xref: /freebsd/sys/i386/i386/sys_machdep.c (revision 3cabd93e)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	from: @(#)sys_machdep.c	5.5 (Berkeley) 1/19/91
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_capsicum.h"
36 #include "opt_kstack_pages.h"
37 
38 #include <sys/param.h>
39 #include <sys/capsicum.h>
40 #include <sys/systm.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/priv.h>
45 #include <sys/proc.h>
46 #include <sys/smp.h>
47 #include <sys/sysproto.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 #include <vm/vm_map.h>
52 #include <vm/vm_extern.h>
53 
54 #include <machine/atomic.h>
55 #include <machine/cpu.h>
56 #include <machine/pcb.h>
57 #include <machine/pcb_ext.h>
58 #include <machine/proc.h>
59 #include <machine/sysarch.h>
60 
61 #include <security/audit/audit.h>
62 
63 #include <vm/vm_kern.h>		/* for kernel_map */
64 
65 #define MAX_LD 8192
66 #define LD_PER_PAGE 512
67 #define	NEW_MAX_LD(num)  rounddown2(num + LD_PER_PAGE, LD_PER_PAGE)
68 #define SIZE_FROM_LARGEST_LD(num) (NEW_MAX_LD(num) << 3)
69 #define	NULL_LDT_BASE	((caddr_t)NULL)
70 
71 #ifdef SMP
72 static void set_user_ldt_rv(struct vmspace *vmsp);
73 #endif
74 static int i386_set_ldt_data(struct thread *, int start, int num,
75 	union descriptor *descs);
76 static int i386_ldt_grow(struct thread *td, int len);
77 
78 void
79 fill_based_sd(struct segment_descriptor *sdp, uint32_t base)
80 {
81 
82 	sdp->sd_lobase = base & 0xffffff;
83 	sdp->sd_hibase = (base >> 24) & 0xff;
84 	sdp->sd_lolimit = 0xffff;	/* 4GB limit, wraps around */
85 	sdp->sd_hilimit = 0xf;
86 	sdp->sd_type = SDT_MEMRWA;
87 	sdp->sd_dpl = SEL_UPL;
88 	sdp->sd_p = 1;
89 	sdp->sd_xx = 0;
90 	sdp->sd_def32 = 1;
91 	sdp->sd_gran = 1;
92 }
93 
94 #ifndef _SYS_SYSPROTO_H_
95 struct sysarch_args {
96 	int op;
97 	char *parms;
98 };
99 #endif
100 
101 int
102 sysarch(struct thread *td, struct sysarch_args *uap)
103 {
104 	int error;
105 	union descriptor *lp;
106 	union {
107 		struct i386_ldt_args largs;
108 		struct i386_ioperm_args iargs;
109 		struct i386_get_xfpustate xfpu;
110 	} kargs;
111 	uint32_t base;
112 	struct segment_descriptor sd, *sdp;
113 
114 	AUDIT_ARG_CMD(uap->op);
115 
116 #ifdef CAPABILITY_MODE
117 	/*
118 	 * When adding new operations, add a new case statement here to
119 	 * explicitly indicate whether or not the operation is safe to
120 	 * perform in capability mode.
