xref: /freebsd/sys/i386/i386/trap.c (revision 0957b409)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 /*
46  * 386 Trap and System call handling
47  */
48 
49 #include "opt_clock.h"
50 #include "opt_compat.h"
51 #include "opt_cpu.h"
52 #include "opt_hwpmc_hooks.h"
53 #include "opt_isa.h"
54 #include "opt_kdb.h"
55 #include "opt_stack.h"
56 #include "opt_trap.h"
57 
58 #include <sys/param.h>
59 #include <sys/bus.h>
60 #include <sys/systm.h>
61 #include <sys/proc.h>
62 #include <sys/pioctl.h>
63 #include <sys/ptrace.h>
64 #include <sys/kdb.h>
65 #include <sys/kernel.h>
66 #include <sys/ktr.h>
67 #include <sys/lock.h>
68 #include <sys/mutex.h>
69 #include <sys/resourcevar.h>
70 #include <sys/signalvar.h>
71 #include <sys/syscall.h>
72 #include <sys/sysctl.h>
73 #include <sys/sysent.h>
74 #include <sys/uio.h>
75 #include <sys/vmmeter.h>
76 #ifdef HWPMC_HOOKS
77 #include <sys/pmckern.h>
78 PMC_SOFT_DEFINE( , , page_fault, all);
79 PMC_SOFT_DEFINE( , , page_fault, read);
80 PMC_SOFT_DEFINE( , , page_fault, write);
81 #endif
82 #include <security/audit/audit.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_kern.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_extern.h>
91 
92 #include <machine/cpu.h>
93 #include <machine/intr_machdep.h>
94 #include <x86/mca.h>
95 #include <machine/md_var.h>
96 #include <machine/pcb.h>
97 #ifdef SMP
98 #include <machine/smp.h>
99 #endif
100 #include <machine/stack.h>
101 #include <machine/trap.h>
102 #include <machine/tss.h>
103 #include <machine/vm86.h>
104 
105 #ifdef POWERFAIL_NMI
106 #include <sys/syslog.h>
107 #include <machine/clock.h>
108 #endif
109 
110 #ifdef KDTRACE_HOOKS
111 #include <sys/dtrace_bsd.h>
112 #endif
113 
114 void trap(struct trapframe *frame);
115 void syscall(struct trapframe *frame);
116 
117 static int trap_pfault(struct trapframe *, int, vm_offset_t);
118 static void trap_fatal(struct trapframe *, vm_offset_t);
119 void dblfault_handler(void);
120 
121 extern inthand_t IDTVEC(bpt), IDTVEC(dbg), IDTVEC(int0x80_syscall);
122 extern uint64_t pg_nx;
123 
124 #define MAX_TRAP_MSG		32
125 
126 struct trap_data {
127 	bool		ei;
128 	const char	*msg;
129 };
130 
131 static const struct trap_data trap_data[] = {
132 	[T_PRIVINFLT] =	{ .ei = true,	.msg = "privileged instruction fault" },
133 	[T_BPTFLT] =	{ .ei = false,	.msg = "breakpoint instruction fault" },
134 	[T_ARITHTRAP] =	{ .ei = true,	.msg = "arithmetic trap" },
135 	[T_PROTFLT] =	{ .ei = true,	.msg = "general protection fault" },
136 	[T_TRCTRAP] =	{ .ei = false,	.msg = "debug exception" },
137 	[T_PAGEFLT] =	{ .ei = true,	.msg = "page fault" },
138 	[T_ALIGNFLT] = 	{ .ei = true,	.msg = "alignment fault" },
139 	[T_DIVIDE] =	{ .ei = true,	.msg = "integer divide fault" },
140 	[T_NMI] =	{ .ei = false,	.msg = "non-maskable interrupt trap" },
141 	[T_OFLOW] =	{ .ei = true,	.msg = "overflow trap" },
142 	[T_BOUND] =	{ .ei = true,	.msg = "FPU bounds check fault" },
143 	[T_DNA] =	{ .ei = true,	.msg = "FPU device not available" },
144 	[T_DOUBLEFLT] =	{ .ei = false,	.msg = "double fault" },
145 	[T_FPOPFLT] =	{ .ei = true,	.msg = "FPU operand fetch fault" },
146 	[T_TSSFLT] =	{ .ei = true,	.msg = "invalid TSS fault" },
147 	[T_SEGNPFLT] =	{ .ei = true,	.msg = "segment not present fault" },
148 	[T_STKFLT] =	{ .ei = true,	.msg = "stack fault" },
149 	[T_MCHK] =	{ .ei = true,	.msg = "machine check trap" },
150 	[T_XMMFLT] =	{ .ei = true,	.msg = "SIMD floating-point exception" },
151 	[T_DTRACE_RET] ={ .ei = true,	.msg = "DTrace pid return trap" },
152 };
153 
154 static bool
155 trap_enable_intr(int trapno)
156 {
157 
158 	MPASS(trapno > 0);
159 	if (trapno < nitems(trap_data) && trap_data[trapno].msg != NULL)
160 		return (trap_data[trapno].ei);
161 	return (false);
162 }
163 
164 static const char *
165 trap_msg(int trapno)
166 {
167 	const char *res;
168 	static const char unkn[] = "UNKNOWN";
169 
170 	res = NULL;
171 	if (trapno < nitems(trap_data))
172 		res = trap_data[trapno].msg;
173 	if (res == NULL)
174 		res = unkn;
175 	return (res);
176 }
177 
178 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
179 int has_f00f_bug = 0;		/* Initialized so that it can be patched. */
180 #endif
181 
182 static int prot_fault_translation = 0;
183 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RW,
184 	&prot_fault_translation, 0, "Select signal to deliver on protection fault");
185 static int uprintf_signal;
186 SYSCTL_INT(_machdep, OID_AUTO, uprintf_signal, CTLFLAG_RW,
187     &uprintf_signal, 0,
188     "Print debugging information on trap signal to ctty");
189 
190 /*
191  * Exception, fault, and trap interface to the FreeBSD kernel.
