
1841 	}
1842 	pmap_invalidate_range_int(kernel_pmap, sva, va);
1843 	*virt = va;
1844 	return (sva);
1845 }
1846 
1847 
1848 /*
1849  * Add a list of wired pages to the kva
1850  * this routine is only used for temporary
1851  * kernel mappings that do not need to have
1852  * page modification or references recorded.
1853  * Note that old mappings are simply written
1854  * over.  The page *must* be wired.
1855  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1856  */
1857 static void
1858 __CONCAT(PMTYPE, qenter)(vm_offset_t sva, vm_page_t *ma, int count)
1859 {
1860 	pt_entry_t *endpte, oldpte, pa, *pte;
1861 	vm_page_t m;
1862 
1863 	oldpte = 0;
1864 	pte = vtopte(sva);
1865 	endpte = pte + count;
1866 	while (pte < endpte) {
1867 		m = *ma++;
1868 		pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(kernel_pmap,
1869 		    m->md.pat_mode, 0);
1870 		if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1871 			oldpte |= *pte;
1872 			pte_store(pte, pa | pg_nx | PG_RW | PG_V);
1873 		}
1874 		pte++;
1875 	}
1876 	if (__predict_false((oldpte & PG_V) != 0))
1877 		pmap_invalidate_range_int(kernel_pmap, sva, sva + count *
1878 		    PAGE_SIZE);
1879 }
1880 
1881 /*
1882  * This routine tears out page mappings from the
1883  * kernel -- it is meant only for temporary mappings.
1884  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1885  */
1886 static void
1887 __CONCAT(PMTYPE, qremove)(vm_offset_t sva, int count)
1888 {
1889 	vm_offset_t va;
1890 
1891 	va = sva;
1892 	while (count-- > 0) {
1893 		pmap_kremove(va);
1894 		va += PAGE_SIZE;
1895 	}
1896 	pmap_invalidate_range_int(kernel_pmap, sva, va);
1897 }
1898 
1899 /***************************************************
1900  * Page table page management routines.....
1901  ***************************************************/
1902 /*
1903  * Schedule the specified unused page table page to be freed.  Specifically,
1904  * add the page to the specified list of pages that will be released to the
1905  * physical memory manager after the TLB has been updated.
1906  */
1907 static __inline void
1908 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1909     boolean_t set_PG_ZERO)
1910 {
1911 
1912 	if (set_PG_ZERO)
1913 		m->flags |= PG_ZERO;
1914 	else
1915 		m->flags &= ~PG_ZERO;
1916 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1917 }
1918 
1919 /*
1920  * Inserts the specified page table page into the specified pmap's collection
1921  * of idle page table pages.  Each of a pmap's page table pages is responsible
1922  * for mapping a distinct range of virtual addresses.  The pmap's collection is
1923  * ordered by this virtual address range.
1924  *
1925  * If "promoted" is false, then the page table page "mpte" must be zero filled.
1926  */
1927 static __inline int
1928 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted)
1929 {
1930 
1931 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1932 	mpte->valid = promoted ? VM_PAGE_BITS_ALL : 0;
1933 	return (vm_radix_insert(&pmap->pm_root, mpte));
1934 }
1935 
1936 /*
1937  * Removes the page table page mapping the specified virtual address from the
1938  * specified pmap's collection of idle page table pages, and returns it.
1939  * Otherwise, returns NULL if there is no page table page corresponding to the
1940  * specified virtual address.
1941  */
1942 static __inline vm_page_t
1943 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
1944 {
1945 
1946 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1947 	return (vm_radix_remove(&pmap->pm_root, va >> PDRSHIFT));
1948 }
1949 
1950 /*
1951  * Decrements a page table page's reference count, which is used to record the
1952  * number of valid page table entries within the page.  If the reference count
1953  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1954  * page table page was unmapped and FALSE otherwise.
1955  */
1956 static inline boolean_t
1957 pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1958 {
1959 
1960 	--m->ref_count;
1961 	if (m->ref_count == 0) {
1962 		_pmap_unwire_ptp(pmap, m, free);
1963 		return (TRUE);
1964 	} else
1965 		return (FALSE);
1966 }
1967 
1968 static void
1969 _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1970 {
1971 
1972 	/*
1973 	 * unmap the page table page
1974 	 */
1975 	pmap->pm_pdir[m->pindex] = 0;
1976 	--pmap->pm_stats.resident_count;
1977 
1978 	/*
1979 	 * There is not need to invalidate the recursive mapping since
1980 	 * we never instantiate such mapping for the usermode pmaps,
1981 	 * and never remove page table pages from the kernel pmap.
1982 	 * Put page on a list so that it is released since all TLB
1983 	 * shootdown is done.
1984 	 */
1985 	MPASS(pmap != kernel_pmap);
1986 	pmap_add_delayed_free_list(m, free, TRUE);
1987 }
1988 
1989 /*
1990  * After removing a page table entry, this routine is used to
1991  * conditionally free the page, and manage the reference count.
1992  */
1993 static int
1994 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
1995 {
1996 	pd_entry_t ptepde;
1997 	vm_page_t mpte;
1998 
1999 	if (pmap == kernel_pmap)
2000 		return (0);
2001 	ptepde = *pmap_pde(pmap, va);
2002 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
2003 	return (pmap_unwire_ptp(pmap, mpte, free));
2004 }
2005 
2006 /*
2007  * Release a page table page reference after a failed attempt to create a
2008  * mapping.
2009  */
2010 static void
2011 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
2012 {
2013 	struct spglist free;
2014 
2015 	SLIST_INIT(&free);
2016 	if (pmap_unwire_ptp(pmap, mpte, &free)) {
2017 		/*
2018 		 * Although "va" was never mapped, paging-structure caches
2019 		 * could nonetheless have entries that refer to the freed
2020 		 * page table pages.  Invalidate those entries.
2021 		 */
2022 		pmap_invalidate_page_int(pmap, va);
2023 		vm_page_free_pages_toq(&free, true);
2024 	}
2025 }
2026 
2027 /*
2028  * Initialize the pmap for the swapper process.
2029  */
2030 static void
2031 __CONCAT(PMTYPE, pinit0)(pmap_t pmap)
2032 {
2033 
2034 	PMAP_LOCK_INIT(pmap);
2035 	pmap->pm_pdir = IdlePTD;
2036 #ifdef PMAP_PAE_COMP
2037 	pmap->pm_pdpt = IdlePDPT;
2038 #endif
2039 	pmap->pm_root.rt_root = 0;
2040 	CPU_ZERO(&pmap->pm_active);
2041 	TAILQ_INIT(&pmap->pm_pvchunk);
2042 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2043 	pmap_activate_boot(pmap);
2044 }
2045 
2046 /*
2047  * Initialize a preallocated and zeroed pmap structure,
2048  * such as one in a vmspace structure.
2049  */
2050 static int
2051 __CONCAT(PMTYPE, pinit)(pmap_t pmap)
2052 {
2053 	vm_page_t m;
2054 	int i;
2055 
2056 	/*
2057 	 * No need to allocate page table space yet but we do need a valid
2058 	 * page directory table.
2059 	 */
2060 	if (pmap->pm_pdir == NULL) {
2061 		pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
2062 		if (pmap->pm_pdir == NULL)
2063 			return (0);
2064 #ifdef PMAP_PAE_COMP
2065 		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
2066 		KASSERT(((vm_offset_t)pmap->pm_pdpt &
2067 		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
2068 		    ("pmap_pinit: pdpt misaligned"));
2069 		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
2070 		    ("pmap_pinit: pdpt above 4g"));
2071 #endif
2072 		pmap->pm_root.rt_root = 0;
2073 	}
2074 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2075 	    ("pmap_pinit: pmap has reserved page table page(s)"));
2076 
2077 	/*
2078 	 * allocate the page directory page(s)
2079 	 */
2080 	for (i = 0; i < NPGPTD; i++) {
2081 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2082 		    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_WAITOK);
2083 		pmap->pm_ptdpg[i] = m;
2084 #ifdef PMAP_PAE_COMP
2085 		pmap->pm_pdpt[i] = VM_PAGE_TO_PHYS(m) | PG_V;
2086 #endif
2087 	}
2088 
2089 	pmap_qenter((vm_offset_t)pmap->pm_pdir, pmap->pm_ptdpg, NPGPTD);
2090 #ifdef PMAP_PAE_COMP
2091 	if ((cpu_feature & CPUID_PAT) == 0) {
2092 		pmap_invalidate_cache_range(
2093 		    trunc_page((vm_offset_t)pmap->pm_pdpt),
2094 		    round_page((vm_offset_t)pmap->pm_pdpt +
2095 		    NPGPTD * sizeof(pdpt_entry_t)));
2096 	}
2097 #endif
2098 
2099 	for (i = 0; i < NPGPTD; i++)
2100 		if ((pmap->pm_ptdpg[i]->flags & PG_ZERO) == 0)
2101 			pagezero(pmap->pm_pdir + (i * NPDEPG));
2102 
2103 	/* Install the trampoline mapping. */
2104 	pmap->pm_pdir[TRPTDI] = PTD[TRPTDI];
2105 
2106 	CPU_ZERO(&pmap->pm_active);
2107 	TAILQ_INIT(&pmap->pm_pvchunk);
2108 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2109 
2110 	return (1);
2111 }
2112 
2113 /*
2114  * this routine is called if the page table page is not
2115  * mapped correctly.
2116  */
2117 static vm_page_t
2118 _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
2119 {
2120 	vm_paddr_t ptepa;
2121 	vm_page_t m;
2122 
2123 	/*
2124 	 * Allocate a page table page.
2125 	 */
2126 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
2127 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
2128 		if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2129 			PMAP_UNLOCK(pmap);
2130 			rw_wunlock(&pvh_global_lock);
2131 			vm_wait(NULL);
2132 			rw_wlock(&pvh_global_lock);
2133 			PMAP_LOCK(pmap);
2134 		}
2135 
2136 		/*
2137 		 * Indicate the need to retry.  While waiting, the page table
2138 		 * page may have been allocated.
2139 		 */
2140 		return (NULL);
2141 	}
2142 	if ((m->flags & PG_ZERO) == 0)
2143 		pmap_zero_page(m);
2144 
2145 	/*
2146 	 * Map the pagetable page into the process address space, if
2147 	 * it isn't already there.
2148 	 */
2149 
2150 	pmap->pm_stats.resident_count++;
2151 
2152 	ptepa = VM_PAGE_TO_PHYS(m);
2153 	pmap->pm_pdir[ptepindex] =
2154 		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
2155 
2156 	return (m);
2157 }
2158 
2159 static vm_page_t
2160 pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
2161 {
2162 	u_int ptepindex;
2163 	pd_entry_t ptepa;
2164 	vm_page_t m;
2165 
2166 	/*
2167 	 * Calculate pagetable page index
2168 	 */
2169 	ptepindex = va >> PDRSHIFT;
2170 retry:
2171 	/*
2172 	 * Get the page directory entry
2173 	 */
2174 	ptepa = pmap->pm_pdir[ptepindex];
2175 
2176 	/*
2177 	 * This supports switching from a 4MB page to a
2178 	 * normal 4K page.
2179 	 */
2180 	if (ptepa & PG_PS) {
2181 		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
2182 		ptepa = pmap->pm_pdir[ptepindex];
2183 	}
2184 
2185 	/*
2186 	 * If the page table page is mapped, we just increment the
2187 	 * hold count, and activate it.
2188 	 */
2189 	if (ptepa) {
2190 		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
2191 		m->ref_count++;
2192 	} else {
2193 		/*
2194 		 * Here if the pte page isn't mapped, or if it has
2195 		 * been deallocated.
2196 		 */
2197 		m = _pmap_allocpte(pmap, ptepindex, flags);
2198 		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2199 			goto retry;
2200 	}
2201 	return (m);
2202 }
2203 
2204 
2205 /***************************************************
2206 * Pmap allocation/deallocation routines.
2207  ***************************************************/
2208 
2209 /*
2210  * Release any resources held by the given physical map.
2211  * Called when a pmap initialized by pmap_pinit is being released.
2212  * Should only be called if the map contains no valid mappings.
2213  */
2214 static void
2215 __CONCAT(PMTYPE, release)(pmap_t pmap)
2216 {
2217 	vm_page_t m;
2218 	int i;
2219 
2220 	KASSERT(pmap->pm_stats.resident_count == 0,
2221 	    ("pmap_release: pmap resident count %ld != 0",
2222 	    pmap->pm_stats.resident_count));
2223 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2224 	    ("pmap_release: pmap has reserved page table page(s)"));
2225 	KASSERT(CPU_EMPTY(&pmap->pm_active),
2226 	    ("releasing active pmap %p", pmap));
2227 
2228 	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2229 
2230 	for (i = 0; i < NPGPTD; i++) {
2231 		m = pmap->pm_ptdpg[i];
2232 #ifdef PMAP_PAE_COMP
2233 		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2234 		    ("pmap_release: got wrong ptd page"));
2235 #endif
2236 		vm_page_unwire_noq(m);
2237 		vm_page_free(m);
2238 	}
2239 }
2240 
2241 /*
2242  * grow the number of kernel page table entries, if needed
2243  */
2244 static void
2245 __CONCAT(PMTYPE, growkernel)(vm_offset_t addr)
2246 {
2247 	vm_paddr_t ptppaddr;
2248 	vm_page_t nkpg;
2249 	pd_entry_t newpdir;
2250 
2251 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2252 	addr = roundup2(addr, NBPDR);
2253 	if (addr - 1 >= vm_map_max(kernel_map))
2254 		addr = vm_map_max(kernel_map);
2255 	while (kernel_vm_end < addr) {
2256 		if (pdir_pde(PTD, kernel_vm_end)) {
2257 			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2258 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2259 				kernel_vm_end = vm_map_max(kernel_map);
2260 				break;
2261 			}
2262 			continue;
2263 		}
2264 
2265 		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2266 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2267 		    VM_ALLOC_ZERO);
2268 		if (nkpg == NULL)
2269 			panic("pmap_growkernel: no memory to grow kernel");
2270 
2271 		nkpt++;
2272 
2273 		if ((nkpg->flags & PG_ZERO) == 0)
2274 			pmap_zero_page(nkpg);
2275 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2276 		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2277 		pdir_pde(KPTD, kernel_vm_end) = newpdir;
2278 
2279 		pmap_kenter_pde(kernel_vm_end, newpdir);
2280 		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2281 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2282 			kernel_vm_end = vm_map_max(kernel_map);
2283 			break;
2284 		}
2285 	}
2286 }
2287 
2288 
2289 /***************************************************
2290  * page management routines.
2291  ***************************************************/
2292 
2293 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2294 CTASSERT(_NPCM == 11);
2295 CTASSERT(_NPCPV == 336);
2296 
2297 static __inline struct pv_chunk *
2298 pv_to_chunk(pv_entry_t pv)
2299 {
2300 
2301 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2302 }
2303 
2304 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2305 
2306 #define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2307 #define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2308 
2309 static const uint32_t pc_freemask[_NPCM] = {
2310 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2311 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2312 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2313 	PC_FREE0_9, PC_FREE10
2314 };
2315 
2316 #ifdef PV_STATS
2317 extern int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2318 extern long pv_entry_frees, pv_entry_allocs;
2319 extern int pv_entry_spare;
2320 #endif
2321 
2322 /*
2323  * We are in a serious low memory condition.  Resort to
2324  * drastic measures to free some pages so we can allocate
2325  * another pv entry chunk.
2326  */
2327 static vm_page_t
2328 pmap_pv_reclaim(pmap_t locked_pmap)
2329 {
2330 	struct pch newtail;
2331 	struct pv_chunk *pc;
2332 	struct md_page *pvh;
2333 	pd_entry_t *pde;
2334 	pmap_t pmap;
2335 	pt_entry_t *pte, tpte;
2336 	pv_entry_t pv;
2337 	vm_offset_t va;
2338 	vm_page_t m, m_pc;
2339 	struct spglist free;
2340 	uint32_t inuse;
2341 	int bit, field, freed;
2342 
2343 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2344 	pmap = NULL;
2345 	m_pc = NULL;
2346 	SLIST_INIT(&free);
2347 	TAILQ_INIT(&newtail);
2348 	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2349 	    SLIST_EMPTY(&free))) {
2350 		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2351 		if (pmap != pc->pc_pmap) {
2352 			if (pmap != NULL) {
2353 				pmap_invalidate_all_int(pmap);
2354 				if (pmap != locked_pmap)
2355 					PMAP_UNLOCK(pmap);
2356 			}
2357 			pmap = pc->pc_pmap;
2358 			/* Avoid deadlock and lock recursion. */
2359 			if (pmap > locked_pmap)
2360 				PMAP_LOCK(pmap);
2361 			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2362 				pmap = NULL;
2363 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2364 				continue;
2365 			}
2366 		}
2367 
2368 		/*
2369 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2370 		 */
2371 		freed = 0;
2372 		for (field = 0; field < _NPCM; field++) {
2373 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2374 			    inuse != 0; inuse &= ~(1UL << bit)) {
2375 				bit = bsfl(inuse);
2376 				pv = &pc->pc_pventry[field * 32 + bit];
2377 				va = pv->pv_va;
2378 				pde = pmap_pde(pmap, va);
2379 				if ((*pde & PG_PS) != 0)
2380 					continue;
2381 				pte = __CONCAT(PMTYPE, pte)(pmap, va);
2382 				tpte = *pte;
2383 				if ((tpte & PG_W) == 0)
2384 					tpte = pte_load_clear(pte);
2385 				pmap_pte_release(pte);
2386 				if ((tpte & PG_W) != 0)
2387 					continue;
2388 				KASSERT(tpte != 0,
2389 				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2390 				    pmap, va));
2391 				if ((tpte & PG_G) != 0)
2392 					pmap_invalidate_page_int(pmap, va);
2393 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2394 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2395 					vm_page_dirty(m);
2396 				if ((tpte & PG_A) != 0)
2397 					vm_page_aflag_set(m, PGA_REFERENCED);
2398 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2399 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2400 				    (m->flags & PG_FICTITIOUS) == 0) {
2401 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2402 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2403 						vm_page_aflag_clear(m,
2404 						    PGA_WRITEABLE);
2405 					}
2406 				}
2407 				pc->pc_map[field] |= 1UL << bit;
2408 				pmap_unuse_pt(pmap, va, &free);
2409 				freed++;
2410 			}
2411 		}
2412 		if (freed == 0) {
2413 			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2414 			continue;
2415 		}
2416 		/* Every freed mapping is for a 4 KB page. */
2417 		pmap->pm_stats.resident_count -= freed;
2418 		PV_STAT(pv_entry_frees += freed);
2419 		PV_STAT(pv_entry_spare += freed);
2420 		pv_entry_count -= freed;
2421 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2422 		for (field = 0; field < _NPCM; field++)
2423 			if (pc->pc_map[field] != pc_freemask[field]) {
2424 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2425 				    pc_list);
2426 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2427 
2428 				/*
2429 				 * One freed pv entry in locked_pmap is
2430 				 * sufficient.