121 	 */
122 	if (IN_CAPABILITY_MODE(td)) {
123 		switch (uap->op) {
124 		case I386_GET_LDT:
125 		case I386_SET_LDT:
126 		case I386_GET_IOPERM:
127 		case I386_GET_FSBASE:
128 		case I386_SET_FSBASE:
129 		case I386_GET_GSBASE:
130 		case I386_SET_GSBASE:
131 		case I386_GET_XFPUSTATE:
132 			break;
133 
134 		case I386_SET_IOPERM:
135 		default:
136 #ifdef KTRACE
137 			if (KTRPOINT(td, KTR_CAPFAIL))
138 				ktrcapfail(CAPFAIL_SYSCALL, NULL, NULL);
139 #endif
140 			return (ECAPMODE);
141 		}
142 	}
143 #endif
144 
145 	switch (uap->op) {
146 	case I386_GET_IOPERM:
147 	case I386_SET_IOPERM:
148 		if ((error = copyin(uap->parms, &kargs.iargs,
149 		    sizeof(struct i386_ioperm_args))) != 0)
150 			return (error);
151 		break;
152 	case I386_GET_LDT:
153 	case I386_SET_LDT:
154 		if ((error = copyin(uap->parms, &kargs.largs,
155 		    sizeof(struct i386_ldt_args))) != 0)
156 			return (error);
157 		if (kargs.largs.num > MAX_LD || kargs.largs.num <= 0)
158 			return (EINVAL);
159 		break;
160 	case I386_GET_XFPUSTATE:
161 		if ((error = copyin(uap->parms, &kargs.xfpu,
162 		    sizeof(struct i386_get_xfpustate))) != 0)
163 			return (error);
164 		break;
165 	default:
166 		break;
167 	}
168 
169 	switch(uap->op) {
170 	case I386_GET_LDT:
171 		error = i386_get_ldt(td, &kargs.largs);
172 		break;
173 	case I386_SET_LDT:
174 		if (kargs.largs.descs != NULL) {
175 			lp = (union descriptor *)malloc(
176 			    kargs.largs.num * sizeof(union descriptor),
177 			    M_TEMP, M_WAITOK);
178 			error = copyin(kargs.largs.descs, lp,
179 			    kargs.largs.num * sizeof(union descriptor));
180 			if (error == 0)
181 				error = i386_set_ldt(td, &kargs.largs, lp);
182 			free(lp, M_TEMP);
183 		} else {
184 			error = i386_set_ldt(td, &kargs.largs, NULL);
185 		}
186 		break;
187 	case I386_GET_IOPERM:
188 		error = i386_get_ioperm(td, &kargs.iargs);
189 		if (error == 0)
190 			error = copyout(&kargs.iargs, uap->parms,
191 			    sizeof(struct i386_ioperm_args));
192 		break;
193 	case I386_SET_IOPERM:
194 		error = i386_set_ioperm(td, &kargs.iargs);
195 		break;
196 	case I386_VM86:
197 		error = vm86_sysarch(td, uap->parms);
198 		break;
199 	case I386_GET_FSBASE:
200 		sdp = &td->td_pcb->pcb_fsd;
201 		base = sdp->sd_hibase << 24 | sdp->sd_lobase;
202 		error = copyout(&base, uap->parms, sizeof(base));
203 		break;
204 	case I386_SET_FSBASE:
205 		error = copyin(uap->parms, &base, sizeof(base));
206 		if (error == 0) {
207 			/*
208 			 * Construct a descriptor and store it in the pcb for
209 			 * the next context switch.  Also store it in the gdt
210 			 * so that the load of tf_fs into %fs will activate it
211 			 * at return to userland.
212 			 */
213 			fill_based_sd(&sd, base);
214 			critical_enter();
215 			td->td_pcb->pcb_fsd = sd;
216 			PCPU_GET(fsgs_gdt)[0] = sd;
217 			critical_exit();
218 			td->td_frame->tf_fs = GSEL(GUFS_SEL, SEL_UPL);
219 		}
220 		break;
221 	case I386_GET_GSBASE:
222 		sdp = &td->td_pcb->pcb_gsd;
223 		base = sdp->sd_hibase << 24 | sdp->sd_lobase;
224 		error = copyout(&base, uap->parms, sizeof(base));
225 		break;
226 	case I386_SET_GSBASE:
227 		error = copyin(uap->parms, &base, sizeof(base));
228 		if (error == 0) {
229 			/*
230 			 * Construct a descriptor and store it in the pcb for
231 			 * the next context switch.  Also store it in the gdt
232 			 * because we have to do a load_gs() right now.
233 			 */
234 			fill_based_sd(&sd, base);
235 			critical_enter();
236 			td->td_pcb->pcb_gsd = sd;
237 			PCPU_GET(fsgs_gdt)[1] = sd;
238 			critical_exit();
239 			load_gs(GSEL(GUGS_SEL, SEL_UPL));
240 		}
241 		break;
242 	case I386_GET_XFPUSTATE:
243 		if (kargs.xfpu.len > cpu_max_ext_state_size -
244 		    sizeof(union savefpu))
245 			return (EINVAL);
246 		npxgetregs(td);
247 		error = copyout((char *)(get_pcb_user_save_td(td) + 1),
248 		    kargs.xfpu.addr, kargs.xfpu.len);
249 		break;
250 	default:
251 		error = EINVAL;
252 		break;
253 	}
254 	return (error);
255 }
256 
257 int
258 i386_extend_pcb(struct thread *td)
259 {
260 	int i, offset;
261 	u_long *addr;
262 	struct pcb_ext *ext;
263 	struct soft_segment_descriptor ssd = {
264 		0,			/* segment base address (overwritten) */
265 		ctob(IOPAGES + 1) - 1,	/* length */
266 		SDT_SYS386TSS,		/* segment type */
267 		0,			/* priority level */
268 		1,			/* descriptor present */
269 		0, 0,
270 		0,			/* default 32 size */
271 		0			/* granularity */
272 	};
273 
274 	ext = (struct pcb_ext *)kmem_malloc(kernel_arena, ctob(IOPAGES+1),
275 	    M_WAITOK | M_ZERO);
276 	/* -16 is so we can convert a trapframe into vm86trapframe inplace */
277 	ext->ext_tss.tss_esp0 = (vm_offset_t)td->td_pcb - 16;
278 	ext->ext_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
279 	/*
280 	 * The last byte of the i/o map must be followed by an 0xff byte.
