xref: /freebsd/sys/i386/i386/trap.c (revision c697fb7f)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 /*
46  * 386 Trap and System call handling
47  */
48 
49 #include "opt_clock.h"
50 #include "opt_compat.h"
51 #include "opt_cpu.h"
52 #include "opt_hwpmc_hooks.h"
53 #include "opt_isa.h"
54 #include "opt_kdb.h"
55 #include "opt_trap.h"
56 
57 #include <sys/param.h>
58 #include <sys/bus.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/pioctl.h>
62 #include <sys/ptrace.h>
63 #include <sys/kdb.h>
64 #include <sys/kernel.h>
65 #include <sys/ktr.h>
66 #include <sys/lock.h>
67 #include <sys/mutex.h>
68 #include <sys/resourcevar.h>
69 #include <sys/signalvar.h>
70 #include <sys/syscall.h>
71 #include <sys/sysctl.h>
72 #include <sys/sysent.h>
73 #include <sys/uio.h>
74 #include <sys/vmmeter.h>
75 #ifdef HWPMC_HOOKS
76 #include <sys/pmckern.h>
77 PMC_SOFT_DEFINE( , , page_fault, all);
78 PMC_SOFT_DEFINE( , , page_fault, read);
79 PMC_SOFT_DEFINE( , , page_fault, write);
80 #endif
81 #include <security/audit/audit.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_kern.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_extern.h>
90 
91 #include <machine/cpu.h>
92 #include <machine/intr_machdep.h>
93 #include <x86/mca.h>
94 #include <machine/md_var.h>
95 #include <machine/pcb.h>
96 #ifdef SMP
97 #include <machine/smp.h>
98 #endif
99 #include <machine/stack.h>
100 #include <machine/trap.h>
101 #include <machine/tss.h>
102 #include <machine/vm86.h>
103 
104 #ifdef POWERFAIL_NMI
105 #include <sys/syslog.h>
106 #include <machine/clock.h>
107 #endif
108 
109 #ifdef KDTRACE_HOOKS
110 #include <sys/dtrace_bsd.h>
111 #endif
112 
113 void trap(struct trapframe *frame);
114 void syscall(struct trapframe *frame);
115 
116 static int trap_pfault(struct trapframe *, bool, vm_offset_t, int *, int *);
117 static void trap_fatal(struct trapframe *, vm_offset_t);
118 #ifdef KDTRACE_HOOKS
119 static bool trap_user_dtrace(struct trapframe *,
120     int (**hook)(struct trapframe *));
121 #endif
122 void dblfault_handler(void);
123 
124 extern inthand_t IDTVEC(bpt), IDTVEC(dbg), IDTVEC(int0x80_syscall);
125 extern uint64_t pg_nx;
126 
127 struct trap_data {
128 	bool		ei;
129 	const char	*msg;
130 };
131 
132 static const struct trap_data trap_data[] = {
133 	[T_PRIVINFLT] =	{ .ei = true,	.msg = "privileged instruction fault" },
134 	[T_BPTFLT] =	{ .ei = false,	.msg = "breakpoint instruction fault" },
135 	[T_ARITHTRAP] =	{ .ei = true,	.msg = "arithmetic trap" },
136 	[T_PROTFLT] =	{ .ei = true,	.msg = "general protection fault" },
137 	[T_TRCTRAP] =	{ .ei = false,	.msg = "debug exception" },
138 	[T_PAGEFLT] =	{ .ei = true,	.msg = "page fault" },
139 	[T_ALIGNFLT] = 	{ .ei = true,	.msg = "alignment fault" },
140 	[T_DIVIDE] =	{ .ei = true,	.msg = "integer divide fault" },
141 	[T_NMI] =	{ .ei = false,	.msg = "non-maskable interrupt trap" },
142 	[T_OFLOW] =	{ .ei = true,	.msg = "overflow trap" },
143 	[T_BOUND] =	{ .ei = true,	.msg = "FPU bounds check fault" },
144 	[T_DNA] =	{ .ei = true,	.msg = "FPU device not available" },
145 	[T_DOUBLEFLT] =	{ .ei = false,	.msg = "double fault" },
146 	[T_FPOPFLT] =	{ .ei = true,	.msg = "FPU operand fetch fault" },
147 	[T_TSSFLT] =	{ .ei = true,	.msg = "invalid TSS fault" },
148 	[T_SEGNPFLT] =	{ .ei = true,	.msg = "segment not present fault" },
149 	[T_STKFLT] =	{ .ei = true,	.msg = "stack fault" },
150 	[T_MCHK] =	{ .ei = true,	.msg = "machine check trap" },
151 	[T_XMMFLT] =	{ .ei = true,	.msg = "SIMD floating-point exception" },
152 	[T_DTRACE_RET] ={ .ei = true,	.msg = "DTrace pid return trap" },
153 };
154 
155 static bool
156 trap_enable_intr(int trapno)
157 {
158 
159 	MPASS(trapno > 0);
160 	if (trapno < nitems(trap_data) && trap_data[trapno].msg != NULL)
161 		return (trap_data[trapno].ei);
162 	return (false);
163 }
164 
165 static const char *
166 trap_msg(int trapno)
167 {
168 	const char *res;
169 	static const char unkn[] = "UNKNOWN";
170 
171 	res = NULL;
172 	if (trapno < nitems(trap_data))
173 		res = trap_data[trapno].msg;
174 	if (res == NULL)
175 		res = unkn;
176 	return (res);
177 }
178 
179 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
180 int has_f00f_bug = 0;		/* Initialized so that it can be patched. */
181 #endif
182 
183 static int uprintf_signal;
184 SYSCTL_INT(_machdep, OID_AUTO, uprintf_signal, CTLFLAG_RW,
185     &uprintf_signal, 0,
186     "Print debugging information on trap signal to ctty");
187 
188 /*
189  * Exception, fault, and trap interface to the FreeBSD kernel.