2431 				 */
2432 				if (pmap == locked_pmap)
2433 					goto out;
2434 				break;
2435 			}
2436 		if (field == _NPCM) {
2437 			PV_STAT(pv_entry_spare -= _NPCPV);
2438 			PV_STAT(pc_chunk_count--);
2439 			PV_STAT(pc_chunk_frees++);
2440 			/* Entire chunk is free; return it. */
2441 			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2442 			pmap_qremove((vm_offset_t)pc, 1);
2443 			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2444 			break;
2445 		}
2446 	}
2447 out:
2448 	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2449 	if (pmap != NULL) {
2450 		pmap_invalidate_all_int(pmap);
2451 		if (pmap != locked_pmap)
2452 			PMAP_UNLOCK(pmap);
2453 	}
2454 	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2455 		m_pc = SLIST_FIRST(&free);
2456 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2457 		/* Recycle a freed page table page. */
2458 		m_pc->ref_count = 1;
2459 	}
2460 	vm_page_free_pages_toq(&free, true);
2461 	return (m_pc);
2462 }
2463 
2464 /*
2465  * free the pv_entry back to the free list
2466  */
2467 static void
2468 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2469 {
2470 	struct pv_chunk *pc;
2471 	int idx, field, bit;
2472 
2473 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2474 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2475 	PV_STAT(pv_entry_frees++);
2476 	PV_STAT(pv_entry_spare++);
2477 	pv_entry_count--;
2478 	pc = pv_to_chunk(pv);
2479 	idx = pv - &pc->pc_pventry[0];
2480 	field = idx / 32;
2481 	bit = idx % 32;
2482 	pc->pc_map[field] |= 1ul << bit;
2483 	for (idx = 0; idx < _NPCM; idx++)
2484 		if (pc->pc_map[idx] != pc_freemask[idx]) {
2485 			/*
2486 			 * 98% of the time, pc is already at the head of the
2487 			 * list.  If it isn't already, move it to the head.
2488 			 */
2489 			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2490 			    pc)) {
2491 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2492 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2493 				    pc_list);
2494 			}
2495 			return;
2496 		}
2497 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2498 	free_pv_chunk(pc);
2499 }
2500 
2501 static void
2502 free_pv_chunk(struct pv_chunk *pc)
2503 {
2504 	vm_page_t m;
2505 
2506  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2507 	PV_STAT(pv_entry_spare -= _NPCPV);
2508 	PV_STAT(pc_chunk_count--);
2509 	PV_STAT(pc_chunk_frees++);
2510 	/* entire chunk is free, return it */
2511 	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2512 	pmap_qremove((vm_offset_t)pc, 1);
2513 	vm_page_unwire_noq(m);
2514 	vm_page_free(m);
2515 	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2516 }
2517 
2518 /*
2519  * get a new pv_entry, allocating a block from the system
2520  * when needed.
2521  */
2522 static pv_entry_t
2523 get_pv_entry(pmap_t pmap, boolean_t try)
2524 {
2525 	static const struct timeval printinterval = { 60, 0 };
2526 	static struct timeval lastprint;
2527 	int bit, field;
2528 	pv_entry_t pv;
2529 	struct pv_chunk *pc;
2530 	vm_page_t m;
2531 
2532 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2533 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2534 	PV_STAT(pv_entry_allocs++);
2535 	pv_entry_count++;
2536 	if (pv_entry_count > pv_entry_high_water)
2537 		if (ratecheck(&lastprint, &printinterval))
2538 			printf("Approaching the limit on PV entries, consider "
2539 			    "increasing either the vm.pmap.shpgperproc or the "
2540 			    "vm.pmap.pv_entries tunable.\n");
2541 retry:
2542 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2543 	if (pc != NULL) {
2544 		for (field = 0; field < _NPCM; field++) {
2545 			if (pc->pc_map[field]) {
2546 				bit = bsfl(pc->pc_map[field]);
2547 				break;
2548 			}
2549 		}
2550 		if (field < _NPCM) {
2551 			pv = &pc->pc_pventry[field * 32 + bit];
2552 			pc->pc_map[field] &= ~(1ul << bit);
2553 			/* If this was the last item, move it to tail */
2554 			for (field = 0; field < _NPCM; field++)
2555 				if (pc->pc_map[field] != 0) {
2556 					PV_STAT(pv_entry_spare--);
2557 					return (pv);	/* not full, return */
2558 				}
2559 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2560 			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2561 			PV_STAT(pv_entry_spare--);
2562 			return (pv);
2563 		}
2564 	}
2565 	/*
2566 	 * Access to the ptelist "pv_vafree" is synchronized by the pvh
2567 	 * global lock.  If "pv_vafree" is currently non-empty, it will
2568 	 * remain non-empty until pmap_ptelist_alloc() completes.
2569 	 */
2570 	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2571 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2572 		if (try) {
2573 			pv_entry_count--;
2574 			PV_STAT(pc_chunk_tryfail++);
2575 			return (NULL);
2576 		}
2577 		m = pmap_pv_reclaim(pmap);
2578 		if (m == NULL)
2579 			goto retry;
2580 	}
2581 	PV_STAT(pc_chunk_count++);
2582 	PV_STAT(pc_chunk_allocs++);
2583 	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2584 	pmap_qenter((vm_offset_t)pc, &m, 1);
2585 	pc->pc_pmap = pmap;
2586 	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2587 	for (field = 1; field < _NPCM; field++)
2588 		pc->pc_map[field] = pc_freemask[field];
2589 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2590 	pv = &pc->pc_pventry[0];
2591 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2592 	PV_STAT(pv_entry_spare += _NPCPV - 1);
2593 	return (pv);
2594 }
2595 
2596 static __inline pv_entry_t
2597 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2598 {
2599 	pv_entry_t pv;
2600 
2601 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2602 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2603 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2604 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2605 			break;
2606 		}
2607 	}
2608 	return (pv);
2609 }
2610 
2611 static void
2612 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2613 {
2614 	struct md_page *pvh;
2615 	pv_entry_t pv;
2616 	vm_offset_t va_last;
2617 	vm_page_t m;
2618 
2619 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2620 	KASSERT((pa & PDRMASK) == 0,
2621 	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2622 
2623 	/*
2624 	 * Transfer the 4mpage's pv entry for this mapping to the first
2625 	 * page's pv list.
2626 	 */
2627 	pvh = pa_to_pvh(pa);
2628 	va = trunc_4mpage(va);
2629 	pv = pmap_pvh_remove(pvh, pmap, va);
2630 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2631 	m = PHYS_TO_VM_PAGE(pa);
2632 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2633 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2634 	va_last = va + NBPDR - PAGE_SIZE;
2635 	do {
2636 		m++;
2637 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2638 		    ("pmap_pv_demote_pde: page %p is not managed", m));
2639 		va += PAGE_SIZE;
2640 		pmap_insert_entry(pmap, va, m);
2641 	} while (va < va_last);
2642 }
2643 
2644 #if VM_NRESERVLEVEL > 0
2645 static void
2646 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2647 {
2648 	struct md_page *pvh;
2649 	pv_entry_t pv;
2650 	vm_offset_t va_last;
2651 	vm_page_t m;
2652 
2653 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2654 	KASSERT((pa & PDRMASK) == 0,
2655 	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2656 
2657 	/*
2658 	 * Transfer the first page's pv entry for this mapping to the
2659 	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2660 	 * to get_pv_entry(), a transfer avoids the possibility that
2661 	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2662 	 * removes one of the mappings that is being promoted.
2663 	 */
2664 	m = PHYS_TO_VM_PAGE(pa);
2665 	va = trunc_4mpage(va);
2666 	pv = pmap_pvh_remove(&m->md, pmap, va);
2667 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2668 	pvh = pa_to_pvh(pa);
2669 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2670 	/* Free the remaining NPTEPG - 1 pv entries. */
2671 	va_last = va + NBPDR - PAGE_SIZE;
2672 	do {
2673 		m++;
2674 		va += PAGE_SIZE;
2675 		pmap_pvh_free(&m->md, pmap, va);
2676 	} while (va < va_last);
2677 }
2678 #endif /* VM_NRESERVLEVEL > 0 */
2679 
2680 static void
2681 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2682 {
2683 	pv_entry_t pv;
2684 
2685 	pv = pmap_pvh_remove(pvh, pmap, va);
2686 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2687 	free_pv_entry(pmap, pv);
2688 }
2689 
2690 static void
2691 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2692 {
2693 	struct md_page *pvh;
2694 
2695 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2696 	pmap_pvh_free(&m->md, pmap, va);
2697 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
2698 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2699 		if (TAILQ_EMPTY(&pvh->pv_list))
2700 			vm_page_aflag_clear(m, PGA_WRITEABLE);
2701 	}
2702 }
2703 
2704 /*
2705  * Create a pv entry for page at pa for
2706  * (pmap, va).
2707  */
2708 static void
2709 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2710 {
2711 	pv_entry_t pv;
2712 
2713 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2714 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2715 	pv = get_pv_entry(pmap, FALSE);
2716 	pv->pv_va = va;
2717 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2718 }
2719 
2720 /*
2721  * Conditionally create a pv entry.
2722  */
2723 static boolean_t
2724 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2725 {
2726 	pv_entry_t pv;
2727 
2728 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2729 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2730 	if (pv_entry_count < pv_entry_high_water &&
2731 	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2732 		pv->pv_va = va;
2733 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2734 		return (TRUE);
2735 	} else
2736 		return (FALSE);
2737 }
2738 
2739 /*
2740  * Create the pv entries for each of the pages within a superpage.
2741  */
2742 static bool
2743 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags)
2744 {
2745 	struct md_page *pvh;
2746 	pv_entry_t pv;
2747 	bool noreclaim;
2748 
2749 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2750 	noreclaim = (flags & PMAP_ENTER_NORECLAIM) != 0;
2751 	if ((noreclaim && pv_entry_count >= pv_entry_high_water) ||
2752 	    (pv = get_pv_entry(pmap, noreclaim)) == NULL)
2753 		return (false);
2754 	pv->pv_va = va;
2755 	pvh = pa_to_pvh(pde & PG_PS_FRAME);
2756 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2757 	return (true);
2758 }
2759 
2760 /*
2761  * Fills a page table page with mappings to consecutive physical pages.
2762  */
2763 static void
2764 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2765 {
2766 	pt_entry_t *pte;
2767 
2768 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2769 		*pte = newpte;
2770 		newpte += PAGE_SIZE;
2771 	}
2772 }
2773 
2774 /*
2775  * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2776  * 2- or 4MB page mapping is invalidated.
2777  */
2778 static boolean_t
2779 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2780 {
2781 	pd_entry_t newpde, oldpde;
2782 	pt_entry_t *firstpte, newpte;
2783 	vm_paddr_t mptepa;
2784 	vm_page_t mpte;
2785 	struct spglist free;
2786 	vm_offset_t sva;
2787 
2788 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2789 	oldpde = *pde;
2790 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2791 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2792 	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
2793 	    NULL) {
2794 		KASSERT((oldpde & PG_W) == 0,
2795 		    ("pmap_demote_pde: page table page for a wired mapping"
2796 		    " is missing"));
2797 
2798 		/*
2799 		 * Invalidate the 2- or 4MB page mapping and return
2800 		 * "failure" if the mapping was never accessed or the
2801 		 * allocation of the new page table page fails.
2802 		 */
2803 		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2804 		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2805 		    VM_ALLOC_WIRED)) == NULL) {
2806 			SLIST_INIT(&free);
2807 			sva = trunc_4mpage(va);
2808 			pmap_remove_pde(pmap, pde, sva, &free);
2809 			if ((oldpde & PG_G) == 0)
2810 				pmap_invalidate_pde_page(pmap, sva, oldpde);
2811 			vm_page_free_pages_toq(&free, true);
2812 			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2813 			    " in pmap %p", va, pmap);
2814 			return (FALSE);
2815 		}
2816 		if (pmap != kernel_pmap) {
2817 			mpte->ref_count = NPTEPG;
2818 			pmap->pm_stats.resident_count++;
2819 		}
2820 	}
2821 	mptepa = VM_PAGE_TO_PHYS(mpte);
2822 
2823 	/*
2824 	 * If the page mapping is in the kernel's address space, then the
2825 	 * KPTmap can provide access to the page table page.  Otherwise,
2826 	 * temporarily map the page table page (mpte) into the kernel's
2827 	 * address space at either PADDR1 or PADDR2.
2828 	 */
2829 	if (pmap == kernel_pmap)
2830 		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2831 	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
2832 		if ((*PMAP1 & PG_FRAME) != mptepa) {
2833 			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2834 #ifdef SMP
2835 			PMAP1cpu = PCPU_GET(cpuid);
2836 #endif
2837 			invlcaddr(PADDR1);
2838 			PMAP1changed++;
2839 		} else
2840 #ifdef SMP
2841 		if (PMAP1cpu != PCPU_GET(cpuid)) {
2842 			PMAP1cpu = PCPU_GET(cpuid);
2843 			invlcaddr(PADDR1);
2844 			PMAP1changedcpu++;
2845 		} else
2846 #endif
2847 			PMAP1unchanged++;
2848 		firstpte = PADDR1;
2849 	} else {
2850 		mtx_lock(&PMAP2mutex);
2851 		if ((*PMAP2 & PG_FRAME) != mptepa) {
2852 			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2853 			pmap_invalidate_page_int(kernel_pmap,
2854 			    (vm_offset_t)PADDR2);
2855 		}
2856 		firstpte = PADDR2;
2857 	}
2858 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2859 	KASSERT((oldpde & PG_A) != 0,
2860 	    ("pmap_demote_pde: oldpde is missing PG_A"));
2861 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2862 	    ("pmap_demote_pde: oldpde is missing PG_M"));
2863 	newpte = oldpde & ~PG_PS;
2864 	if ((newpte & PG_PDE_PAT) != 0)
2865 		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2866 
2867 	/*
2868 	 * If the page table page is not leftover from an earlier promotion,
2869 	 * initialize it.
2870 	 */
2871 	if (mpte->valid == 0)
2872 		pmap_fill_ptp(firstpte, newpte);
2873 
2874 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2875 	    ("pmap_demote_pde: firstpte and newpte map different physical"
2876 	    " addresses"));
2877 
2878 	/*
2879 	 * If the mapping has changed attributes, update the page table
2880 	 * entries.
2881 	 */
2882 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2883 		pmap_fill_ptp(firstpte, newpte);
2884 
2885 	/*
2886 	 * Demote the mapping.  This pmap is locked.  The old PDE has
2887 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2888 	 * set.  Thus, there is no danger of a race with another
2889 	 * processor changing the setting of PG_A and/or PG_M between
2890 	 * the read above and the store below.
2891 	 */
2892 	if (workaround_erratum383)
2893 		pmap_update_pde(pmap, va, pde, newpde);
2894 	else if (pmap == kernel_pmap)
2895 		pmap_kenter_pde(va, newpde);
2896 	else
2897 		pde_store(pde, newpde);
2898 	if (firstpte == PADDR2)
2899 		mtx_unlock(&PMAP2mutex);
2900 
2901 	/*
2902 	 * Invalidate the recursive mapping of the page table page.
2903 	 */
2904 	pmap_invalidate_page_int(pmap, (vm_offset_t)vtopte(va));
2905 
2906 	/*
2907 	 * Demote the pv entry.  This depends on the earlier demotion
2908 	 * of the mapping.  Specifically, the (re)creation of a per-
2909 	 * page pv entry might trigger the execution of pmap_collect(),
2910 	 * which might reclaim a newly (re)created per-page pv entry
2911 	 * and destroy the associated mapping.  In order to destroy
2912 	 * the mapping, the PDE must have already changed from mapping
2913 	 * the 2mpage to referencing the page table page.
2914 	 */
2915 	if ((oldpde & PG_MANAGED) != 0)
2916 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2917 
2918 	pmap_pde_demotions++;
2919 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2920 	    " in pmap %p", va, pmap);
2921 	return (TRUE);
2922 }
2923 
2924 /*
2925  * Removes a 2- or 4MB page mapping from the kernel pmap.
2926  */
2927 static void
2928 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2929 {
2930 	pd_entry_t newpde;
2931 	vm_paddr_t mptepa;
2932 	vm_page_t mpte;
2933 
2934 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2935 	mpte = pmap_remove_pt_page(pmap, va);
2936 	if (mpte == NULL)
2937 		panic("pmap_remove_kernel_pde: Missing pt page.");
2938 
2939 	mptepa = VM_PAGE_TO_PHYS(mpte);
2940 	newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
2941 
2942 	/*
2943 	 * If this page table page was unmapped by a promotion, then it
2944 	 * contains valid mappings.  Zero it to invalidate those mappings.
2945 	 */
2946 	if (mpte->valid != 0)
2947 		pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
2948 
2949 	/*
2950 	 * Remove the mapping.
2951 	 */
2952 	if (workaround_erratum383)
2953 		pmap_update_pde(pmap, va, pde, newpde);
2954 	else
2955 		pmap_kenter_pde(va, newpde);
2956 
2957 	/*
2958 	 * Invalidate the recursive mapping of the page table page.
2959 	 */
2960 	pmap_invalidate_page_int(pmap, (vm_offset_t)vtopte(va));
2961 }
2962 
2963 /*
2964  * pmap_remove_pde: do the things to unmap a superpage in a process
2965  */
2966 static void
2967 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2968     struct spglist *free)
2969 {
2970 	struct md_page *pvh;
2971 	pd_entry_t oldpde;
2972 	vm_offset_t eva, va;
2973 	vm_page_t m, mpte;
2974 
2975 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2976 	KASSERT((sva & PDRMASK) == 0,
2977 	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2978 	oldpde = pte_load_clear(pdq);
2979 	if (oldpde & PG_W)
2980 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2981 
2982 	/*
2983 	 * Machines that don't support invlpg, also don't support
2984 	 * PG_G.
2985 	 */
2986 	if ((oldpde & PG_G) != 0)
2987 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
2988 
2989 	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2990 	if (oldpde & PG_MANAGED) {
2991 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2992 		pmap_pvh_free(pvh, pmap, sva);
2993 		eva = sva + NBPDR;
2994 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2995 		    va < eva; va += PAGE_SIZE, m++) {
2996 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2997 				vm_page_dirty(m);
2998 			if (oldpde & PG_A)
2999 				vm_page_aflag_set(m, PGA_REFERENCED);
3000 			if (TAILQ_EMPTY(&m->md.pv_list) &&
3001 			    TAILQ_EMPTY(&pvh->pv_list))
3002 				vm_page_aflag_clear(m, PGA_WRITEABLE);
3003 		}
3004 	}
3005 	if (pmap == kernel_pmap) {
3006 		pmap_remove_kernel_pde(pmap, pdq, sva);
3007 	} else {
3008 		mpte = pmap_remove_pt_page(pmap, sva);
3009 		if (mpte != NULL) {
3010 			KASSERT(mpte->valid == VM_PAGE_BITS_ALL,
3011 			    ("pmap_remove_pde: pte page not promoted"));
3012 			pmap->pm_stats.resident_count--;
3013 			KASSERT(mpte->ref_count == NPTEPG,
3014 			    ("pmap_remove_pde: pte page ref count error"));
3015 			mpte->ref_count = 0;
3016 			pmap_add_delayed_free_list(mpte, free, FALSE);
3017 		}
3018 	}
3019 }
3020 
3021 /*
3022  * pmap_remove_pte: do the things to unmap a page in a process
3023  */
3024 static int
3025 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
3026     struct spglist *free)
3027 {
3028 	pt_entry_t oldpte;
3029 	vm_page_t m;
3030 
3031 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3032 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3033 	oldpte = pte_load_clear(ptq);
3034 	KASSERT(oldpte != 0,
3035 	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
3036 	if (oldpte & PG_W)
3037 		pmap->pm_stats.wired_count -= 1;
3038 	/*
3039 	 * Machines that don't support invlpg, also don't support
3040 	 * PG_G.
3041 	 */
3042 	if (oldpte & PG_G)
3043 		pmap_invalidate_page_int(kernel_pmap, va);
3044 	pmap->pm_stats.resident_count -= 1;
3045 	if (oldpte & PG_MANAGED) {
3046 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
3047 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3048 			vm_page_dirty(m);
3049 		if (oldpte & PG_A)
3050 			vm_page_aflag_set(m, PGA_REFERENCED);
3051 		pmap_remove_entry(pmap, m, va);
3052 	}
3053 	return (pmap_unuse_pt(pmap, va, free));
3054 }
3055 
3056 /*
3057  * Remove a single page from a process address space
3058  */
3059 static void
3060 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
3061 {
3062 	pt_entry_t *pte;
3063 
3064 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3065 	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
3066 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3067 	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
3068 		return;
3069 	pmap_remove_pte(pmap, pte, va, free);
3070 	pmap_invalidate_page_int(pmap, va);
3071 }
3072 
3073 /*
3074  * Removes the specified range of addresses from the page table page.