192  * This common code is called from assembly language IDT gate entry
193  * routines that prepare a suitable stack frame, and restore this
194  * frame after the exception has been processed.
195  */
196 
197 void
198 trap(struct trapframe *frame)
199 {
200 	ksiginfo_t ksi;
201 	struct thread *td;
202 	struct proc *p;
203 	int signo, ucode;
204 	u_int type;
205 	register_t addr, dr6;
206 	vm_offset_t eva;
207 #ifdef POWERFAIL_NMI
208 	static int lastalert = 0;
209 #endif
210 
211 	td = curthread;
212 	p = td->td_proc;
213 	signo = 0;
214 	ucode = 0;
215 	addr = 0;
216 	dr6 = 0;
217 
218 	VM_CNT_INC(v_trap);
219 	type = frame->tf_trapno;
220 
221 	KASSERT((read_eflags() & PSL_I) == 0,
222 	    ("trap: interrupts enabled, type %d frame %p", type, frame));
223 
224 #ifdef SMP
225 	/* Handler for NMI IPIs used for stopping CPUs. */
226 	if (type == T_NMI && ipi_nmi_handler() == 0)
227 		return;
228 #endif /* SMP */
229 
230 #ifdef KDB
231 	if (kdb_active) {
232 		kdb_reenter();
233 		return;
234 	}
235 #endif
236 
237 	if (type == T_RESERVED) {
238 		trap_fatal(frame, 0);
239 		return;
240 	}
241 
242 	if (type == T_NMI) {
243 #ifdef HWPMC_HOOKS
244 		/*
245 		 * CPU PMCs interrupt using an NMI so we check for that first.
246 		 * If the HWPMC module is active, 'pmc_hook' will point to
247 		 * the function to be called.  A non-zero return value from the
248 		 * hook means that the NMI was consumed by it and that we can
249 		 * return immediately.
250 		 */
251 		if (pmc_intr != NULL &&
252 		    (*pmc_intr)(frame) != 0)
253 			return;
254 #endif
255 
256 #ifdef STACK
257 		if (stack_nmi_handler(frame) != 0)
258 			return;
259 #endif
260 	}
261 
262 	if (type == T_MCHK) {
263 		mca_intr();
264 		return;
265 	}
266 
267 #ifdef KDTRACE_HOOKS
268 	/*
269 	 * A trap can occur while DTrace executes a probe. Before
270 	 * executing the probe, DTrace blocks re-scheduling and sets
271 	 * a flag in its per-cpu flags to indicate that it doesn't
272 	 * want to fault. On returning from the probe, the no-fault
273 	 * flag is cleared and finally re-scheduling is enabled.
274 	 */
275 	if ((type == T_PROTFLT || type == T_PAGEFLT) &&
276 	    dtrace_trap_func != NULL && (*dtrace_trap_func)(frame, type))
277 		return;
278 #endif
279 
280 	/*
281 	 * We must not allow context switches until %cr2 is read.
282 	 * Also, for some Cyrix CPUs, %cr2 is clobbered by interrupts.
283 	 * All faults use interrupt gates, so %cr2 can be safely read
284 	 * now, before optional enable of the interrupts below.
285 	 */
286 	if (type == T_PAGEFLT)
287 		eva = rcr2();
288 
289 	/*
290 	 * Buggy application or kernel code has disabled interrupts
291 	 * and then trapped.  Enabling interrupts now is wrong, but it
292 	 * is better than running with interrupts disabled until they
293 	 * are accidentally enabled later.
294 	 */
295 	if ((frame->tf_eflags & PSL_I) == 0 && TRAPF_USERMODE(frame) &&
296 	    (curpcb->pcb_flags & PCB_VM86CALL) == 0)
297 		uprintf("pid %ld (%s): trap %d with interrupts disabled\n",
298 		    (long)curproc->p_pid, curthread->td_name, type);
299 
300 	/*
301 	 * Conditionally reenable interrupts.  If we hold a spin lock,
302 	 * then we must not reenable interrupts.  This might be a
303 	 * spurious page fault.
