xref: /freebsd/sys/i386/i386/sys_machdep.c (revision 8a0a413e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 The Regents of the University of California.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	from: @(#)sys_machdep.c	5.5 (Berkeley) 1/19/91
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_capsicum.h"
38 #include "opt_kstack_pages.h"
39 
40 #include <sys/param.h>
41 #include <sys/capsicum.h>
42 #include <sys/systm.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/smp.h>
49 #include <sys/sysproto.h>
50 
51 #include <vm/vm.h>
52 #include <vm/pmap.h>
53 #include <vm/vm_map.h>
54 #include <vm/vm_extern.h>
55 
56 #include <machine/atomic.h>
57 #include <machine/cpu.h>
58 #include <machine/pcb.h>
59 #include <machine/pcb_ext.h>
60 #include <machine/proc.h>
61 #include <machine/sysarch.h>
62 
63 #include <security/audit/audit.h>
64 
65 #include <vm/vm_kern.h>		/* for kernel_map */
66 
67 #define MAX_LD 8192
68 #define LD_PER_PAGE 512
69 #define	NEW_MAX_LD(num)  rounddown2(num + LD_PER_PAGE, LD_PER_PAGE)
70 #define SIZE_FROM_LARGEST_LD(num) (NEW_MAX_LD(num) << 3)
71 #define	NULL_LDT_BASE	((caddr_t)NULL)
72 
73 #ifdef SMP
74 static void set_user_ldt_rv(void *arg);
75 #endif
76 static int i386_set_ldt_data(struct thread *, int start, int num,
77     union descriptor *descs);
78 static int i386_ldt_grow(struct thread *td, int len);
79 
80 void
81 fill_based_sd(struct segment_descriptor *sdp, uint32_t base)
82 {
83 
84 	sdp->sd_lobase = base & 0xffffff;
85 	sdp->sd_hibase = (base >> 24) & 0xff;
86 	sdp->sd_lolimit = 0xffff;	/* 4GB limit, wraps around */
87 	sdp->sd_hilimit = 0xf;
88 	sdp->sd_type = SDT_MEMRWA;
89 	sdp->sd_dpl = SEL_UPL;
90 	sdp->sd_p = 1;
91 	sdp->sd_xx = 0;
92 	sdp->sd_def32 = 1;
93 	sdp->sd_gran = 1;
94 }
95 
96 /*
97  * Construct special descriptors for "base" selectors.  Store them in
98  * the PCB for later use by cpu_switch().  Store them in the GDT for
99  * more immediate use.  The GDT entries are part of the current
100  * context.  Callers must load related segment registers to complete
101  * setting up the current context.
102  */
103 void
104 set_fsbase(struct thread *td, uint32_t base)
105 {
106 	struct segment_descriptor sd;
107 
108 	fill_based_sd(&sd, base);
109 	critical_enter();
110 	td->td_pcb->pcb_fsd = sd;
111 	PCPU_GET(fsgs_gdt)[0] = sd;
112 	critical_exit();
113 }
114 
115 void
116 set_gsbase(struct thread *td, uint32_t base)
117 {
118 	struct segment_descriptor sd;
119 
120 	fill_based_sd(&sd, base);
121 	critical_enter();
122 	td->td_pcb->pcb_gsd = sd;
123 	PCPU_GET(fsgs_gdt)[1] = sd;
124 	critical_exit();
125 }
126 
127 #ifndef _SYS_SYSPROTO_H_
128 struct sysarch_args {
129 	int op;
130 	char *parms;
131 };
132 #endif
133 
134 int
135 sysarch(struct thread *td, struct sysarch_args *uap)
136 {
137 	int error;
138 	union descriptor *lp;
139 	union {
140 		struct i386_ldt_args largs;
141 		struct i386_ioperm_args iargs;
142 		struct i386_get_xfpustate xfpu;
143 	} kargs;
144 	uint32_t base;
145 	struct segment_descriptor *sdp;
146 
147 	AUDIT_ARG_CMD(uap->op);
148 
149 #ifdef CAPABILITY_MODE
150 	/*
151 	 * When adding new operations, add a new case statement here to
152 	 * explicitly indicate whether or not the operation is safe to
153 	 * perform in capability mode.