3075  */
3076 static bool
3077 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3078     struct spglist *free)
3079 {
3080 	pt_entry_t *pte;
3081 	bool anyvalid;
3082 
3083 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3084 	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
3085 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3086 	anyvalid = false;
3087 	for (pte = pmap_pte_quick(pmap, sva); sva != eva; pte++,
3088 	    sva += PAGE_SIZE) {
3089 		if (*pte == 0)
3090 			continue;
3091 
3092 		/*
3093 		 * The TLB entry for a PG_G mapping is invalidated by
3094 		 * pmap_remove_pte().
3095 		 */
3096 		if ((*pte & PG_G) == 0)
3097 			anyvalid = true;
3098 
3099 		if (pmap_remove_pte(pmap, pte, sva, free))
3100 			break;
3101 	}
3102 	return (anyvalid);
3103 }
3104 
3105 /*
3106  *	Remove the given range of addresses from the specified map.
3107  *
3108  *	It is assumed that the start and end are properly
3109  *	rounded to the page size.
3110  */
3111 static void
3112 __CONCAT(PMTYPE, remove)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3113 {
3114 	vm_offset_t pdnxt;
3115 	pd_entry_t ptpaddr;
3116 	struct spglist free;
3117 	int anyvalid;
3118 
3119 	/*
3120 	 * Perform an unsynchronized read.  This is, however, safe.
3121 	 */
3122 	if (pmap->pm_stats.resident_count == 0)
3123 		return;
3124 
3125 	anyvalid = 0;
3126 	SLIST_INIT(&free);
3127 
3128 	rw_wlock(&pvh_global_lock);
3129 	sched_pin();
3130 	PMAP_LOCK(pmap);
3131 
3132 	/*
3133 	 * special handling of removing one page.  a very
3134 	 * common operation and easy to short circuit some
3135 	 * code.
3136 	 */
3137 	if ((sva + PAGE_SIZE == eva) &&
3138 	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
3139 		pmap_remove_page(pmap, sva, &free);
3140 		goto out;
3141 	}
3142 
3143 	for (; sva < eva; sva = pdnxt) {
3144 		u_int pdirindex;
3145 
3146 		/*
3147 		 * Calculate index for next page table.
3148 		 */
3149 		pdnxt = (sva + NBPDR) & ~PDRMASK;
3150 		if (pdnxt < sva)
3151 			pdnxt = eva;
3152 		if (pmap->pm_stats.resident_count == 0)
3153 			break;
3154 
3155 		pdirindex = sva >> PDRSHIFT;
3156 		ptpaddr = pmap->pm_pdir[pdirindex];
3157 
3158 		/*
3159 		 * Weed out invalid mappings. Note: we assume that the page
3160 		 * directory table is always allocated, and in kernel virtual.
3161 		 */
3162 		if (ptpaddr == 0)
3163 			continue;
3164 
3165 		/*
3166 		 * Check for large page.
3167 		 */
3168 		if ((ptpaddr & PG_PS) != 0) {
3169 			/*
3170 			 * Are we removing the entire large page?  If not,
3171 			 * demote the mapping and fall through.
3172 			 */
3173 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3174 				/*
3175 				 * The TLB entry for a PG_G mapping is
3176 				 * invalidated by pmap_remove_pde().
3177 				 */
3178 				if ((ptpaddr & PG_G) == 0)
3179 					anyvalid = 1;
3180 				pmap_remove_pde(pmap,
3181 				    &pmap->pm_pdir[pdirindex], sva, &free);
3182 				continue;
3183 			} else if (!pmap_demote_pde(pmap,
3184 			    &pmap->pm_pdir[pdirindex], sva)) {
3185 				/* The large page mapping was destroyed. */
3186 				continue;
3187 			}
3188 		}
3189 
3190 		/*
3191 		 * Limit our scan to either the end of the va represented
3192 		 * by the current page table page, or to the end of the
3193 		 * range being removed.
3194 		 */
3195 		if (pdnxt > eva)
3196 			pdnxt = eva;
3197 
3198 		if (pmap_remove_ptes(pmap, sva, pdnxt, &free))
3199 			anyvalid = 1;
3200 	}
3201 out:
3202 	sched_unpin();
3203 	if (anyvalid)
3204 		pmap_invalidate_all_int(pmap);
3205 	rw_wunlock(&pvh_global_lock);
3206 	PMAP_UNLOCK(pmap);
3207 	vm_page_free_pages_toq(&free, true);
3208 }
3209 
3210 /*
3211  *	Routine:	pmap_remove_all
3212  *	Function:
3213  *		Removes this physical page from
3214  *		all physical maps in which it resides.
3215  *		Reflects back modify bits to the pager.
3216  *
3217  *	Notes:
3218  *		Original versions of this routine were very
3219  *		inefficient because they iteratively called
3220  *		pmap_remove (slow...)
3221  */
3222 
3223 static void
3224 __CONCAT(PMTYPE, remove_all)(vm_page_t m)
3225 {
3226 	struct md_page *pvh;
3227 	pv_entry_t pv;
3228 	pmap_t pmap;
3229 	pt_entry_t *pte, tpte;
3230 	pd_entry_t *pde;
3231 	vm_offset_t va;
3232 	struct spglist free;
3233 
3234 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3235 	    ("pmap_remove_all: page %p is not managed", m));
3236 	SLIST_INIT(&free);
3237 	rw_wlock(&pvh_global_lock);
3238 	sched_pin();
3239 	if ((m->flags & PG_FICTITIOUS) != 0)
3240 		goto small_mappings;
3241 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3242 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3243 		va = pv->pv_va;
3244 		pmap = PV_PMAP(pv);
3245 		PMAP_LOCK(pmap);
3246 		pde = pmap_pde(pmap, va);
3247 		(void)pmap_demote_pde(pmap, pde, va);
3248 		PMAP_UNLOCK(pmap);
3249 	}
3250 small_mappings:
3251 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3252 		pmap = PV_PMAP(pv);
3253 		PMAP_LOCK(pmap);
3254 		pmap->pm_stats.resident_count--;
3255 		pde = pmap_pde(pmap, pv->pv_va);
3256 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3257 		    " a 4mpage in page %p's pv list", m));
3258 		pte = pmap_pte_quick(pmap, pv->pv_va);
3259 		tpte = pte_load_clear(pte);
3260 		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
3261 		    pmap, pv->pv_va));
3262 		if (tpte & PG_W)
3263 			pmap->pm_stats.wired_count--;
3264 		if (tpte & PG_A)
3265 			vm_page_aflag_set(m, PGA_REFERENCED);
3266 
3267 		/*
3268 		 * Update the vm_page_t clean and reference bits.
3269 		 */
3270 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3271 			vm_page_dirty(m);
3272 		pmap_unuse_pt(pmap, pv->pv_va, &free);
3273 		pmap_invalidate_page_int(pmap, pv->pv_va);
3274 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3275 		free_pv_entry(pmap, pv);
3276 		PMAP_UNLOCK(pmap);
3277 	}
3278 	vm_page_aflag_clear(m, PGA_WRITEABLE);
3279 	sched_unpin();
3280 	rw_wunlock(&pvh_global_lock);
3281 	vm_page_free_pages_toq(&free, true);
3282 }
3283 
3284 /*
3285  * pmap_protect_pde: do the things to protect a 4mpage in a process
3286  */
3287 static boolean_t
3288 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3289 {
3290 	pd_entry_t newpde, oldpde;
3291 	vm_page_t m, mt;
3292 	boolean_t anychanged;
3293 
3294 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3295 	KASSERT((sva & PDRMASK) == 0,
3296 	    ("pmap_protect_pde: sva is not 4mpage aligned"));
3297 	anychanged = FALSE;
3298 retry:
3299 	oldpde = newpde = *pde;
3300 	if ((prot & VM_PROT_WRITE) == 0) {
3301 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
3302 		    (PG_MANAGED | PG_M | PG_RW)) {
3303 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3304 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3305 				vm_page_dirty(mt);
3306 		}
3307 		newpde &= ~(PG_RW | PG_M);
3308 	}
3309 #ifdef PMAP_PAE_COMP
3310 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3311 		newpde |= pg_nx;
3312 #endif
3313 	if (newpde != oldpde) {
3314 		/*
3315 		 * As an optimization to future operations on this PDE, clear
3316 		 * PG_PROMOTED.  The impending invalidation will remove any
3317 		 * lingering 4KB page mappings from the TLB.
3318 		 */
3319 		if (!pde_cmpset(pde, oldpde, newpde & ~PG_PROMOTED))
3320 			goto retry;
3321 		if ((oldpde & PG_G) != 0)
3322 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
3323 		else
3324 			anychanged = TRUE;
3325 	}
3326 	return (anychanged);
3327 }
3328 
3329 /*
3330  *	Set the physical protection on the
3331  *	specified range of this map as requested.
3332  */
3333 static void
3334 __CONCAT(PMTYPE, protect)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3335     vm_prot_t prot)
3336 {
3337 	vm_offset_t pdnxt;
3338 	pd_entry_t ptpaddr;
3339 	pt_entry_t *pte;
3340 	boolean_t anychanged, pv_lists_locked;
3341 
3342 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3343 	if (prot == VM_PROT_NONE) {
3344 		pmap_remove(pmap, sva, eva);
3345 		return;
3346 	}
3347 
3348 #ifdef PMAP_PAE_COMP
3349 	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
3350 	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
3351 		return;
3352 #else
3353 	if (prot & VM_PROT_WRITE)
3354 		return;
3355 #endif
3356 
3357 	if (pmap_is_current(pmap))
3358 		pv_lists_locked = FALSE;
3359 	else {
3360 		pv_lists_locked = TRUE;
3361 resume:
3362 		rw_wlock(&pvh_global_lock);
3363 		sched_pin();
3364 	}
3365 	anychanged = FALSE;
3366 
3367 	PMAP_LOCK(pmap);
3368 	for (; sva < eva; sva = pdnxt) {
3369 		pt_entry_t obits, pbits;
3370 		u_int pdirindex;
3371 
3372 		pdnxt = (sva + NBPDR) & ~PDRMASK;
3373 		if (pdnxt < sva)
3374 			pdnxt = eva;
3375 
3376 		pdirindex = sva >> PDRSHIFT;
3377 		ptpaddr = pmap->pm_pdir[pdirindex];
3378 
3379 		/*
3380 		 * Weed out invalid mappings. Note: we assume that the page
3381 		 * directory table is always allocated, and in kernel virtual.
3382 		 */
3383 		if (ptpaddr == 0)
3384 			continue;
3385 
3386 		/*
3387 		 * Check for large page.
3388 		 */
3389 		if ((ptpaddr & PG_PS) != 0) {
3390 			/*
3391 			 * Are we protecting the entire large page?  If not,
3392 			 * demote the mapping and fall through.
3393 			 */
3394 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3395 				/*
3396 				 * The TLB entry for a PG_G mapping is
3397 				 * invalidated by pmap_protect_pde().
3398 				 */
3399 				if (pmap_protect_pde(pmap,
3400 				    &pmap->pm_pdir[pdirindex], sva, prot))
3401 					anychanged = TRUE;
3402 				continue;
3403 			} else {
3404 				if (!pv_lists_locked) {
3405 					pv_lists_locked = TRUE;
3406 					if (!rw_try_wlock(&pvh_global_lock)) {
3407 						if (anychanged)
3408 							pmap_invalidate_all_int(
3409 							    pmap);
3410 						PMAP_UNLOCK(pmap);
3411 						goto resume;
3412 					}
3413 					sched_pin();
3414 				}
3415 				if (!pmap_demote_pde(pmap,
3416 				    &pmap->pm_pdir[pdirindex], sva)) {
3417 					/*
3418 					 * The large page mapping was
3419 					 * destroyed.
3420 					 */
3421 					continue;
3422 				}
3423 			}
3424 		}
3425 
3426 		if (pdnxt > eva)
3427 			pdnxt = eva;
3428 
3429 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3430 		    sva += PAGE_SIZE) {
3431 			vm_page_t m;
3432 
3433 retry:
3434 			/*
3435 			 * Regardless of whether a pte is 32 or 64 bits in
3436 			 * size, PG_RW, PG_A, and PG_M are among the least
3437 			 * significant 32 bits.
3438 			 */
3439 			obits = pbits = *pte;
3440 			if ((pbits & PG_V) == 0)
3441 				continue;
3442 
3443 			if ((prot & VM_PROT_WRITE) == 0) {
3444 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3445 				    (PG_MANAGED | PG_M | PG_RW)) {
3446 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3447 					vm_page_dirty(m);
3448 				}
3449 				pbits &= ~(PG_RW | PG_M);
3450 			}
3451 #ifdef PMAP_PAE_COMP
3452 			if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3453 				pbits |= pg_nx;
3454 #endif
3455 
3456 			if (pbits != obits) {
3457 #ifdef PMAP_PAE_COMP
3458 				if (!atomic_cmpset_64(pte, obits, pbits))
3459 					goto retry;
3460 #else
3461 				if (!atomic_cmpset_int((u_int *)pte, obits,
3462 				    pbits))
3463 					goto retry;
3464 #endif
3465 				if (obits & PG_G)
3466 					pmap_invalidate_page_int(pmap, sva);
3467 				else
3468 					anychanged = TRUE;
3469 			}
3470 		}
3471 	}
3472 	if (anychanged)
3473 		pmap_invalidate_all_int(pmap);
3474 	if (pv_lists_locked) {
3475 		sched_unpin();
3476 		rw_wunlock(&pvh_global_lock);
3477 	}
3478 	PMAP_UNLOCK(pmap);
3479 }
3480 
3481 #if VM_NRESERVLEVEL > 0
3482 /*
3483  * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3484  * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3485  * For promotion to occur, two conditions must be met: (1) the 4KB page
3486  * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3487  * mappings must have identical characteristics.
3488  *
3489  * Managed (PG_MANAGED) mappings within the kernel address space are not
3490  * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3491  * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3492  * pmap.
3493  */
3494 static void
3495 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3496 {
3497 	pd_entry_t newpde;
3498 	pt_entry_t *firstpte, oldpte, pa, *pte;
3499 	vm_offset_t oldpteva;
3500 	vm_page_t mpte;
3501 
3502 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3503 
3504 	/*
3505 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3506 	 * either invalid, unused, or does not map the first 4KB physical page
3507 	 * within a 2- or 4MB page.
3508 	 */
3509 	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3510 setpde:
3511 	newpde = *firstpte;
3512 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3513 		pmap_pde_p_failures++;
3514 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3515 		    " in pmap %p", va, pmap);
3516 		return;
3517 	}
3518 	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3519 		pmap_pde_p_failures++;
3520 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3521 		    " in pmap %p", va, pmap);
3522 		return;
3523 	}
3524 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3525 		/*
3526 		 * When PG_M is already clear, PG_RW can be cleared without
3527 		 * a TLB invalidation.
3528 		 */
3529 		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3530 		    ~PG_RW))
3531 			goto setpde;
3532 		newpde &= ~PG_RW;
3533 	}
3534 
3535 	/*
3536 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3537 	 * PTE maps an unexpected 4KB physical page or does not have identical
3538 	 * characteristics to the first PTE.
3539 	 */
3540 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3541 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3542 setpte:
3543 		oldpte = *pte;
3544 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3545 			pmap_pde_p_failures++;
3546 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3547 			    " in pmap %p", va, pmap);
3548 			return;
3549 		}
3550 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3551 			/*
3552 			 * When PG_M is already clear, PG_RW can be cleared
3553 			 * without a TLB invalidation.
3554 			 */
3555 			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3556 			    oldpte & ~PG_RW))
3557 				goto setpte;
3558 			oldpte &= ~PG_RW;
3559 			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3560 			    (va & ~PDRMASK);
3561 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3562 			    " in pmap %p", oldpteva, pmap);
3563 		}
3564 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3565 			pmap_pde_p_failures++;
3566 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3567 			    " in pmap %p", va, pmap);
3568 			return;
3569 		}
3570 		pa -= PAGE_SIZE;
3571 	}
3572 
3573 	/*
3574 	 * Save the page table page in its current state until the PDE
3575 	 * mapping the superpage is demoted by pmap_demote_pde() or
3576 	 * destroyed by pmap_remove_pde().
3577 	 */
3578 	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3579 	KASSERT(mpte >= vm_page_array &&
3580 	    mpte < &vm_page_array[vm_page_array_size],
3581 	    ("pmap_promote_pde: page table page is out of range"));
3582 	KASSERT(mpte->pindex == va >> PDRSHIFT,
3583 	    ("pmap_promote_pde: page table page's pindex is wrong"));
3584 	if (pmap_insert_pt_page(pmap, mpte, true)) {
3585 		pmap_pde_p_failures++;
3586 		CTR2(KTR_PMAP,
3587 		    "pmap_promote_pde: failure for va %#x in pmap %p", va,
3588 		    pmap);
3589 		return;
3590 	}
3591 
3592 	/*
3593 	 * Promote the pv entries.
3594 	 */
3595 	if ((newpde & PG_MANAGED) != 0)
3596 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3597 
3598 	/*
3599 	 * Propagate the PAT index to its proper position.
3600 	 */
3601 	if ((newpde & PG_PTE_PAT) != 0)
3602 		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3603 
3604 	/*
3605 	 * Map the superpage.
3606 	 */
3607 	if (workaround_erratum383)
3608 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3609 	else if (pmap == kernel_pmap)
3610 		pmap_kenter_pde(va, PG_PROMOTED | PG_PS | newpde);
3611 	else
3612 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
3613 
3614 	pmap_pde_promotions++;
3615 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3616 	    " in pmap %p", va, pmap);
3617 }
3618 #endif /* VM_NRESERVLEVEL > 0 */
3619 
3620 /*
3621  *	Insert the given physical page (p) at
3622  *	the specified virtual address (v) in the
3623  *	target physical map with the protection requested.
3624  *
3625  *	If specified, the page will be wired down, meaning
3626  *	that the related pte can not be reclaimed.
3627  *
3628  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3629  *	or lose information.  That is, this routine must actually
3630  *	insert this page into the given map NOW.
3631  */
3632 static int
3633 __CONCAT(PMTYPE, enter)(pmap_t pmap, vm_offset_t va, vm_page_t m,
3634     vm_prot_t prot, u_int flags, int8_t psind)
3635 {
3636 	pd_entry_t *pde;
3637 	pt_entry_t *pte;
3638 	pt_entry_t newpte, origpte;
3639 	pv_entry_t pv;
3640 	vm_paddr_t opa, pa;
3641 	vm_page_t mpte, om;
3642 	int rv;
3643 
3644 	va = trunc_page(va);
3645 	KASSERT((pmap == kernel_pmap && va < VM_MAX_KERNEL_ADDRESS) ||
3646 	    (pmap != kernel_pmap && va < VM_MAXUSER_ADDRESS),
3647 	    ("pmap_enter: toobig k%d %#x", pmap == kernel_pmap, va));
3648 	KASSERT(va < PMAP_TRM_MIN_ADDRESS,
3649 	    ("pmap_enter: invalid to pmap_enter into trampoline (va: 0x%x)",
3650 	    va));
3651 	KASSERT(pmap != kernel_pmap || (m->oflags & VPO_UNMANAGED) != 0 ||
3652 	    va < kmi.clean_sva || va >= kmi.clean_eva,
3653 	    ("pmap_enter: managed mapping within the clean submap"));
3654 	if ((m->oflags & VPO_UNMANAGED) == 0)
3655 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
3656 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
3657 	    ("pmap_enter: flags %u has reserved bits set", flags));
3658 	pa = VM_PAGE_TO_PHYS(m);
3659 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
3660 	if ((flags & VM_PROT_WRITE) != 0)
3661 		newpte |= PG_M;
3662 	if ((prot & VM_PROT_WRITE) != 0)
3663 		newpte |= PG_RW;
3664 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
3665 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
3666 #ifdef PMAP_PAE_COMP
3667 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3668 		newpte |= pg_nx;
3669 #endif
3670 	if ((flags & PMAP_ENTER_WIRED) != 0)
3671 		newpte |= PG_W;
3672 	if (pmap != kernel_pmap)
3673 		newpte |= PG_U;
3674 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
3675 	if ((m->oflags & VPO_UNMANAGED) == 0)
3676 		newpte |= PG_MANAGED;
3677 
3678 	rw_wlock(&pvh_global_lock);
3679 	PMAP_LOCK(pmap);
3680 	sched_pin();
3681 	if (psind == 1) {
3682 		/* Assert the required virtual and physical alignment. */
3683 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
3684 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
3685 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m);
3686 		goto out;
3687 	}
3688 
3689 	pde = pmap_pde(pmap, va);
3690 	if (pmap != kernel_pmap) {
3691 		/*
3692 		 * va is for UVA.