304 	 */
305 	if (trap_enable_intr(type) && td->td_md.md_spinlock_count == 0 &&
306 	    frame->tf_eip != (int)cpu_switch_load_gs)
307 		enable_intr();
308 
309         if (TRAPF_USERMODE(frame) && (curpcb->pcb_flags & PCB_VM86CALL) == 0) {
310 		/* user trap */
311 
312 		td->td_pticks = 0;
313 		td->td_frame = frame;
314 		addr = frame->tf_eip;
315 		if (td->td_cowgen != p->p_cowgen)
316 			thread_cow_update(td);
317 
318 		switch (type) {
319 		case T_PRIVINFLT:	/* privileged instruction fault */
320 			signo = SIGILL;
321 			ucode = ILL_PRVOPC;
322 			break;
323 
324 		case T_BPTFLT:		/* bpt instruction fault */
325 			enable_intr();
326 #ifdef KDTRACE_HOOKS
327 			if (dtrace_pid_probe_ptr != NULL &&
328 			    dtrace_pid_probe_ptr(frame) == 0)
329 				return;
330 #endif
331 			signo = SIGTRAP;
332 			ucode = TRAP_BRKPT;
333 			break;
334 
335 		case T_TRCTRAP:		/* debug exception */
336 			enable_intr();
337 user_trctrap_out:
338 			signo = SIGTRAP;
339 			ucode = TRAP_TRACE;
340 			dr6 = rdr6();
341 			if ((dr6 & DBREG_DR6_BS) != 0) {
342 				PROC_LOCK(td->td_proc);
343 				if ((td->td_dbgflags & TDB_STEP) != 0) {
344 					td->td_frame->tf_eflags &= ~PSL_T;
345 					td->td_dbgflags &= ~TDB_STEP;
346 				}
347 				PROC_UNLOCK(td->td_proc);
348 			}
349 			break;
350 
351 		case T_ARITHTRAP:	/* arithmetic trap */
352 			ucode = npxtrap_x87();
353 			if (ucode == -1)
354 				return;
355 			signo = SIGFPE;
356 			break;
357 
358 		/*
359 		 * The following two traps can happen in vm86 mode,
360 		 * and, if so, we want to handle them specially.
361 		 */
362 		case T_PROTFLT:		/* general protection fault */
363 		case T_STKFLT:		/* stack fault */
364 			if (frame->tf_eflags & PSL_VM) {
365 				signo = vm86_emulate((struct vm86frame *)frame);
366 				if (signo == SIGTRAP) {
367 					load_dr6(rdr6() | 0x4000);
368 					goto user_trctrap_out;
369 				}
370 				if (signo == 0)
371 					goto user;
372 				break;
373 			}
374 			signo = SIGBUS;
375 			ucode = (type == T_PROTFLT) ? BUS_OBJERR : BUS_ADRERR;
376 			break;
377 		case T_SEGNPFLT:	/* segment not present fault */
378 			signo = SIGBUS;
379 			ucode = BUS_ADRERR;
380 			break;
381 		case T_TSSFLT:		/* invalid TSS fault */
382 			signo = SIGBUS;
383 			ucode = BUS_OBJERR;
384 			break;
385 		case T_ALIGNFLT:
386 			signo = SIGBUS;
387 			ucode = BUS_ADRALN;
388 			break;
389 		case T_DOUBLEFLT:	/* double fault */
390 		default:
391 			signo = SIGBUS;
392 			ucode = BUS_OBJERR;
393 			break;
394 
395 		case T_PAGEFLT:		/* page fault */
396 			signo = trap_pfault(frame, TRUE, eva);
397 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
398 			if (signo == -2) {
399 				/*
400 				 * The f00f hack workaround has triggered, so
401 				 * treat the fault as an illegal instruction
402 				 * (T_PRIVINFLT) instead of a page fault.
403 				 */
404 				type = frame->tf_trapno = T_PRIVINFLT;
405 
406 				/* Proceed as in that case. */
407 				ucode = ILL_PRVOPC;
408 				signo = SIGILL;
409 				break;
410 			}
411 #endif
412 			if (signo == -1)
413 				return;
414 			if (signo == 0)
415 				goto user;
416 
417 			if (signo == SIGSEGV)
418 				ucode = SEGV_MAPERR;
419 			else if (prot_fault_translation == 0) {
420 				/*
421 				 * Autodetect.  This check also covers
422 				 * the images without the ABI-tag ELF
423 				 * note.
424 				 */
425 				if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
426 				    p->p_osrel >= P_OSREL_SIGSEGV) {
427 					signo = SIGSEGV;
428 					ucode = SEGV_ACCERR;
429 				} else {
430 					signo = SIGBUS;
431 					ucode = T_PAGEFLT;
432 				}
433 			} else if (prot_fault_translation == 1) {
434 				/*
435 				 * Always compat mode.
436 				 */
437 				signo = SIGBUS;
438 				ucode = T_PAGEFLT;
439 			} else {
440 				/*
441 				 * Always SIGSEGV mode.