154 	 */
155 	if (IN_CAPABILITY_MODE(td)) {
156 		switch (uap->op) {
157 		case I386_GET_LDT:
158 		case I386_SET_LDT:
159 		case I386_GET_IOPERM:
160 		case I386_GET_FSBASE:
161 		case I386_SET_FSBASE:
162 		case I386_GET_GSBASE:
163 		case I386_SET_GSBASE:
164 		case I386_GET_XFPUSTATE:
165 			break;
166 
167 		case I386_SET_IOPERM:
168 		default:
169 #ifdef KTRACE
170 			if (KTRPOINT(td, KTR_CAPFAIL))
171 				ktrcapfail(CAPFAIL_SYSCALL, NULL, NULL);
172 #endif
173 			return (ECAPMODE);
174 		}
175 	}
176 #endif
177 
178 	switch (uap->op) {
179 	case I386_GET_IOPERM:
180 	case I386_SET_IOPERM:
181 		if ((error = copyin(uap->parms, &kargs.iargs,
182 		    sizeof(struct i386_ioperm_args))) != 0)
183 			return (error);
184 		break;
185 	case I386_GET_LDT:
186 	case I386_SET_LDT:
187 		if ((error = copyin(uap->parms, &kargs.largs,
188 		    sizeof(struct i386_ldt_args))) != 0)
189 			return (error);
190 		break;
191 	case I386_GET_XFPUSTATE:
192 		if ((error = copyin(uap->parms, &kargs.xfpu,
193 		    sizeof(struct i386_get_xfpustate))) != 0)
194 			return (error);
195 		break;
196 	default:
197 		break;
198 	}
199 
200 	switch (uap->op) {
201 	case I386_GET_LDT:
202 		error = i386_get_ldt(td, &kargs.largs);
203 		break;
204 	case I386_SET_LDT:
205 		if (kargs.largs.descs != NULL) {
206 			if (kargs.largs.num > MAX_LD)
207 				return (EINVAL);
208 			lp = malloc(kargs.largs.num * sizeof(union descriptor),
209 			    M_TEMP, M_WAITOK);
210 			error = copyin(kargs.largs.descs, lp,
211 			    kargs.largs.num * sizeof(union descriptor));
212 			if (error == 0)
213 				error = i386_set_ldt(td, &kargs.largs, lp);
214 			free(lp, M_TEMP);
215 		} else {
216 			error = i386_set_ldt(td, &kargs.largs, NULL);
217 		}
218 		break;
219 	case I386_GET_IOPERM:
220 		error = i386_get_ioperm(td, &kargs.iargs);
221 		if (error == 0)
222 			error = copyout(&kargs.iargs, uap->parms,
223 			    sizeof(struct i386_ioperm_args));
224 		break;
225 	case I386_SET_IOPERM:
226 		error = i386_set_ioperm(td, &kargs.iargs);
227 		break;
228 	case I386_VM86:
229 		error = vm86_sysarch(td, uap->parms);
230 		break;
231 	case I386_GET_FSBASE:
232 		sdp = &td->td_pcb->pcb_fsd;
233 		base = sdp->sd_hibase << 24 | sdp->sd_lobase;
234 		error = copyout(&base, uap->parms, sizeof(base));
235 		break;
236 	case I386_SET_FSBASE:
237 		error = copyin(uap->parms, &base, sizeof(base));
238 		if (error == 0) {
239 			/*
240 			 * Construct the special descriptor for fsbase
241 			 * and arrange for doreti to load its selector
242 			 * soon enough.
243 			 */
244 			set_fsbase(td, base);
245 			td->td_frame->tf_fs = GSEL(GUFS_SEL, SEL_UPL);
246 		}
247 		break;
248 	case I386_GET_GSBASE:
249 		sdp = &td->td_pcb->pcb_gsd;
250 		base = sdp->sd_hibase << 24 | sdp->sd_lobase;
251 		error = copyout(&base, uap->parms, sizeof(base));
252 		break;
253 	case I386_SET_GSBASE:
254 		error = copyin(uap->parms, &base, sizeof(base));
255 		if (error == 0) {
256 			/*
257 			 * Construct the special descriptor for gsbase.
258 			 * The selector is loaded immediately, since we
259 			 * normally only reload %gs on context switches.