3693 		 * In the case that a page table page is not resident,
3694 		 * we are creating it here.  pmap_allocpte() handles
3695 		 * demotion.
3696 		 */
3697 		mpte = pmap_allocpte(pmap, va, flags);
3698 		if (mpte == NULL) {
3699 			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3700 			    ("pmap_allocpte failed with sleep allowed"));
3701 			rv = KERN_RESOURCE_SHORTAGE;
3702 			goto out;
3703 		}
3704 	} else {
3705 		/*
3706 		 * va is for KVA, so pmap_demote_pde() will never fail
3707 		 * to install a page table page.  PG_V is also
3708 		 * asserted by pmap_demote_pde().
3709 		 */
3710 		mpte = NULL;
3711 		KASSERT(pde != NULL && (*pde & PG_V) != 0,
3712 		    ("KVA %#x invalid pde pdir %#jx", va,
3713 		    (uintmax_t)pmap->pm_pdir[PTDPTDI]));
3714 		if ((*pde & PG_PS) != 0)
3715 			pmap_demote_pde(pmap, pde, va);
3716 	}
3717 	pte = pmap_pte_quick(pmap, va);
3718 
3719 	/*
3720 	 * Page Directory table entry is not valid, which should not
3721 	 * happen.  We should have either allocated the page table
3722 	 * page or demoted the existing mapping above.
3723 	 */
3724 	if (pte == NULL) {
3725 		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3726 		    (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3727 	}
3728 
3729 	origpte = *pte;
3730 	pv = NULL;
3731 
3732 	/*
3733 	 * Is the specified virtual address already mapped?
3734 	 */
3735 	if ((origpte & PG_V) != 0) {
3736 		/*
3737 		 * Wiring change, just update stats. We don't worry about
3738 		 * wiring PT pages as they remain resident as long as there
3739 		 * are valid mappings in them. Hence, if a user page is wired,
3740 		 * the PT page will be also.
3741 		 */
3742 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
3743 			pmap->pm_stats.wired_count++;
3744 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
3745 			pmap->pm_stats.wired_count--;
3746 
3747 		/*
3748 		 * Remove the extra PT page reference.
3749 		 */
3750 		if (mpte != NULL) {
3751 			mpte->ref_count--;
3752 			KASSERT(mpte->ref_count > 0,
3753 			    ("pmap_enter: missing reference to page table page,"
3754 			     " va: 0x%x", va));
3755 		}
3756 
3757 		/*
3758 		 * Has the physical page changed?
3759 		 */
3760 		opa = origpte & PG_FRAME;
3761 		if (opa == pa) {
3762 			/*
3763 			 * No, might be a protection or wiring change.
3764 			 */
3765 			if ((origpte & PG_MANAGED) != 0 &&
3766 			    (newpte & PG_RW) != 0)
3767 				vm_page_aflag_set(m, PGA_WRITEABLE);
3768 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
3769 				goto unchanged;
3770 			goto validate;
3771 		}
3772 
3773 		/*
3774 		 * The physical page has changed.  Temporarily invalidate
3775 		 * the mapping.  This ensures that all threads sharing the
3776 		 * pmap keep a consistent view of the mapping, which is
3777 		 * necessary for the correct handling of COW faults.  It
3778 		 * also permits reuse of the old mapping's PV entry,
3779 		 * avoiding an allocation.
3780 		 *
3781 		 * For consistency, handle unmanaged mappings the same way.
3782 		 */
3783 		origpte = pte_load_clear(pte);
3784 		KASSERT((origpte & PG_FRAME) == opa,
3785 		    ("pmap_enter: unexpected pa update for %#x", va));
3786 		if ((origpte & PG_MANAGED) != 0) {
3787 			om = PHYS_TO_VM_PAGE(opa);
3788 
3789 			/*
3790 			 * The pmap lock is sufficient to synchronize with
3791 			 * concurrent calls to pmap_page_test_mappings() and
3792 			 * pmap_ts_referenced().
3793 			 */
3794 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3795 				vm_page_dirty(om);
3796 			if ((origpte & PG_A) != 0) {
3797 				pmap_invalidate_page_int(pmap, va);
3798 				vm_page_aflag_set(om, PGA_REFERENCED);
3799 			}
3800 			pv = pmap_pvh_remove(&om->md, pmap, va);
3801 			KASSERT(pv != NULL,
3802 			    ("pmap_enter: no PV entry for %#x", va));
3803 			if ((newpte & PG_MANAGED) == 0)
3804 				free_pv_entry(pmap, pv);
3805 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3806 			    TAILQ_EMPTY(&om->md.pv_list) &&
3807 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3808 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3809 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3810 		} else {
3811 			/*
3812 			 * Since this mapping is unmanaged, assume that PG_A
3813 			 * is set.
3814 			 */
3815 			pmap_invalidate_page_int(pmap, va);
3816 		}
3817 		origpte = 0;
3818 	} else {
3819 		/*
3820 		 * Increment the counters.
3821 		 */
3822 		if ((newpte & PG_W) != 0)
3823 			pmap->pm_stats.wired_count++;
3824 		pmap->pm_stats.resident_count++;
3825 	}
3826 
3827 	/*
3828 	 * Enter on the PV list if part of our managed memory.
3829 	 */
3830 	if ((newpte & PG_MANAGED) != 0) {
3831 		if (pv == NULL) {
3832 			pv = get_pv_entry(pmap, FALSE);
3833 			pv->pv_va = va;
3834 		}
3835 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3836 		if ((newpte & PG_RW) != 0)
3837 			vm_page_aflag_set(m, PGA_WRITEABLE);
3838 	}
3839 
3840 	/*
3841 	 * Update the PTE.
3842 	 */
3843 	if ((origpte & PG_V) != 0) {
3844 validate:
3845 		origpte = pte_load_store(pte, newpte);
3846 		KASSERT((origpte & PG_FRAME) == pa,
3847 		    ("pmap_enter: unexpected pa update for %#x", va));
3848 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3849 		    (PG_M | PG_RW)) {
3850 			if ((origpte & PG_MANAGED) != 0)
3851 				vm_page_dirty(m);
3852 
3853 			/*
3854 			 * Although the PTE may still have PG_RW set, TLB
3855 			 * invalidation may nonetheless be required because
3856 			 * the PTE no longer has PG_M set.
3857 			 */
3858 		}
3859 #ifdef PMAP_PAE_COMP
3860 		else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
3861 			/*
3862 			 * This PTE change does not require TLB invalidation.
3863 			 */
3864 			goto unchanged;
3865 		}
3866 #endif
3867 		if ((origpte & PG_A) != 0)
3868 			pmap_invalidate_page_int(pmap, va);
3869 	} else
3870 		pte_store_zero(pte, newpte);
3871 
3872 unchanged:
3873 
3874 #if VM_NRESERVLEVEL > 0
3875 	/*
3876 	 * If both the page table page and the reservation are fully
3877 	 * populated, then attempt promotion.
3878 	 */
3879 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3880 	    pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
3881 	    vm_reserv_level_iffullpop(m) == 0)
3882 		pmap_promote_pde(pmap, pde, va);
3883 #endif
3884 
3885 	rv = KERN_SUCCESS;
3886 out:
3887 	sched_unpin();
3888 	rw_wunlock(&pvh_global_lock);
3889 	PMAP_UNLOCK(pmap);
3890 	return (rv);
3891 }
3892 
3893 /*
3894  * Tries to create a read- and/or execute-only 2 or 4 MB page mapping.  Returns
3895  * true if successful.  Returns false if (1) a mapping already exists at the
3896  * specified virtual address or (2) a PV entry cannot be allocated without
3897  * reclaiming another PV entry.
3898  */
3899 static bool
3900 pmap_enter_4mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3901 {
3902 	pd_entry_t newpde;
3903 
3904 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3905 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
3906 	    PG_PS | PG_V;
3907 	if ((m->oflags & VPO_UNMANAGED) == 0)
3908 		newpde |= PG_MANAGED;
3909 #ifdef PMAP_PAE_COMP
3910 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
3911 		newpde |= pg_nx;
3912 #endif
3913 	if (pmap != kernel_pmap)
3914 		newpde |= PG_U;
3915 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3916 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL) ==
3917 	    KERN_SUCCESS);
3918 }
3919 
3920 /*
3921  * Returns true if every page table entry in the page table page that maps
3922  * the specified kernel virtual address is zero.
3923  */
3924 static bool
3925 pmap_every_pte_zero(vm_offset_t va)
3926 {
3927 	pt_entry_t *pt_end, *pte;
3928 
3929 	KASSERT((va & PDRMASK) == 0, ("va is misaligned"));
3930 	pte = vtopte(va);
3931 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
3932 		if (*pte != 0)
3933 			return (false);
3934 	}
3935 	return (true);
3936 }
3937 
3938 /*
3939  * Tries to create the specified 2 or 4 MB page mapping.  Returns KERN_SUCCESS
3940  * if the mapping was created, and either KERN_FAILURE or
3941  * KERN_RESOURCE_SHORTAGE otherwise.  Returns KERN_FAILURE if
3942  * PMAP_ENTER_NOREPLACE was specified and a mapping already exists at the
3943  * specified virtual address.  Returns KERN_RESOURCE_SHORTAGE if
3944  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3945  *
3946  * The parameter "m" is only used when creating a managed, writeable mapping.
3947  */
3948 static int
3949 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
3950     vm_page_t m)
3951 {
3952 	struct spglist free;
3953 	pd_entry_t oldpde, *pde;
3954 	vm_page_t mt;
3955 
3956 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3957 	KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3958 	    ("pmap_enter_pde: newpde is missing PG_M"));
3959 	KASSERT(pmap == kernel_pmap || (newpde & PG_W) == 0,
3960 	    ("pmap_enter_pde: cannot create wired user mapping"));
3961 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3962 	pde = pmap_pde(pmap, va);
3963 	oldpde = *pde;
3964 	if ((oldpde & PG_V) != 0) {
3965 		if ((flags & PMAP_ENTER_NOREPLACE) != 0 && (pmap !=
3966 		    kernel_pmap || (oldpde & PG_PS) != 0 ||
3967 		    !pmap_every_pte_zero(va))) {
3968 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3969 			    " in pmap %p", va, pmap);
3970 			return (KERN_FAILURE);
3971 		}
3972 		/* Break the existing mapping(s). */
3973 		SLIST_INIT(&free);
3974 		if ((oldpde & PG_PS) != 0) {
3975 			/*
3976 			 * If the PDE resulted from a promotion, then a
3977 			 * reserved PT page could be freed.
3978 			 */
3979 			(void)pmap_remove_pde(pmap, pde, va, &free);
3980 			if ((oldpde & PG_G) == 0)
3981 				pmap_invalidate_pde_page(pmap, va, oldpde);
3982 		} else {
3983 			if (pmap_remove_ptes(pmap, va, va + NBPDR, &free))
3984 		               pmap_invalidate_all_int(pmap);
3985 		}
3986 		if (pmap != kernel_pmap) {
3987 			vm_page_free_pages_toq(&free, true);
3988 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
3989 			    pde));
3990 		} else {
3991 			KASSERT(SLIST_EMPTY(&free),
3992 			    ("pmap_enter_pde: freed kernel page table page"));
3993 
3994 			/*
3995 			 * Both pmap_remove_pde() and pmap_remove_ptes() will
3996 			 * leave the kernel page table page zero filled.
3997 			 */
3998 			mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3999 			if (pmap_insert_pt_page(pmap, mt, false))
4000 				panic("pmap_enter_pde: trie insert failed");
4001 		}
4002 	}
4003 	if ((newpde & PG_MANAGED) != 0) {
4004 		/*
4005 		 * Abort this mapping if its PV entry could not be created.
4006 		 */
4007 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags)) {
4008 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
4009 			    " in pmap %p", va, pmap);
4010 			return (KERN_RESOURCE_SHORTAGE);
4011 		}
4012 		if ((newpde & PG_RW) != 0) {
4013 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4014 				vm_page_aflag_set(mt, PGA_WRITEABLE);
4015 		}
4016 	}
4017 
4018 	/*
4019 	 * Increment counters.
4020 	 */
4021 	if ((newpde & PG_W) != 0)
4022 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
4023 	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
4024 
4025 	/*
4026 	 * Map the superpage.  (This is not a promoted mapping; there will not
4027 	 * be any lingering 4KB page mappings in the TLB.)
4028 	 */
4029 	pde_store(pde, newpde);
4030 
4031 	pmap_pde_mappings++;
4032 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
4033 	    va, pmap);
4034 	return (KERN_SUCCESS);
4035 }
4036 
4037 /*
4038  * Maps a sequence of resident pages belonging to the same object.
4039  * The sequence begins with the given page m_start.  This page is
4040  * mapped at the given virtual address start.  Each subsequent page is
4041  * mapped at a virtual address that is offset from start by the same
4042  * amount as the page is offset from m_start within the object.  The
4043  * last page in the sequence is the page with the largest offset from
4044  * m_start that can be mapped at a virtual address less than the given
4045  * virtual address end.  Not every virtual page between start and end
4046  * is mapped; only those for which a resident page exists with the
4047  * corresponding offset from m_start are mapped.
4048  */
4049 static void
4050 __CONCAT(PMTYPE, enter_object)(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4051     vm_page_t m_start, vm_prot_t prot)
4052 {
4053 	vm_offset_t va;
4054 	vm_page_t m, mpte;
4055 	vm_pindex_t diff, psize;
4056 
4057 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4058 
4059 	psize = atop(end - start);
4060 	mpte = NULL;
4061 	m = m_start;
4062 	rw_wlock(&pvh_global_lock);
4063 	PMAP_LOCK(pmap);
4064 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4065 		va = start + ptoa(diff);
4066 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
4067 		    m->psind == 1 && pg_ps_enabled &&
4068 		    pmap_enter_4mpage(pmap, va, m, prot))
4069 			m = &m[NBPDR / PAGE_SIZE - 1];
4070 		else
4071 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
4072 			    mpte);
4073 		m = TAILQ_NEXT(m, listq);
4074 	}
4075 	rw_wunlock(&pvh_global_lock);
4076 	PMAP_UNLOCK(pmap);
4077 }
4078 
4079 /*
4080  * this code makes some *MAJOR* assumptions:
4081  * 1. Current pmap & pmap exists.
4082  * 2. Not wired.
4083  * 3. Read access.
4084  * 4. No page table pages.
4085  * but is *MUCH* faster than pmap_enter...
4086  */
4087 
4088 static void
4089 __CONCAT(PMTYPE, enter_quick)(pmap_t pmap, vm_offset_t va, vm_page_t m,
4090     vm_prot_t prot)
4091 {
4092 
4093 	rw_wlock(&pvh_global_lock);
4094 	PMAP_LOCK(pmap);
4095 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4096 	rw_wunlock(&pvh_global_lock);
4097 	PMAP_UNLOCK(pmap);
4098 }
4099 
4100 static vm_page_t
4101 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4102     vm_prot_t prot, vm_page_t mpte)
4103 {
4104 	pt_entry_t newpte, *pte;
4105 
4106 	KASSERT(pmap != kernel_pmap || va < kmi.clean_sva ||
4107 	    va >= kmi.clean_eva || (m->oflags & VPO_UNMANAGED) != 0,
4108 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
4109 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4110 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4111 
4112 	/*
4113 	 * In the case that a page table page is not
4114 	 * resident, we are creating it here.
4115 	 */
4116 	if (pmap != kernel_pmap) {
4117 		u_int ptepindex;
4118 		pd_entry_t ptepa;
4119 
4120 		/*
4121 		 * Calculate pagetable page index
4122 		 */
4123 		ptepindex = va >> PDRSHIFT;
4124 		if (mpte && (mpte->pindex == ptepindex)) {
4125 			mpte->ref_count++;
4126 		} else {
4127 			/*
4128 			 * Get the page directory entry
4129 			 */
4130 			ptepa = pmap->pm_pdir[ptepindex];
4131 
4132 			/*
4133 			 * If the page table page is mapped, we just increment
4134 			 * the hold count, and activate it.
4135 			 */
4136 			if (ptepa) {
4137 				if (ptepa & PG_PS)
4138 					return (NULL);
4139 				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
4140 				mpte->ref_count++;
4141 			} else {
4142 				mpte = _pmap_allocpte(pmap, ptepindex,
4143 				    PMAP_ENTER_NOSLEEP);
4144 				if (mpte == NULL)
4145 					return (mpte);
4146 			}
4147 		}
4148 	} else {
4149 		mpte = NULL;
4150 	}
4151 
4152 	sched_pin();
4153 	pte = pmap_pte_quick(pmap, va);
4154 	if (*pte) {
4155 		if (mpte != NULL)
4156 			mpte->ref_count--;
4157 		sched_unpin();
4158 		return (NULL);
4159 	}
4160 
4161 	/*
4162 	 * Enter on the PV list if part of our managed memory.
4163 	 */
4164 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4165 	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4166 		if (mpte != NULL)
4167 			pmap_abort_ptp(pmap, va, mpte);
4168 		sched_unpin();
4169 		return (NULL);
4170 	}
4171 
4172 	/*
4173 	 * Increment counters
4174 	 */
4175 	pmap->pm_stats.resident_count++;
4176 
4177 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
4178 	    pmap_cache_bits(pmap, m->md.pat_mode, 0);
4179 	if ((m->oflags & VPO_UNMANAGED) == 0)
4180 		newpte |= PG_MANAGED;
4181 #ifdef PMAP_PAE_COMP
4182 	if ((prot & VM_PROT_EXECUTE) == 0 && !i386_read_exec)
4183 		newpte |= pg_nx;
4184 #endif
4185 	if (pmap != kernel_pmap)
4186 		newpte |= PG_U;
4187 	pte_store_zero(pte, newpte);
4188 	sched_unpin();
4189 	return (mpte);
4190 }
4191 
4192 /*
4193  * Make a temporary mapping for a physical address.  This is only intended
4194  * to be used for panic dumps.
4195  */
4196 static void *
4197 __CONCAT(PMTYPE, kenter_temporary)(vm_paddr_t pa, int i)
4198 {
4199 	vm_offset_t va;
4200 
4201 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
4202 	pmap_kenter(va, pa);
4203 	invlpg(va);
4204 	return ((void *)crashdumpmap);
4205 }
4206 
4207 /*
4208  * This code maps large physical mmap regions into the
4209  * processor address space.  Note that some shortcuts
4210  * are taken, but the code works.
4211  */
4212 static void
4213 __CONCAT(PMTYPE, object_init_pt)(pmap_t pmap, vm_offset_t addr,
4214     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
4215 {
4216 	pd_entry_t *pde;
4217 	vm_paddr_t pa, ptepa;
4218 	vm_page_t p;
4219 	int pat_mode;
4220 
4221 	VM_OBJECT_ASSERT_WLOCKED(object);
4222 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4223 	    ("pmap_object_init_pt: non-device object"));
4224 	if (pg_ps_enabled &&
4225 	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
4226 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4227 			return;
4228 		p = vm_page_lookup(object, pindex);
4229 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4230 		    ("pmap_object_init_pt: invalid page %p", p));
4231 		pat_mode = p->md.pat_mode;
4232 
4233 		/*
4234 		 * Abort the mapping if the first page is not physically
4235 		 * aligned to a 2/4MB page boundary.