281 	 * We arbitrarily allocate 16 bytes here, to keep the starting
282 	 * address on a doubleword boundary.
283 	 */
284 	offset = PAGE_SIZE - 16;
285 	ext->ext_tss.tss_ioopt =
286 	    (offset - ((unsigned)&ext->ext_tss - (unsigned)ext)) << 16;
287 	ext->ext_iomap = (caddr_t)ext + offset;
288 	ext->ext_vm86.vm86_intmap = (caddr_t)ext + offset - 32;
289 
290 	addr = (u_long *)ext->ext_vm86.vm86_intmap;
291 	for (i = 0; i < (ctob(IOPAGES) + 32 + 16) / sizeof(u_long); i++)
292 		*addr++ = ~0;
293 
294 	ssd.ssd_base = (unsigned)&ext->ext_tss;
295 	ssd.ssd_limit -= ((unsigned)&ext->ext_tss - (unsigned)ext);
296 	ssdtosd(&ssd, &ext->ext_tssd);
297 
298 	KASSERT(td == curthread, ("giving TSS to !curthread"));
299 	KASSERT(td->td_pcb->pcb_ext == 0, ("already have a TSS!"));
300 
301 	/* Switch to the new TSS. */
302 	critical_enter();
303 	td->td_pcb->pcb_ext = ext;
304 	PCPU_SET(private_tss, 1);
305 	*PCPU_GET(tss_gdt) = ext->ext_tssd;
306 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
307 	critical_exit();
308 
309 	return 0;
310 }
311 
312 int
313 i386_set_ioperm(td, uap)
314 	struct thread *td;
315 	struct i386_ioperm_args *uap;
316 {
317 	char *iomap;
318 	u_int i;
319 	int error;
320 
321 	if ((error = priv_check(td, PRIV_IO)) != 0)
322 		return (error);
323 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
324 		return (error);
325 	/*
326 	 * XXX
327 	 * While this is restricted to root, we should probably figure out
328 	 * whether any other driver is using this i/o address, as so not to
329 	 * cause confusion.  This probably requires a global 'usage registry'.
330 	 */
331 
332 	if (td->td_pcb->pcb_ext == 0)
333 		if ((error = i386_extend_pcb(td)) != 0)
334 			return (error);
335 	iomap = (char *)td->td_pcb->pcb_ext->ext_iomap;
336 
337 	if (uap->start > uap->start + uap->length ||
338 	    uap->start + uap->length > IOPAGES * PAGE_SIZE * NBBY)
339 		return (EINVAL);
340 
341 	for (i = uap->start; i < uap->start + uap->length; i++) {
342 		if (uap->enable)
343 			iomap[i >> 3] &= ~(1 << (i & 7));
344 		else
345 			iomap[i >> 3] |= (1 << (i & 7));
346 	}
347 	return (error);
348 }
349 
350 int
351 i386_get_ioperm(td, uap)
352 	struct thread *td;
353 	struct i386_ioperm_args *uap;
354 {
355 	int i, state;
356 	char *iomap;
357 
358 	if (uap->start >= IOPAGES * PAGE_SIZE * NBBY)
359 		return (EINVAL);
360 
361 	if (td->td_pcb->pcb_ext == 0) {
362 		uap->length = 0;
363 		goto done;
364 	}
365 
366 	iomap = (char *)td->td_pcb->pcb_ext->ext_iomap;
367 
368 	i = uap->start;
369 	state = (iomap[i >> 3] >> (i & 7)) & 1;
370 	uap->enable = !state;
371 	uap->length = 1;
372 
373 	for (i = uap->start + 1; i < IOPAGES * PAGE_SIZE * NBBY; i++) {
374 		if (state != ((iomap[i >> 3] >> (i & 7)) & 1))
375 			break;
376 		uap->length++;
377 	}
378 
379 done:
380 	return (0);
381 }
382 
383 /*
384  * Update the GDT entry pointing to the LDT to point to the LDT of the
385  * current process. Manage dt_lock holding/unholding autonomously.