190  * This common code is called from assembly language IDT gate entry
191  * routines that prepare a suitable stack frame, and restore this
192  * frame after the exception has been processed.
193  */
194 
195 void
196 trap(struct trapframe *frame)
197 {
198 	ksiginfo_t ksi;
199 	struct thread *td;
200 	struct proc *p;
201 	int pf, signo, ucode;
202 	u_int type;
203 	register_t addr, dr6;
204 	vm_offset_t eva;
205 #ifdef POWERFAIL_NMI
206 	static int lastalert = 0;
207 #endif
208 
209 	td = curthread;
210 	p = td->td_proc;
211 	dr6 = 0;
212 
213 	VM_CNT_INC(v_trap);
214 	type = frame->tf_trapno;
215 
216 	KASSERT((read_eflags() & PSL_I) == 0,
217 	    ("trap: interrupts enabled, type %d frame %p", type, frame));
218 
219 #ifdef SMP
220 	/* Handler for NMI IPIs used for stopping CPUs. */
221 	if (type == T_NMI && ipi_nmi_handler() == 0)
222 		return;
223 #endif /* SMP */
224 
225 #ifdef KDB
226 	if (kdb_active) {
227 		kdb_reenter();
228 		return;
229 	}
230 #endif
231 
232 	if (type == T_RESERVED) {
233 		trap_fatal(frame, 0);
234 		return;
235 	}
236 
237 	if (type == T_NMI) {
238 #ifdef HWPMC_HOOKS
239 		/*
240 		 * CPU PMCs interrupt using an NMI so we check for that first.
241 		 * If the HWPMC module is active, 'pmc_hook' will point to
242 		 * the function to be called.  A non-zero return value from the
243 		 * hook means that the NMI was consumed by it and that we can
244 		 * return immediately.
245 		 */
246 		if (pmc_intr != NULL &&
247 		    (*pmc_intr)(frame) != 0)
248 			return;
249 #endif
250 	}
251 
252 	if (type == T_MCHK) {
253 		mca_intr();
254 		return;
255 	}
256 
257 #ifdef KDTRACE_HOOKS
258 	/*
259 	 * A trap can occur while DTrace executes a probe. Before
260 	 * executing the probe, DTrace blocks re-scheduling and sets
261 	 * a flag in its per-cpu flags to indicate that it doesn't
262 	 * want to fault. On returning from the probe, the no-fault
263 	 * flag is cleared and finally re-scheduling is enabled.
264 	 */
265 	if ((type == T_PROTFLT || type == T_PAGEFLT) &&
266 	    dtrace_trap_func != NULL && (*dtrace_trap_func)(frame, type))
267 		return;
268 #endif
269 
270 	/*
271 	 * We must not allow context switches until %cr2 is read.
272 	 * Also, for some Cyrix CPUs, %cr2 is clobbered by interrupts.
273 	 * All faults use interrupt gates, so %cr2 can be safely read
274 	 * now, before optional enable of the interrupts below.
275 	 */
276 	if (type == T_PAGEFLT)
277 		eva = rcr2();
278 
279 	/*
280 	 * Buggy application or kernel code has disabled interrupts
281 	 * and then trapped.  Enabling interrupts now is wrong, but it
282 	 * is better than running with interrupts disabled until they
283 	 * are accidentally enabled later.
284 	 */
285 	if ((frame->tf_eflags & PSL_I) == 0 && TRAPF_USERMODE(frame) &&
286 	    (curpcb->pcb_flags & PCB_VM86CALL) == 0)
287 		uprintf("pid %ld (%s): trap %d with interrupts disabled\n",
288 		    (long)curproc->p_pid, curthread->td_name, type);
289 
290 	/*
291 	 * Conditionally reenable interrupts.  If we hold a spin lock,
292 	 * then we must not reenable interrupts.  This might be a
293 	 * spurious page fault.
294 	 */
295 	if (trap_enable_intr(type) && td->td_md.md_spinlock_count == 0 &&
296 	    frame->tf_eip != (int)cpu_switch_load_gs)
297 		enable_intr();
298 
299         if (TRAPF_USERMODE(frame) && (curpcb->pcb_flags & PCB_VM86CALL) == 0) {
300 		/* user trap */
301 
302 		td->td_pticks = 0;
303 		td->td_frame = frame;
304 		addr = frame->tf_eip;
305 		if (td->td_cowgen != p->p_cowgen)
306 			thread_cow_update(td);
307 
308 		switch (type) {
309 		case T_PRIVINFLT:	/* privileged instruction fault */
310 			signo = SIGILL;
311 			ucode = ILL_PRVOPC;
312 			break;
313 
314 		case T_BPTFLT:		/* bpt instruction fault */
315 #ifdef KDTRACE_HOOKS
316 			if (trap_user_dtrace(frame, &dtrace_pid_probe_ptr))
317 				return;
318 #else
319 			enable_intr();
320 #endif
321 			signo = SIGTRAP;
322 			ucode = TRAP_BRKPT;
323 			break;
324 
325 		case T_TRCTRAP:		/* debug exception */
326 			enable_intr();
327 user_trctrap_out:
328 			signo = SIGTRAP;
329 			ucode = TRAP_TRACE;
330 			dr6 = rdr6();
331 			if ((dr6 & DBREG_DR6_BS) != 0) {
332 				PROC_LOCK(td->td_proc);
333 				if ((td->td_dbgflags & TDB_STEP) != 0) {
334 					td->td_frame->tf_eflags &= ~PSL_T;
335 					td->td_dbgflags &= ~TDB_STEP;
336 				}
337 				PROC_UNLOCK(td->td_proc);
338 			}
339 			break;
340 
341 		case T_ARITHTRAP:	/* arithmetic trap */
342 			ucode = npxtrap_x87();
343 			if (ucode == -1)
344 				return;
345 			signo = SIGFPE;
346 			break;
347 
348 		/*
349 		 * The following two traps can happen in vm86 mode,
350 		 * and, if so, we want to handle them specially.