4236 		 */
4237 		ptepa = VM_PAGE_TO_PHYS(p);
4238 		if (ptepa & (NBPDR - 1))
4239 			return;
4240 
4241 		/*
4242 		 * Skip the first page.  Abort the mapping if the rest of
4243 		 * the pages are not physically contiguous or have differing
4244 		 * memory attributes.
4245 		 */
4246 		p = TAILQ_NEXT(p, listq);
4247 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4248 		    pa += PAGE_SIZE) {
4249 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4250 			    ("pmap_object_init_pt: invalid page %p", p));
4251 			if (pa != VM_PAGE_TO_PHYS(p) ||
4252 			    pat_mode != p->md.pat_mode)
4253 				return;
4254 			p = TAILQ_NEXT(p, listq);
4255 		}
4256 
4257 		/*
4258 		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
4259 		 * "size" is a multiple of 2/4M, adding the PAT setting to
4260 		 * "pa" will not affect the termination of this loop.
4261 		 */
4262 		PMAP_LOCK(pmap);
4263 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
4264 		    pa < ptepa + size; pa += NBPDR) {
4265 			pde = pmap_pde(pmap, addr);
4266 			if (*pde == 0) {
4267 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
4268 				    PG_U | PG_RW | PG_V);
4269 				pmap->pm_stats.resident_count += NBPDR /
4270 				    PAGE_SIZE;
4271 				pmap_pde_mappings++;
4272 			}
4273 			/* Else continue on if the PDE is already valid. */
4274 			addr += NBPDR;
4275 		}
4276 		PMAP_UNLOCK(pmap);
4277 	}
4278 }
4279 
4280 /*
4281  *	Clear the wired attribute from the mappings for the specified range of
4282  *	addresses in the given pmap.  Every valid mapping within that range
4283  *	must have the wired attribute set.  In contrast, invalid mappings
4284  *	cannot have the wired attribute set, so they are ignored.
4285  *
4286  *	The wired attribute of the page table entry is not a hardware feature,
4287  *	so there is no need to invalidate any TLB entries.
4288  */
4289 static void
4290 __CONCAT(PMTYPE, unwire)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4291 {
4292 	vm_offset_t pdnxt;
4293 	pd_entry_t *pde;
4294 	pt_entry_t *pte;
4295 	boolean_t pv_lists_locked;
4296 
4297 	if (pmap_is_current(pmap))
4298 		pv_lists_locked = FALSE;
4299 	else {
4300 		pv_lists_locked = TRUE;
4301 resume:
4302 		rw_wlock(&pvh_global_lock);
4303 		sched_pin();
4304 	}
4305 	PMAP_LOCK(pmap);
4306 	for (; sva < eva; sva = pdnxt) {
4307 		pdnxt = (sva + NBPDR) & ~PDRMASK;
4308 		if (pdnxt < sva)
4309 			pdnxt = eva;
4310 		pde = pmap_pde(pmap, sva);
4311 		if ((*pde & PG_V) == 0)
4312 			continue;
4313 		if ((*pde & PG_PS) != 0) {
4314 			if ((*pde & PG_W) == 0)
4315 				panic("pmap_unwire: pde %#jx is missing PG_W",
4316 				    (uintmax_t)*pde);
4317 
4318 			/*
4319 			 * Are we unwiring the entire large page?  If not,
4320 			 * demote the mapping and fall through.
4321 			 */
4322 			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
4323 				/*
4324 				 * Regardless of whether a pde (or pte) is 32
4325 				 * or 64 bits in size, PG_W is among the least
4326 				 * significant 32 bits.
4327 				 */
4328 				atomic_clear_int((u_int *)pde, PG_W);
4329 				pmap->pm_stats.wired_count -= NBPDR /
4330 				    PAGE_SIZE;
4331 				continue;
4332 			} else {
4333 				if (!pv_lists_locked) {
4334 					pv_lists_locked = TRUE;
4335 					if (!rw_try_wlock(&pvh_global_lock)) {
4336 						PMAP_UNLOCK(pmap);
4337 						/* Repeat sva. */
4338 						goto resume;
4339 					}
4340 					sched_pin();
4341 				}
4342 				if (!pmap_demote_pde(pmap, pde, sva))
4343 					panic("pmap_unwire: demotion failed");
4344 			}
4345 		}
4346 		if (pdnxt > eva)
4347 			pdnxt = eva;
4348 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
4349 		    sva += PAGE_SIZE) {
4350 			if ((*pte & PG_V) == 0)
4351 				continue;
4352 			if ((*pte & PG_W) == 0)
4353 				panic("pmap_unwire: pte %#jx is missing PG_W",
4354 				    (uintmax_t)*pte);
4355 
4356 			/*
4357 			 * PG_W must be cleared atomically.  Although the pmap
4358 			 * lock synchronizes access to PG_W, another processor
4359 			 * could be setting PG_M and/or PG_A concurrently.
4360 			 *
4361 			 * PG_W is among the least significant 32 bits.
4362 			 */
4363 			atomic_clear_int((u_int *)pte, PG_W);
4364 			pmap->pm_stats.wired_count--;
4365 		}
4366 	}
4367 	if (pv_lists_locked) {
4368 		sched_unpin();
4369 		rw_wunlock(&pvh_global_lock);
4370 	}
4371 	PMAP_UNLOCK(pmap);
4372 }
4373 
4374 
4375 /*
4376  *	Copy the range specified by src_addr/len
4377  *	from the source map to the range dst_addr/len
4378  *	in the destination map.
4379  *
4380  *	This routine is only advisory and need not do anything.  Since
4381  *	current pmap is always the kernel pmap when executing in
4382  *	kernel, and we do not copy from the kernel pmap to a user
4383  *	pmap, this optimization is not usable in 4/4G full split i386
4384  *	world.
4385  */
4386 
4387 static void
4388 __CONCAT(PMTYPE, copy)(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
4389     vm_size_t len, vm_offset_t src_addr)
4390 {
4391 	pt_entry_t *src_pte, *dst_pte, ptetemp;
4392 	pd_entry_t srcptepaddr;
4393 	vm_page_t dstmpte, srcmpte;
4394 	vm_offset_t addr, end_addr, pdnxt;
4395 	u_int ptepindex;
4396 
4397 	if (dst_addr != src_addr)
4398 		return;
4399 
4400 	end_addr = src_addr + len;
4401 
4402 	rw_wlock(&pvh_global_lock);
4403 	if (dst_pmap < src_pmap) {
4404 		PMAP_LOCK(dst_pmap);
4405 		PMAP_LOCK(src_pmap);
4406 	} else {
4407 		PMAP_LOCK(src_pmap);
4408 		PMAP_LOCK(dst_pmap);
4409 	}
4410 	sched_pin();
4411 	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
4412 		KASSERT(addr < PMAP_TRM_MIN_ADDRESS,
4413 		    ("pmap_copy: invalid to pmap_copy the trampoline"));
4414 
4415 		pdnxt = (addr + NBPDR) & ~PDRMASK;
4416 		if (pdnxt < addr)
4417 			pdnxt = end_addr;
4418 		ptepindex = addr >> PDRSHIFT;
4419 
4420 		srcptepaddr = src_pmap->pm_pdir[ptepindex];
4421 		if (srcptepaddr == 0)
4422 			continue;
4423 
4424 		if (srcptepaddr & PG_PS) {
4425 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4426 				continue;
4427 			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
4428 			    ((srcptepaddr & PG_MANAGED) == 0 ||
4429 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
4430 			    PMAP_ENTER_NORECLAIM))) {
4431 				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
4432 				    ~PG_W;
4433 				dst_pmap->pm_stats.resident_count +=
4434 				    NBPDR / PAGE_SIZE;
4435 				pmap_pde_mappings++;
4436 			}
4437 			continue;
4438 		}
4439 
4440 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
4441 		KASSERT(srcmpte->ref_count > 0,
4442 		    ("pmap_copy: source page table page is unused"));
4443 
4444 		if (pdnxt > end_addr)
4445 			pdnxt = end_addr;
4446 
4447 		src_pte = pmap_pte_quick3(src_pmap, addr);
4448 		while (addr < pdnxt) {
4449 			ptetemp = *src_pte;
4450 			/*
4451 			 * we only virtual copy managed pages
4452 			 */
4453 			if ((ptetemp & PG_MANAGED) != 0) {
4454 				dstmpte = pmap_allocpte(dst_pmap, addr,
4455 				    PMAP_ENTER_NOSLEEP);
4456 				if (dstmpte == NULL)
4457 					goto out;
4458 				dst_pte = pmap_pte_quick(dst_pmap, addr);
4459 				if (*dst_pte == 0 &&
4460 				    pmap_try_insert_pv_entry(dst_pmap, addr,
4461 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
4462 					/*
4463 					 * Clear the wired, modified, and
4464 					 * accessed (referenced) bits
4465 					 * during the copy.
4466 					 */
4467 					*dst_pte = ptetemp & ~(PG_W | PG_M |
4468 					    PG_A);
4469 					dst_pmap->pm_stats.resident_count++;
4470 				} else {
4471 					pmap_abort_ptp(dst_pmap, addr, dstmpte);
4472 					goto out;
4473 				}
4474 				if (dstmpte->ref_count >= srcmpte->ref_count)
4475 					break;
4476 			}
4477 			addr += PAGE_SIZE;
4478 			src_pte++;
4479 		}
4480 	}
4481 out:
4482 	sched_unpin();
4483 	rw_wunlock(&pvh_global_lock);
4484 	PMAP_UNLOCK(src_pmap);
4485 	PMAP_UNLOCK(dst_pmap);
4486 }
4487 
4488 /*
4489  * Zero 1 page of virtual memory mapped from a hardware page by the caller.
4490  */
4491 static __inline void
4492 pagezero(void *page)
4493 {
4494 #if defined(I686_CPU)
4495 	if (cpu_class == CPUCLASS_686) {
4496 		if (cpu_feature & CPUID_SSE2)
4497 			sse2_pagezero(page);
4498 		else
4499 			i686_pagezero(page);
4500 	} else
4501 #endif
4502 		bzero(page, PAGE_SIZE);
4503 }
4504 
4505 /*
4506  * Zero the specified hardware page.
4507  */
4508 static void
4509 __CONCAT(PMTYPE, zero_page)(vm_page_t m)
4510 {
4511 	pt_entry_t *cmap_pte2;
4512 	struct pcpu *pc;
4513 
4514 	sched_pin();
4515 	pc = get_pcpu();
4516 	cmap_pte2 = pc->pc_cmap_pte2;
4517 	mtx_lock(&pc->pc_cmap_lock);
4518 	if (*cmap_pte2)
4519 		panic("pmap_zero_page: CMAP2 busy");
4520 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4521 	    pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
4522 	invlcaddr(pc->pc_cmap_addr2);
4523 	pagezero(pc->pc_cmap_addr2);
4524 	*cmap_pte2 = 0;
4525 
4526 	/*
4527 	 * Unpin the thread before releasing the lock.  Otherwise the thread
4528 	 * could be rescheduled while still bound to the current CPU, only
4529 	 * to unpin itself immediately upon resuming execution.
4530 	 */
4531 	sched_unpin();
4532 	mtx_unlock(&pc->pc_cmap_lock);
4533 }
4534 
4535 /*
4536  * Zero an an area within a single hardware page.  off and size must not
4537  * cover an area beyond a single hardware page.
4538  */
4539 static void
4540 __CONCAT(PMTYPE, zero_page_area)(vm_page_t m, int off, int size)
4541 {
4542 	pt_entry_t *cmap_pte2;
4543 	struct pcpu *pc;
4544 
4545 	sched_pin();
4546 	pc = get_pcpu();
4547 	cmap_pte2 = pc->pc_cmap_pte2;
4548 	mtx_lock(&pc->pc_cmap_lock);
4549 	if (*cmap_pte2)
4550 		panic("pmap_zero_page_area: CMAP2 busy");
4551 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4552 	    pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
4553 	invlcaddr(pc->pc_cmap_addr2);
4554 	if (off == 0 && size == PAGE_SIZE)
4555 		pagezero(pc->pc_cmap_addr2);
4556 	else
4557 		bzero(pc->pc_cmap_addr2 + off, size);
4558 	*cmap_pte2 = 0;
4559 	sched_unpin();
4560 	mtx_unlock(&pc->pc_cmap_lock);
4561 }
4562 
4563 /*
4564  * Copy 1 specified hardware page to another.
4565  */
4566 static void
4567 __CONCAT(PMTYPE, copy_page)(vm_page_t src, vm_page_t dst)
4568 {
4569 	pt_entry_t *cmap_pte1, *cmap_pte2;
4570 	struct pcpu *pc;
4571 
4572 	sched_pin();
4573 	pc = get_pcpu();
4574 	cmap_pte1 = pc->pc_cmap_pte1;
4575 	cmap_pte2 = pc->pc_cmap_pte2;
4576 	mtx_lock(&pc->pc_cmap_lock);
4577 	if (*cmap_pte1)
4578 		panic("pmap_copy_page: CMAP1 busy");
4579 	if (*cmap_pte2)
4580 		panic("pmap_copy_page: CMAP2 busy");
4581 	*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4582 	    pmap_cache_bits(kernel_pmap, src->md.pat_mode, 0);
4583 	invlcaddr(pc->pc_cmap_addr1);
4584 	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4585 	    pmap_cache_bits(kernel_pmap, dst->md.pat_mode, 0);
4586 	invlcaddr(pc->pc_cmap_addr2);
4587 	bcopy(pc->pc_cmap_addr1, pc->pc_cmap_addr2, PAGE_SIZE);
4588 	*cmap_pte1 = 0;
4589 	*cmap_pte2 = 0;
4590 	sched_unpin();
4591 	mtx_unlock(&pc->pc_cmap_lock);
4592 }
4593 
4594 static void
4595 __CONCAT(PMTYPE, copy_pages)(vm_page_t ma[], vm_offset_t a_offset,
4596     vm_page_t mb[], vm_offset_t b_offset, int xfersize)
4597 {
4598 	vm_page_t a_pg, b_pg;
4599 	char *a_cp, *b_cp;
4600 	vm_offset_t a_pg_offset, b_pg_offset;
4601 	pt_entry_t *cmap_pte1, *cmap_pte2;
4602 	struct pcpu *pc;
4603 	int cnt;
4604 
4605 	sched_pin();
4606 	pc = get_pcpu();
4607 	cmap_pte1 = pc->pc_cmap_pte1;
4608 	cmap_pte2 = pc->pc_cmap_pte2;
4609 	mtx_lock(&pc->pc_cmap_lock);
4610 	if (*cmap_pte1 != 0)
4611 		panic("pmap_copy_pages: CMAP1 busy");
4612 	if (*cmap_pte2 != 0)
4613 		panic("pmap_copy_pages: CMAP2 busy");
4614 	while (xfersize > 0) {
4615 		a_pg = ma[a_offset >> PAGE_SHIFT];
4616 		a_pg_offset = a_offset & PAGE_MASK;
4617 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4618 		b_pg = mb[b_offset >> PAGE_SHIFT];
4619 		b_pg_offset = b_offset & PAGE_MASK;
4620 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4621 		*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
4622 		    pmap_cache_bits(kernel_pmap, a_pg->md.pat_mode, 0);
4623 		invlcaddr(pc->pc_cmap_addr1);
4624 		*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
4625 		    PG_M | pmap_cache_bits(kernel_pmap, b_pg->md.pat_mode, 0);
4626 		invlcaddr(pc->pc_cmap_addr2);
4627 		a_cp = pc->pc_cmap_addr1 + a_pg_offset;
4628 		b_cp = pc->pc_cmap_addr2 + b_pg_offset;
4629 		bcopy(a_cp, b_cp, cnt);
4630 		a_offset += cnt;
4631 		b_offset += cnt;
4632 		xfersize -= cnt;
4633 	}
4634 	*cmap_pte1 = 0;
4635 	*cmap_pte2 = 0;
4636 	sched_unpin();
4637 	mtx_unlock(&pc->pc_cmap_lock);
4638 }
4639 
4640 /*
4641  * Returns true if the pmap's pv is one of the first
4642  * 16 pvs linked to from this page.  This count may
4643  * be changed upwards or downwards in the future; it
4644  * is only necessary that true be returned for a small
4645  * subset of pmaps for proper page aging.
4646  */
4647 static boolean_t
4648 __CONCAT(PMTYPE, page_exists_quick)(pmap_t pmap, vm_page_t m)
4649 {
4650 	struct md_page *pvh;
4651 	pv_entry_t pv;
4652 	int loops = 0;
4653 	boolean_t rv;
4654 
4655 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4656 	    ("pmap_page_exists_quick: page %p is not managed", m));
4657 	rv = FALSE;
4658 	rw_wlock(&pvh_global_lock);
4659 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4660 		if (PV_PMAP(pv) == pmap) {
4661 			rv = TRUE;
4662 			break;
4663 		}
4664 		loops++;
4665 		if (loops >= 16)
4666 			break;
4667 	}
4668 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4669 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4670 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4671 			if (PV_PMAP(pv) == pmap) {
4672 				rv = TRUE;
4673 				break;
4674 			}
4675 			loops++;
4676 			if (loops >= 16)
4677 				break;
4678 		}
4679 	}
4680 	rw_wunlock(&pvh_global_lock);
4681 	return (rv);
4682 }
4683 
4684 /*
4685  *	pmap_page_wired_mappings:
4686  *
4687  *	Return the number of managed mappings to the given physical page
4688  *	that are wired.
4689  */
4690 static int
4691 __CONCAT(PMTYPE, page_wired_mappings)(vm_page_t m)
4692 {
4693 	int count;
4694 
4695 	count = 0;
4696 	if ((m->oflags & VPO_UNMANAGED) != 0)
4697 		return (count);
4698 	rw_wlock(&pvh_global_lock);
4699 	count = pmap_pvh_wired_mappings(&m->md, count);
4700 	if ((m->flags & PG_FICTITIOUS) == 0) {
4701 	    count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4702 	        count);
4703 	}
4704 	rw_wunlock(&pvh_global_lock);
4705 	return (count);
4706 }
4707 
4708 /*
4709  *	pmap_pvh_wired_mappings:
4710  *
4711  *	Return the updated number "count" of managed mappings that are wired.
4712  */
4713 static int
4714 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4715 {
4716 	pmap_t pmap;
4717 	pt_entry_t *pte;
4718 	pv_entry_t pv;
4719 
4720 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4721 	sched_pin();
4722 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4723 		pmap = PV_PMAP(pv);
4724 		PMAP_LOCK(pmap);
4725 		pte = pmap_pte_quick(pmap, pv->pv_va);
4726 		if ((*pte & PG_W) != 0)
4727 			count++;
4728 		PMAP_UNLOCK(pmap);
4729 	}
4730 	sched_unpin();
4731 	return (count);
4732 }
4733 
4734 /*
4735  * Returns TRUE if the given page is mapped individually or as part of
4736  * a 4mpage.  Otherwise, returns FALSE.
4737  */
4738 static boolean_t
4739 __CONCAT(PMTYPE, page_is_mapped)(vm_page_t m)
4740 {
4741 	boolean_t rv;
4742 
4743 	if ((m->oflags & VPO_UNMANAGED) != 0)
4744 		return (FALSE);
4745 	rw_wlock(&pvh_global_lock);
4746 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4747 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4748 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4749 	rw_wunlock(&pvh_global_lock);
4750 	return (rv);
4751 }
4752 
4753 /*
4754  * Remove all pages from specified address space
4755  * this aids process exit speeds.  Also, this code
4756  * is special cased for current process only, but
4757  * can have the more generic (and slightly slower)
4758  * mode enabled.  This is much faster than pmap_remove
4759  * in the case of running down an entire address space.
