xref: /freebsd/sys/kern/imgact_elf.c (revision 1edb7116)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2000-2001, 2003 David O'Brien
6  * Copyright (c) 1995-1996 Søren Schmidt
7  * Copyright (c) 1996 Peter Wemm
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer
15  *    in this position and unchanged.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "opt_capsicum.h"
35 
36 #include <sys/param.h>
37 #include <sys/capsicum.h>
38 #include <sys/compressor.h>
39 #include <sys/exec.h>
40 #include <sys/fcntl.h>
41 #include <sys/imgact.h>
42 #include <sys/imgact_elf.h>
43 #include <sys/jail.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/mman.h>
49 #include <sys/namei.h>
50 #include <sys/proc.h>
51 #include <sys/procfs.h>
52 #include <sys/ptrace.h>
53 #include <sys/racct.h>
54 #include <sys/reg.h>
55 #include <sys/resourcevar.h>
56 #include <sys/rwlock.h>
57 #include <sys/sbuf.h>
58 #include <sys/sf_buf.h>
59 #include <sys/smp.h>
60 #include <sys/systm.h>
61 #include <sys/signalvar.h>
62 #include <sys/stat.h>
63 #include <sys/sx.h>
64 #include <sys/syscall.h>
65 #include <sys/sysctl.h>
66 #include <sys/sysent.h>
67 #include <sys/vnode.h>
68 #include <sys/syslog.h>
69 #include <sys/eventhandler.h>
70 #include <sys/user.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_param.h>
75 #include <vm/pmap.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_object.h>
78 #include <vm/vm_extern.h>
79 
80 #include <machine/elf.h>
81 #include <machine/md_var.h>
82 
83 #define ELF_NOTE_ROUNDSIZE	4
84 #define OLD_EI_BRAND	8
85 
86 static int __elfN(check_header)(const Elf_Ehdr *hdr);
87 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
88     const char *interp, int32_t *osrel, uint32_t *fctl0);
89 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
90     u_long *entry);
91 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
92     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
93 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
94 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
95     int32_t *osrel);
96 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
97 static bool __elfN(check_note)(struct image_params *imgp,
98     Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0,
99     uint32_t *fctl0);
100 static vm_prot_t __elfN(trans_prot)(Elf_Word);
101 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
102 static size_t __elfN(prepare_register_notes)(struct thread *td,
103     struct note_info_list *list, struct thread *target_td);
104 
105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
106     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
107     "");
108 
109 int __elfN(fallback_brand) = -1;
110 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
111     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
112     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
113 
114 static int elf_legacy_coredump = 0;
115 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
116     &elf_legacy_coredump, 0,
117     "include all and only RW pages in core dumps");
118 
119 int __elfN(nxstack) =
120 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
121     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
122     defined(__riscv)
123 	1;
124 #else
125 	0;
126 #endif
127 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
128     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
129     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
130 
131 #if defined(__amd64__)
132 static int __elfN(vdso) = 1;
133 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
134     vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0,
135     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading");
136 #else
137 static int __elfN(vdso) = 0;
138 #endif
139 
140 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
141 int i386_read_exec = 0;
142 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
143     "enable execution from readable segments");
144 #endif
145 
146 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
147 static int
148 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
149 {
150 	u_long val;
151 	int error;
152 
153 	val = __elfN(pie_base);
154 	error = sysctl_handle_long(oidp, &val, 0, req);
155 	if (error != 0 || req->newptr == NULL)
156 		return (error);
157 	if ((val & PAGE_MASK) != 0)
158 		return (EINVAL);
159 	__elfN(pie_base) = val;
160 	return (0);
161 }
162 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
163     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
164     sysctl_pie_base, "LU",
165     "PIE load base without randomization");
166 
167 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
168     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169     "");
170 #define	ASLR_NODE_OID	__CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
171 
172 /*
173  * Enable ASLR by default for 64-bit non-PIE binaries.  32-bit architectures
174  * have limited address space (which can cause issues for applications with
175  * high memory use) so we leave it off there.
176  */
177 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64;
178 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
179     &__elfN(aslr_enabled), 0,
180     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
181     ": enable address map randomization");
182 
183 /*
184  * Enable ASLR by default for 64-bit PIE binaries.
185  */
186 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64;
187 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
188     &__elfN(pie_aslr_enabled), 0,
189     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
190     ": enable address map randomization for PIE binaries");
191 
192 /*
193  * Sbrk is deprecated and it can be assumed that in most cases it will not be
194  * used anyway. This setting is valid only with ASLR enabled, and allows ASLR
195  * to use the bss grow region.
196  */
197 static int __elfN(aslr_honor_sbrk) = 0;
198 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
199     &__elfN(aslr_honor_sbrk), 0,
200     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
201 
202 static int __elfN(aslr_stack) = __ELF_WORD_SIZE == 64;
203 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN,
204     &__elfN(aslr_stack), 0,
205     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
206     ": enable stack address randomization");
207 
208 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64;
209 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN,
210     &__elfN(aslr_shared_page), 0,
211     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
212     ": enable shared page address randomization");
213 
214 static int __elfN(sigfastblock) = 1;
215 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
216     CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
217     "enable sigfastblock for new processes");
218 
219 static bool __elfN(allow_wx) = true;
220 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx,
221     CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
222     "Allow pages to be mapped simultaneously writable and executable");
223 
224 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
225 
226 #define	aligned(a, t)	(rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
227 
228 Elf_Brandnote __elfN(freebsd_brandnote) = {
229 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
230 	.hdr.n_descsz	= sizeof(int32_t),
231 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
232 	.vendor		= FREEBSD_ABI_VENDOR,
233 	.flags		= BN_TRANSLATE_OSREL,
234 	.trans_osrel	= __elfN(freebsd_trans_osrel)
235 };
236 
237 static bool
238 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
239 {
240 	uintptr_t p;
241 
242 	p = (uintptr_t)(note + 1);
243 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
244 	*osrel = *(const int32_t *)(p);
245 
246 	return (true);
247 }
248 
249 static int GNU_KFREEBSD_ABI_DESC = 3;
250 
251 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
252 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
253 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
254 	.hdr.n_type	= 1,
255 	.vendor		= GNU_ABI_VENDOR,
256 	.flags		= BN_TRANSLATE_OSREL,
257 	.trans_osrel	= kfreebsd_trans_osrel
258 };
259 
260 static bool
261 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
262 {
263 	const Elf32_Word *desc;
264 	uintptr_t p;
265 
266 	p = (uintptr_t)(note + 1);
267 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
268 
269 	desc = (const Elf32_Word *)p;
270 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
271 		return (false);
272 
273 	/*
274 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
275 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
276 	 */
277 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
278 
279 	return (true);
280 }
281 
282 int
283 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
284 {
285 	int i;
286 
287 	for (i = 0; i < MAX_BRANDS; i++) {
288 		if (elf_brand_list[i] == NULL) {
289 			elf_brand_list[i] = entry;
290 			break;
291 		}
292 	}
293 	if (i == MAX_BRANDS) {
294 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
295 			__func__, entry);
296 		return (-1);
297 	}
298 	return (0);
299 }
300 
301 int
302 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
303 {
304 	int i;
305 
306 	for (i = 0; i < MAX_BRANDS; i++) {
307 		if (elf_brand_list[i] == entry) {
308 			elf_brand_list[i] = NULL;
309 			break;
310 		}
311 	}
312 	if (i == MAX_BRANDS)
313 		return (-1);
314 	return (0);
315 }
316 
317 bool
318 __elfN(brand_inuse)(Elf_Brandinfo *entry)
319 {
320 	struct proc *p;
321 	bool rval = false;
322 
323 	sx_slock(&allproc_lock);
324 	FOREACH_PROC_IN_SYSTEM(p) {
325 		if (p->p_sysent == entry->sysvec) {
326 			rval = true;
327 			break;
328 		}
329 	}
330 	sx_sunlock(&allproc_lock);
331 
332 	return (rval);
333 }
334 
335 static Elf_Brandinfo *
336 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
337     int32_t *osrel, uint32_t *fctl0)
338 {
339 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
340 	Elf_Brandinfo *bi, *bi_m;
341 	bool ret, has_fctl0;
342 	int i, interp_name_len;
343 
344 	interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
345 
346 	/*
347 	 * We support four types of branding -- (1) the ELF EI_OSABI field
348 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
349 	 * branding w/in the ELF header, (3) path of the `interp_path'
350 	 * field, and (4) the ".note.ABI-tag" ELF section.