442 				 */
443 				signo = SIGSEGV;
444 				ucode = SEGV_ACCERR;
445 			}
446 			addr = eva;
447 			break;
448 
449 		case T_DIVIDE:		/* integer divide fault */
450 			ucode = FPE_INTDIV;
451 			signo = SIGFPE;
452 			break;
453 
454 #ifdef DEV_ISA
455 		case T_NMI:
456 #ifdef POWERFAIL_NMI
457 #ifndef TIMER_FREQ
458 #  define TIMER_FREQ 1193182
459 #endif
460 			if (time_second - lastalert > 10) {
461 				log(LOG_WARNING, "NMI: power fail\n");
462 				sysbeep(880, hz);
463 				lastalert = time_second;
464 			}
465 			return;
466 #else /* !POWERFAIL_NMI */
467 			nmi_handle_intr(type, frame);
468 			return;
469 #endif /* POWERFAIL_NMI */
470 #endif /* DEV_ISA */
471 
472 		case T_OFLOW:		/* integer overflow fault */
473 			ucode = FPE_INTOVF;
474 			signo = SIGFPE;
475 			break;
476 
477 		case T_BOUND:		/* bounds check fault */
478 			ucode = FPE_FLTSUB;
479 			signo = SIGFPE;
480 			break;
481 
482 		case T_DNA:
483 			KASSERT(PCB_USER_FPU(td->td_pcb),
484 			    ("kernel FPU ctx has leaked"));
485 			/* transparent fault (due to context switch "late") */
486 			if (npxdna())
487 				return;
488 			uprintf("pid %d killed due to lack of floating point\n",
489 				p->p_pid);
490 			signo = SIGKILL;
491 			ucode = 0;
492 			break;
493 
494 		case T_FPOPFLT:		/* FPU operand fetch fault */
495 			ucode = ILL_COPROC;
496 			signo = SIGILL;
497 			break;
498 
499 		case T_XMMFLT:		/* SIMD floating-point exception */
500 			ucode = npxtrap_sse();
501 			if (ucode == -1)
502 				return;
503 			signo = SIGFPE;
504 			break;
505 #ifdef KDTRACE_HOOKS
506 		case T_DTRACE_RET:
507 			enable_intr();
508 			if (dtrace_return_probe_ptr != NULL)
509 				dtrace_return_probe_ptr(frame);
510 			return;
511 #endif
512 		}
513 	} else {
514 		/* kernel trap */
515 
516 		KASSERT(cold || td->td_ucred != NULL,
517 		    ("kernel trap doesn't have ucred"));
518 		switch (type) {
519 		case T_PAGEFLT:			/* page fault */
520 			(void) trap_pfault(frame, FALSE, eva);
521 			return;
522 
523 		case T_DNA:
524 			if (PCB_USER_FPU(td->td_pcb))
525 				panic("Unregistered use of FPU in kernel");
526 			if (npxdna())
527 				return;
528 			break;
529 
530 		case T_ARITHTRAP:	/* arithmetic trap */
531 		case T_XMMFLT:		/* SIMD floating-point exception */
532 		case T_FPOPFLT:		/* FPU operand fetch fault */
533 			/*
534 			 * XXXKIB for now disable any FPU traps in kernel
535 			 * handler registration seems to be overkill
536 			 */
537 			trap_fatal(frame, 0);
538 			return;
539 
540 			/*
541 			 * The following two traps can happen in
542 			 * vm86 mode, and, if so, we want to handle
543 			 * them specially.
544 			 */
545 		case T_PROTFLT:		/* general protection fault */
546 		case T_STKFLT:		/* stack fault */
547 			if (frame->tf_eflags & PSL_VM) {
548 				signo = vm86_emulate((struct vm86frame *)frame);
549 				if (signo == SIGTRAP) {
550 					type = T_TRCTRAP;
551 					load_dr6(rdr6() | 0x4000);
552 					goto kernel_trctrap;
553 				}
554 				if (signo != 0)
555 					/*
556 					 * returns to original process
557 					 */
558 					vm86_trap((struct vm86frame *)frame);
559 				return;
560 			}
561 			/* FALL THROUGH */
562 		case T_SEGNPFLT:	/* segment not present fault */
563 			if (curpcb->pcb_flags & PCB_VM86CALL)
564 				break;
565 
566 			/*
567 			 * Invalid %fs's and %gs's can be created using
568 			 * procfs or PT_SETREGS or by invalidating the
569 			 * underlying LDT entry.  This causes a fault
570 			 * in kernel mode when the kernel attempts to
571 			 * switch contexts.  Lose the bad context
572 			 * (XXX) so that we can continue, and generate
573 			 * a signal.
574 			 */
575 			if (frame->tf_eip == (int)cpu_switch_load_gs) {
576 				curpcb->pcb_gs = 0;
577 #if 0
578 				PROC_LOCK(p);
579 				kern_psignal(p, SIGBUS);
580 				PROC_UNLOCK(p);
581 #endif
582 				return;
583 			}
584 
585 			if (td->td_intr_nesting_level != 0)
586 				break;
587 
588 			/*
589 			 * Invalid segment selectors and out of bounds
590 			 * %eip's and %esp's can be set up in user mode.
591 			 * This causes a fault in kernel mode when the
592 			 * kernel tries to return to user mode.  We want
593 			 * to get this fault so that we can fix the
594 			 * problem here and not have to check all the
595 			 * selectors and pointers when the user changes
596 			 * them.
597 			 *
598 			 * N.B. Comparing to long mode, 32-bit mode
599 			 * does not push %esp on the trap frame,
600 			 * because iretl faulted while in ring 0.  As
601 			 * the consequence, there is no need to fixup
602 			 * the stack pointer for doreti_iret_fault,
603 			 * the fixup and the complimentary trap() call
604 			 * are executed on the main thread stack, not
605 			 * on the trampoline stack.