260 			 */
261 			set_gsbase(td, base);
262 			load_gs(GSEL(GUGS_SEL, SEL_UPL));
263 		}
264 		break;
265 	case I386_GET_XFPUSTATE:
266 		if (kargs.xfpu.len > cpu_max_ext_state_size -
267 		    sizeof(union savefpu))
268 			return (EINVAL);
269 		npxgetregs(td);
270 		error = copyout((char *)(get_pcb_user_save_td(td) + 1),
271 		    kargs.xfpu.addr, kargs.xfpu.len);
272 		break;
273 	default:
274 		error = EINVAL;
275 		break;
276 	}
277 	return (error);
278 }
279 
280 int
281 i386_extend_pcb(struct thread *td)
282 {
283 	int i, offset;
284 	u_long *addr;
285 	struct pcb_ext *ext;
286 	struct soft_segment_descriptor ssd = {
287 		0,			/* segment base address (overwritten) */
288 		ctob(IOPAGES + 1) - 1,	/* length */
289 		SDT_SYS386TSS,		/* segment type */
290 		0,			/* priority level */
291 		1,			/* descriptor present */
292 		0, 0,
293 		0,			/* default 32 size */
294 		0			/* granularity */
295 	};
296 
297 	ext = (struct pcb_ext *)kmem_malloc(kernel_arena, ctob(IOPAGES+1),
298 	    M_WAITOK | M_ZERO);
299 	/* -16 is so we can convert a trapframe into vm86trapframe inplace */
300 	ext->ext_tss.tss_esp0 = (vm_offset_t)td->td_pcb - 16;
301 	ext->ext_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
302 	/*
303 	 * The last byte of the i/o map must be followed by an 0xff byte.
304 	 * We arbitrarily allocate 16 bytes here, to keep the starting
305 	 * address on a doubleword boundary.
306 	 */
307 	offset = PAGE_SIZE - 16;
308 	ext->ext_tss.tss_ioopt =
309 	    (offset - ((unsigned)&ext->ext_tss - (unsigned)ext)) << 16;
310 	ext->ext_iomap = (caddr_t)ext + offset;
311 	ext->ext_vm86.vm86_intmap = (caddr_t)ext + offset - 32;
312 
313 	addr = (u_long *)ext->ext_vm86.vm86_intmap;
314 	for (i = 0; i < (ctob(IOPAGES) + 32 + 16) / sizeof(u_long); i++)
315 		*addr++ = ~0;
316 
317 	ssd.ssd_base = (unsigned)&ext->ext_tss;
318 	ssd.ssd_limit -= ((unsigned)&ext->ext_tss - (unsigned)ext);
319 	ssdtosd(&ssd, &ext->ext_tssd);
320 
321 	KASSERT(td == curthread, ("giving TSS to !curthread"));
322 	KASSERT(td->td_pcb->pcb_ext == 0, ("already have a TSS!"));
323 
324 	/* Switch to the new TSS. */
325 	critical_enter();
326 	td->td_pcb->pcb_ext = ext;
327 	PCPU_SET(private_tss, 1);
328 	*PCPU_GET(tss_gdt) = ext->ext_tssd;
329 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
330 	critical_exit();
331 
332 	return 0;
333 }
334 
335 int
336 i386_set_ioperm(td, uap)
337 	struct thread *td;
338 	struct i386_ioperm_args *uap;
339 {
340 	char *iomap;
341 	u_int i;
342 	int error;
343 
344 	if ((error = priv_check(td, PRIV_IO)) != 0)
345 		return (error);
346 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
347 		return (error);
348 	/*
349 	 * XXX
350 	 * While this is restricted to root, we should probably figure out
351 	 * whether any other driver is using this i/o address, as so not to
352 	 * cause confusion.  This probably requires a global 'usage registry'.