351 	 */
352 
353 	/* Look for an ".note.ABI-tag" ELF section */
354 	bi_m = NULL;
355 	for (i = 0; i < MAX_BRANDS; i++) {
356 		bi = elf_brand_list[i];
357 		if (bi == NULL)
358 			continue;
359 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
360 			continue;
361 		if (hdr->e_machine == bi->machine && (bi->flags &
362 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
363 			has_fctl0 = false;
364 			*fctl0 = 0;
365 			*osrel = 0;
366 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
367 			    &has_fctl0, fctl0);
368 			/* Give brand a chance to veto check_note's guess */
369 			if (ret && bi->header_supported) {
370 				ret = bi->header_supported(imgp, osrel,
371 				    has_fctl0 ? fctl0 : NULL);
372 			}
373 			/*
374 			 * If note checker claimed the binary, but the
375 			 * interpreter path in the image does not
376 			 * match default one for the brand, try to
377 			 * search for other brands with the same
378 			 * interpreter.  Either there is better brand
379 			 * with the right interpreter, or, failing
380 			 * this, we return first brand which accepted
381 			 * our note and, optionally, header.
382 			 */
383 			if (ret && bi_m == NULL && interp != NULL &&
384 			    (bi->interp_path == NULL ||
385 			    (strlen(bi->interp_path) + 1 != interp_name_len ||
386 			    strncmp(interp, bi->interp_path, interp_name_len)
387 			    != 0))) {
388 				bi_m = bi;
389 				ret = 0;
390 			}
391 			if (ret)
392 				return (bi);
393 		}
394 	}
395 	if (bi_m != NULL)
396 		return (bi_m);
397 
398 	/* If the executable has a brand, search for it in the brand list. */
399 	for (i = 0; i < MAX_BRANDS; i++) {
400 		bi = elf_brand_list[i];
401 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
402 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
403 			continue;
404 		if (hdr->e_machine == bi->machine &&
405 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
406 		    (bi->compat_3_brand != NULL &&
407 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
408 		    bi->compat_3_brand) == 0))) {
409 			/* Looks good, but give brand a chance to veto */
410 			if (bi->header_supported == NULL ||
411 			    bi->header_supported(imgp, NULL, NULL)) {
412 				/*
413 				 * Again, prefer strictly matching
414 				 * interpreter path.
415 				 */
416 				if (interp_name_len == 0 &&
417 				    bi->interp_path == NULL)
418 					return (bi);
419 				if (bi->interp_path != NULL &&
420 				    strlen(bi->interp_path) + 1 ==
421 				    interp_name_len && strncmp(interp,
422 				    bi->interp_path, interp_name_len) == 0)
423 					return (bi);
424 				if (bi_m == NULL)
425 					bi_m = bi;
426 			}
427 		}
428 	}
429 	if (bi_m != NULL)
430 		return (bi_m);
431 
432 	/* No known brand, see if the header is recognized by any brand */
433 	for (i = 0; i < MAX_BRANDS; i++) {
434 		bi = elf_brand_list[i];
435 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
436 		    bi->header_supported == NULL)
437 			continue;
438 		if (hdr->e_machine == bi->machine) {
439 			ret = bi->header_supported(imgp, NULL, NULL);
440 			if (ret)
441 				return (bi);
442 		}
443 	}
444 
445 	/* Lacking a known brand, search for a recognized interpreter. */
446 	if (interp != NULL) {
447 		for (i = 0; i < MAX_BRANDS; i++) {
448 			bi = elf_brand_list[i];
449 			if (bi == NULL || (bi->flags &
450 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
451 			    != 0)
452 				continue;
453 			if (hdr->e_machine == bi->machine &&
454 			    bi->interp_path != NULL &&
455 			    /* ELF image p_filesz includes terminating zero */
456 			    strlen(bi->interp_path) + 1 == interp_name_len &&
457 			    strncmp(interp, bi->interp_path, interp_name_len)
458 			    == 0 && (bi->header_supported == NULL ||
459 			    bi->header_supported(imgp, NULL, NULL)))
460 				return (bi);
461 		}
462 	}
463 
464 	/* Lacking a recognized interpreter, try the default brand */
465 	for (i = 0; i < MAX_BRANDS; i++) {
466 		bi = elf_brand_list[i];
467 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
468 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
469 			continue;
470 		if (hdr->e_machine == bi->machine &&
471 		    __elfN(fallback_brand) == bi->brand &&
472 		    (bi->header_supported == NULL ||
473 		    bi->header_supported(imgp, NULL, NULL)))
474 			return (bi);
475 	}
476 	return (NULL);
477 }
478 
479 static bool
480 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
481 {
482 	return (hdr->e_phoff <= PAGE_SIZE &&
483 	    (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
484 }
485 
486 static int
487 __elfN(check_header)(const Elf_Ehdr *hdr)
488 {
489 	Elf_Brandinfo *bi;
490 	int i;
491 
492 	if (!IS_ELF(*hdr) ||
493 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
494 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
495 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
496 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
497 	    hdr->e_version != ELF_TARG_VER)
498 		return (ENOEXEC);
499 
500 	/*
501 	 * Make sure we have at least one brand for this machine.