606 			 */
607 			if (frame->tf_eip == (int)doreti_iret + setidt_disp) {
608 				frame->tf_eip = (int)doreti_iret_fault +
609 				    setidt_disp;
610 				return;
611 			}
612 			if (type == T_STKFLT)
613 				break;
614 
615 			if (frame->tf_eip == (int)doreti_popl_ds +
616 			    setidt_disp) {
617 				frame->tf_eip = (int)doreti_popl_ds_fault +
618 				    setidt_disp;
619 				return;
620 			}
621 			if (frame->tf_eip == (int)doreti_popl_es +
622 			    setidt_disp) {
623 				frame->tf_eip = (int)doreti_popl_es_fault +
624 				    setidt_disp;
625 				return;
626 			}
627 			if (frame->tf_eip == (int)doreti_popl_fs +
628 			    setidt_disp) {
629 				frame->tf_eip = (int)doreti_popl_fs_fault +
630 				    setidt_disp;
631 				return;
632 			}
633 			if (curpcb->pcb_onfault != NULL) {
634 				frame->tf_eip = (int)curpcb->pcb_onfault;
635 				return;
636 			}
637 			break;
638 
639 		case T_TSSFLT:
640 			/*
641 			 * PSL_NT can be set in user mode and isn't cleared
642 			 * automatically when the kernel is entered.  This
643 			 * causes a TSS fault when the kernel attempts to
644 			 * `iret' because the TSS link is uninitialized.  We
645 			 * want to get this fault so that we can fix the
646 			 * problem here and not every time the kernel is
647 			 * entered.
648 			 */
649 			if (frame->tf_eflags & PSL_NT) {
650 				frame->tf_eflags &= ~PSL_NT;
651 				return;
652 			}
653 			break;
654 
655 		case T_TRCTRAP:	 /* debug exception */
656 kernel_trctrap:
657 			/* Clear any pending debug events. */
658 			dr6 = rdr6();
659 			load_dr6(0);
660 
661 			/*
662 			 * Ignore debug register exceptions due to
663 			 * accesses in the user's address space, which
664 			 * can happen under several conditions such as
665 			 * if a user sets a watchpoint on a buffer and
666 			 * then passes that buffer to a system call.
667 			 * We still want to get TRCTRAPS for addresses
668 			 * in kernel space because that is useful when
669 			 * debugging the kernel.
670 			 */
671 			if (user_dbreg_trap(dr6) &&
672 			   !(curpcb->pcb_flags & PCB_VM86CALL))
673 				return;
674 
675 			/*
676 			 * Malicious user code can configure a debug
677 			 * register watchpoint to trap on data access
678 			 * to the top of stack and then execute 'pop
679 			 * %ss; int 3'.  Due to exception deferral for
680 			 * 'pop %ss', the CPU will not interrupt 'int
681 			 * 3' to raise the DB# exception for the debug
682 			 * register but will postpone the DB# until
683 			 * execution of the first instruction of the
684 			 * BP# handler (in kernel mode).  Normally the
685 			 * previous check would ignore DB# exceptions
686 			 * for watchpoints on user addresses raised in
687 			 * kernel mode.  However, some CPU errata
688 			 * include cases where DB# exceptions do not
689 			 * properly set bits in %dr6, e.g. Haswell
690 			 * HSD23 and Skylake-X SKZ24.
691 			 *
692 			 * A deferred DB# can also be raised on the
693 			 * first instructions of system call entry
694 			 * points or single-step traps via similar use
695 			 * of 'pop %ss' or 'mov xxx, %ss'.
696 			 */
697 			if (frame->tf_eip ==
698 			    (uintptr_t)IDTVEC(int0x80_syscall) + setidt_disp ||
699 			    frame->tf_eip == (uintptr_t)IDTVEC(bpt) +
700 			    setidt_disp ||
701 			    frame->tf_eip == (uintptr_t)IDTVEC(dbg) +
702 			    setidt_disp)
703 				return;
704 			/*
705 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
706 			 */
707 		case T_BPTFLT:
708 			/*
709 			 * If KDB is enabled, let it handle the debugger trap.
710 			 * Otherwise, debugger traps "can't happen".
711 			 */
712 #ifdef KDB
713 			if (kdb_trap(type, dr6, frame))
714 				return;
715 #endif
716 			break;
717 
718 #ifdef DEV_ISA
719 		case T_NMI:
720 #ifdef POWERFAIL_NMI
721 			if (time_second - lastalert > 10) {
722 				log(LOG_WARNING, "NMI: power fail\n");
723 				sysbeep(880, hz);
724 				lastalert = time_second;
725 			}
726 			return;
727 #else /* !POWERFAIL_NMI */
728 			nmi_handle_intr(type, frame);
729 			return;
730 #endif /* POWERFAIL_NMI */
731 #endif /* DEV_ISA */
732 		}
733 
734 		trap_fatal(frame, eva);
735 		return;
736 	}
737 
738 	/* Translate fault for emulators (e.g. Linux) */
739 	if (*p->p_sysent->sv_transtrap != NULL)
740 		signo = (*p->p_sysent->sv_transtrap)(signo, type);
741 
742 	ksiginfo_init_trap(&ksi);
743 	ksi.ksi_signo = signo;
744 	ksi.ksi_code = ucode;
745 	ksi.ksi_addr = (void *)addr;
746 	ksi.ksi_trapno = type;
747 	if (uprintf_signal) {
748 		uprintf("pid %d comm %s: signal %d err %x code %d type %d "
749 		    "addr 0x%x ss 0x%04x esp 0x%08x cs 0x%04x eip 0x%08x "
750 		    "<%02x %02x %02x %02x %02x %02x %02x %02x>\n",
751 		    p->p_pid, p->p_comm, signo, frame->tf_err, ucode, type,
752 		    addr, frame->tf_ss, frame->tf_esp, frame->tf_cs,
753 		    frame->tf_eip,
754 		    fubyte((void *)(frame->tf_eip + 0)),
755 		    fubyte((void *)(frame->tf_eip + 1)),
756 		    fubyte((void *)(frame->tf_eip + 2)),
757 		    fubyte((void *)(frame->tf_eip + 3)),
758 		    fubyte((void *)(frame->tf_eip + 4)),
759 		    fubyte((void *)(frame->tf_eip + 5)),
760 		    fubyte((void *)(frame->tf_eip + 6)),
761 		    fubyte((void *)(frame->tf_eip + 7)));
762 	}
763 	KASSERT((read_eflags() & PSL_I) != 0, ("interrupts disabled"));
764 	trapsignal(td, &ksi);
765 
766 user:
767 	userret(td, frame);
768 	KASSERT(PCB_USER_FPU(td->td_pcb),
769 	    ("Return from trap with kernel FPU ctx leaked"));
770 }
771 
772 static int
773 trap_pfault(struct trapframe *frame, int usermode, vm_offset_t eva)
774 {
775 	struct thread *td;
776 	struct proc *p;
777 	vm_offset_t va;
778 	vm_map_t map;
779 	int rv;
780 	vm_prot_t ftype;
781 
782 	td = curthread;
783 	p = td->td_proc;
784 
785 	if (__predict_false((td->td_pflags & TDP_NOFAULTING) != 0)) {
786 		/*
787 		 * Due to both processor errata and lazy TLB invalidation when
788 		 * access restrictions are removed from virtual pages, memory
789 		 * accesses that are allowed by the physical mapping layer may
790 		 * nonetheless cause one spurious page fault per virtual page.