353 	 */
354 
355 	if (td->td_pcb->pcb_ext == 0)
356 		if ((error = i386_extend_pcb(td)) != 0)
357 			return (error);
358 	iomap = (char *)td->td_pcb->pcb_ext->ext_iomap;
359 
360 	if (uap->start > uap->start + uap->length ||
361 	    uap->start + uap->length > IOPAGES * PAGE_SIZE * NBBY)
362 		return (EINVAL);
363 
364 	for (i = uap->start; i < uap->start + uap->length; i++) {
365 		if (uap->enable)
366 			iomap[i >> 3] &= ~(1 << (i & 7));
367 		else
368 			iomap[i >> 3] |= (1 << (i & 7));
369 	}
370 	return (error);
371 }
372 
373 int
374 i386_get_ioperm(td, uap)
375 	struct thread *td;
376 	struct i386_ioperm_args *uap;
377 {
378 	int i, state;
379 	char *iomap;
380 
381 	if (uap->start >= IOPAGES * PAGE_SIZE * NBBY)
382 		return (EINVAL);
383 
384 	if (td->td_pcb->pcb_ext == 0) {
385 		uap->length = 0;
386 		goto done;
387 	}
388 
389 	iomap = (char *)td->td_pcb->pcb_ext->ext_iomap;
390 
391 	i = uap->start;
392 	state = (iomap[i >> 3] >> (i & 7)) & 1;
393 	uap->enable = !state;
394 	uap->length = 1;
395 
396 	for (i = uap->start + 1; i < IOPAGES * PAGE_SIZE * NBBY; i++) {
397 		if (state != ((iomap[i >> 3] >> (i & 7)) & 1))
398 			break;
399 		uap->length++;
400 	}
401 
402 done:
403 	return (0);
404 }
405 
406 /*
407  * Update the GDT entry pointing to the LDT to point to the LDT of the
408  * current process. Manage dt_lock holding/unholding autonomously.
409  */
410 static void
411 set_user_ldt_locked(struct mdproc *mdp)
412 {
413 	struct proc_ldt *pldt;
414 	int gdt_idx;
415 
416 	mtx_assert(&dt_lock, MA_OWNED);
417 
418 	pldt = mdp->md_ldt;
419 	gdt_idx = GUSERLDT_SEL;
420 	gdt_idx += PCPU_GET(cpuid) * NGDT;	/* always 0 on UP */
421 	gdt[gdt_idx].sd = pldt->ldt_sd;
422 	lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
423 	PCPU_SET(currentldt, GSEL(GUSERLDT_SEL, SEL_KPL));
424 }
425 
426 void
427 set_user_ldt(struct mdproc *mdp)
428 {
429 
430 	mtx_lock_spin(&dt_lock);
431 	set_user_ldt_locked(mdp);
432 	mtx_unlock_spin(&dt_lock);
433 }
434 
435 #ifdef SMP
436 static void
437 set_user_ldt_rv(void *arg)
438 {
439 	struct proc *p;
440 
441 	p = curproc;
442 	if (arg == p->p_vmspace)
443 		set_user_ldt(&p->p_md);
444 }
445 #endif
446 
447 /*
448  * dt_lock must be held. Returns with dt_lock held.
449  */
450 struct proc_ldt *
451 user_ldt_alloc(struct mdproc *mdp, int len)
452 {
453 	struct proc_ldt *pldt, *new_ldt;
454 
455 	mtx_assert(&dt_lock, MA_OWNED);
456 	mtx_unlock_spin(&dt_lock);
457 	new_ldt = malloc(sizeof(struct proc_ldt), M_SUBPROC, M_WAITOK);
458 
459 	new_ldt->ldt_len = len = NEW_MAX_LD(len);
460 	new_ldt->ldt_base = (caddr_t)kmem_malloc(kernel_arena,
461 	    len * sizeof(union descriptor), M_WAITOK | M_ZERO);
462 	new_ldt->ldt_refcnt = 1;
463 	new_ldt->ldt_active = 0;
464 
465 	mtx_lock_spin(&dt_lock);
466 	gdt_segs[GUSERLDT_SEL].ssd_base = (unsigned)new_ldt->ldt_base;
467 	gdt_segs[GUSERLDT_SEL].ssd_limit = len * sizeof(union descriptor) - 1;
468 	ssdtosd(&gdt_segs[GUSERLDT_SEL], &new_ldt->ldt_sd);
469 
470 	if ((pldt = mdp->md_ldt) != NULL) {
471 		if (len > pldt->ldt_len)
472 			len = pldt->ldt_len;
473 		bcopy(pldt->ldt_base, new_ldt->ldt_base,
474 		    len * sizeof(union descriptor));
475 	} else
476 		bcopy(ldt, new_ldt->ldt_base, sizeof(ldt));
477 
478 	return (new_ldt);
479 }
480 
481 /*
482  * Must be called with dt_lock held.  Returns with dt_lock unheld.