502 	 */
503 
504 	for (i = 0; i < MAX_BRANDS; i++) {
505 		bi = elf_brand_list[i];
506 		if (bi != NULL && bi->machine == hdr->e_machine)
507 			break;
508 	}
509 	if (i == MAX_BRANDS)
510 		return (ENOEXEC);
511 
512 	return (0);
513 }
514 
515 static int
516 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
517     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
518 {
519 	struct sf_buf *sf;
520 	int error;
521 	vm_offset_t off;
522 
523 	/*
524 	 * Create the page if it doesn't exist yet. Ignore errors.
525 	 */
526 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
527 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
528 
529 	/*
530 	 * Find the page from the underlying object.
531 	 */
532 	if (object != NULL) {
533 		sf = vm_imgact_map_page(object, offset);
534 		if (sf == NULL)
535 			return (KERN_FAILURE);
536 		off = offset - trunc_page(offset);
537 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
538 		    end - start);
539 		vm_imgact_unmap_page(sf);
540 		if (error != 0)
541 			return (KERN_FAILURE);
542 	}
543 
544 	return (KERN_SUCCESS);
545 }
546 
547 static int
548 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
549     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
550     int cow)
551 {
552 	struct sf_buf *sf;
553 	vm_offset_t off;
554 	vm_size_t sz;
555 	int error, locked, rv;
556 
557 	if (start != trunc_page(start)) {
558 		rv = __elfN(map_partial)(map, object, offset, start,
559 		    round_page(start), prot);
560 		if (rv != KERN_SUCCESS)
561 			return (rv);
562 		offset += round_page(start) - start;
563 		start = round_page(start);
564 	}
565 	if (end != round_page(end)) {
566 		rv = __elfN(map_partial)(map, object, offset +
567 		    trunc_page(end) - start, trunc_page(end), end, prot);
568 		if (rv != KERN_SUCCESS)
569 			return (rv);
570 		end = trunc_page(end);
571 	}
572 	if (start >= end)
573 		return (KERN_SUCCESS);
574 	if ((offset & PAGE_MASK) != 0) {
575 		/*
576 		 * The mapping is not page aligned.  This means that we have
577 		 * to copy the data.
578 		 */
579 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
580 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
581 		if (rv != KERN_SUCCESS)
582 			return (rv);
583 		if (object == NULL)
584 			return (KERN_SUCCESS);
585 		for (; start < end; start += sz) {
586 			sf = vm_imgact_map_page(object, offset);
587 			if (sf == NULL)
588 				return (KERN_FAILURE);
589 			off = offset - trunc_page(offset);
590 			sz = end - start;
591 			if (sz > PAGE_SIZE - off)
592 				sz = PAGE_SIZE - off;
593 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
594 			    (caddr_t)start, sz);
595 			vm_imgact_unmap_page(sf);
596 			if (error != 0)
597 				return (KERN_FAILURE);
598 			offset += sz;
599 		}
600 	} else {
601 		vm_object_reference(object);
602 		rv = vm_map_fixed(map, object, offset, start, end - start,
603 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
604 		    (object != NULL ? MAP_VN_EXEC : 0));
605 		if (rv != KERN_SUCCESS) {
606 			locked = VOP_ISLOCKED(imgp->vp);
607 			VOP_UNLOCK(imgp->vp);
608 			vm_object_deallocate(object);
609 			vn_lock(imgp->vp, locked | LK_RETRY);
610 			return (rv);
611 		} else if (object != NULL) {
612 			MPASS(imgp->vp->v_object == object);
613 			VOP_SET_TEXT_CHECKED(imgp->vp);
614 		}
615 	}
616 	return (KERN_SUCCESS);
617 }
618 
619 static int
620 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
621     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
622 {
623 	struct sf_buf *sf;
624 	size_t map_len;
625 	vm_map_t map;
626 	vm_object_t object;
627 	vm_offset_t map_addr;
628 	int error, rv, cow;
629 	size_t copy_len;
630 	vm_ooffset_t file_addr;
631 
632 	/*
633 	 * It's necessary to fail if the filsz + offset taken from the
634 	 * header is greater than the actual file pager object's size.
635 	 * If we were to allow this, then the vm_map_find() below would
636 	 * walk right off the end of the file object and into the ether.
637 	 *
638 	 * While I'm here, might as well check for something else that
639 	 * is invalid: filsz cannot be greater than memsz.
640 	 */
641 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
642 	    filsz > memsz) {
643 		uprintf("elf_load_section: truncated ELF file\n");
644 		return (ENOEXEC);
645 	}
646 
647 	object = imgp->object;
648 	map = &imgp->proc->p_vmspace->vm_map;
649 	map_addr = trunc_page((vm_offset_t)vmaddr);
650 	file_addr = trunc_page(offset);
651 
652 	/*
653 	 * We have two choices.  We can either clear the data in the last page
654 	 * of an oversized mapping, or we can start the anon mapping a page
655 	 * early and copy the initialized data into that first page.  We
656 	 * choose the second.
657 	 */
658 	if (filsz == 0)
659 		map_len = 0;
660 	else if (memsz > filsz)
661 		map_len = trunc_page(offset + filsz) - file_addr;
662 	else
663 		map_len = round_page(offset + filsz) - file_addr;
664 
665 	if (map_len != 0) {
666 		/* cow flags: don't dump readonly sections in core */
667 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
668 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
669 
670 		rv = __elfN(map_insert)(imgp, map, object, file_addr,
671 		    map_addr, map_addr + map_len, prot, cow);
672 		if (rv != KERN_SUCCESS)
673 			return (EINVAL);
674 
675 		/* we can stop now if we've covered it all */
676 		if (memsz == filsz)
677 			return (0);
678 	}
679 
680 	/*
681 	 * We have to get the remaining bit of the file into the first part
682 	 * of the oversized map segment.  This is normally because the .data
683 	 * segment in the file is extended to provide bss.  It's a neat idea
684 	 * to try and save a page, but it's a pain in the behind to implement.
685 	 */
686 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
687 	    filsz);
688 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
689 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
690 
691 	/* This had damn well better be true! */
692 	if (map_len != 0) {
693 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
694 		    map_addr + map_len, prot, 0);
695 		if (rv != KERN_SUCCESS)
696 			return (EINVAL);
697 	}
698 
699 	if (copy_len != 0) {
700 		sf = vm_imgact_map_page(object, offset + filsz);
701 		if (sf == NULL)
702 			return (EIO);
703 
704 		/* send the page fragment to user space */
705 		error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
706 		    copy_len);
707 		vm_imgact_unmap_page(sf);
708 		if (error != 0)
709 			return (error);
710 	}
711 
712 	/*
713 	 * Remove write access to the page if it was only granted by map_insert
714 	 * to allow copyout.