791 		 * When the thread is executing a "no faulting" section that
792 		 * is bracketed by vm_fault_{disable,enable}_pagefaults(),
793 		 * every page fault is treated as a spurious page fault,
794 		 * unless it accesses the same virtual address as the most
795 		 * recent page fault within the same "no faulting" section.
796 		 */
797 		if (td->td_md.md_spurflt_addr != eva ||
798 		    (td->td_pflags & TDP_RESETSPUR) != 0) {
799 			/*
800 			 * Do nothing to the TLB.  A stale TLB entry is
801 			 * flushed automatically by a page fault.
802 			 */
803 			td->td_md.md_spurflt_addr = eva;
804 			td->td_pflags &= ~TDP_RESETSPUR;
805 			return (0);
806 		}
807 	} else {
808 		/*
809 		 * If we get a page fault while in a critical section, then
810 		 * it is most likely a fatal kernel page fault.  The kernel
811 		 * is already going to panic trying to get a sleep lock to
812 		 * do the VM lookup, so just consider it a fatal trap so the
813 		 * kernel can print out a useful trap message and even get
814 		 * to the debugger.
815 		 *
816 		 * If we get a page fault while holding a non-sleepable
817 		 * lock, then it is most likely a fatal kernel page fault.
818 		 * If WITNESS is enabled, then it's going to whine about
819 		 * bogus LORs with various VM locks, so just skip to the
820 		 * fatal trap handling directly.
821 		 */
822 		if (td->td_critnest != 0 ||
823 		    WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL,
824 		    "Kernel page fault") != 0) {
825 			trap_fatal(frame, eva);
826 			return (-1);
827 		}
828 	}
829 	va = trunc_page(eva);
830 	if (va >= PMAP_TRM_MIN_ADDRESS) {
831 		/*
832 		 * Don't allow user-mode faults in kernel address space.
833 		 * An exception:  if the faulting address is the invalid
834 		 * instruction entry in the IDT, then the Intel Pentium
835 		 * F00F bug workaround was triggered, and we need to
836 		 * treat it is as an illegal instruction, and not a page
837 		 * fault.
838 		 */
839 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
840 		if ((eva == (unsigned int)&idt[6]) && has_f00f_bug)
841 			return (-2);
842 #endif
843 		if (usermode)
844 			return (SIGSEGV);
845 		trap_fatal(frame, eva);
846 		return (-1);
847 	} else {
848 		map = usermode ? &p->p_vmspace->vm_map : kernel_map;
849 
850 		/*
851 		 * Kernel cannot access a user-space address directly
852 		 * because user pages are not mapped.  Also, page
853 		 * faults must not be caused during the interrupts.
854 		 */
855 		if (!usermode && td->td_intr_nesting_level != 0) {
856 			trap_fatal(frame, eva);
857 			return (-1);
858 		}
859 	}
860 
861 	/*
862 	 * If the trap was caused by errant bits in the PTE then panic.
863 	 */
864 	if (frame->tf_err & PGEX_RSV) {
865 		trap_fatal(frame, eva);
866 		return (-1);
867 	}
868 
869 	/*
870 	 * PGEX_I is defined only if the execute disable bit capability is
871 	 * supported and enabled.