483  */
484 void
485 user_ldt_free(struct thread *td)
486 {
487 	struct mdproc *mdp;
488 	struct proc_ldt *pldt;
489 
490 	mtx_assert(&dt_lock, MA_OWNED);
491 	mdp = &td->td_proc->p_md;
492 	if ((pldt = mdp->md_ldt) == NULL) {
493 		mtx_unlock_spin(&dt_lock);
494 		return;
495 	}
496 
497 	if (td == curthread) {
498 		lldt(_default_ldt);
499 		PCPU_SET(currentldt, _default_ldt);
500 	}
501 
502 	mdp->md_ldt = NULL;
503 	user_ldt_deref(pldt);
504 }
505 
506 void
507 user_ldt_deref(struct proc_ldt *pldt)
508 {
509 
510 	mtx_assert(&dt_lock, MA_OWNED);
511 	if (--pldt->ldt_refcnt == 0) {
512 		mtx_unlock_spin(&dt_lock);
513 		kmem_free(kernel_arena, (vm_offset_t)pldt->ldt_base,
514 			pldt->ldt_len * sizeof(union descriptor));
515 		free(pldt, M_SUBPROC);
516 	} else
517 		mtx_unlock_spin(&dt_lock);
518 }
519 
520 /*
521  * Note for the authors of compat layers (linux, etc): copyout() in
522  * the function below is not a problem since it presents data in
523  * arch-specific format (i.e. i386-specific in this case), not in
524  * the OS-specific one.
525  */
526 int
527 i386_get_ldt(struct thread *td, struct i386_ldt_args *uap)
528 {
529 	struct proc_ldt *pldt;
530 	char *data;
531 	u_int nldt, num;
532 	int error;
533 
534 #ifdef DEBUG
535 	printf("i386_get_ldt: start=%u num=%u descs=%p\n",
536 	    uap->start, uap->num, (void *)uap->descs);
537 #endif
538 
539 	num = min(uap->num, MAX_LD);
540 	data = malloc(num * sizeof(union descriptor), M_TEMP, M_WAITOK);
541 	mtx_lock_spin(&dt_lock);
542 	pldt = td->td_proc->p_md.md_ldt;
543 	nldt = pldt != NULL ? pldt->ldt_len : nitems(ldt);
544 	if (uap->start >= nldt) {
545 		num = 0;
546 	} else {
547 		num = min(num, nldt - uap->start);
548 		bcopy(pldt != NULL ?
549 		    &((union descriptor *)(pldt->ldt_base))[uap->start] :
550 		    &ldt[uap->start], data, num * sizeof(union descriptor));
551 	}
552 	mtx_unlock_spin(&dt_lock);
553 	error = copyout(data, uap->descs, num * sizeof(union descriptor));
554 	if (error == 0)
555 		td->td_retval[0] = num;
556 	free(data, M_TEMP);
557 	return (error);
558 }
559 
560 int
561 i386_set_ldt(struct thread *td, struct i386_ldt_args *uap,
562     union descriptor *descs)
563 {
564 	struct mdproc *mdp;
565 	struct proc_ldt *pldt;
566 	union descriptor *dp;
567 	u_int largest_ld, i;
568 	int error;
569 
570 #ifdef DEBUG
571 	printf("i386_set_ldt: start=%u num=%u descs=%p\n",
572 	    uap->start, uap->num, (void *)uap->descs);
573 #endif
574 	error = 0;
575 	mdp = &td->td_proc->p_md;
576 
577 	if (descs == NULL) {
578 		/* Free descriptors */
579 		if (uap->start == 0 && uap->num == 0) {
580 			/*
581 			 * Treat this as a special case, so userland needn't
582 			 * know magic number NLDT.