715 	 */
716 	if ((prot & VM_PROT_WRITE) == 0)
717 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
718 		    map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
719 
720 	return (0);
721 }
722 
723 static int
724 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr,
725     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
726 {
727 	vm_prot_t prot;
728 	u_long base_addr;
729 	bool first;
730 	int error, i;
731 
732 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
733 
734 	base_addr = 0;
735 	first = true;
736 
737 	for (i = 0; i < hdr->e_phnum; i++) {
738 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
739 			continue;
740 
741 		/* Loadable segment */
742 		prot = __elfN(trans_prot)(phdr[i].p_flags);
743 		error = __elfN(load_section)(imgp, phdr[i].p_offset,
744 		    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
745 		    phdr[i].p_memsz, phdr[i].p_filesz, prot);
746 		if (error != 0)
747 			return (error);
748 
749 		/*
750 		 * Establish the base address if this is the first segment.
751 		 */
752 		if (first) {
753   			base_addr = trunc_page(phdr[i].p_vaddr + rbase);
754 			first = false;
755 		}
756 	}
757 
758 	if (base_addrp != NULL)
759 		*base_addrp = base_addr;
760 
761 	return (0);
762 }
763 
764 /*
765  * Load the file "file" into memory.  It may be either a shared object
766  * or an executable.
767  *
768  * The "addr" reference parameter is in/out.  On entry, it specifies
769  * the address where a shared object should be loaded.  If the file is
770  * an executable, this value is ignored.  On exit, "addr" specifies
771  * where the file was actually loaded.
772  *
773  * The "entry" reference parameter is out only.  On exit, it specifies
774  * the entry point for the loaded file.
775  */
776 static int
777 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
778 	u_long *entry)
779 {
780 	struct {
781 		struct nameidata nd;
782 		struct vattr attr;
783 		struct image_params image_params;
784 	} *tempdata;
785 	const Elf_Ehdr *hdr = NULL;
786 	const Elf_Phdr *phdr = NULL;
787 	struct nameidata *nd;
788 	struct vattr *attr;
789 	struct image_params *imgp;
790 	u_long rbase;
791 	u_long base_addr = 0;
792 	int error;
793 
794 #ifdef CAPABILITY_MODE
795 	/*
796 	 * XXXJA: This check can go away once we are sufficiently confident
797 	 * that the checks in namei() are correct.
798 	 */
799 	if (IN_CAPABILITY_MODE(curthread))
800 		return (ECAPMODE);
801 #endif
802 
803 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
804 	nd = &tempdata->nd;
805 	attr = &tempdata->attr;
806 	imgp = &tempdata->image_params;
807 
808 	/*
809 	 * Initialize part of the common data
810 	 */
811 	imgp->proc = p;
812 	imgp->attr = attr;
813 
814 	NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
815 	    UIO_SYSSPACE, file);
816 	if ((error = namei(nd)) != 0) {
817 		nd->ni_vp = NULL;
818 		goto fail;
819 	}
820 	NDFREE_PNBUF(nd);
821 	imgp->vp = nd->ni_vp;
822 
823 	/*
824 	 * Check permissions, modes, uid, etc on the file, and "open" it.
825 	 */
826 	error = exec_check_permissions(imgp);
827 	if (error)
828 		goto fail;
829 
830 	error = exec_map_first_page(imgp);
831 	if (error)
832 		goto fail;
833 
834 	imgp->object = nd->ni_vp->v_object;
835 
836 	hdr = (const Elf_Ehdr *)imgp->image_header;
837 	if ((error = __elfN(check_header)(hdr)) != 0)
838 		goto fail;
839 	if (hdr->e_type == ET_DYN)
840 		rbase = *addr;
841 	else if (hdr->e_type == ET_EXEC)
842 		rbase = 0;
843 	else {
844 		error = ENOEXEC;
845 		goto fail;
846 	}
847 
848 	/* Only support headers that fit within first page for now      */
849 	if (!__elfN(phdr_in_zero_page)(hdr)) {
850 		error = ENOEXEC;
851 		goto fail;
852 	}
853 
854 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
855 	if (!aligned(phdr, Elf_Addr)) {
856 		error = ENOEXEC;
857 		goto fail;
858 	}
859 
860 	error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
861 	if (error != 0)
862 		goto fail;
863 
864 	if (p->p_sysent->sv_protect != NULL)
865 		p->p_sysent->sv_protect(imgp, SVP_INTERP);
866 
867 	*addr = base_addr;
868 	*entry = (unsigned long)hdr->e_entry + rbase;
869 
870 fail:
871 	if (imgp->firstpage)
872 		exec_unmap_first_page(imgp);
873 
874 	if (nd->ni_vp) {
875 		if (imgp->textset)
876 			VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
877 		vput(nd->ni_vp);
878 	}
879 	free(tempdata, M_TEMP);
880 
881 	return (error);
882 }
883 
884 /*
885  * Select randomized valid address in the map map, between minv and
886  * maxv, with specified alignment.  The [minv, maxv) range must belong
887  * to the map.  Note that function only allocates the address, it is
888  * up to caller to clamp maxv in a way that the final allocation
889  * length fit into the map.
890  *
891  * Result is returned in *resp, error code indicates that arguments
892  * did not pass sanity checks for overflow and range correctness.
893  */
894 static int
895 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv,
896     u_int align, u_long *resp)
897 {
898 	u_long rbase, res;
899 
900 	MPASS(vm_map_min(map) <= minv);
901 
902 	if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) {
903 		uprintf("Invalid ELF segments layout\n");
904 		return (ENOEXEC);
905 	}
906 
907 	arc4rand(&rbase, sizeof(rbase), 0);
908 	res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
909 	res &= ~((u_long)align - 1);
910 	if (res >= maxv)
911 		res -= align;
912 
913 	KASSERT(res >= minv,
914 	    ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
915 	    res, minv, maxv, rbase));
916 	KASSERT(res < maxv,
917 	    ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
918 	    res, maxv, minv, rbase));
919 
920 	*resp = res;
921 	return (0);
922 }
923 
924 static int
925 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
926     const Elf_Phdr *phdr)
927 {
928 	struct vmspace *vmspace;
929 	const char *err_str;
930 	u_long text_size, data_size, total_size, text_addr, data_addr;
931 	u_long seg_size, seg_addr;
932 	int i;
933 
934 	err_str = NULL;
935 	text_size = data_size = total_size = text_addr = data_addr = 0;
936 
937 	for (i = 0; i < hdr->e_phnum; i++) {
938 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
939 			continue;
940 
941 		seg_addr = trunc_page(phdr[i].p_vaddr + imgp->et_dyn_addr);
942 		seg_size = round_page(phdr[i].p_memsz +
943 		    phdr[i].p_vaddr + imgp->et_dyn_addr - seg_addr);
944 
945 		/*
946 		 * Make the largest executable segment the official
947 		 * text segment and all others data.