386  */
387 void
388 set_user_ldt(struct mdproc *mdp)
389 {
390 	struct proc_ldt *pldt;
391 	int dtlocked;
392 
393 	dtlocked = 0;
394 	if (!mtx_owned(&dt_lock)) {
395 		mtx_lock_spin(&dt_lock);
396 		dtlocked = 1;
397 	}
398 
399 	pldt = mdp->md_ldt;
400 #ifdef SMP
401 	gdt[PCPU_GET(cpuid) * NGDT + GUSERLDT_SEL].sd = pldt->ldt_sd;
402 #else
403 	gdt[GUSERLDT_SEL].sd = pldt->ldt_sd;
404 #endif
405 	lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
406 	PCPU_SET(currentldt, GSEL(GUSERLDT_SEL, SEL_KPL));
407 	if (dtlocked)
408 		mtx_unlock_spin(&dt_lock);
409 }
410 
411 #ifdef SMP
412 static void
413 set_user_ldt_rv(struct vmspace *vmsp)
414 {
415 	struct thread *td;
416 
417 	td = curthread;
418 	if (vmsp != td->td_proc->p_vmspace)
419 		return;
420 
421 	set_user_ldt(&td->td_proc->p_md);
422 }
423 #endif
424 
425 /*
426  * dt_lock must be held. Returns with dt_lock held.
427  */
428 struct proc_ldt *
429 user_ldt_alloc(struct mdproc *mdp, int len)
430 {
431 	struct proc_ldt *pldt, *new_ldt;
432 
433 	mtx_assert(&dt_lock, MA_OWNED);
434 	mtx_unlock_spin(&dt_lock);
435 	new_ldt = malloc(sizeof(struct proc_ldt),
436 		M_SUBPROC, M_WAITOK);
437 
438 	new_ldt->ldt_len = len = NEW_MAX_LD(len);
439 	new_ldt->ldt_base = (caddr_t)kmem_malloc(kernel_arena,
440 	    len * sizeof(union descriptor), M_WAITOK | M_ZERO);
441 	new_ldt->ldt_refcnt = 1;
442 	new_ldt->ldt_active = 0;
443 
444 	mtx_lock_spin(&dt_lock);
445 	gdt_segs[GUSERLDT_SEL].ssd_base = (unsigned)new_ldt->ldt_base;
446 	gdt_segs[GUSERLDT_SEL].ssd_limit = len * sizeof(union descriptor) - 1;
447 	ssdtosd(&gdt_segs[GUSERLDT_SEL], &new_ldt->ldt_sd);
448 
449 	if ((pldt = mdp->md_ldt) != NULL) {
450 		if (len > pldt->ldt_len)
451 			len = pldt->ldt_len;
452 		bcopy(pldt->ldt_base, new_ldt->ldt_base,
453 		    len * sizeof(union descriptor));
454 	} else
455 		bcopy(ldt, new_ldt->ldt_base, sizeof(ldt));
456 
457 	return (new_ldt);
458 }
459 
460 /*
461  * Must be called with dt_lock held.  Returns with dt_lock unheld.
462  */
463 void
464 user_ldt_free(struct thread *td)
465 {
466 	struct mdproc *mdp = &td->td_proc->p_md;
467 	struct proc_ldt *pldt;
468 
469 	mtx_assert(&dt_lock, MA_OWNED);
470 	if ((pldt = mdp->md_ldt) == NULL) {
471 		mtx_unlock_spin(&dt_lock);
472 		return;
473 	}
474 
475 	if (td == curthread) {
476 		lldt(_default_ldt);
477 		PCPU_SET(currentldt, _default_ldt);
478 	}
479 
480 	mdp->md_ldt = NULL;
481 	user_ldt_deref(pldt);
482 }
483 
484 void
485 user_ldt_deref(struct proc_ldt *pldt)
486 {
487 
488 	mtx_assert(&dt_lock, MA_OWNED);
489 	if (--pldt->ldt_refcnt == 0) {
490 		mtx_unlock_spin(&dt_lock);
491 		kmem_free(kernel_arena, (vm_offset_t)pldt->ldt_base,
492 			pldt->ldt_len * sizeof(union descriptor));
493 		free(pldt, M_SUBPROC);
494 	} else
495 		mtx_unlock_spin(&dt_lock);
496 }
497 
498 /*
499  * Note for the authors of compat layers (linux, etc): copyout() in
500  * the function below is not a problem since it presents data in
501  * arch-specific format (i.e. i386-specific in this case), not in
502  * the OS-specific one.