351 		 */
352 		case T_PROTFLT:		/* general protection fault */
353 		case T_STKFLT:		/* stack fault */
354 			if (frame->tf_eflags & PSL_VM) {
355 				signo = vm86_emulate((struct vm86frame *)frame);
356 				ucode = 0;	/* XXXKIB: better code ? */
357 				if (signo == SIGTRAP) {
358 					load_dr6(rdr6() | 0x4000);
359 					goto user_trctrap_out;
360 				}
361 				if (signo == 0)
362 					goto user;
363 				break;
364 			}
365 			signo = SIGBUS;
366 			ucode = (type == T_PROTFLT) ? BUS_OBJERR : BUS_ADRERR;
367 			break;
368 		case T_SEGNPFLT:	/* segment not present fault */
369 			signo = SIGBUS;
370 			ucode = BUS_ADRERR;
371 			break;
372 		case T_TSSFLT:		/* invalid TSS fault */
373 			signo = SIGBUS;
374 			ucode = BUS_OBJERR;
375 			break;
376 		case T_ALIGNFLT:
377 			signo = SIGBUS;
378 			ucode = BUS_ADRALN;
379 			break;
380 		case T_DOUBLEFLT:	/* double fault */
381 		default:
382 			signo = SIGBUS;
383 			ucode = BUS_OBJERR;
384 			break;
385 
386 		case T_PAGEFLT:		/* page fault */
387 			addr = eva;
388 			pf = trap_pfault(frame, true, eva, &signo, &ucode);
389 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
390 			if (pf == -2) {
391 				/*
392 				 * The f00f hack workaround has triggered, so
393 				 * treat the fault as an illegal instruction
394 				 * (T_PRIVINFLT) instead of a page fault.
395 				 */
396 				type = frame->tf_trapno = T_PRIVINFLT;
397 				break;
398 			}
399 #endif
400 			if (pf == -1)
401 				return;
402 			if (pf == 0)
403 				goto user;
404 			break;
405 
406 		case T_DIVIDE:		/* integer divide fault */
407 			ucode = FPE_INTDIV;
408 			signo = SIGFPE;
409 			break;
410 
411 #ifdef DEV_ISA
412 		case T_NMI:
413 #ifdef POWERFAIL_NMI
414 #ifndef TIMER_FREQ
415 #  define TIMER_FREQ 1193182
416 #endif
417 			if (time_second - lastalert > 10) {
418 				log(LOG_WARNING, "NMI: power fail\n");
419 				sysbeep(880, hz);
420 				lastalert = time_second;
421 			}
422 			return;
423 #else /* !POWERFAIL_NMI */
424 			nmi_handle_intr(type, frame);
425 			return;
426 #endif /* POWERFAIL_NMI */
427 #endif /* DEV_ISA */
428 
429 		case T_OFLOW:		/* integer overflow fault */
430 			ucode = FPE_INTOVF;
431 			signo = SIGFPE;
432 			break;
433 
434 		case T_BOUND:		/* bounds check fault */
435 			ucode = FPE_FLTSUB;
436 			signo = SIGFPE;
437 			break;
438 
439 		case T_DNA:
440 			KASSERT(PCB_USER_FPU(td->td_pcb),
441 			    ("kernel FPU ctx has leaked"));
442 			/* transparent fault (due to context switch "late") */
443 			if (npxdna())
444 				return;
445 			uprintf("pid %d killed due to lack of floating point\n",
446 				p->p_pid);
447 			signo = SIGKILL;
448 			ucode = 0;
449 			break;
450 
451 		case T_FPOPFLT:		/* FPU operand fetch fault */
452 			ucode = ILL_COPROC;
453 			signo = SIGILL;
454 			break;
455 
456 		case T_XMMFLT:		/* SIMD floating-point exception */
457 			ucode = npxtrap_sse();
458 			if (ucode == -1)
459 				return;
460 			signo = SIGFPE;
461 			break;
462 #ifdef KDTRACE_HOOKS
463 		case T_DTRACE_RET:
464 			(void)trap_user_dtrace(frame, &dtrace_return_probe_ptr);
465 			return;
466 #endif
467 		}
468 	} else {
469 		/* kernel trap */
470 
471 		KASSERT(cold || td->td_ucred != NULL,
472 		    ("kernel trap doesn't have ucred"));
473 		switch (type) {
474 		case T_PAGEFLT:			/* page fault */
475 			(void)trap_pfault(frame, false, eva, NULL, NULL);
476 			return;
477 
478 		case T_DNA:
479 			if (PCB_USER_FPU(td->td_pcb))
480 				panic("Unregistered use of FPU in kernel");
481 			if (npxdna())
482 				return;
483 			break;
484 
485 		case T_ARITHTRAP:	/* arithmetic trap */
486 		case T_XMMFLT:		/* SIMD floating-point exception */
487 		case T_FPOPFLT:		/* FPU operand fetch fault */
488 			/*
489 			 * XXXKIB for now disable any FPU traps in kernel
490 			 * handler registration seems to be overkill
491 			 */
492 			trap_fatal(frame, 0);
493 			return;
494 
495 			/*
496 			 * The following two traps can happen in
497 			 * vm86 mode, and, if so, we want to handle
498 			 * them specially.