948 		 *
949 		 * Note that obreak() assumes that data_addr + data_size == end
950 		 * of data load area, and the ELF file format expects segments
951 		 * to be sorted by address.  If multiple data segments exist,
952 		 * the last one will be used.
953 		 */
954 
955 		if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
956 			text_size = seg_size;
957 			text_addr = seg_addr;
958 		} else {
959 			data_size = seg_size;
960 			data_addr = seg_addr;
961 		}
962 		total_size += seg_size;
963 	}
964 
965 	if (data_addr == 0 && data_size == 0) {
966 		data_addr = text_addr;
967 		data_size = text_size;
968 	}
969 
970 	/*
971 	 * Check limits.  It should be safe to check the
972 	 * limits after loading the segments since we do
973 	 * not actually fault in all the segments pages.
974 	 */
975 	PROC_LOCK(imgp->proc);
976 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
977 		err_str = "Data segment size exceeds process limit";
978 	else if (text_size > maxtsiz)
979 		err_str = "Text segment size exceeds system limit";
980 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
981 		err_str = "Total segment size exceeds process limit";
982 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
983 		err_str = "Data segment size exceeds resource limit";
984 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
985 		err_str = "Total segment size exceeds resource limit";
986 	PROC_UNLOCK(imgp->proc);
987 	if (err_str != NULL) {
988 		uprintf("%s\n", err_str);
989 		return (ENOMEM);
990 	}
991 
992 	vmspace = imgp->proc->p_vmspace;
993 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
994 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
995 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
996 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
997 
998 	return (0);
999 }
1000 
1001 static int
1002 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
1003     char **interpp, bool *free_interpp)
1004 {
1005 	struct thread *td;
1006 	char *interp;
1007 	int error, interp_name_len;
1008 
1009 	KASSERT(phdr->p_type == PT_INTERP,
1010 	    ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
1011 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
1012 
1013 	td = curthread;
1014 
1015 	/* Path to interpreter */
1016 	if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
1017 		uprintf("Invalid PT_INTERP\n");
1018 		return (ENOEXEC);
1019 	}
1020 
1021 	interp_name_len = phdr->p_filesz;
1022 	if (phdr->p_offset > PAGE_SIZE ||
1023 	    interp_name_len > PAGE_SIZE - phdr->p_offset) {
1024 		/*
1025 		 * The vnode lock might be needed by the pagedaemon to
1026 		 * clean pages owned by the vnode.  Do not allow sleep
1027 		 * waiting for memory with the vnode locked, instead
1028 		 * try non-sleepable allocation first, and if it
1029 		 * fails, go to the slow path were we drop the lock
1030 		 * and do M_WAITOK.  A text reference prevents
1031 		 * modifications to the vnode content.
1032 		 */
1033 		interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
1034 		if (interp == NULL) {
1035 			VOP_UNLOCK(imgp->vp);
1036 			interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
1037 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1038 		}
1039 
1040 		error = vn_rdwr(UIO_READ, imgp->vp, interp,
1041 		    interp_name_len, phdr->p_offset,
1042 		    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
1043 		    NOCRED, NULL, td);
1044 		if (error != 0) {
1045 			free(interp, M_TEMP);
1046 			uprintf("i/o error PT_INTERP %d\n", error);
1047 			return (error);
1048 		}
1049 		interp[interp_name_len] = '\0';
1050 
1051 		*interpp = interp;
1052 		*free_interpp = true;
1053 		return (0);
1054 	}
1055 
1056 	interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
1057 	if (interp[interp_name_len - 1] != '\0') {
1058 		uprintf("Invalid PT_INTERP\n");
1059 		return (ENOEXEC);
1060 	}
1061 
1062 	*interpp = interp;
1063 	*free_interpp = false;
1064 	return (0);
1065 }
1066 
1067 static int
1068 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1069     const char *interp, u_long *addr, u_long *entry)
1070 {
1071 	int error;
1072 
1073 	if (brand_info->interp_newpath != NULL &&
1074 	    (brand_info->interp_path == NULL ||
1075 	    strcmp(interp, brand_info->interp_path) == 0)) {
1076 		error = __elfN(load_file)(imgp->proc,
1077 		    brand_info->interp_newpath, addr, entry);
1078 		if (error == 0)
1079 			return (0);
1080 	}
1081 
1082 	error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1083 	if (error == 0)
1084 		return (0);
1085 
1086 	uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1087 	return (error);
1088 }
1089 
1090 /*
1091  * Impossible et_dyn_addr initial value indicating that the real base
1092  * must be calculated later with some randomization applied.
1093  */
1094 #define	ET_DYN_ADDR_RAND	1
1095 
1096 static int
1097 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1098 {
1099 	struct thread *td;
1100 	const Elf_Ehdr *hdr;
1101 	const Elf_Phdr *phdr;
1102 	Elf_Auxargs *elf_auxargs;
1103 	struct vmspace *vmspace;
1104 	vm_map_t map;
1105 	char *interp;
1106 	Elf_Brandinfo *brand_info;
1107 	struct sysentvec *sv;
1108 	u_long addr, baddr, entry, proghdr;
1109 	u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc;
1110 	uint32_t fctl0;
1111 	int32_t osrel;
1112 	bool free_interp;
1113 	int error, i, n;
1114 
1115 	hdr = (const Elf_Ehdr *)imgp->image_header;
1116 
1117 	/*
1118 	 * Do we have a valid ELF header ?
1119 	 *
1120 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1121 	 * if particular brand doesn't support it.
1122 	 */
1123 	if (__elfN(check_header)(hdr) != 0 ||
1124 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1125 		return (-1);
1126 
1127 	/*
1128 	 * From here on down, we return an errno, not -1, as we've
1129 	 * detected an ELF file.