503  */
504 int
505 i386_get_ldt(td, uap)
506 	struct thread *td;
507 	struct i386_ldt_args *uap;
508 {
509 	int error = 0;
510 	struct proc_ldt *pldt;
511 	int nldt, num;
512 	union descriptor *lp;
513 
514 #ifdef	DEBUG
515 	printf("i386_get_ldt: start=%d num=%d descs=%p\n",
516 	    uap->start, uap->num, (void *)uap->descs);
517 #endif
518 
519 	mtx_lock_spin(&dt_lock);
520 	if ((pldt = td->td_proc->p_md.md_ldt) != NULL) {
521 		nldt = pldt->ldt_len;
522 		lp = &((union descriptor *)(pldt->ldt_base))[uap->start];
523 		mtx_unlock_spin(&dt_lock);
524 		num = min(uap->num, nldt);
525 	} else {
526 		mtx_unlock_spin(&dt_lock);
527 		nldt = sizeof(ldt)/sizeof(ldt[0]);
528 		num = min(uap->num, nldt);
529 		lp = &ldt[uap->start];
530 	}
531 
532 	if ((uap->start > (unsigned int)nldt) ||
533 	    ((unsigned int)num > (unsigned int)nldt) ||
534 	    ((unsigned int)(uap->start + num) > (unsigned int)nldt))
535 		return(EINVAL);
536 
537 	error = copyout(lp, uap->descs, num * sizeof(union descriptor));
538 	if (!error)
539 		td->td_retval[0] = num;
540 
541 	return(error);
542 }
543 
544 int
545 i386_set_ldt(td, uap, descs)
546 	struct thread *td;
547 	struct i386_ldt_args *uap;
548 	union descriptor *descs;
549 {
550 	int error, i;
551 	int largest_ld;
552 	struct mdproc *mdp = &td->td_proc->p_md;
553 	struct proc_ldt *pldt;
554 	union descriptor *dp;
555 
556 #ifdef	DEBUG
557 	printf("i386_set_ldt: start=%d num=%d descs=%p\n",
558 	    uap->start, uap->num, (void *)uap->descs);
559 #endif
560 	error = 0;
561 
562 	if (descs == NULL) {
563 		/* Free descriptors */
564 		if (uap->start == 0 && uap->num == 0) {
565 			/*
566 			 * Treat this as a special case, so userland needn't
567 			 * know magic number NLDT.
568 			 */
569 			uap->start = NLDT;
570 			uap->num = MAX_LD - NLDT;
571 		}
572 		if (uap->num == 0)
573 			return (EINVAL);
574 		mtx_lock_spin(&dt_lock);
575 		if ((pldt = mdp->md_ldt) == NULL ||
576 		    uap->start >= pldt->ldt_len) {
577 			mtx_unlock_spin(&dt_lock);
578 			return (0);
579 		}
580 		largest_ld = uap->start + uap->num;
581 		if (largest_ld > pldt->ldt_len)
582 			largest_ld = pldt->ldt_len;
583 		for (i = uap->start; i < largest_ld; i++)
584 			atomic_store_rel_64(&((uint64_t *)(pldt->ldt_base))[i],
585 			    0);
586 		mtx_unlock_spin(&dt_lock);
587 		return (0);
588 	}
589 
590 	if (!(uap->start == LDT_AUTO_ALLOC && uap->num == 1)) {
591 		/* verify range of descriptors to modify */
592 		largest_ld = uap->start + uap->num;
593 		if (uap->start >= MAX_LD || largest_ld > MAX_LD) {
594 			return (EINVAL);
595 		}
596 	}
597 
598 	/* Check descriptors for access violations */
599 	for (i = 0; i < uap->num; i++) {
600 		dp = &descs[i];
601 
602 		switch (dp->sd.sd_type) {
603 		case SDT_SYSNULL:	/* system null */
604 			dp->sd.sd_p = 0;
605 			break;