4760  */
4761 static void
4762 __CONCAT(PMTYPE, remove_pages)(pmap_t pmap)
4763 {
4764 	pt_entry_t *pte, tpte;
4765 	vm_page_t m, mpte, mt;
4766 	pv_entry_t pv;
4767 	struct md_page *pvh;
4768 	struct pv_chunk *pc, *npc;
4769 	struct spglist free;
4770 	int field, idx;
4771 	int32_t bit;
4772 	uint32_t inuse, bitmask;
4773 	int allfree;
4774 
4775 	if (pmap != PCPU_GET(curpmap)) {
4776 		printf("warning: pmap_remove_pages called with non-current pmap\n");
4777 		return;
4778 	}
4779 	SLIST_INIT(&free);
4780 	rw_wlock(&pvh_global_lock);
4781 	PMAP_LOCK(pmap);
4782 	sched_pin();
4783 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4784 		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
4785 		    pc->pc_pmap));
4786 		allfree = 1;
4787 		for (field = 0; field < _NPCM; field++) {
4788 			inuse = ~pc->pc_map[field] & pc_freemask[field];
4789 			while (inuse != 0) {
4790 				bit = bsfl(inuse);
4791 				bitmask = 1UL << bit;
4792 				idx = field * 32 + bit;
4793 				pv = &pc->pc_pventry[idx];
4794 				inuse &= ~bitmask;
4795 
4796 				pte = pmap_pde(pmap, pv->pv_va);
4797 				tpte = *pte;
4798 				if ((tpte & PG_PS) == 0) {
4799 					pte = pmap_pte_quick(pmap, pv->pv_va);
4800 					tpte = *pte & ~PG_PTE_PAT;
4801 				}
4802 
4803 				if (tpte == 0) {
4804 					printf(
4805 					    "TPTE at %p  IS ZERO @ VA %08x\n",
4806 					    pte, pv->pv_va);
4807 					panic("bad pte");
4808 				}
4809 
4810 /*
4811  * We cannot remove wired pages from a process' mapping at this time
4812  */
4813 				if (tpte & PG_W) {
4814 					allfree = 0;
4815 					continue;
4816 				}
4817 
4818 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4819 				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4820 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4821 				    m, (uintmax_t)m->phys_addr,
4822 				    (uintmax_t)tpte));
4823 
4824 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4825 				    m < &vm_page_array[vm_page_array_size],
4826 				    ("pmap_remove_pages: bad tpte %#jx",
4827 				    (uintmax_t)tpte));
4828 
4829 				pte_clear(pte);
4830 
4831 				/*
4832 				 * Update the vm_page_t clean/reference bits.
4833 				 */
4834 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4835 					if ((tpte & PG_PS) != 0) {
4836 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4837 							vm_page_dirty(mt);
4838 					} else
4839 						vm_page_dirty(m);
4840 				}
4841 
4842 				/* Mark free */
4843 				PV_STAT(pv_entry_frees++);
4844 				PV_STAT(pv_entry_spare++);
4845 				pv_entry_count--;
4846 				pc->pc_map[field] |= bitmask;
4847 				if ((tpte & PG_PS) != 0) {
4848 					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4849 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4850 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4851 					if (TAILQ_EMPTY(&pvh->pv_list)) {
4852 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4853 							if (TAILQ_EMPTY(&mt->md.pv_list))
4854 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
4855 					}
4856 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
4857 					if (mpte != NULL) {
4858 						KASSERT(mpte->valid == VM_PAGE_BITS_ALL,
4859 						    ("pmap_remove_pages: pte page not promoted"));
4860 						pmap->pm_stats.resident_count--;
4861 						KASSERT(mpte->ref_count == NPTEPG,
4862 						    ("pmap_remove_pages: pte page ref count error"));
4863 						mpte->ref_count = 0;
4864 						pmap_add_delayed_free_list(mpte, &free, FALSE);
4865 					}
4866 				} else {
4867 					pmap->pm_stats.resident_count--;
4868 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4869 					if (TAILQ_EMPTY(&m->md.pv_list) &&
4870 					    (m->flags & PG_FICTITIOUS) == 0) {
4871 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4872 						if (TAILQ_EMPTY(&pvh->pv_list))
4873 							vm_page_aflag_clear(m, PGA_WRITEABLE);
4874 					}
4875 					pmap_unuse_pt(pmap, pv->pv_va, &free);
4876 				}
4877 			}
4878 		}
4879 		if (allfree) {
4880 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4881 			free_pv_chunk(pc);
4882 		}
4883 	}
4884 	sched_unpin();
4885 	pmap_invalidate_all_int(pmap);
4886 	rw_wunlock(&pvh_global_lock);
4887 	PMAP_UNLOCK(pmap);
4888 	vm_page_free_pages_toq(&free, true);
4889 }
4890 
4891 /*
4892  *	pmap_is_modified:
4893  *
4894  *	Return whether or not the specified physical page was modified
4895  *	in any physical maps.
4896  */
4897 static boolean_t
4898 __CONCAT(PMTYPE, is_modified)(vm_page_t m)
4899 {
4900 	boolean_t rv;
4901 
4902 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4903 	    ("pmap_is_modified: page %p is not managed", m));
4904 
4905 	/*
4906 	 * If the page is not busied then this check is racy.
4907 	 */
4908 	if (!pmap_page_is_write_mapped(m))
4909 		return (FALSE);
4910 	rw_wlock(&pvh_global_lock);
4911 	rv = pmap_is_modified_pvh(&m->md) ||
4912 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4913 	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4914 	rw_wunlock(&pvh_global_lock);
4915 	return (rv);
4916 }
4917 
4918 /*
4919  * Returns TRUE if any of the given mappings were used to modify
4920  * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4921  * mappings are supported.
4922  */
4923 static boolean_t
4924 pmap_is_modified_pvh(struct md_page *pvh)
4925 {
4926 	pv_entry_t pv;
4927 	pt_entry_t *pte;
4928 	pmap_t pmap;
4929 	boolean_t rv;
4930 
4931 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4932 	rv = FALSE;
4933 	sched_pin();
4934 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4935 		pmap = PV_PMAP(pv);
4936 		PMAP_LOCK(pmap);
4937 		pte = pmap_pte_quick(pmap, pv->pv_va);
4938 		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4939 		PMAP_UNLOCK(pmap);
4940 		if (rv)
4941 			break;
4942 	}
4943 	sched_unpin();
4944 	return (rv);
4945 }
4946 
4947 /*
4948  *	pmap_is_prefaultable:
4949  *
4950  *	Return whether or not the specified virtual address is elgible
4951  *	for prefault.
4952  */
4953 static boolean_t
4954 __CONCAT(PMTYPE, is_prefaultable)(pmap_t pmap, vm_offset_t addr)
4955 {
4956 	pd_entry_t pde;
4957 	boolean_t rv;
4958 
4959 	rv = FALSE;
4960 	PMAP_LOCK(pmap);
4961 	pde = *pmap_pde(pmap, addr);
4962 	if (pde != 0 && (pde & PG_PS) == 0)
4963 		rv = pmap_pte_ufast(pmap, addr, pde) == 0;
4964 	PMAP_UNLOCK(pmap);
4965 	return (rv);
4966 }
4967 
4968 /*
4969  *	pmap_is_referenced:
4970  *
4971  *	Return whether or not the specified physical page was referenced
4972  *	in any physical maps.
4973  */
4974 static boolean_t
4975 __CONCAT(PMTYPE, is_referenced)(vm_page_t m)
4976 {
4977 	boolean_t rv;
4978 
4979 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4980 	    ("pmap_is_referenced: page %p is not managed", m));
4981 	rw_wlock(&pvh_global_lock);
4982 	rv = pmap_is_referenced_pvh(&m->md) ||
4983 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4984 	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4985 	rw_wunlock(&pvh_global_lock);
4986 	return (rv);
4987 }
4988 
4989 /*
4990  * Returns TRUE if any of the given mappings were referenced and FALSE
4991  * otherwise.  Both page and 4mpage mappings are supported.
4992  */
4993 static boolean_t
4994 pmap_is_referenced_pvh(struct md_page *pvh)
4995 {
4996 	pv_entry_t pv;
4997 	pt_entry_t *pte;
4998 	pmap_t pmap;
4999 	boolean_t rv;
5000 
5001 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5002 	rv = FALSE;
5003 	sched_pin();
5004 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5005 		pmap = PV_PMAP(pv);
5006 		PMAP_LOCK(pmap);
5007 		pte = pmap_pte_quick(pmap, pv->pv_va);
5008 		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
5009 		PMAP_UNLOCK(pmap);
5010 		if (rv)
5011 			break;
5012 	}
5013 	sched_unpin();
5014 	return (rv);
5015 }
5016 
5017 /*
5018  * Clear the write and modified bits in each of the given page's mappings.
5019  */
5020 static void
5021 __CONCAT(PMTYPE, remove_write)(vm_page_t m)
5022 {
5023 	struct md_page *pvh;
5024 	pv_entry_t next_pv, pv;
5025 	pmap_t pmap;
5026 	pd_entry_t *pde;
5027 	pt_entry_t oldpte, *pte;
5028 	vm_offset_t va;
5029 
5030 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5031 	    ("pmap_remove_write: page %p is not managed", m));
5032 	vm_page_assert_busied(m);
5033 
5034 	if (!pmap_page_is_write_mapped(m))
5035 		return;
5036 	rw_wlock(&pvh_global_lock);
5037 	sched_pin();
5038 	if ((m->flags & PG_FICTITIOUS) != 0)
5039 		goto small_mappings;
5040 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5041 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5042 		va = pv->pv_va;
5043 		pmap = PV_PMAP(pv);
5044 		PMAP_LOCK(pmap);
5045 		pde = pmap_pde(pmap, va);
5046 		if ((*pde & PG_RW) != 0)
5047 			(void)pmap_demote_pde(pmap, pde, va);
5048 		PMAP_UNLOCK(pmap);
5049 	}
5050 small_mappings:
5051 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5052 		pmap = PV_PMAP(pv);
5053 		PMAP_LOCK(pmap);
5054 		pde = pmap_pde(pmap, pv->pv_va);
5055 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
5056 		    " a 4mpage in page %p's pv list", m));
5057 		pte = pmap_pte_quick(pmap, pv->pv_va);
5058 retry:
5059 		oldpte = *pte;
5060 		if ((oldpte & PG_RW) != 0) {
5061 			/*
5062 			 * Regardless of whether a pte is 32 or 64 bits
5063 			 * in size, PG_RW and PG_M are among the least
5064 			 * significant 32 bits.
5065 			 */
5066 			if (!atomic_cmpset_int((u_int *)pte, oldpte,
5067 			    oldpte & ~(PG_RW | PG_M)))
5068 				goto retry;
5069 			if ((oldpte & PG_M) != 0)
5070 				vm_page_dirty(m);
5071 			pmap_invalidate_page_int(pmap, pv->pv_va);
5072 		}
5073 		PMAP_UNLOCK(pmap);
5074 	}
5075 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5076 	sched_unpin();
5077 	rw_wunlock(&pvh_global_lock);
5078 }
5079 
5080 /*
5081  *	pmap_ts_referenced:
5082  *
5083  *	Return a count of reference bits for a page, clearing those bits.
5084  *	It is not necessary for every reference bit to be cleared, but it
5085  *	is necessary that 0 only be returned when there are truly no
5086  *	reference bits set.
5087  *
5088  *	As an optimization, update the page's dirty field if a modified bit is
5089  *	found while counting reference bits.  This opportunistic update can be
5090  *	performed at low cost and can eliminate the need for some future calls
5091  *	to pmap_is_modified().  However, since this function stops after
5092  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5093  *	dirty pages.  Those dirty pages will only be detected by a future call
5094  *	to pmap_is_modified().
5095  */
5096 static int
5097 __CONCAT(PMTYPE, ts_referenced)(vm_page_t m)
5098 {
5099 	struct md_page *pvh;
5100 	pv_entry_t pv, pvf;
5101 	pmap_t pmap;
5102 	pd_entry_t *pde;
5103 	pt_entry_t *pte;
5104 	vm_paddr_t pa;
5105 	int rtval = 0;
5106 
5107 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5108 	    ("pmap_ts_referenced: page %p is not managed", m));
5109 	pa = VM_PAGE_TO_PHYS(m);
5110 	pvh = pa_to_pvh(pa);
5111 	rw_wlock(&pvh_global_lock);
5112 	sched_pin();
5113 	if ((m->flags & PG_FICTITIOUS) != 0 ||
5114 	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5115 		goto small_mappings;
5116 	pv = pvf;
5117 	do {
5118 		pmap = PV_PMAP(pv);
5119 		PMAP_LOCK(pmap);
5120 		pde = pmap_pde(pmap, pv->pv_va);
5121 		if ((*pde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5122 			/*
5123 			 * Although "*pde" is mapping a 2/4MB page, because
5124 			 * this function is called at a 4KB page granularity,
5125 			 * we only update the 4KB page under test.
5126 			 */
5127 			vm_page_dirty(m);
5128 		}
5129 		if ((*pde & PG_A) != 0) {
5130 			/*
5131 			 * Since this reference bit is shared by either 1024
5132 			 * or 512 4KB pages, it should not be cleared every
5133 			 * time it is tested.  Apply a simple "hash" function
5134 			 * on the physical page number, the virtual superpage
5135 			 * number, and the pmap address to select one 4KB page
5136 			 * out of the 1024 or 512 on which testing the
5137 			 * reference bit will result in clearing that bit.
5138 			 * This function is designed to avoid the selection of
5139 			 * the same 4KB page for every 2- or 4MB page mapping.
5140 			 *
5141 			 * On demotion, a mapping that hasn't been referenced
5142 			 * is simply destroyed.  To avoid the possibility of a
5143 			 * subsequent page fault on a demoted wired mapping,
5144 			 * always leave its reference bit set.  Moreover,
5145 			 * since the superpage is wired, the current state of
5146 			 * its reference bit won't affect page replacement.
5147 			 */
5148 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
5149 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
5150 			    (*pde & PG_W) == 0) {
5151 				atomic_clear_int((u_int *)pde, PG_A);
5152 				pmap_invalidate_page_int(pmap, pv->pv_va);
5153 			}
5154 			rtval++;
5155 		}
5156 		PMAP_UNLOCK(pmap);
5157 		/* Rotate the PV list if it has more than one entry. */
5158 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5159 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5160 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5161 		}
5162 		if (rtval >= PMAP_TS_REFERENCED_MAX)
5163 			goto out;
5164 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5165 small_mappings:
5166 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5167 		goto out;
5168 	pv = pvf;
5169 	do {
5170 		pmap = PV_PMAP(pv);
5171 		PMAP_LOCK(pmap);
5172 		pde = pmap_pde(pmap, pv->pv_va);
5173 		KASSERT((*pde & PG_PS) == 0,
5174 		    ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
5175 		    m));
5176 		pte = pmap_pte_quick(pmap, pv->pv_va);
5177 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5178 			vm_page_dirty(m);
5179 		if ((*pte & PG_A) != 0) {
5180 			atomic_clear_int((u_int *)pte, PG_A);
5181 			pmap_invalidate_page_int(pmap, pv->pv_va);
5182 			rtval++;
5183 		}
5184 		PMAP_UNLOCK(pmap);
5185 		/* Rotate the PV list if it has more than one entry. */
5186 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5187 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5188 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5189 		}
5190 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5191 	    PMAP_TS_REFERENCED_MAX);
5192 out:
5193 	sched_unpin();
5194 	rw_wunlock(&pvh_global_lock);
5195 	return (rtval);
5196 }
5197 
5198 /*
5199  *	Apply the given advice to the specified range of addresses within the
5200  *	given pmap.  Depending on the advice, clear the referenced and/or
5201  *	modified flags in each mapping and set the mapped page's dirty field.
5202  */
5203 static void
5204 __CONCAT(PMTYPE, advise)(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5205     int advice)
5206 {
5207 	pd_entry_t oldpde, *pde;
5208 	pt_entry_t *pte;
5209 	vm_offset_t va, pdnxt;
5210 	vm_page_t m;
5211 	bool anychanged, pv_lists_locked;
5212 
5213 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5214 		return;
5215 	if (pmap_is_current(pmap))
5216 		pv_lists_locked = false;
5217 	else {
5218 		pv_lists_locked = true;
5219 resume:
5220 		rw_wlock(&pvh_global_lock);
5221 		sched_pin();
5222 	}
5223 	anychanged = false;
5224 	PMAP_LOCK(pmap);
5225 	for (; sva < eva; sva = pdnxt) {
5226 		pdnxt = (sva + NBPDR) & ~PDRMASK;
5227 		if (pdnxt < sva)
5228 			pdnxt = eva;
5229 		pde = pmap_pde(pmap, sva);
5230 		oldpde = *pde;
5231 		if ((oldpde & PG_V) == 0)
5232 			continue;
5233 		else if ((oldpde & PG_PS) != 0) {
5234 			if ((oldpde & PG_MANAGED) == 0)
5235 				continue;
5236 			if (!pv_lists_locked) {
5237 				pv_lists_locked = true;
5238 				if (!rw_try_wlock(&pvh_global_lock)) {
5239 					if (anychanged)
5240 						pmap_invalidate_all_int(pmap);
5241 					PMAP_UNLOCK(pmap);
5242 					goto resume;
5243 				}
5244 				sched_pin();
5245 			}
5246 			if (!pmap_demote_pde(pmap, pde, sva)) {
5247 				/*
5248 				 * The large page mapping was destroyed.
5249 				 */
5250 				continue;
5251 			}
5252 
5253 			/*
5254 			 * Unless the page mappings are wired, remove the
5255 			 * mapping to a single page so that a subsequent
5256 			 * access may repromote.  Choosing the last page
5257 			 * within the address range [sva, min(pdnxt, eva))
5258 			 * generally results in more repromotions.  Since the
5259 			 * underlying page table page is fully populated, this
5260 			 * removal never frees a page table page.
5261 			 */
5262 			if ((oldpde & PG_W) == 0) {
5263 				va = eva;
5264 				if (va > pdnxt)
5265 					va = pdnxt;
5266 				va -= PAGE_SIZE;
5267 				KASSERT(va >= sva,
5268 				    ("pmap_advise: no address gap"));
5269 				pte = pmap_pte_quick(pmap, va);
5270 				KASSERT((*pte & PG_V) != 0,
5271 				    ("pmap_advise: invalid PTE"));
5272 				pmap_remove_pte(pmap, pte, va, NULL);
5273 				anychanged = true;
5274 			}
5275 		}
5276 		if (pdnxt > eva)
5277 			pdnxt = eva;
5278 		va = pdnxt;
5279 		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
5280 		    sva += PAGE_SIZE) {
5281 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
5282 				goto maybe_invlrng;
5283 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5284 				if (advice == MADV_DONTNEED) {
5285 					/*
5286 					 * Future calls to pmap_is_modified()
5287 					 * can be avoided by making the page
5288 					 * dirty now.
5289 					 */
5290 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
5291 					vm_page_dirty(m);
5292 				}
5293 				atomic_clear_int((u_int *)pte, PG_M | PG_A);
5294 			} else if ((*pte & PG_A) != 0)
5295 				atomic_clear_int((u_int *)pte, PG_A);
5296 			else
5297 				goto maybe_invlrng;
5298 			if ((*pte & PG_G) != 0) {
5299 				if (va == pdnxt)
5300 					va = sva;
5301 			} else
5302 				anychanged = true;
5303 			continue;
5304 maybe_invlrng:
5305 			if (va != pdnxt) {
5306 				pmap_invalidate_range_int(pmap, va, sva);
5307 				va = pdnxt;
5308 			}
5309 		}
5310 		if (va != pdnxt)
5311 			pmap_invalidate_range_int(pmap, va, sva);
5312 	}
5313 	if (anychanged)
5314 		pmap_invalidate_all_int(pmap);
5315 	if (pv_lists_locked) {
5316 		sched_unpin();
5317 		rw_wunlock(&pvh_global_lock);
5318 	}
5319 	PMAP_UNLOCK(pmap);
5320 }
5321 
5322 /*
5323  *	Clear the modify bits on the specified physical page.