1130 	 */
1131 
1132 	if (!__elfN(phdr_in_zero_page)(hdr)) {
1133 		uprintf("Program headers not in the first page\n");
1134 		return (ENOEXEC);
1135 	}
1136 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1137 	if (!aligned(phdr, Elf_Addr)) {
1138 		uprintf("Unaligned program headers\n");
1139 		return (ENOEXEC);
1140 	}
1141 
1142 	n = error = 0;
1143 	baddr = 0;
1144 	osrel = 0;
1145 	fctl0 = 0;
1146 	entry = proghdr = 0;
1147 	interp = NULL;
1148 	free_interp = false;
1149 	td = curthread;
1150 
1151 	/*
1152 	 * Somewhat arbitrary, limit accepted max alignment for the
1153 	 * loadable segment to the max supported superpage size. Too
1154 	 * large alignment requests are not useful and are indicators
1155 	 * of corrupted or outright malicious binary.
1156 	 */
1157 	maxalign = PAGE_SIZE;
1158 	maxsalign = PAGE_SIZE * 1024;
1159 	for (i = MAXPAGESIZES - 1; i > 0; i--) {
1160 		if (pagesizes[i] > maxsalign)
1161 			maxsalign = pagesizes[i];
1162 	}
1163 
1164 	mapsz = 0;
1165 
1166 	for (i = 0; i < hdr->e_phnum; i++) {
1167 		switch (phdr[i].p_type) {
1168 		case PT_LOAD:
1169 			if (n == 0)
1170 				baddr = phdr[i].p_vaddr;
1171 			if (!powerof2(phdr[i].p_align) ||
1172 			    phdr[i].p_align > maxsalign) {
1173 				uprintf("Invalid segment alignment\n");
1174 				error = ENOEXEC;
1175 				goto ret;
1176 			}
1177 			if (phdr[i].p_align > maxalign)
1178 				maxalign = phdr[i].p_align;
1179 			if (mapsz + phdr[i].p_memsz < mapsz) {
1180 				uprintf("Mapsize overflow\n");
1181 				error = ENOEXEC;
1182 				goto ret;
1183 			}
1184 			mapsz += phdr[i].p_memsz;
1185 			n++;
1186 
1187 			/*
1188 			 * If this segment contains the program headers,
1189 			 * remember their virtual address for the AT_PHDR
1190 			 * aux entry. Static binaries don't usually include
1191 			 * a PT_PHDR entry.
1192 			 */
1193 			if (phdr[i].p_offset == 0 &&
1194 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <=
1195 			    phdr[i].p_filesz)
1196 				proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1197 			break;
1198 		case PT_INTERP:
1199 			/* Path to interpreter */
1200 			if (interp != NULL) {
1201 				uprintf("Multiple PT_INTERP headers\n");
1202 				error = ENOEXEC;
1203 				goto ret;
1204 			}
1205 			error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1206 			    &free_interp);
1207 			if (error != 0)
1208 				goto ret;
1209 			break;
1210 		case PT_GNU_STACK:
1211 			if (__elfN(nxstack)) {
1212 				imgp->stack_prot =
1213 				    __elfN(trans_prot)(phdr[i].p_flags);
1214 				if ((imgp->stack_prot & VM_PROT_RW) !=
1215 				    VM_PROT_RW) {
1216 					uprintf("Invalid PT_GNU_STACK\n");
1217 					error = ENOEXEC;
1218 					goto ret;
1219 				}
1220 			}
1221 			imgp->stack_sz = phdr[i].p_memsz;
1222 			break;
1223 		case PT_PHDR: 	/* Program header table info */
1224 			proghdr = phdr[i].p_vaddr;
1225 			break;
1226 		}
1227 	}
1228 
1229 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1230 	if (brand_info == NULL) {
1231 		uprintf("ELF binary type \"%u\" not known.\n",
1232 		    hdr->e_ident[EI_OSABI]);
1233 		error = ENOEXEC;
1234 		goto ret;
1235 	}
1236 	sv = brand_info->sysvec;
1237 	if (hdr->e_type == ET_DYN) {
1238 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1239 			uprintf("Cannot execute shared object\n");
1240 			error = ENOEXEC;
1241 			goto ret;
1242 		}
1243 		/*
1244 		 * Honour the base load address from the dso if it is
1245 		 * non-zero for some reason.
1246 		 */
1247 		if (baddr == 0) {
1248 			if ((sv->sv_flags & SV_ASLR) == 0 ||
1249 			    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1250 				imgp->et_dyn_addr = __elfN(pie_base);
1251 			else if ((__elfN(pie_aslr_enabled) &&
1252 			    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1253 			    (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1254 				imgp->et_dyn_addr = ET_DYN_ADDR_RAND;
1255 			else
1256 				imgp->et_dyn_addr = __elfN(pie_base);
1257 		}
1258 	}
1259 
1260 	/*
1261 	 * Avoid a possible deadlock if the current address space is destroyed
1262 	 * and that address space maps the locked vnode.  In the common case,
1263 	 * the locked vnode's v_usecount is decremented but remains greater
1264 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
1265 	 * However, in cases where the vnode lock is external, such as nullfs,
1266 	 * v_usecount may become zero.
1267 	 *
1268 	 * The VV_TEXT flag prevents modifications to the executable while
1269 	 * the vnode is unlocked.
1270 	 */
1271 	VOP_UNLOCK(imgp->vp);
1272 
1273 	/*
1274 	 * Decide whether to enable randomization of user mappings.
1275 	 * First, reset user preferences for the setid binaries.
1276 	 * Then, account for the support of the randomization by the
1277 	 * ABI, by user preferences, and make special treatment for
1278 	 * PIE binaries.
1279 	 */
1280 	if (imgp->credential_setid) {
1281 		PROC_LOCK(imgp->proc);
1282 		imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE |
1283 		    P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
1284 		PROC_UNLOCK(imgp->proc);
1285 	}
1286 	if ((sv->sv_flags & SV_ASLR) == 0 ||
1287 	    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1288 	    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1289 		KASSERT(imgp->et_dyn_addr != ET_DYN_ADDR_RAND,
1290 		    ("imgp->et_dyn_addr == RAND and !ASLR"));
1291 	} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1292 	    (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1293 	    imgp->et_dyn_addr == ET_DYN_ADDR_RAND) {
1294 		imgp->map_flags |= MAP_ASLR;
1295 		/*
1296 		 * If user does not care about sbrk, utilize the bss
1297 		 * grow region for mappings as well.  We can select
1298 		 * the base for the image anywere and still not suffer
1299 		 * from the fragmentation.