499 			 */
500 		case T_PROTFLT:		/* general protection fault */
501 		case T_STKFLT:		/* stack fault */
502 			if (frame->tf_eflags & PSL_VM) {
503 				signo = vm86_emulate((struct vm86frame *)frame);
504 				if (signo == SIGTRAP) {
505 					type = T_TRCTRAP;
506 					load_dr6(rdr6() | 0x4000);
507 					goto kernel_trctrap;
508 				}
509 				if (signo != 0)
510 					/*
511 					 * returns to original process
512 					 */
513 					vm86_trap((struct vm86frame *)frame);
514 				return;
515 			}
516 			/* FALL THROUGH */
517 		case T_SEGNPFLT:	/* segment not present fault */
518 			if (curpcb->pcb_flags & PCB_VM86CALL)
519 				break;
520 
521 			/*
522 			 * Invalid %fs's and %gs's can be created using
523 			 * procfs or PT_SETREGS or by invalidating the
524 			 * underlying LDT entry.  This causes a fault
525 			 * in kernel mode when the kernel attempts to
526 			 * switch contexts.  Lose the bad context
527 			 * (XXX) so that we can continue, and generate
528 			 * a signal.
529 			 */
530 			if (frame->tf_eip == (int)cpu_switch_load_gs) {
531 				curpcb->pcb_gs = 0;
532 #if 0
533 				PROC_LOCK(p);
534 				kern_psignal(p, SIGBUS);
535 				PROC_UNLOCK(p);
536 #endif
537 				return;
538 			}
539 
540 			if (td->td_intr_nesting_level != 0)
541 				break;
542 
543 			/*
544 			 * Invalid segment selectors and out of bounds
545 			 * %eip's and %esp's can be set up in user mode.
546 			 * This causes a fault in kernel mode when the
547 			 * kernel tries to return to user mode.  We want
548 			 * to get this fault so that we can fix the
549 			 * problem here and not have to check all the
550 			 * selectors and pointers when the user changes
551 			 * them.
552 			 *
553 			 * N.B. Comparing to long mode, 32-bit mode
554 			 * does not push %esp on the trap frame,
555 			 * because iretl faulted while in ring 0.  As
556 			 * the consequence, there is no need to fixup
557 			 * the stack pointer for doreti_iret_fault,
558 			 * the fixup and the complimentary trap() call
559 			 * are executed on the main thread stack, not
560 			 * on the trampoline stack.
561 			 */
562 			if (frame->tf_eip == (int)doreti_iret + setidt_disp) {
563 				frame->tf_eip = (int)doreti_iret_fault +
564 				    setidt_disp;
565 				return;
566 			}
567 			if (type == T_STKFLT)
568 				break;
569 
570 			if (frame->tf_eip == (int)doreti_popl_ds +
571 			    setidt_disp) {
572 				frame->tf_eip = (int)doreti_popl_ds_fault +
573 				    setidt_disp;
574 				return;
575 			}
576 			if (frame->tf_eip == (int)doreti_popl_es +
577 			    setidt_disp) {
578 				frame->tf_eip = (int)doreti_popl_es_fault +
579 				    setidt_disp;
580 				return;
581 			}
582 			if (frame->tf_eip == (int)doreti_popl_fs +
583 			    setidt_disp) {
584 				frame->tf_eip = (int)doreti_popl_fs_fault +
585 				    setidt_disp;
586 				return;
587 			}
588 			if (curpcb->pcb_onfault != NULL) {
589 				frame->tf_eip = (int)curpcb->pcb_onfault;
590 				return;
591 			}
592 			break;
593 
594 		case T_TSSFLT:
595 			/*
596 			 * PSL_NT can be set in user mode and isn't cleared
597 			 * automatically when the kernel is entered.  This
598 			 * causes a TSS fault when the kernel attempts to
599 			 * `iret' because the TSS link is uninitialized.  We
600 			 * want to get this fault so that we can fix the
601 			 * problem here and not every time the kernel is
602 			 * entered.
603 			 */
604 			if (frame->tf_eflags & PSL_NT) {
605 				frame->tf_eflags &= ~PSL_NT;
606 				return;
607 			}
608 			break;
609 
610 		case T_TRCTRAP:	 /* debug exception */
611 kernel_trctrap:
612 			/* Clear any pending debug events. */
613 			dr6 = rdr6();
614 			load_dr6(0);
615 
616 			/*
617 			 * Ignore debug register exceptions due to
618 			 * accesses in the user's address space, which
619 			 * can happen under several conditions such as
620 			 * if a user sets a watchpoint on a buffer and
621 			 * then passes that buffer to a system call.