583 			 */
584 			uap->start = NLDT;
585 			uap->num = MAX_LD - NLDT;
586 		}
587 		mtx_lock_spin(&dt_lock);
588 		if ((pldt = mdp->md_ldt) == NULL ||
589 		    uap->start >= pldt->ldt_len) {
590 			mtx_unlock_spin(&dt_lock);
591 			return (0);
592 		}
593 		largest_ld = uap->start + uap->num;
594 		if (largest_ld > pldt->ldt_len)
595 			largest_ld = pldt->ldt_len;
596 		for (i = uap->start; i < largest_ld; i++)
597 			atomic_store_rel_64(&((uint64_t *)(pldt->ldt_base))[i],
598 			    0);
599 		mtx_unlock_spin(&dt_lock);
600 		return (0);
601 	}
602 
603 	if (uap->start != LDT_AUTO_ALLOC || uap->num != 1) {
604 		/* verify range of descriptors to modify */
605 		largest_ld = uap->start + uap->num;
606 		if (uap->start >= MAX_LD || largest_ld > MAX_LD)
607 			return (EINVAL);
608 	}
609 
610 	/* Check descriptors for access violations */
611 	for (i = 0; i < uap->num; i++) {
612 		dp = &descs[i];
613 
614 		switch (dp->sd.sd_type) {
615 		case SDT_SYSNULL:	/* system null */
616 			dp->sd.sd_p = 0;
617 			break;
618 		case SDT_SYS286TSS: /* system 286 TSS available */
619 		case SDT_SYSLDT:    /* system local descriptor table */
620 		case SDT_SYS286BSY: /* system 286 TSS busy */
621 		case SDT_SYSTASKGT: /* system task gate */
622 		case SDT_SYS286IGT: /* system 286 interrupt gate */
623 		case SDT_SYS286TGT: /* system 286 trap gate */
624 		case SDT_SYSNULL2:  /* undefined by Intel */
625 		case SDT_SYS386TSS: /* system 386 TSS available */
626 		case SDT_SYSNULL3:  /* undefined by Intel */
627 		case SDT_SYS386BSY: /* system 386 TSS busy */
628 		case SDT_SYSNULL4:  /* undefined by Intel */
629 		case SDT_SYS386IGT: /* system 386 interrupt gate */
630 		case SDT_SYS386TGT: /* system 386 trap gate */
631 		case SDT_SYS286CGT: /* system 286 call gate */
632 		case SDT_SYS386CGT: /* system 386 call gate */
633 			return (EACCES);
634 
635 		/* memory segment types */
636 		case SDT_MEMEC:   /* memory execute only conforming */
637 		case SDT_MEMEAC:  /* memory execute only accessed conforming */
638 		case SDT_MEMERC:  /* memory execute read conforming */
639 		case SDT_MEMERAC: /* memory execute read accessed conforming */
640 			 /* Must be "present" if executable and conforming. */
641 			if (dp->sd.sd_p == 0)
642 				return (EACCES);
643 			break;
644 		case SDT_MEMRO:   /* memory read only */
645 		case SDT_MEMROA:  /* memory read only accessed */
646 		case SDT_MEMRW:   /* memory read write */
647 		case SDT_MEMRWA:  /* memory read write accessed */
648 		case SDT_MEMROD:  /* memory read only expand dwn limit */
649 		case SDT_MEMRODA: /* memory read only expand dwn lim accessed */
650 		case SDT_MEMRWD:  /* memory read write expand dwn limit */
651 		case SDT_MEMRWDA: /* memory read write expand dwn lim acessed */
652 		case SDT_MEME:    /* memory execute only */
653 		case SDT_MEMEA:   /* memory execute only accessed */
654 		case SDT_MEMER:   /* memory execute read */
655 		case SDT_MEMERA:  /* memory execute read accessed */
656 			break;
657 		default:
658 			return (EINVAL);
659 		}
660 
661 		/* Only user (ring-3) descriptors may be present. */
662 		if (dp->sd.sd_p != 0 && dp->sd.sd_dpl != SEL_UPL)
663 			return (EACCES);
664 	}
665 
666 	if (uap->start == LDT_AUTO_ALLOC && uap->num == 1) {
667 		/* Allocate a free slot */
668 		mtx_lock_spin(&dt_lock);
669 		if ((pldt = mdp->md_ldt) == NULL) {
670 			if ((error = i386_ldt_grow(td, NLDT + 1))) {
671 				mtx_unlock_spin(&dt_lock);
672 				return (error);
673 			}
674 			pldt = mdp->md_ldt;
675 		}
676 again:
677 		/*
678 		 * start scanning a bit up to leave room for NVidia and
679 		 * Wine, which still user the "Blat" method of allocation.