1300 		 */
1301 		if (!__elfN(aslr_honor_sbrk) ||
1302 		    (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1303 			imgp->map_flags |= MAP_ASLR_IGNSTART;
1304 		if (__elfN(aslr_stack))
1305 			imgp->map_flags |= MAP_ASLR_STACK;
1306 		if (__elfN(aslr_shared_page))
1307 			imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE;
1308 	}
1309 
1310 	if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 &&
1311 	    (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) ||
1312 	    (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
1313 		imgp->map_flags |= MAP_WXORX;
1314 
1315 	error = exec_new_vmspace(imgp, sv);
1316 
1317 	imgp->proc->p_sysent = sv;
1318 	imgp->proc->p_elf_brandinfo = brand_info;
1319 
1320 	vmspace = imgp->proc->p_vmspace;
1321 	map = &vmspace->vm_map;
1322 	maxv = sv->sv_usrstack;
1323 	if ((imgp->map_flags & MAP_ASLR_STACK) == 0)
1324 		maxv -= lim_max(td, RLIMIT_STACK);
1325 	if (error == 0 && mapsz >= maxv - vm_map_min(map)) {
1326 		uprintf("Excessive mapping size\n");
1327 		error = ENOEXEC;
1328 	}
1329 
1330 	if (error == 0 && imgp->et_dyn_addr == ET_DYN_ADDR_RAND) {
1331 		KASSERT((map->flags & MAP_ASLR) != 0,
1332 		    ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1333 		error = __CONCAT(rnd_, __elfN(base))(map,
1334 		    vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1335 		    /* reserve half of the address space to interpreter */
1336 		    maxv / 2, maxalign, &imgp->et_dyn_addr);
1337 	}
1338 
1339 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1340 	if (error != 0)
1341 		goto ret;
1342 
1343 	error = __elfN(load_sections)(imgp, hdr, phdr, imgp->et_dyn_addr, NULL);
1344 	if (error != 0)
1345 		goto ret;
1346 
1347 	error = __elfN(enforce_limits)(imgp, hdr, phdr);
1348 	if (error != 0)
1349 		goto ret;
1350 
1351 	/*
1352 	 * We load the dynamic linker where a userland call
1353 	 * to mmap(0, ...) would put it.  The rationale behind this
1354 	 * calculation is that it leaves room for the heap to grow to
1355 	 * its maximum allowed size.
1356 	 */
1357 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1358 	    RLIMIT_DATA));
1359 	if ((map->flags & MAP_ASLR) != 0) {
1360 		maxv1 = maxv / 2 + addr / 2;
1361 		error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1362 		    (MAXPAGESIZES > 1 && pagesizes[1] != 0) ?
1363 		    pagesizes[1] : pagesizes[0], &anon_loc);
1364 		if (error != 0)
1365 			goto ret;
1366 		map->anon_loc = anon_loc;
1367 	} else {
1368 		map->anon_loc = addr;
1369 	}
1370 
1371 	entry = (u_long)hdr->e_entry + imgp->et_dyn_addr;
1372 	imgp->entry_addr = entry;
1373 
1374 	if (sv->sv_protect != NULL)
1375 		sv->sv_protect(imgp, SVP_IMAGE);
1376 
1377 	if (interp != NULL) {
1378 		VOP_UNLOCK(imgp->vp);
1379 		if ((map->flags & MAP_ASLR) != 0) {
1380 			/* Assume that interpreter fits into 1/4 of AS */
1381 			maxv1 = maxv / 2 + addr / 2;
1382 			error = __CONCAT(rnd_, __elfN(base))(map, addr,
1383 			    maxv1, PAGE_SIZE, &addr);
1384 		}
1385 		if (error == 0) {
1386 			error = __elfN(load_interp)(imgp, brand_info, interp,
1387 			    &addr, &imgp->entry_addr);
1388 		}
1389 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1390 		if (error != 0)
1391 			goto ret;
1392 	} else
1393 		addr = imgp->et_dyn_addr;
1394 
1395 	error = exec_map_stack(imgp);
1396 	if (error != 0)
1397 		goto ret;
1398 
1399 	/*
1400 	 * Construct auxargs table (used by the copyout_auxargs routine)
1401 	 */
1402 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1403 	if (elf_auxargs == NULL) {
1404 		VOP_UNLOCK(imgp->vp);
1405 		elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1406 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1407 	}
1408 	elf_auxargs->execfd = -1;
1409 	elf_auxargs->phdr = proghdr + imgp->et_dyn_addr;
1410 	elf_auxargs->phent = hdr->e_phentsize;
1411 	elf_auxargs->phnum = hdr->e_phnum;
1412 	elf_auxargs->pagesz = PAGE_SIZE;
1413 	elf_auxargs->base = addr;
1414 	elf_auxargs->flags = 0;
1415 	elf_auxargs->entry = entry;
1416 	elf_auxargs->hdr_eflags = hdr->e_flags;
1417 
1418 	imgp->auxargs = elf_auxargs;
1419 	imgp->interpreted = 0;
1420 	imgp->reloc_base = addr;
1421 	imgp->proc->p_osrel = osrel;
1422 	imgp->proc->p_fctl0 = fctl0;
1423 	imgp->proc->p_elf_flags = hdr->e_flags;
1424 
1425 ret:
1426 	ASSERT_VOP_LOCKED(imgp->vp, "skipped relock");
1427 	if (free_interp)
1428 		free(interp, M_TEMP);
1429 	return (error);
1430 }
1431 
1432 #define	elf_suword __CONCAT(suword, __ELF_WORD_SIZE)
1433 
1434 int
1435 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1436 {
1437 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1438 	Elf_Auxinfo *argarray, *pos;
1439 	struct vmspace *vmspace;
1440 	rlim_t stacksz;
1441 	int error, oc;
1442 	uint32_t bsdflags;
1443 
1444 	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1445 	    M_WAITOK | M_ZERO);
1446 
1447 	vmspace = imgp->proc->p_vmspace;
1448 
1449 	if (args->execfd != -1)
1450 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1451 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1452 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1453 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1454 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1455 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1456 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1457 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1458 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1459 	if (imgp->execpathp != 0)
1460 		AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
1461 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1462 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1463 	if (imgp->canary != 0) {
1464 		AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
1465 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1466 	}
1467 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1468 	if (imgp->pagesizes != 0) {
1469 		AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
1470 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1471 	}
1472 	if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) {
1473 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1474 		    vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset);
1475 	}
1476 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1477 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1478 	    imgp->sysent->sv_stackprot);
1479 	if (imgp->sysent->sv_hwcap != NULL)
1480 		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1481 	if (imgp->sysent->sv_hwcap2 != NULL)
1482 		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1483 	bsdflags = 0;
1484 	bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0;
1485 	oc = atomic_load_int(&vm_overcommit);
1486 	bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) !=
1487 	    0 ? ELF_BSDF_VMNOOVERCOMMIT : 0;
1488 	AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags);
1489 	AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
1490 	AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
1491 	AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
1492 	AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
1493 	AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
1494 #ifdef RANDOM_FENESTRASX
1495 	if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) {
1496 		AUXARGS_ENTRY(pos, AT_FXRNG,
1497 		    vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset);
1498 	}
1499 #endif
1500 	if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) {
1501 		AUXARGS_ENTRY(pos, AT_KPRELOAD,
1502 		    vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset);
1503 	}
1504 	AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop));
1505 	stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
1506 	AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz);
1507 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1508 
1509 	free(imgp->auxargs, M_TEMP);
1510 	imgp->auxargs = NULL;
1511 	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1512 
1513 	error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1514 	free(argarray, M_TEMP);
1515 	return (error);
1516 }
1517 
1518 int
1519 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1520 {
1521 	Elf_Addr *base;
1522 
1523 	base = (Elf_Addr *)*stack_base;
1524 	base--;
1525 	if (elf_suword(base, imgp->args->argc) == -1)
1526 		return (EFAULT);
1527 	*stack_base = (uintptr_t)base;
1528 	return (0);
1529 }
1530 
1531 /*
1532  * Code for generating ELF core dumps.