606 		case SDT_SYS286TSS: /* system 286 TSS available */
607 		case SDT_SYSLDT:    /* system local descriptor table */
608 		case SDT_SYS286BSY: /* system 286 TSS busy */
609 		case SDT_SYSTASKGT: /* system task gate */
610 		case SDT_SYS286IGT: /* system 286 interrupt gate */
611 		case SDT_SYS286TGT: /* system 286 trap gate */
612 		case SDT_SYSNULL2:  /* undefined by Intel */
613 		case SDT_SYS386TSS: /* system 386 TSS available */
614 		case SDT_SYSNULL3:  /* undefined by Intel */
615 		case SDT_SYS386BSY: /* system 386 TSS busy */
616 		case SDT_SYSNULL4:  /* undefined by Intel */
617 		case SDT_SYS386IGT: /* system 386 interrupt gate */
618 		case SDT_SYS386TGT: /* system 386 trap gate */
619 		case SDT_SYS286CGT: /* system 286 call gate */
620 		case SDT_SYS386CGT: /* system 386 call gate */
621 			/* I can't think of any reason to allow a user proc
622 			 * to create a segment of these types.  They are
623 			 * for OS use only.
624 			 */
625 			return (EACCES);
626 			/*NOTREACHED*/
627 
628 		/* memory segment types */
629 		case SDT_MEMEC:   /* memory execute only conforming */
630 		case SDT_MEMEAC:  /* memory execute only accessed conforming */
631 		case SDT_MEMERC:  /* memory execute read conforming */
632 		case SDT_MEMERAC: /* memory execute read accessed conforming */
633 			 /* Must be "present" if executable and conforming. */
634 			if (dp->sd.sd_p == 0)
635 				return (EACCES);
636 			break;
637 		case SDT_MEMRO:   /* memory read only */
638 		case SDT_MEMROA:  /* memory read only accessed */
639 		case SDT_MEMRW:   /* memory read write */
640 		case SDT_MEMRWA:  /* memory read write accessed */
641 		case SDT_MEMROD:  /* memory read only expand dwn limit */
642 		case SDT_MEMRODA: /* memory read only expand dwn lim accessed */
643 		case SDT_MEMRWD:  /* memory read write expand dwn limit */
644 		case SDT_MEMRWDA: /* memory read write expand dwn lim acessed */
645 		case SDT_MEME:    /* memory execute only */
646 		case SDT_MEMEA:   /* memory execute only accessed */
647 		case SDT_MEMER:   /* memory execute read */
648 		case SDT_MEMERA:  /* memory execute read accessed */
649 			break;
650 		default:
651 			return(EINVAL);
652 			/*NOTREACHED*/
653 		}
654 
655 		/* Only user (ring-3) descriptors may be present. */
656 		if ((dp->sd.sd_p != 0) && (dp->sd.sd_dpl != SEL_UPL))
657 			return (EACCES);
658 	}
659 
660 	if (uap->start == LDT_AUTO_ALLOC && uap->num == 1) {
661 		/* Allocate a free slot */
662 		mtx_lock_spin(&dt_lock);
663 		if ((pldt = mdp->md_ldt) == NULL) {
664 			if ((error = i386_ldt_grow(td, NLDT + 1))) {
665 				mtx_unlock_spin(&dt_lock);
666 				return (error);
667 			}
668 			pldt = mdp->md_ldt;
669 		}
670 again:
671 		/*
672 		 * start scanning a bit up to leave room for NVidia and
673 		 * Wine, which still user the "Blat" method of allocation.