680 		 */
681 		dp = &((union descriptor *)(pldt->ldt_base))[NLDT];
682 		for (i = NLDT; i < pldt->ldt_len; ++i) {
683 			if (dp->sd.sd_type == SDT_SYSNULL)
684 				break;
685 			dp++;
686 		}
687 		if (i >= pldt->ldt_len) {
688 			if ((error = i386_ldt_grow(td, pldt->ldt_len+1))) {
689 				mtx_unlock_spin(&dt_lock);
690 				return (error);
691 			}
692 			goto again;
693 		}
694 		uap->start = i;
695 		error = i386_set_ldt_data(td, i, 1, descs);
696 		mtx_unlock_spin(&dt_lock);
697 	} else {
698 		largest_ld = uap->start + uap->num;
699 		mtx_lock_spin(&dt_lock);
700 		if (!(error = i386_ldt_grow(td, largest_ld))) {
701 			error = i386_set_ldt_data(td, uap->start, uap->num,
702 			    descs);
703 		}
704 		mtx_unlock_spin(&dt_lock);
705 	}
706 	if (error == 0)
707 		td->td_retval[0] = uap->start;
708 	return (error);
709 }
710 
711 static int
712 i386_set_ldt_data(struct thread *td, int start, int num,
713     union descriptor *descs)
714 {
715 	struct mdproc *mdp;
716 	struct proc_ldt *pldt;
717 	uint64_t *dst, *src;
718 	int i;
719 
720 	mtx_assert(&dt_lock, MA_OWNED);
721 
722 	mdp = &td->td_proc->p_md;
723 	pldt = mdp->md_ldt;
724 	dst = (uint64_t *)(pldt->ldt_base);
725 	src = (uint64_t *)descs;
726 
727 	/*
728 	 * Atomic(9) is used only to get 64bit atomic store with
729 	 * cmpxchg8b when available.  There is no op without release
730 	 * semantic.
731 	 */
732 	for (i = 0; i < num; i++)
733 		atomic_store_rel_64(&dst[start + i], src[i]);
734 	return (0);
735 }
736 
737 static int
738 i386_ldt_grow(struct thread *td, int len)
739 {
740 	struct mdproc *mdp;
741 	struct proc_ldt *new_ldt, *pldt;
742 	caddr_t old_ldt_base;
743 	int old_ldt_len;
744 
745 	mtx_assert(&dt_lock, MA_OWNED);
746 
747 	if (len > MAX_LD)
748 		return (ENOMEM);
749 	if (len < NLDT + 1)
750 		len = NLDT + 1;
751 
752 	mdp = &td->td_proc->p_md;
753 	old_ldt_base = NULL_LDT_BASE;
754 	old_ldt_len = 0;
755 
756 	/* Allocate a user ldt. */
757 	if ((pldt = mdp->md_ldt) == NULL || len > pldt->ldt_len) {
758 		new_ldt = user_ldt_alloc(mdp, len);
759 		if (new_ldt == NULL)
760 			return (ENOMEM);
761 		pldt = mdp->md_ldt;
762 
763 		if (pldt != NULL) {
764 			if (new_ldt->ldt_len <= pldt->ldt_len) {
765 				/*
766 				 * We just lost the race for allocation, so
767 				 * free the new object and return.
768 				 */
769 				mtx_unlock_spin(&dt_lock);
770 				kmem_free(kernel_arena,
771 				   (vm_offset_t)new_ldt->ldt_base,
772 				   new_ldt->ldt_len * sizeof(union descriptor));
773 				free(new_ldt, M_SUBPROC);
774 				mtx_lock_spin(&dt_lock);
775 				return (0);
776 			}
777 
778 			/*
779 			 * We have to substitute the current LDT entry for
780 			 * curproc with the new one since its size grew.
781 			 */
782 			old_ldt_base = pldt->ldt_base;
783 			old_ldt_len = pldt->ldt_len;
784 			pldt->ldt_sd = new_ldt->ldt_sd;
785 			pldt->ldt_base = new_ldt->ldt_base;
786 			pldt->ldt_len = new_ldt->ldt_len;
787 		} else
788 			mdp->md_ldt = pldt = new_ldt;
789 #ifdef SMP
790 		/*
791 		 * Signal other cpus to reload ldt.  We need to unlock dt_lock
792 		 * here because other CPU will contest on it since their
793 		 * curthreads won't hold the lock and will block when trying
794 		 * to acquire it.
795 		 */
796 		mtx_unlock_spin(&dt_lock);
797 		smp_rendezvous(NULL, set_user_ldt_rv, NULL,
798 		    td->td_proc->p_vmspace);
799 #else
800 		set_user_ldt_locked(&td->td_proc->p_md);
801 		mtx_unlock_spin(&dt_lock);
802 #endif
803 		if (old_ldt_base != NULL_LDT_BASE) {
804 			kmem_free(kernel_arena, (vm_offset_t)old_ldt_base,
805 			    old_ldt_len * sizeof(union descriptor));
806 			free(new_ldt, M_SUBPROC);
807 		}
808 		mtx_lock_spin(&dt_lock);
809 	}
810 	return (0);
811 }
812