622 			 * We still want to get TRCTRAPS for addresses
623 			 * in kernel space because that is useful when
624 			 * debugging the kernel.
625 			 */
626 			if (user_dbreg_trap(dr6) &&
627 			   !(curpcb->pcb_flags & PCB_VM86CALL))
628 				return;
629 
630 			/*
631 			 * Malicious user code can configure a debug
632 			 * register watchpoint to trap on data access
633 			 * to the top of stack and then execute 'pop
634 			 * %ss; int 3'.  Due to exception deferral for
635 			 * 'pop %ss', the CPU will not interrupt 'int
636 			 * 3' to raise the DB# exception for the debug
637 			 * register but will postpone the DB# until
638 			 * execution of the first instruction of the
639 			 * BP# handler (in kernel mode).  Normally the
640 			 * previous check would ignore DB# exceptions
641 			 * for watchpoints on user addresses raised in
642 			 * kernel mode.  However, some CPU errata
643 			 * include cases where DB# exceptions do not
644 			 * properly set bits in %dr6, e.g. Haswell
645 			 * HSD23 and Skylake-X SKZ24.
646 			 *
647 			 * A deferred DB# can also be raised on the
648 			 * first instructions of system call entry
649 			 * points or single-step traps via similar use
650 			 * of 'pop %ss' or 'mov xxx, %ss'.
651 			 */
652 			if (frame->tf_eip ==
653 			    (uintptr_t)IDTVEC(int0x80_syscall) + setidt_disp ||
654 			    frame->tf_eip == (uintptr_t)IDTVEC(bpt) +
655 			    setidt_disp ||
656 			    frame->tf_eip == (uintptr_t)IDTVEC(dbg) +
657 			    setidt_disp)
658 				return;
659 			/*
660 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
661 			 */
662 		case T_BPTFLT:
663 			/*
664 			 * If KDB is enabled, let it handle the debugger trap.
665 			 * Otherwise, debugger traps "can't happen".
666 			 */
667 #ifdef KDB
668 			if (kdb_trap(type, dr6, frame))
669 				return;
670 #endif
671 			break;
672 
673 #ifdef DEV_ISA
674 		case T_NMI:
675 #ifdef POWERFAIL_NMI
676 			if (time_second - lastalert > 10) {
677 				log(LOG_WARNING, "NMI: power fail\n");
678 				sysbeep(880, hz);
679 				lastalert = time_second;
680 			}
681 			return;
682 #else /* !POWERFAIL_NMI */
683 			nmi_handle_intr(type, frame);
684 			return;
685 #endif /* POWERFAIL_NMI */
686 #endif /* DEV_ISA */
687 		}
688 
689 		trap_fatal(frame, eva);
690 		return;
691 	}
692 
693 	/* Translate fault for emulators (e.g. Linux) */
694 	if (*p->p_sysent->sv_transtrap != NULL)
695 		signo = (*p->p_sysent->sv_transtrap)(signo, type);
696 
697 	ksiginfo_init_trap(&ksi);
698 	ksi.ksi_signo = signo;
699 	ksi.ksi_code = ucode;
700 	ksi.ksi_addr = (void *)addr;
701 	ksi.ksi_trapno = type;
702 	if (uprintf_signal) {
703 		uprintf("pid %d comm %s: signal %d err %x code %d type %d "
704 		    "addr 0x%x ss 0x%04x esp 0x%08x cs 0x%04x eip 0x%08x "
705 		    "<%02x %02x %02x %02x %02x %02x %02x %02x>\n",
706 		    p->p_pid, p->p_comm, signo, frame->tf_err, ucode, type,
707 		    addr, frame->tf_ss, frame->tf_esp, frame->tf_cs,
708 		    frame->tf_eip,
709 		    fubyte((void *)(frame->tf_eip + 0)),
710 		    fubyte((void *)(frame->tf_eip + 1)),
711 		    fubyte((void *)(frame->tf_eip + 2)),
712 		    fubyte((void *)(frame->tf_eip + 3)),
713 		    fubyte((void *)(frame->tf_eip + 4)),
714 		    fubyte((void *)(frame->tf_eip + 5)),
715 		    fubyte((void *)(frame->tf_eip + 6)),
716 		    fubyte((void *)(frame->tf_eip + 7)));
717 	}
718 	KASSERT((read_eflags() & PSL_I) != 0, ("interrupts disabled"));
719 	trapsignal(td, &ksi);
720 
721 user:
722 	userret(td, frame);
723 	KASSERT(PCB_USER_FPU(td->td_pcb),
724 	    ("Return from trap with kernel FPU ctx leaked"));
725 }
726 
727 /*
728  * Handle all details of a page fault.
729  * Returns:
730  * -2 if the fault was caused by triggered workaround for Intel Pentium
731  *    0xf00f bug.
732  * -1 if this fault was fatal, typically from kernel mode
733  *    (cannot happen, but we need to return something).
734  * 0  if this fault was handled by updating either the user or kernel
735  *    page table, execution can continue.
736  * 1  if this fault was from usermode and it was not handled, a synchronous
737  *    signal should be delivered to the thread.  *signo returns the signal
738  *    number, *ucode gives si_code.