674 		 */
675 		dp = &((union descriptor *)(pldt->ldt_base))[NLDT];
676 		for (i = NLDT; i < pldt->ldt_len; ++i) {
677 			if (dp->sd.sd_type == SDT_SYSNULL)
678 				break;
679 			dp++;
680 		}
681 		if (i >= pldt->ldt_len) {
682 			if ((error = i386_ldt_grow(td, pldt->ldt_len+1))) {
683 				mtx_unlock_spin(&dt_lock);
684 				return (error);
685 			}
686 			goto again;
687 		}
688 		uap->start = i;
689 		error = i386_set_ldt_data(td, i, 1, descs);
690 		mtx_unlock_spin(&dt_lock);
691 	} else {
692 		largest_ld = uap->start + uap->num;
693 		mtx_lock_spin(&dt_lock);
694 		if (!(error = i386_ldt_grow(td, largest_ld))) {
695 			error = i386_set_ldt_data(td, uap->start, uap->num,
696 			    descs);
697 		}
698 		mtx_unlock_spin(&dt_lock);
699 	}
700 	if (error == 0)
701 		td->td_retval[0] = uap->start;
702 	return (error);
703 }
704 
705 static int
706 i386_set_ldt_data(struct thread *td, int start, int num,
707     union descriptor *descs)
708 {
709 	struct mdproc *mdp;
710 	struct proc_ldt *pldt;
711 	uint64_t *dst, *src;
712 	int i;
713 
714 	mtx_assert(&dt_lock, MA_OWNED);
715 
716 	mdp = &td->td_proc->p_md;
717 	pldt = mdp->md_ldt;
718 	dst = (uint64_t *)(pldt->ldt_base);
719 	src = (uint64_t *)descs;
720 
721 	/*
722 	 * Atomic(9) is used only to get 64bit atomic store with
723 	 * cmpxchg8b when available.  There is no op without release
724 	 * semantic.
725 	 */
726 	for (i = 0; i < num; i++)
727 		atomic_store_rel_64(&dst[start + i], src[i]);
728 	return (0);
729 }
730 
731 static int
732 i386_ldt_grow(struct thread *td, int len)
733 {
734 	struct mdproc *mdp = &td->td_proc->p_md;
735 	struct proc_ldt *new_ldt, *pldt;
736 	caddr_t old_ldt_base = NULL_LDT_BASE;
737 	int old_ldt_len = 0;
738 
739 	mtx_assert(&dt_lock, MA_OWNED);
740 
741 	if (len > MAX_LD)
742 		return (ENOMEM);
743 	if (len < NLDT + 1)
744 		len = NLDT + 1;
745 
746 	/* Allocate a user ldt. */
747 	if ((pldt = mdp->md_ldt) == NULL || len > pldt->ldt_len) {
748 		new_ldt = user_ldt_alloc(mdp, len);
749 		if (new_ldt == NULL)
750 			return (ENOMEM);
751 		pldt = mdp->md_ldt;
752 
753 		if (pldt != NULL) {
754 			if (new_ldt->ldt_len <= pldt->ldt_len) {
755 				/*
756 				 * We just lost the race for allocation, so
757 				 * free the new object and return.
758 				 */
759 				mtx_unlock_spin(&dt_lock);
760 				kmem_free(kernel_arena,
761 				   (vm_offset_t)new_ldt->ldt_base,
762 				   new_ldt->ldt_len * sizeof(union descriptor));
763 				free(new_ldt, M_SUBPROC);
764 				mtx_lock_spin(&dt_lock);
765 				return (0);
766 			}
767 
768 			/*
769 			 * We have to substitute the current LDT entry for
770 			 * curproc with the new one since its size grew.
771 			 */
772 			old_ldt_base = pldt->ldt_base;
773 			old_ldt_len = pldt->ldt_len;
774 			pldt->ldt_sd = new_ldt->ldt_sd;
775 			pldt->ldt_base = new_ldt->ldt_base;
776 			pldt->ldt_len = new_ldt->ldt_len;
777 		} else
778 			mdp->md_ldt = pldt = new_ldt;
779 #ifdef SMP
780 		/*
781 		 * Signal other cpus to reload ldt.  We need to unlock dt_lock
782 		 * here because other CPU will contest on it since their
783 		 * curthreads won't hold the lock and will block when trying
784 		 * to acquire it.
785 		 */
786 		mtx_unlock_spin(&dt_lock);
787 		smp_rendezvous(NULL, (void (*)(void *))set_user_ldt_rv,
788 		    NULL, td->td_proc->p_vmspace);
789 #else
790 		set_user_ldt(&td->td_proc->p_md);
791 		mtx_unlock_spin(&dt_lock);
792 #endif
793 		if (old_ldt_base != NULL_LDT_BASE) {
794 			kmem_free(kernel_arena, (vm_offset_t)old_ldt_base,
795 			    old_ldt_len * sizeof(union descriptor));
796 			free(new_ldt, M_SUBPROC);
797 		}
798 		mtx_lock_spin(&dt_lock);
799 	}
800 	return (0);
801 }
802