872 	 */
873 	if (frame->tf_err & PGEX_W)
874 		ftype = VM_PROT_WRITE;
875 	else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
876 		ftype = VM_PROT_EXECUTE;
877 	else
878 		ftype = VM_PROT_READ;
879 
880 	/* Fault in the page. */
881 	rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
882 	if (rv == KERN_SUCCESS) {
883 #ifdef HWPMC_HOOKS
884 		if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
885 			PMC_SOFT_CALL_TF( , , page_fault, all, frame);
886 			if (ftype == VM_PROT_READ)
887 				PMC_SOFT_CALL_TF( , , page_fault, read,
888 				    frame);
889 			else
890 				PMC_SOFT_CALL_TF( , , page_fault, write,
891 				    frame);
892 		}
893 #endif
894 		return (0);
895 	}
896 	if (!usermode) {
897 		if (td->td_intr_nesting_level == 0 &&
898 		    curpcb->pcb_onfault != NULL) {
899 			frame->tf_eip = (int)curpcb->pcb_onfault;
900 			return (0);
901 		}
902 		trap_fatal(frame, eva);
903 		return (-1);
904 	}
905 	return ((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
906 }
907 
908 static void
909 trap_fatal(frame, eva)
910 	struct trapframe *frame;
911 	vm_offset_t eva;
912 {
913 	int code, ss, esp;
914 	u_int type;
915 	struct soft_segment_descriptor softseg;
916 #ifdef KDB
917 	bool handled;
918 #endif
919 
920 	code = frame->tf_err;
921 	type = frame->tf_trapno;
922 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
923 
924 	printf("\n\nFatal trap %d: %s while in %s mode\n", type, trap_msg(type),
925 	    frame->tf_eflags & PSL_VM ? "vm86" :
926 	    ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
927 #ifdef SMP
928 	/* two separate prints in case of a trap on an unmapped page */
929 	printf("cpuid = %d; ", PCPU_GET(cpuid));
930 	printf("apic id = %02x\n", PCPU_GET(apic_id));
931 #endif
932 	if (type == T_PAGEFLT) {
933 		printf("fault virtual address	= 0x%x\n", eva);
934 		printf("fault code		= %s %s%s, %s\n",
935 			code & PGEX_U ? "user" : "supervisor",
936 			code & PGEX_W ? "write" : "read",
937 			pg_nx != 0 ?
938 			(code & PGEX_I ? " instruction" : " data") :
939 			"",
940 			code & PGEX_RSV ? "reserved bits in PTE" :
941 			code & PGEX_P ? "protection violation" : "page not present");
942 	} else {
943 		printf("error code		= %#x\n", code);
944 	}
945 	printf("instruction pointer	= 0x%x:0x%x\n",
946 	       frame->tf_cs & 0xffff, frame->tf_eip);
947         if (TF_HAS_STACKREGS(frame)) {
948 		ss = frame->tf_ss & 0xffff;
949 		esp = frame->tf_esp;
950 	} else {
951 		ss = GSEL(GDATA_SEL, SEL_KPL);
952 		esp = (int)&frame->tf_esp;
953 	}
954 	printf("stack pointer	        = 0x%x:0x%x\n", ss, esp);
955 	printf("frame pointer	        = 0x%x:0x%x\n", ss, frame->tf_ebp);
956 	printf("code segment		= base 0x%x, limit 0x%x, type 0x%x\n",
957 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
958 	printf("			= DPL %d, pres %d, def32 %d, gran %d\n",
959 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
960 	       softseg.ssd_gran);
961 	printf("processor eflags	= ");
962 	if (frame->tf_eflags & PSL_T)
963 		printf("trace trap, ");
964 	if (frame->tf_eflags & PSL_I)
965 		printf("interrupt enabled, ");
966 	if (frame->tf_eflags & PSL_NT)
967 		printf("nested task, ");
968 	if (frame->tf_eflags & PSL_RF)
969 		printf("resume, ");
970 	if (frame->tf_eflags & PSL_VM)
971 		printf("vm86, ");
972 	printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
973 	printf("current process		= %d (%s)\n",
974 	    curproc->p_pid, curthread->td_name);
975 
976 #ifdef KDB
977 	if (debugger_on_trap) {
978 		kdb_why = KDB_WHY_TRAP;
979 		frame->tf_err = eva;	/* smuggle fault address to ddb */
980 		handled = kdb_trap(type, 0, frame);
981 		frame->tf_err = code;	/* restore error code */
982 		kdb_why = KDB_WHY_UNSET;
983 		if (handled)
984 			return;
985 	}
986 #endif
987 	printf("trap number		= %d\n", type);
988 	if (trap_msg(type) != NULL)
989 		panic("%s", trap_msg(type));
990 	else
991 		panic("unknown/reserved trap");
992 }
993 
994 /*
995  * Double fault handler. Called when a fault occurs while writing
996  * a frame for a trap/exception onto the stack. This usually occurs
997  * when the stack overflows (such is the case with infinite recursion,
998  * for example).
999  *
1000  * XXX Note that the current PTD gets replaced by IdlePTD when the
1001  * task switch occurs. This means that the stack that was active at
1002  * the time of the double fault is not available at <kstack> unless
1003  * the machine was idle when the double fault occurred. The downside
1004  * of this is that "trace <ebp>" in ddb won't work.