739  */
740 static int
741 trap_pfault(struct trapframe *frame, bool usermode, vm_offset_t eva,
742     int *signo, int *ucode)
743 {
744 	struct thread *td;
745 	struct proc *p;
746 	vm_map_t map;
747 	int rv;
748 	vm_prot_t ftype;
749 
750 	MPASS(!usermode || (signo != NULL && ucode != NULL));
751 
752 	td = curthread;
753 	p = td->td_proc;
754 
755 	if (__predict_false((td->td_pflags & TDP_NOFAULTING) != 0)) {
756 		/*
757 		 * Due to both processor errata and lazy TLB invalidation when
758 		 * access restrictions are removed from virtual pages, memory
759 		 * accesses that are allowed by the physical mapping layer may
760 		 * nonetheless cause one spurious page fault per virtual page.
761 		 * When the thread is executing a "no faulting" section that
762 		 * is bracketed by vm_fault_{disable,enable}_pagefaults(),
763 		 * every page fault is treated as a spurious page fault,
764 		 * unless it accesses the same virtual address as the most
765 		 * recent page fault within the same "no faulting" section.
766 		 */
767 		if (td->td_md.md_spurflt_addr != eva ||
768 		    (td->td_pflags & TDP_RESETSPUR) != 0) {
769 			/*
770 			 * Do nothing to the TLB.  A stale TLB entry is
771 			 * flushed automatically by a page fault.
772 			 */
773 			td->td_md.md_spurflt_addr = eva;
774 			td->td_pflags &= ~TDP_RESETSPUR;
775 			return (0);
776 		}
777 	} else {
778 		/*
779 		 * If we get a page fault while in a critical section, then
780 		 * it is most likely a fatal kernel page fault.  The kernel
781 		 * is already going to panic trying to get a sleep lock to
782 		 * do the VM lookup, so just consider it a fatal trap so the
783 		 * kernel can print out a useful trap message and even get
784 		 * to the debugger.
785 		 *
786 		 * If we get a page fault while holding a non-sleepable
787 		 * lock, then it is most likely a fatal kernel page fault.
788 		 * If WITNESS is enabled, then it's going to whine about
789 		 * bogus LORs with various VM locks, so just skip to the
790 		 * fatal trap handling directly.
791 		 */
792 		if (td->td_critnest != 0 ||
793 		    WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL,
794 		    "Kernel page fault") != 0) {
795 			trap_fatal(frame, eva);
796 			return (-1);
797 		}
798 	}
799 	if (eva >= PMAP_TRM_MIN_ADDRESS) {
800 		/*
801 		 * Don't allow user-mode faults in kernel address space.
802 		 * An exception:  if the faulting address is the invalid
803 		 * instruction entry in the IDT, then the Intel Pentium
804 		 * F00F bug workaround was triggered, and we need to
805 		 * treat it is as an illegal instruction, and not a page
806 		 * fault.
807 		 */
808 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
809 		if ((eva == (unsigned int)&idt[6]) && has_f00f_bug) {
810 			*ucode = ILL_PRVOPC;
811 			*signo = SIGILL;
812 			return (-2);
813 		}
814 #endif
815 		if (usermode) {
816 			*signo = SIGSEGV;
817 			*ucode = SEGV_MAPERR;
818 			return (1);
819 		}
820 		trap_fatal(frame, eva);
821 		return (-1);
822 	} else {
823 		map = usermode ? &p->p_vmspace->vm_map : kernel_map;
824 
825 		/*
826 		 * Kernel cannot access a user-space address directly
827 		 * because user pages are not mapped.  Also, page
828 		 * faults must not be caused during the interrupts.
829 		 */
830 		if (!usermode && td->td_intr_nesting_level != 0) {
831 			trap_fatal(frame, eva);
832 			return (-1);
833 		}
834 	}
835 
836 	/*
837 	 * If the trap was caused by errant bits in the PTE then panic.
838 	 */
839 	if (frame->tf_err & PGEX_RSV) {
840 		trap_fatal(frame, eva);
841 		return (-1);
842 	}
843 
844 	/*
845 	 * PGEX_I is defined only if the execute disable bit capability is
846 	 * supported and enabled.
847 	 */
848 	if (frame->tf_err & PGEX_W)
849 		ftype = VM_PROT_WRITE;
850 	else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
851 		ftype = VM_PROT_EXECUTE;
852 	else
853 		ftype = VM_PROT_READ;
854 
855 	/* Fault in the page. */
856 	rv = vm_fault_trap(map, eva, ftype, VM_FAULT_NORMAL, signo, ucode);
857 	if (rv == KERN_SUCCESS) {
858 #ifdef HWPMC_HOOKS
859 		if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
860 			PMC_SOFT_CALL_TF( , , page_fault, all, frame);
861 			if (ftype == VM_PROT_READ)
862 				PMC_SOFT_CALL_TF( , , page_fault, read,
863 				    frame);
864 			else
865 				PMC_SOFT_CALL_TF( , , page_fault, write,
866 				    frame);
867 		}
868 #endif
869 		return (0);
870 	}
871 	if (usermode)
872 		return (1);
873 	if (td->td_intr_nesting_level == 0 &&
874 	    curpcb->pcb_onfault != NULL) {
875 		frame->tf_eip = (int)curpcb->pcb_onfault;
876 		return (0);
877 	}
878 	trap_fatal(frame, eva);
879 	return (-1);
880 }
881 
882 static void
883 trap_fatal(frame, eva)
884 	struct trapframe *frame;
885 	vm_offset_t eva;
886 {
887 	int code, ss, esp;
888 	u_int type;
889 	struct soft_segment_descriptor softseg;
890 #ifdef KDB
891 	bool handled;
892 #endif
893 
894 	code = frame->tf_err;
895 	type = frame->tf_trapno;
896 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
897 
898 	printf("\n\nFatal trap %d: %s while in %s mode\n", type, trap_msg(type),
899 	    frame->tf_eflags & PSL_VM ? "vm86" :
900 	    ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
901 #ifdef SMP
902 	/* two separate prints in case of a trap on an unmapped page */
903 	printf("cpuid = %d; ", PCPU_GET(cpuid));
904 	printf("apic id = %02x\n", PCPU_GET(apic_id));
905 #endif
906 	if (type == T_PAGEFLT) {
907 		printf("fault virtual address	= 0x%x\n", eva);
908 		printf("fault code		= %s %s%s, %s\n",
909 			code & PGEX_U ? "user" : "supervisor",
910 			code & PGEX_W ? "write" : "read",
911 			pg_nx != 0 ?