5324  */
5325 static void
5326 __CONCAT(PMTYPE, clear_modify)(vm_page_t m)
5327 {
5328 	struct md_page *pvh;
5329 	pv_entry_t next_pv, pv;
5330 	pmap_t pmap;
5331 	pd_entry_t oldpde, *pde;
5332 	pt_entry_t *pte;
5333 	vm_offset_t va;
5334 
5335 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5336 	    ("pmap_clear_modify: page %p is not managed", m));
5337 	vm_page_assert_busied(m);
5338 
5339 	if (!pmap_page_is_write_mapped(m))
5340 		return;
5341 	rw_wlock(&pvh_global_lock);
5342 	sched_pin();
5343 	if ((m->flags & PG_FICTITIOUS) != 0)
5344 		goto small_mappings;
5345 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5346 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5347 		va = pv->pv_va;
5348 		pmap = PV_PMAP(pv);
5349 		PMAP_LOCK(pmap);
5350 		pde = pmap_pde(pmap, va);
5351 		oldpde = *pde;
5352 		/* If oldpde has PG_RW set, then it also has PG_M set. */
5353 		if ((oldpde & PG_RW) != 0 &&
5354 		    pmap_demote_pde(pmap, pde, va) &&
5355 		    (oldpde & PG_W) == 0) {
5356 			/*
5357 			 * Write protect the mapping to a single page so that
5358 			 * a subsequent write access may repromote.
5359 			 */
5360 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
5361 			pte = pmap_pte_quick(pmap, va);
5362 			/*
5363 			 * Regardless of whether a pte is 32 or 64 bits
5364 			 * in size, PG_RW and PG_M are among the least
5365 			 * significant 32 bits.
5366 			 */
5367 			atomic_clear_int((u_int *)pte, PG_M | PG_RW);
5368 			vm_page_dirty(m);
5369 			pmap_invalidate_page_int(pmap, va);
5370 		}
5371 		PMAP_UNLOCK(pmap);
5372 	}
5373 small_mappings:
5374 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5375 		pmap = PV_PMAP(pv);
5376 		PMAP_LOCK(pmap);
5377 		pde = pmap_pde(pmap, pv->pv_va);
5378 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
5379 		    " a 4mpage in page %p's pv list", m));
5380 		pte = pmap_pte_quick(pmap, pv->pv_va);
5381 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5382 			/*
5383 			 * Regardless of whether a pte is 32 or 64 bits
5384 			 * in size, PG_M is among the least significant
5385 			 * 32 bits.
5386 			 */
5387 			atomic_clear_int((u_int *)pte, PG_M);
5388 			pmap_invalidate_page_int(pmap, pv->pv_va);
5389 		}
5390 		PMAP_UNLOCK(pmap);
5391 	}
5392 	sched_unpin();
5393 	rw_wunlock(&pvh_global_lock);
5394 }
5395 
5396 /*
5397  * Miscellaneous support routines follow
5398  */
5399 
5400 /* Adjust the cache mode for a 4KB page mapped via a PTE. */
5401 static __inline void
5402 pmap_pte_attr(pt_entry_t *pte, int cache_bits)
5403 {
5404 	u_int opte, npte;
5405 
5406 	/*
5407 	 * The cache mode bits are all in the low 32-bits of the
5408 	 * PTE, so we can just spin on updating the low 32-bits.
5409 	 */
5410 	do {
5411 		opte = *(u_int *)pte;
5412 		npte = opte & ~PG_PTE_CACHE;
5413 		npte |= cache_bits;
5414 	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
5415 }
5416 
5417 /* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
5418 static __inline void
5419 pmap_pde_attr(pd_entry_t *pde, int cache_bits)
5420 {
5421 	u_int opde, npde;
5422 
5423 	/*
5424 	 * The cache mode bits are all in the low 32-bits of the
5425 	 * PDE, so we can just spin on updating the low 32-bits.
5426 	 */
5427 	do {
5428 		opde = *(u_int *)pde;
5429 		npde = opde & ~PG_PDE_CACHE;
5430 		npde |= cache_bits;
5431 	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
5432 }
5433 
5434 /*
5435  * Map a set of physical memory pages into the kernel virtual
5436  * address space. Return a pointer to where it is mapped. This
5437  * routine is intended to be used for mapping device memory,
5438  * NOT real memory.
5439  */
5440 static void *
5441 __CONCAT(PMTYPE, mapdev_attr)(vm_paddr_t pa, vm_size_t size, int mode,
5442     int flags)
5443 {
5444 	struct pmap_preinit_mapping *ppim;
5445 	vm_offset_t va, offset;
5446 	vm_page_t m;
5447 	vm_size_t tmpsize;
5448 	int i;
5449 
5450 	offset = pa & PAGE_MASK;
5451 	size = round_page(offset + size);
5452 	pa = pa & PG_FRAME;
5453 
5454 	if (pa < PMAP_MAP_LOW && pa + size <= PMAP_MAP_LOW) {
5455 		va = pa + PMAP_MAP_LOW;
5456 		if ((flags & MAPDEV_SETATTR) == 0)
5457 			return ((void *)(va + offset));
5458 	} else if (!pmap_initialized) {
5459 		va = 0;
5460 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5461 			ppim = pmap_preinit_mapping + i;
5462 			if (ppim->va == 0) {
5463 				ppim->pa = pa;
5464 				ppim->sz = size;
5465 				ppim->mode = mode;
5466 				ppim->va = virtual_avail;
5467 				virtual_avail += size;
5468 				va = ppim->va;
5469 				break;
5470 			}
5471 		}
5472 		if (va == 0)
5473 			panic("%s: too many preinit mappings", __func__);
5474 	} else {
5475 		/*
5476 		 * If we have a preinit mapping, re-use it.
5477 		 */
5478 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5479 			ppim = pmap_preinit_mapping + i;
5480 			if (ppim->pa == pa && ppim->sz == size &&
5481 			    (ppim->mode == mode ||
5482 			    (flags & MAPDEV_SETATTR) == 0))
5483 				return ((void *)(ppim->va + offset));
5484 		}
5485 		va = kva_alloc(size);
5486 		if (va == 0)
5487 			panic("%s: Couldn't allocate KVA", __func__);
5488 	}
5489 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE) {
5490 		if ((flags & MAPDEV_SETATTR) == 0 && pmap_initialized) {
5491 			m = PHYS_TO_VM_PAGE(pa);
5492 			if (m != NULL && VM_PAGE_TO_PHYS(m) == pa) {
5493 				pmap_kenter_attr(va + tmpsize, pa + tmpsize,
5494 				    m->md.pat_mode);
5495 				continue;
5496 			}
5497 		}
5498 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
5499 	}
5500 	pmap_invalidate_range_int(kernel_pmap, va, va + tmpsize);
5501 	pmap_invalidate_cache_range(va, va + size);
5502 	return ((void *)(va + offset));
5503 }
5504 
5505 static void
5506 __CONCAT(PMTYPE, unmapdev)(vm_offset_t va, vm_size_t size)
5507 {
5508 	struct pmap_preinit_mapping *ppim;
5509 	vm_offset_t offset;
5510 	int i;
5511 
5512 	if (va >= PMAP_MAP_LOW && va <= KERNBASE && va + size <= KERNBASE)
5513 		return;
5514 	offset = va & PAGE_MASK;
5515 	size = round_page(offset + size);
5516 	va = trunc_page(va);
5517 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5518 		ppim = pmap_preinit_mapping + i;
5519 		if (ppim->va == va && ppim->sz == size) {
5520 			if (pmap_initialized)
5521 				return;
5522 			ppim->pa = 0;
5523 			ppim->va = 0;
5524 			ppim->sz = 0;
5525 			ppim->mode = 0;
5526 			if (va + size == virtual_avail)
5527 				virtual_avail = va;
5528 			return;
5529 		}
5530 	}
5531 	if (pmap_initialized)
5532 		kva_free(va, size);
5533 }
5534 
5535 /*
5536  * Sets the memory attribute for the specified page.
5537  */
5538 static void
5539 __CONCAT(PMTYPE, page_set_memattr)(vm_page_t m, vm_memattr_t ma)
5540 {
5541 
5542 	m->md.pat_mode = ma;
5543 	if ((m->flags & PG_FICTITIOUS) != 0)
5544 		return;
5545 
5546 	/*
5547 	 * If "m" is a normal page, flush it from the cache.
5548 	 * See pmap_invalidate_cache_range().
5549 	 *
5550 	 * First, try to find an existing mapping of the page by sf
5551 	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5552 	 * flushes the cache.
5553 	 */
5554 	if (sf_buf_invalidate_cache(m))
5555 		return;
5556 
5557 	/*
5558 	 * If page is not mapped by sf buffer, but CPU does not
5559 	 * support self snoop, map the page transient and do
5560 	 * invalidation. In the worst case, whole cache is flushed by
5561 	 * pmap_invalidate_cache_range().
5562 	 */
5563 	if ((cpu_feature & CPUID_SS) == 0)
5564 		pmap_flush_page(m);
5565 }
5566 
5567 static void
5568 __CONCAT(PMTYPE, flush_page)(vm_page_t m)
5569 {
5570 	pt_entry_t *cmap_pte2;
5571 	struct pcpu *pc;
5572 	vm_offset_t sva, eva;
5573 	bool useclflushopt;
5574 
5575 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
5576 	if (useclflushopt || (cpu_feature & CPUID_CLFSH) != 0) {
5577 		sched_pin();
5578 		pc = get_pcpu();
5579 		cmap_pte2 = pc->pc_cmap_pte2;
5580 		mtx_lock(&pc->pc_cmap_lock);
5581 		if (*cmap_pte2)
5582 			panic("pmap_flush_page: CMAP2 busy");
5583 		*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
5584 		    PG_A | PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode,
5585 		    0);
5586 		invlcaddr(pc->pc_cmap_addr2);
5587 		sva = (vm_offset_t)pc->pc_cmap_addr2;
5588 		eva = sva + PAGE_SIZE;
5589 
5590 		/*
5591 		 * Use mfence or sfence despite the ordering implied by
5592 		 * mtx_{un,}lock() because clflush on non-Intel CPUs
5593 		 * and clflushopt are not guaranteed to be ordered by
5594 		 * any other instruction.
5595 		 */
5596 		if (useclflushopt)
5597 			sfence();
5598 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5599 			mfence();
5600 		for (; sva < eva; sva += cpu_clflush_line_size) {
5601 			if (useclflushopt)
5602 				clflushopt(sva);
5603 			else
5604 				clflush(sva);
5605 		}
5606 		if (useclflushopt)
5607 			sfence();
5608 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5609 			mfence();
5610 		*cmap_pte2 = 0;
5611 		sched_unpin();
5612 		mtx_unlock(&pc->pc_cmap_lock);
5613 	} else
5614 		pmap_invalidate_cache();
5615 }
5616 
5617 /*
5618  * Changes the specified virtual address range's memory type to that given by
5619  * the parameter "mode".  The specified virtual address range must be
5620  * completely contained within either the kernel map.
5621  *
5622  * Returns zero if the change completed successfully, and either EINVAL or
5623  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5624  * of the virtual address range was not mapped, and ENOMEM is returned if
5625  * there was insufficient memory available to complete the change.
5626  */
5627 static int
5628 __CONCAT(PMTYPE, change_attr)(vm_offset_t va, vm_size_t size, int mode)
5629 {
5630 	vm_offset_t base, offset, tmpva;
5631 	pd_entry_t *pde;
5632 	pt_entry_t *pte;
5633 	int cache_bits_pte, cache_bits_pde;
5634 	boolean_t changed;
5635 
5636 	base = trunc_page(va);
5637 	offset = va & PAGE_MASK;
5638 	size = round_page(offset + size);
5639 
5640 	/*
5641 	 * Only supported on kernel virtual addresses above the recursive map.
5642 	 */
5643 	if (base < VM_MIN_KERNEL_ADDRESS)
5644 		return (EINVAL);
5645 
5646 	cache_bits_pde = pmap_cache_bits(kernel_pmap, mode, 1);
5647 	cache_bits_pte = pmap_cache_bits(kernel_pmap, mode, 0);
5648 	changed = FALSE;
5649 
5650 	/*
5651 	 * Pages that aren't mapped aren't supported.  Also break down
5652 	 * 2/4MB pages into 4KB pages if required.
5653 	 */
5654 	PMAP_LOCK(kernel_pmap);
5655 	for (tmpva = base; tmpva < base + size; ) {
5656 		pde = pmap_pde(kernel_pmap, tmpva);
5657 		if (*pde == 0) {
5658 			PMAP_UNLOCK(kernel_pmap);
5659 			return (EINVAL);
5660 		}
5661 		if (*pde & PG_PS) {
5662 			/*
5663 			 * If the current 2/4MB page already has
5664 			 * the required memory type, then we need not
5665 			 * demote this page.  Just increment tmpva to
5666 			 * the next 2/4MB page frame.
5667 			 */
5668 			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
5669 				tmpva = trunc_4mpage(tmpva) + NBPDR;
5670 				continue;
5671 			}
5672 
5673 			/*
5674 			 * If the current offset aligns with a 2/4MB
5675 			 * page frame and there is at least 2/4MB left
5676 			 * within the range, then we need not break
5677 			 * down this page into 4KB pages.
5678 			 */
5679 			if ((tmpva & PDRMASK) == 0 &&
5680 			    tmpva + PDRMASK < base + size) {
5681 				tmpva += NBPDR;
5682 				continue;
5683 			}
5684 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
5685 				PMAP_UNLOCK(kernel_pmap);
5686 				return (ENOMEM);
5687 			}
5688 		}
5689 		pte = vtopte(tmpva);
5690 		if (*pte == 0) {
5691 			PMAP_UNLOCK(kernel_pmap);
5692 			return (EINVAL);
5693 		}
5694 		tmpva += PAGE_SIZE;
5695 	}
5696 	PMAP_UNLOCK(kernel_pmap);
5697 
5698 	/*
5699 	 * Ok, all the pages exist, so run through them updating their
5700 	 * cache mode if required.
5701 	 */
5702 	for (tmpva = base; tmpva < base + size; ) {
5703 		pde = pmap_pde(kernel_pmap, tmpva);
5704 		if (*pde & PG_PS) {
5705 			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
5706 				pmap_pde_attr(pde, cache_bits_pde);
5707 				changed = TRUE;
5708 			}
5709 			tmpva = trunc_4mpage(tmpva) + NBPDR;
5710 		} else {
5711 			pte = vtopte(tmpva);
5712 			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
5713 				pmap_pte_attr(pte, cache_bits_pte);
5714 				changed = TRUE;
5715 			}
5716 			tmpva += PAGE_SIZE;
5717 		}
5718 	}
5719 
5720 	/*
5721 	 * Flush CPU caches to make sure any data isn't cached that
5722 	 * shouldn't be, etc.
5723 	 */
5724 	if (changed) {
5725 		pmap_invalidate_range_int(kernel_pmap, base, tmpva);
5726 		pmap_invalidate_cache_range(base, tmpva);
5727 	}
5728 	return (0);
5729 }
5730 
5731 /*
5732  * Perform the pmap work for mincore(2).  If the page is not both referenced and
5733  * modified by this pmap, returns its physical address so that the caller can
5734  * find other mappings.
5735  */
5736 static int
5737 __CONCAT(PMTYPE, mincore)(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
5738 {
5739 	pd_entry_t pde;
5740 	pt_entry_t pte;
5741 	vm_paddr_t pa;
5742 	int val;
5743 
5744 	PMAP_LOCK(pmap);
5745 	pde = *pmap_pde(pmap, addr);
5746 	if (pde != 0) {
5747 		if ((pde & PG_PS) != 0) {
5748 			pte = pde;
5749 			/* Compute the physical address of the 4KB page. */
5750 			pa = ((pde & PG_PS_FRAME) | (addr & PDRMASK)) &
5751 			    PG_FRAME;
5752 			val = MINCORE_SUPER;
5753 		} else {
5754 			pte = pmap_pte_ufast(pmap, addr, pde);
5755 			pa = pte & PG_FRAME;
5756 			val = 0;
5757 		}
5758 	} else {
5759 		pte = 0;
5760 		pa = 0;
5761 		val = 0;
5762 	}
5763 	if ((pte & PG_V) != 0) {
5764 		val |= MINCORE_INCORE;
5765 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5766 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5767 		if ((pte & PG_A) != 0)
5768 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5769 	}
5770 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5771 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5772 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5773 		*pap = pa;
5774 	}
5775 	PMAP_UNLOCK(pmap);
5776 	return (val);
5777 }
5778 
5779 static void
5780 __CONCAT(PMTYPE, activate)(struct thread *td)
5781 {
5782 	pmap_t	pmap, oldpmap;
5783 	u_int	cpuid;
5784 	u_int32_t  cr3;
5785 
5786 	critical_enter();
5787 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5788 	oldpmap = PCPU_GET(curpmap);
5789 	cpuid = PCPU_GET(cpuid);
5790 #if defined(SMP)
5791 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
5792 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5793 #else
5794 	CPU_CLR(cpuid, &oldpmap->pm_active);
5795 	CPU_SET(cpuid, &pmap->pm_active);
5796 #endif
5797 #ifdef PMAP_PAE_COMP
5798 	cr3 = vtophys(pmap->pm_pdpt);
5799 #else
5800 	cr3 = vtophys(pmap->pm_pdir);
5801 #endif
5802 	/*
5803 	 * pmap_activate is for the current thread on the current cpu
5804 	 */
5805 	td->td_pcb->pcb_cr3 = cr3;
5806 	PCPU_SET(curpmap, pmap);
5807 	critical_exit();
5808 }
5809 
5810 static void
5811 __CONCAT(PMTYPE, activate_boot)(pmap_t pmap)
5812 {
5813 	u_int cpuid;
5814 
5815 	cpuid = PCPU_GET(cpuid);
5816 #if defined(SMP)
5817 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5818 #else
5819 	CPU_SET(cpuid, &pmap->pm_active);
5820 #endif
5821 	PCPU_SET(curpmap, pmap);
5822 }
5823 
5824 /*
5825  *	Increase the starting virtual address of the given mapping if a
5826  *	different alignment might result in more superpage mappings.