1005  */
1006 void
1007 dblfault_handler(void)
1008 {
1009 #ifdef KDTRACE_HOOKS
1010 	if (dtrace_doubletrap_func != NULL)
1011 		(*dtrace_doubletrap_func)();
1012 #endif
1013 	printf("\nFatal double fault:\n");
1014 	printf("eip = 0x%x\n", PCPU_GET(common_tssp)->tss_eip);
1015 	printf("esp = 0x%x\n", PCPU_GET(common_tssp)->tss_esp);
1016 	printf("ebp = 0x%x\n", PCPU_GET(common_tssp)->tss_ebp);
1017 #ifdef SMP
1018 	/* two separate prints in case of a trap on an unmapped page */
1019 	printf("cpuid = %d; ", PCPU_GET(cpuid));
1020 	printf("apic id = %02x\n", PCPU_GET(apic_id));
1021 #endif
1022 	panic("double fault");
1023 }
1024 
1025 int
1026 cpu_fetch_syscall_args(struct thread *td)
1027 {
1028 	struct proc *p;
1029 	struct trapframe *frame;
1030 	struct syscall_args *sa;
1031 	caddr_t params;
1032 	long tmp;
1033 	int error;
1034 #ifdef COMPAT_43
1035 	u_int32_t eip;
1036 	int cs;
1037 #endif
1038 
1039 	p = td->td_proc;
1040 	frame = td->td_frame;
1041 	sa = &td->td_sa;
1042 
1043 #ifdef COMPAT_43
1044 	if (__predict_false(frame->tf_cs == 7 && frame->tf_eip == 2)) {
1045 		/*
1046 		 * In lcall $7,$0 after int $0x80.  Convert the user
1047 		 * frame to what it would be for a direct int 0x80 instead
1048 		 * of lcall $7,$0, by popping the lcall return address.
1049 		 */
1050 		error = fueword32((void *)frame->tf_esp, &eip);
1051 		if (error == -1)
1052 			return (EFAULT);
1053 		cs = fuword16((void *)(frame->tf_esp + sizeof(u_int32_t)));
1054 		if (cs == -1)
1055 			return (EFAULT);
1056 
1057 		/*
1058 		 * Unwind in-kernel frame after all stack frame pieces
1059 		 * were successfully read.
1060 		 */
1061 		frame->tf_eip = eip;
1062 		frame->tf_cs = cs;
1063 		frame->tf_esp += 2 * sizeof(u_int32_t);
1064 		frame->tf_err = 7;	/* size of lcall $7,$0 */
1065 	}
1066 #endif
1067 
1068 	sa->code = frame->tf_eax;
1069 	params = (caddr_t)frame->tf_esp + sizeof(uint32_t);
1070 
1071 	/*
1072 	 * Need to check if this is a 32 bit or 64 bit syscall.
1073 	 */
1074 	if (sa->code == SYS_syscall) {
1075 		/*
1076 		 * Code is first argument, followed by actual args.
1077 		 */
1078 		error = fueword(params, &tmp);
1079 		if (error == -1)
1080 			return (EFAULT);
1081 		sa->code = tmp;
1082 		params += sizeof(uint32_t);
1083 	} else if (sa->code == SYS___syscall) {
1084 		/*
1085 		 * Like syscall, but code is a quad, so as to maintain
1086 		 * quad alignment for the rest of the arguments.
1087 		 */
1088 		error = fueword(params, &tmp);
1089 		if (error == -1)
1090 			return (EFAULT);
1091 		sa->code = tmp;
1092 		params += sizeof(quad_t);
1093 	}
1094 
1095  	if (sa->code >= p->p_sysent->sv_size)
1096  		sa->callp = &p->p_sysent->sv_table[0];
1097   	else
1098  		sa->callp = &p->p_sysent->sv_table[sa->code];
1099 	sa->narg = sa->callp->sy_narg;
1100 
1101 	if (params != NULL && sa->narg != 0)
1102 		error = copyin(params, (caddr_t)sa->args,
1103 		    (u_int)(sa->narg * sizeof(uint32_t)));
1104 	else
1105 		error = 0;
1106 
1107 	if (error == 0) {
1108 		td->td_retval[0] = 0;
1109 		td->td_retval[1] = frame->tf_edx;
1110 	}
1111 
1112 	return (error);
1113 }
1114 
1115 #include "../../kern/subr_syscall.c"
1116 
1117 /*
1118  * syscall - system call request C handler.  A system call is
1119  * essentially treated as a trap by reusing the frame layout.
1120  */
1121 void
1122 syscall(struct trapframe *frame)
1123 {
1124 	struct thread *td;
1125 	register_t orig_tf_eflags;
1126 	int error;
1127 	ksiginfo_t ksi;
1128 
1129 #ifdef DIAGNOSTIC
1130 	if (!(TRAPF_USERMODE(frame) &&
1131 	    (curpcb->pcb_flags & PCB_VM86CALL) == 0)) {
1132 		panic("syscall");
1133 		/* NOT REACHED */
1134 	}
1135 #endif
1136 	orig_tf_eflags = frame->tf_eflags;
1137 
1138 	td = curthread;
1139 	td->td_frame = frame;
1140 
1141 	error = syscallenter(td);
1142 
1143 	/*
1144 	 * Traced syscall.
1145 	 */
1146 	if ((orig_tf_eflags & PSL_T) && !(orig_tf_eflags & PSL_VM)) {
1147 		frame->tf_eflags &= ~PSL_T;
1148 		ksiginfo_init_trap(&ksi);
1149 		ksi.ksi_signo = SIGTRAP;
1150 		ksi.ksi_code = TRAP_TRACE;
1151 		ksi.ksi_addr = (void *)frame->tf_eip;
1152 		trapsignal(td, &ksi);
1153 	}
1154 
1155 	KASSERT(PCB_USER_FPU(td->td_pcb),
1156 	    ("System call %s returning with kernel FPU ctx leaked",
1157 	     syscallname(td->td_proc, td->td_sa.code)));
1158 	KASSERT(td->td_pcb->pcb_save == get_pcb_user_save_td(td),
1159 	    ("System call %s returning with mangled pcb_save",
1160 	     syscallname(td->td_proc, td->td_sa.code)));
1161 
1162 	syscallret(td, error);
1163 }
1164