912 			(code & PGEX_I ? " instruction" : " data") :
913 			"",
914 			code & PGEX_RSV ? "reserved bits in PTE" :
915 			code & PGEX_P ? "protection violation" : "page not present");
916 	} else {
917 		printf("error code		= %#x\n", code);
918 	}
919 	printf("instruction pointer	= 0x%x:0x%x\n",
920 	       frame->tf_cs & 0xffff, frame->tf_eip);
921         if (TF_HAS_STACKREGS(frame)) {
922 		ss = frame->tf_ss & 0xffff;
923 		esp = frame->tf_esp;
924 	} else {
925 		ss = GSEL(GDATA_SEL, SEL_KPL);
926 		esp = (int)&frame->tf_esp;
927 	}
928 	printf("stack pointer	        = 0x%x:0x%x\n", ss, esp);
929 	printf("frame pointer	        = 0x%x:0x%x\n", ss, frame->tf_ebp);
930 	printf("code segment		= base 0x%x, limit 0x%x, type 0x%x\n",
931 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
932 	printf("			= DPL %d, pres %d, def32 %d, gran %d\n",
933 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
934 	       softseg.ssd_gran);
935 	printf("processor eflags	= ");
936 	if (frame->tf_eflags & PSL_T)
937 		printf("trace trap, ");
938 	if (frame->tf_eflags & PSL_I)
939 		printf("interrupt enabled, ");
940 	if (frame->tf_eflags & PSL_NT)
941 		printf("nested task, ");
942 	if (frame->tf_eflags & PSL_RF)
943 		printf("resume, ");
944 	if (frame->tf_eflags & PSL_VM)
945 		printf("vm86, ");
946 	printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
947 	printf("current process		= %d (%s)\n",
948 	    curproc->p_pid, curthread->td_name);
949 
950 #ifdef KDB
951 	if (debugger_on_trap) {
952 		kdb_why = KDB_WHY_TRAP;
953 		frame->tf_err = eva;	/* smuggle fault address to ddb */
954 		handled = kdb_trap(type, 0, frame);
955 		frame->tf_err = code;	/* restore error code */
956 		kdb_why = KDB_WHY_UNSET;
957 		if (handled)
958 			return;
959 	}
960 #endif
961 	printf("trap number		= %d\n", type);
962 	if (trap_msg(type) != NULL)
963 		panic("%s", trap_msg(type));
964 	else
965 		panic("unknown/reserved trap");
966 }
967 
968 #ifdef KDTRACE_HOOKS
969 /*
970  * Invoke a userspace DTrace hook.  The hook pointer is cleared when no
971  * userspace probes are enabled, so we must synchronize with DTrace to ensure
972  * that a trapping thread is able to call the hook before it is cleared.
973  */
974 static bool
975 trap_user_dtrace(struct trapframe *frame, int (**hookp)(struct trapframe *))
976 {
977 	int (*hook)(struct trapframe *);
978 
979 	hook = atomic_load_ptr(hookp);
980 	enable_intr();
981 	if (hook != NULL)
982 		return ((hook)(frame) == 0);
983 	return (false);
984 }
985 #endif
986 
987 /*
988  * Double fault handler. Called when a fault occurs while writing
989  * a frame for a trap/exception onto the stack. This usually occurs
990  * when the stack overflows (such is the case with infinite recursion,
991  * for example).
992  *
993  * XXX Note that the current PTD gets replaced by IdlePTD when the
994  * task switch occurs. This means that the stack that was active at
995  * the time of the double fault is not available at <kstack> unless
996  * the machine was idle when the double fault occurred. The downside
997  * of this is that "trace <ebp>" in ddb won't work.