5827  */
5828 static void
5829 __CONCAT(PMTYPE, align_superpage)(vm_object_t object, vm_ooffset_t offset,
5830     vm_offset_t *addr, vm_size_t size)
5831 {
5832 	vm_offset_t superpage_offset;
5833 
5834 	if (size < NBPDR)
5835 		return;
5836 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5837 		offset += ptoa(object->pg_color);
5838 	superpage_offset = offset & PDRMASK;
5839 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5840 	    (*addr & PDRMASK) == superpage_offset)
5841 		return;
5842 	if ((*addr & PDRMASK) < superpage_offset)
5843 		*addr = (*addr & ~PDRMASK) + superpage_offset;
5844 	else
5845 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5846 }
5847 
5848 static vm_offset_t
5849 __CONCAT(PMTYPE, quick_enter_page)(vm_page_t m)
5850 {
5851 	vm_offset_t qaddr;
5852 	pt_entry_t *pte;
5853 
5854 	critical_enter();
5855 	qaddr = PCPU_GET(qmap_addr);
5856 	pte = vtopte(qaddr);
5857 
5858 	KASSERT(*pte == 0,
5859 	    ("pmap_quick_enter_page: PTE busy %#jx", (uintmax_t)*pte));
5860 	*pte = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
5861 	    pmap_cache_bits(kernel_pmap, pmap_page_get_memattr(m), 0);
5862 	invlpg(qaddr);
5863 
5864 	return (qaddr);
5865 }
5866 
5867 static void
5868 __CONCAT(PMTYPE, quick_remove_page)(vm_offset_t addr)
5869 {
5870 	vm_offset_t qaddr;
5871 	pt_entry_t *pte;
5872 
5873 	qaddr = PCPU_GET(qmap_addr);
5874 	pte = vtopte(qaddr);
5875 
5876 	KASSERT(*pte != 0, ("pmap_quick_remove_page: PTE not in use"));
5877 	KASSERT(addr == qaddr, ("pmap_quick_remove_page: invalid address"));
5878 
5879 	*pte = 0;
5880 	critical_exit();
5881 }
5882 
5883 static vmem_t *pmap_trm_arena;
5884 static vmem_addr_t pmap_trm_arena_last = PMAP_TRM_MIN_ADDRESS;
5885 static int trm_guard = PAGE_SIZE;
5886 
5887 static int
5888 pmap_trm_import(void *unused __unused, vmem_size_t size, int flags,
5889     vmem_addr_t *addrp)
5890 {
5891 	vm_page_t m;
5892 	vmem_addr_t af, addr, prev_addr;
5893 	pt_entry_t *trm_pte;
5894 
5895 	prev_addr = atomic_load_long(&pmap_trm_arena_last);
5896 	size = round_page(size) + trm_guard;
5897 	for (;;) {
5898 		if (prev_addr + size < prev_addr || prev_addr + size < size ||
5899 		    prev_addr + size > PMAP_TRM_MAX_ADDRESS)
5900 			return (ENOMEM);
5901 		addr = prev_addr + size;
5902 		if (atomic_fcmpset_int(&pmap_trm_arena_last, &prev_addr, addr))
5903 			break;
5904 	}
5905 	prev_addr += trm_guard;
5906 	trm_pte = PTmap + atop(prev_addr);
5907 	for (af = prev_addr; af < addr; af += PAGE_SIZE) {
5908 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_NOBUSY |
5909 		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
5910 		pte_store(&trm_pte[atop(af - prev_addr)], VM_PAGE_TO_PHYS(m) |
5911 		    PG_M | PG_A | PG_RW | PG_V | pgeflag |
5912 		    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE));
5913 	}
5914 	*addrp = prev_addr;
5915 	return (0);
5916 }
5917 
5918 void
5919 pmap_init_trm(void)
5920 {
5921 	vm_page_t pd_m;
5922 
5923 	TUNABLE_INT_FETCH("machdep.trm_guard", &trm_guard);
5924 	if ((trm_guard & PAGE_MASK) != 0)
5925 		trm_guard = 0;
5926 	pmap_trm_arena = vmem_create("i386trampoline", 0, 0, 1, 0, M_WAITOK);
5927 	vmem_set_import(pmap_trm_arena, pmap_trm_import, NULL, NULL, PAGE_SIZE);
5928 	pd_m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_NOBUSY |
5929 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_WAITOK | VM_ALLOC_ZERO);
5930 	if ((pd_m->flags & PG_ZERO) == 0)
5931 		pmap_zero_page(pd_m);
5932 	PTD[TRPTDI] = VM_PAGE_TO_PHYS(pd_m) | PG_M | PG_A | PG_RW | PG_V |
5933 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, TRUE);
5934 }
5935 
5936 static void *
5937 __CONCAT(PMTYPE, trm_alloc)(size_t size, int flags)
5938 {
5939 	vmem_addr_t res;
5940 	int error;
5941 
5942 	MPASS((flags & ~(M_WAITOK | M_NOWAIT | M_ZERO)) == 0);
5943 	error = vmem_xalloc(pmap_trm_arena, roundup2(size, 4), sizeof(int),
5944 	    0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags | M_FIRSTFIT, &res);
5945 	if (error != 0)
5946 		return (NULL);
5947 	if ((flags & M_ZERO) != 0)
5948 		bzero((void *)res, size);
5949 	return ((void *)res);
5950 }
5951 
5952 static void
5953 __CONCAT(PMTYPE, trm_free)(void *addr, size_t size)
5954 {
5955 
5956 	vmem_free(pmap_trm_arena, (uintptr_t)addr, roundup2(size, 4));
5957 }
5958 
5959 static void
5960 __CONCAT(PMTYPE, ksetrw)(vm_offset_t va)
5961 {
5962 
5963 	*vtopte(va) |= PG_RW;
5964 }
5965 
5966 static void
5967 __CONCAT(PMTYPE, remap_lowptdi)(bool enable)
5968 {
5969 
5970 	PTD[KPTDI] = enable ? PTD[LOWPTDI] : 0;
5971 	invltlb_glob();
5972 }
5973 
5974 static vm_offset_t
5975 __CONCAT(PMTYPE, get_map_low)(void)
5976 {
5977 
5978 	return (PMAP_MAP_LOW);
5979 }
5980 
5981 static vm_offset_t
5982 __CONCAT(PMTYPE, get_vm_maxuser_address)(void)
5983 {
5984 
5985 	return (VM_MAXUSER_ADDRESS);
5986 }
5987 
5988 static vm_paddr_t
5989 __CONCAT(PMTYPE, pg_frame)(vm_paddr_t pa)
5990 {
5991 
5992 	return (pa & PG_FRAME);
5993 }
5994 
5995 static void
5996 __CONCAT(PMTYPE, sf_buf_map)(struct sf_buf *sf)
5997 {
5998 	pt_entry_t opte, *ptep;
5999 
6000 	/*
6001 	 * Update the sf_buf's virtual-to-physical mapping, flushing the
6002 	 * virtual address from the TLB.  Since the reference count for
6003 	 * the sf_buf's old mapping was zero, that mapping is not
6004 	 * currently in use.  Consequently, there is no need to exchange
6005 	 * the old and new PTEs atomically, even under PAE.
6006 	 */
6007 	ptep = vtopte(sf->kva);
6008 	opte = *ptep;
6009 	*ptep = VM_PAGE_TO_PHYS(sf->m) | PG_RW | PG_V |
6010 	    pmap_cache_bits(kernel_pmap, sf->m->md.pat_mode, 0);
6011 
6012 	/*
6013 	 * Avoid unnecessary TLB invalidations: If the sf_buf's old
6014 	 * virtual-to-physical mapping was not used, then any processor
6015 	 * that has invalidated the sf_buf's virtual address from its TLB
6016 	 * since the last used mapping need not invalidate again.
6017 	 */
6018 #ifdef SMP
6019 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
6020 		CPU_ZERO(&sf->cpumask);
6021 #else
6022 	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
6023 		pmap_invalidate_page_int(kernel_pmap, sf->kva);
6024 #endif
6025 }
6026 
6027 static void
6028 __CONCAT(PMTYPE, cp_slow0_map)(vm_offset_t kaddr, int plen, vm_page_t *ma)
6029 {
6030 	pt_entry_t *pte;
6031 	int i;
6032 
6033 	for (i = 0, pte = vtopte(kaddr); i < plen; i++, pte++) {
6034 		*pte = PG_V | PG_RW | PG_A | PG_M | VM_PAGE_TO_PHYS(ma[i]) |
6035 		    pmap_cache_bits(kernel_pmap, pmap_page_get_memattr(ma[i]),
6036 		    FALSE);
6037 		invlpg(kaddr + ptoa(i));
6038 	}
6039 }
6040 
6041 static u_int
6042 __CONCAT(PMTYPE, get_kcr3)(void)
6043 {
6044 
6045 #ifdef PMAP_PAE_COMP
6046 	return ((u_int)IdlePDPT);
6047 #else
6048 	return ((u_int)IdlePTD);
6049 #endif
6050 }
6051 
6052 static u_int
6053 __CONCAT(PMTYPE, get_cr3)(pmap_t pmap)
6054 {
6055 
6056 #ifdef PMAP_PAE_COMP
6057 	return ((u_int)vtophys(pmap->pm_pdpt));
6058 #else
6059 	return ((u_int)vtophys(pmap->pm_pdir));
6060 #endif
6061 }
6062 
6063 static caddr_t
6064 __CONCAT(PMTYPE, cmap3)(vm_paddr_t pa, u_int pte_bits)
6065 {
6066 	pt_entry_t *pte;
6067 
6068 	pte = CMAP3;
6069 	*pte = pa | pte_bits;
6070 	invltlb();
6071 	return (CADDR3);
6072 }
6073 
6074 static void
6075 __CONCAT(PMTYPE, basemem_setup)(u_int basemem)
6076 {
6077 	pt_entry_t *pte;
6078 	int i;
6079 
6080 	/*
6081 	 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
6082 	 * the vm86 page table so that vm86 can scribble on them using
6083 	 * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
6084 	 * page 0, at least as initialized here?
6085 	 */
6086 	pte = (pt_entry_t *)vm86paddr;
6087 	for (i = basemem / 4; i < 160; i++)
6088 		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
6089 }
6090 
6091 struct bios16_pmap_handle {
6092 	pt_entry_t	*pte;
6093 	pd_entry_t	*ptd;
6094 	pt_entry_t	orig_ptd;
6095 };
6096 
6097 static void *
6098 __CONCAT(PMTYPE, bios16_enter)(void)
6099 {
6100 	struct bios16_pmap_handle *h;
6101 
6102 	/*
6103 	 * no page table, so create one and install it.
6104 	 */
6105 	h = malloc(sizeof(struct bios16_pmap_handle), M_TEMP, M_WAITOK);
6106 	h->pte = (pt_entry_t *)malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
6107 	h->ptd = IdlePTD;
6108 	*h->pte = vm86phystk | PG_RW | PG_V;
6109 	h->orig_ptd = *h->ptd;
6110 	*h->ptd = vtophys(h->pte) | PG_RW | PG_V;
6111 	pmap_invalidate_all_int(kernel_pmap);	/* XXX insurance for now */
6112 	return (h);
6113 }
6114 
6115 static void
6116 __CONCAT(PMTYPE, bios16_leave)(void *arg)
6117 {
6118 	struct bios16_pmap_handle *h;
6119 
6120 	h = arg;
6121 	*h->ptd = h->orig_ptd;		/* remove page table */
6122 	/*
6123 	 * XXX only needs to be invlpg(0) but that doesn't work on the 386
6124 	 */
6125 	pmap_invalidate_all_int(kernel_pmap);
6126 	free(h->pte, M_TEMP);		/* ... and free it */
6127 }
6128 
6129 struct pmap_kernel_map_range {
6130 	vm_offset_t sva;
6131 	pt_entry_t attrs;
6132 	int ptes;
6133 	int pdes;
6134 	int pdpes;
6135 };
6136 
6137 static void
6138 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
6139     vm_offset_t eva)
6140 {
6141 	const char *mode;
6142 	int i, pat_idx;
6143 
6144 	if (eva <= range->sva)
6145 		return;
6146 
6147 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
6148 	for (i = 0; i < PAT_INDEX_SIZE; i++)
6149 		if (pat_index[i] == pat_idx)
6150 			break;
6151 
6152 	switch (i) {
6153 	case PAT_WRITE_BACK:
6154 		mode = "WB";
6155 		break;
6156 	case PAT_WRITE_THROUGH:
6157 		mode = "WT";
6158 		break;
6159 	case PAT_UNCACHEABLE:
6160 		mode = "UC";
6161 		break;
6162 	case PAT_UNCACHED:
6163 		mode = "U-";
6164 		break;
6165 	case PAT_WRITE_PROTECTED:
6166 		mode = "WP";
6167 		break;
6168 	case PAT_WRITE_COMBINING:
6169 		mode = "WC";
6170 		break;
6171 	default:
6172 		printf("%s: unknown PAT mode %#x for range 0x%08x-0x%08x\n",
6173 		    __func__, pat_idx, range->sva, eva);
6174 		mode = "??";
6175 		break;
6176 	}
6177 
6178 	sbuf_printf(sb, "0x%08x-0x%08x r%c%c%c%c %s %d %d %d\n",
6179 	    range->sva, eva,
6180 	    (range->attrs & PG_RW) != 0 ? 'w' : '-',
6181 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
6182 	    (range->attrs & PG_U) != 0 ? 'u' : 's',
6183 	    (range->attrs & PG_G) != 0 ? 'g' : '-',
6184 	    mode, range->pdpes, range->pdes, range->ptes);
6185 
6186 	/* Reset to sentinel value. */
6187 	range->sva = 0xffffffff;
6188 }
6189 
6190 /*
6191  * Determine whether the attributes specified by a page table entry match those
6192  * being tracked by the current range.  This is not quite as simple as a direct
6193  * flag comparison since some PAT modes have multiple representations.
6194  */
6195 static bool
6196 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
6197 {
6198 	pt_entry_t diff, mask;
6199 
6200 	mask = pg_nx | PG_G | PG_RW | PG_U | PG_PDE_CACHE;
6201 	diff = (range->attrs ^ attrs) & mask;
6202 	if (diff == 0)
6203 		return (true);
6204 	if ((diff & ~PG_PDE_PAT) == 0 &&
6205 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
6206 	    pmap_pat_index(kernel_pmap, attrs, true))
6207 		return (true);
6208 	return (false);
6209 }
6210 
6211 static void
6212 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
6213     pt_entry_t attrs)
6214 {
6215 
6216 	memset(range, 0, sizeof(*range));
6217 	range->sva = va;
6218 	range->attrs = attrs;
6219 }
6220 
6221 /*
6222  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
6223  * those of the current run, dump the address range and its attributes, and
6224  * begin a new run.
6225  */
6226 static void
6227 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
6228     vm_offset_t va, pd_entry_t pde, pt_entry_t pte)
6229 {
6230 	pt_entry_t attrs;
6231 
6232 	attrs = pde & (PG_RW | PG_U | pg_nx);
6233 
6234 	if ((pde & PG_PS) != 0) {
6235 		attrs |= pde & (PG_G | PG_PDE_CACHE);
6236 	} else if (pte != 0) {
6237 		attrs |= pte & pg_nx;
6238 		attrs &= pg_nx | (pte & (PG_RW | PG_U));
6239 		attrs |= pte & (PG_G | PG_PTE_CACHE);
6240 
6241 		/* Canonicalize by always using the PDE PAT bit. */
6242 		if ((attrs & PG_PTE_PAT) != 0)
6243 			attrs ^= PG_PDE_PAT | PG_PTE_PAT;
6244 	}
6245 
6246 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
6247 		sysctl_kmaps_dump(sb, range, va);
6248 		sysctl_kmaps_reinit(range, va, attrs);
6249 	}
6250 }
6251 
6252 static int
6253 __CONCAT(PMTYPE, sysctl_kmaps)(SYSCTL_HANDLER_ARGS)
6254 {
6255 	struct pmap_kernel_map_range range;
6256 	struct sbuf sbuf, *sb;
6257 	pd_entry_t pde;
6258 	pt_entry_t *pt, pte;
6259 	vm_offset_t sva;
6260 	vm_paddr_t pa;
6261 	int error;
6262 	u_int i, k;
6263 
6264 	error = sysctl_wire_old_buffer(req, 0);
6265 	if (error != 0)
6266 		return (error);
6267 	sb = &sbuf;
6268 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
6269 
6270 	/* Sentinel value. */
6271 	range.sva = 0xffffffff;
6272 
6273 	/*
6274 	 * Iterate over the kernel page tables without holding the
6275 	 * kernel pmap lock.  Kernel page table pages are never freed,
6276 	 * so at worst we will observe inconsistencies in the output.
6277 	 */
6278 	for (sva = 0, i = 0; i < NPTEPG * NPGPTD * NPDEPG ;) {
6279 		if (i == 0)
6280 			sbuf_printf(sb, "\nLow PDE:\n");
6281 		else if (i == LOWPTDI * NPTEPG)
6282 			sbuf_printf(sb, "Low PDE dup:\n");
6283 		else if (i == PTDPTDI * NPTEPG)
6284 			sbuf_printf(sb, "Recursive map:\n");
6285 		else if (i == KERNPTDI * NPTEPG)
6286 			sbuf_printf(sb, "Kernel base:\n");
6287 		else if (i == TRPTDI * NPTEPG)
6288 			sbuf_printf(sb, "Trampoline:\n");
6289 		pde = IdlePTD[sva >> PDRSHIFT];
6290 		if ((pde & PG_V) == 0) {
6291 			sva = rounddown2(sva, NBPDR);
6292 			sysctl_kmaps_dump(sb, &range, sva);
6293 			sva += NBPDR;
6294 			i += NPTEPG;
6295 			continue;
6296 		}
6297 		pa = pde & PG_FRAME;
6298 		if ((pde & PG_PS) != 0) {
6299 			sysctl_kmaps_check(sb, &range, sva, pde, 0);
6300 			range.pdes++;
6301 			sva += NBPDR;
6302 			i += NPTEPG;
6303 			continue;
6304 		}
6305 		for (pt = vtopte(sva), k = 0; k < NPTEPG; i++, k++, pt++,
6306 		    sva += PAGE_SIZE) {
6307 			pte = *pt;
6308 			if ((pte & PG_V) == 0) {
6309 				sysctl_kmaps_dump(sb, &range, sva);
6310 				continue;
6311 			}
6312 			sysctl_kmaps_check(sb, &range, sva, pde, pte);
6313 			range.ptes++;
6314 		}
6315 	}
6316 
6317 	error = sbuf_finish(sb);
6318 	sbuf_delete(sb);
6319 	return (error);
6320 }
6321 
6322 #define	PMM(a)					\
6323 	.pm_##a = __CONCAT(PMTYPE, a),
6324 
6325 struct pmap_methods __CONCAT(PMTYPE, methods) = {
6326 	PMM(ksetrw)
6327 	PMM(remap_lower)
6328 	PMM(remap_lowptdi)
6329 	PMM(align_superpage)
6330 	PMM(quick_enter_page)
6331 	PMM(quick_remove_page)
6332 	PMM(trm_alloc)
6333 	PMM(trm_free)
6334 	PMM(get_map_low)
6335 	PMM(get_vm_maxuser_address)
6336 	PMM(kextract)
6337 	PMM(pg_frame)
6338 	PMM(sf_buf_map)
6339 	PMM(cp_slow0_map)
6340 	PMM(get_kcr3)
6341 	PMM(get_cr3)
6342 	PMM(cmap3)
6343 	PMM(basemem_setup)
6344 	PMM(set_nx)
6345 	PMM(bios16_enter)
6346 	PMM(bios16_leave)
6347 	PMM(bootstrap)
6348 	PMM(is_valid_memattr)
6349 	PMM(cache_bits)
6350 	PMM(ps_enabled)
6351 	PMM(pinit0)
6352 	PMM(pinit)
6353 	PMM(activate)
6354 	PMM(activate_boot)
6355 	PMM(advise)
6356 	PMM(clear_modify)
6357 	PMM(change_attr)
6358 	PMM(mincore)
6359 	PMM(copy)
6360 	PMM(copy_page)
6361 	PMM(copy_pages)
6362 	PMM(zero_page)
6363 	PMM(zero_page_area)
6364 	PMM(enter)
6365 	PMM(enter_object)
6366 	PMM(enter_quick)
6367 	PMM(kenter_temporary)
6368 	PMM(object_init_pt)
6369 	PMM(unwire)
6370 	PMM(page_exists_quick)
6371 	PMM(page_wired_mappings)
6372 	PMM(page_is_mapped)
6373 	PMM(remove_pages)
6374 	PMM(is_modified)
6375 	PMM(is_prefaultable)
6376 	PMM(is_referenced)
6377 	PMM(remove_write)
6378 	PMM(ts_referenced)
6379 	PMM(mapdev_attr)
6380 	PMM(unmapdev)
6381 	PMM(page_set_memattr)
6382 	PMM(extract)
6383 	PMM(extract_and_hold)
6384 	PMM(map)
6385 	PMM(qenter)
6386 	PMM(qremove)
6387 	PMM(release)
6388 	PMM(remove)
6389 	PMM(protect)
6390 	PMM(remove_all)
6391 	PMM(init)
6392 	PMM(init_pat)
6393 	PMM(growkernel)
6394 	PMM(invalidate_page)
6395 	PMM(invalidate_range)
6396 	PMM(invalidate_all)
6397 	PMM(invalidate_cache)
6398 	PMM(flush_page)
6399 	PMM(kenter)
6400 	PMM(kremove)
6401 	PMM(sysctl_kmaps)
6402 };
6403