998  */
999 void
1000 dblfault_handler(void)
1001 {
1002 #ifdef KDTRACE_HOOKS
1003 	if (dtrace_doubletrap_func != NULL)
1004 		(*dtrace_doubletrap_func)();
1005 #endif
1006 	printf("\nFatal double fault:\n");
1007 	printf("eip = 0x%x\n", PCPU_GET(common_tssp)->tss_eip);
1008 	printf("esp = 0x%x\n", PCPU_GET(common_tssp)->tss_esp);
1009 	printf("ebp = 0x%x\n", PCPU_GET(common_tssp)->tss_ebp);
1010 #ifdef SMP
1011 	/* two separate prints in case of a trap on an unmapped page */
1012 	printf("cpuid = %d; ", PCPU_GET(cpuid));
1013 	printf("apic id = %02x\n", PCPU_GET(apic_id));
1014 #endif
1015 	panic("double fault");
1016 }
1017 
1018 int
1019 cpu_fetch_syscall_args(struct thread *td)
1020 {
1021 	struct proc *p;
1022 	struct trapframe *frame;
1023 	struct syscall_args *sa;
1024 	caddr_t params;
1025 	long tmp;
1026 	int error;
1027 #ifdef COMPAT_43
1028 	u_int32_t eip;
1029 	int cs;
1030 #endif
1031 
1032 	p = td->td_proc;
1033 	frame = td->td_frame;
1034 	sa = &td->td_sa;
1035 
1036 #ifdef COMPAT_43
1037 	if (__predict_false(frame->tf_cs == 7 && frame->tf_eip == 2)) {
1038 		/*
1039 		 * In lcall $7,$0 after int $0x80.  Convert the user
1040 		 * frame to what it would be for a direct int 0x80 instead
1041 		 * of lcall $7,$0, by popping the lcall return address.
1042 		 */
1043 		error = fueword32((void *)frame->tf_esp, &eip);
1044 		if (error == -1)
1045 			return (EFAULT);
1046 		cs = fuword16((void *)(frame->tf_esp + sizeof(u_int32_t)));
1047 		if (cs == -1)
1048 			return (EFAULT);
1049 
1050 		/*
1051 		 * Unwind in-kernel frame after all stack frame pieces
1052 		 * were successfully read.
1053 		 */
1054 		frame->tf_eip = eip;
1055 		frame->tf_cs = cs;
1056 		frame->tf_esp += 2 * sizeof(u_int32_t);
1057 		frame->tf_err = 7;	/* size of lcall $7,$0 */
1058 	}
1059 #endif
1060 
1061 	sa->code = frame->tf_eax;
1062 	params = (caddr_t)frame->tf_esp + sizeof(uint32_t);
1063 
1064 	/*
1065 	 * Need to check if this is a 32 bit or 64 bit syscall.
1066 	 */
1067 	if (sa->code == SYS_syscall) {
1068 		/*
1069 		 * Code is first argument, followed by actual args.
1070 		 */
1071 		error = fueword(params, &tmp);
1072 		if (error == -1)
1073 			return (EFAULT);
1074 		sa->code = tmp;
1075 		params += sizeof(uint32_t);
1076 	} else if (sa->code == SYS___syscall) {
1077 		/*
1078 		 * Like syscall, but code is a quad, so as to maintain
1079 		 * quad alignment for the rest of the arguments.
1080 		 */
1081 		error = fueword(params, &tmp);
1082 		if (error == -1)
1083 			return (EFAULT);
1084 		sa->code = tmp;
1085 		params += sizeof(quad_t);
1086 	}
1087 
1088  	if (sa->code >= p->p_sysent->sv_size)
1089  		sa->callp = &p->p_sysent->sv_table[0];
1090   	else
1091  		sa->callp = &p->p_sysent->sv_table[sa->code];
1092 	sa->narg = sa->callp->sy_narg;
1093 
1094 	if (params != NULL && sa->narg != 0)
1095 		error = copyin(params, (caddr_t)sa->args,
1096 		    (u_int)(sa->narg * sizeof(uint32_t)));
1097 	else
1098 		error = 0;
1099 
1100 	if (error == 0) {
1101 		td->td_retval[0] = 0;
1102 		td->td_retval[1] = frame->tf_edx;
1103 	}
1104 
1105 	return (error);
1106 }
1107 
1108 #include "../../kern/subr_syscall.c"
1109 
1110 /*
1111  * syscall - system call request C handler.  A system call is
1112  * essentially treated as a trap by reusing the frame layout.
1113  */
1114 void
1115 syscall(struct trapframe *frame)
1116 {
1117 	struct thread *td;
1118 	register_t orig_tf_eflags;
1119 	ksiginfo_t ksi;
1120 
1121 #ifdef DIAGNOSTIC
1122 	if (!(TRAPF_USERMODE(frame) &&
1123 	    (curpcb->pcb_flags & PCB_VM86CALL) == 0)) {
1124 		panic("syscall");
1125 		/* NOT REACHED */
1126 	}
1127 #endif
1128 	orig_tf_eflags = frame->tf_eflags;
1129 
1130 	td = curthread;
1131 	td->td_frame = frame;
1132 
1133 	syscallenter(td);
1134 
1135 	/*
1136 	 * Traced syscall.
1137 	 */
1138 	if ((orig_tf_eflags & PSL_T) && !(orig_tf_eflags & PSL_VM)) {
1139 		frame->tf_eflags &= ~PSL_T;
1140 		ksiginfo_init_trap(&ksi);
1141 		ksi.ksi_signo = SIGTRAP;
1142 		ksi.ksi_code = TRAP_TRACE;
1143 		ksi.ksi_addr = (void *)frame->tf_eip;
1144 		trapsignal(td, &ksi);
1145 	}
1146 
1147 	KASSERT(PCB_USER_FPU(td->td_pcb),
1148 	    ("System call %s returning with kernel FPU ctx leaked",
1149 	     syscallname(td->td_proc, td->td_sa.code)));
1150 	KASSERT(td->td_pcb->pcb_save == get_pcb_user_save_td(td),
1151 	    ("System call %s returning with mangled pcb_save",
1152 	     syscallname(td->td_proc, td->td_sa.code)));
1153 
1154 	syscallret(td);
1155 }
1156