1533  */
1534 
1535 typedef void (*segment_callback)(vm_map_entry_t, void *);
1536 
1537 /* Closure for cb_put_phdr(). */
1538 struct phdr_closure {
1539 	Elf_Phdr *phdr;		/* Program header to fill in */
1540 	Elf_Off offset;		/* Offset of segment in core file */
1541 };
1542 
1543 struct note_info {
1544 	int		type;		/* Note type. */
1545 	struct regset	*regset;	/* Register set. */
1546 	outfunc_t 	outfunc; 	/* Output function. */
1547 	void		*outarg;	/* Argument for the output function. */
1548 	size_t		outsize;	/* Output size. */
1549 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1550 };
1551 
1552 TAILQ_HEAD(note_info_list, note_info);
1553 
1554 extern int compress_user_cores;
1555 extern int compress_user_cores_level;
1556 
1557 static void cb_put_phdr(vm_map_entry_t, void *);
1558 static void cb_size_segment(vm_map_entry_t, void *);
1559 static void each_dumpable_segment(struct thread *, segment_callback, void *,
1560     int);
1561 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1562     struct note_info_list *, size_t, int);
1563 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *);
1564 
1565 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1566 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1567 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1568 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1569 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1570 static void note_procstat_files(void *, struct sbuf *, size_t *);
1571 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1572 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1573 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1574 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1575 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1576 
1577 static int
1578 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1579 {
1580 
1581 	return (core_write((struct coredump_params *)arg, base, len, offset,
1582 	    UIO_SYSSPACE, NULL));
1583 }
1584 
1585 int
1586 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1587 {
1588 	struct ucred *cred = td->td_ucred;
1589 	int compm, error = 0;
1590 	struct sseg_closure seginfo;
1591 	struct note_info_list notelst;
1592 	struct coredump_params params;
1593 	struct note_info *ninfo;
1594 	void *hdr, *tmpbuf;
1595 	size_t hdrsize, notesz, coresize;
1596 
1597 	hdr = NULL;
1598 	tmpbuf = NULL;
1599 	TAILQ_INIT(&notelst);
1600 
1601 	/* Size the program segments. */
1602 	__elfN(size_segments)(td, &seginfo, flags);
1603 
1604 	/*
1605 	 * Collect info about the core file header area.
1606 	 */
1607 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1608 	if (seginfo.count + 1 >= PN_XNUM)
1609 		hdrsize += sizeof(Elf_Shdr);
1610 	td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, &notelst, &notesz);
1611 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1612 
1613 	/* Set up core dump parameters. */
1614 	params.offset = 0;
1615 	params.active_cred = cred;
1616 	params.file_cred = NOCRED;
1617 	params.td = td;
1618 	params.vp = vp;
1619 	params.comp = NULL;
1620 
1621 #ifdef RACCT
1622 	if (racct_enable) {
1623 		PROC_LOCK(td->td_proc);
1624 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1625 		PROC_UNLOCK(td->td_proc);
1626 		if (error != 0) {
1627 			error = EFAULT;
1628 			goto done;
1629 		}
1630 	}
1631 #endif
1632 	if (coresize >= limit) {
1633 		error = EFAULT;
1634 		goto done;
1635 	}
1636 
1637 	/* Create a compression stream if necessary. */
1638 	compm = compress_user_cores;
1639 	if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
1640 	    compm == 0)
1641 		compm = COMPRESS_GZIP;
1642 	if (compm != 0) {
1643 		params.comp = compressor_init(core_compressed_write,
1644 		    compm, CORE_BUF_SIZE,
1645 		    compress_user_cores_level, &params);
1646 		if (params.comp == NULL) {
1647 			error = EFAULT;
1648 			goto done;
1649 		}
1650 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1651         }
1652 
1653 	/*
1654 	 * Allocate memory for building the header, fill it up,
1655 	 * and write it out following the notes.
1656 	 */
1657 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1658 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1659 	    notesz, flags);
1660 
1661 	/* Write the contents of all of the writable segments. */
1662 	if (error == 0) {
1663 		Elf_Phdr *php;
1664 		off_t offset;
1665 		int i;
1666 
1667 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1668 		offset = round_page(hdrsize + notesz);
1669 		for (i = 0; i < seginfo.count; i++) {
1670 			error = core_output((char *)(uintptr_t)php->p_vaddr,
1671 			    php->p_filesz, offset, &params, tmpbuf);
1672 			if (error != 0)
1673 				break;
1674 			offset += php->p_filesz;
1675 			php++;
1676 		}
1677 		if (error == 0 && params.comp != NULL)
1678 			error = compressor_flush(params.comp);
1679 	}
1680 	if (error) {
1681 		log(LOG_WARNING,
1682 		    "Failed to write core file for process %s (error %d)\n",
1683 		    curproc->p_comm, error);
1684 	}
1685 
1686 done:
1687 	free(tmpbuf, M_TEMP);
1688 	if (params.comp != NULL)
1689 		compressor_fini(params.comp);
1690 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1691 		TAILQ_REMOVE(&notelst, ninfo, link);
1692 		free(ninfo, M_TEMP);
1693 	}
1694 	if (hdr != NULL)
1695 		free(hdr, M_TEMP);
1696 
1697 	return (error);
1698 }
1699 
1700 /*
1701  * A callback for each_dumpable_segment() to write out the segment's
1702  * program header entry.
1703  */
1704 static void
1705 cb_put_phdr(vm_map_entry_t entry, void *closure)
1706 {
1707 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1708 	Elf_Phdr *phdr = phc->phdr;
1709 
1710 	phc->offset = round_page(phc->offset);
1711 
1712 	phdr->p_type = PT_LOAD;
1713 	phdr->p_offset = phc->offset;
1714 	phdr->p_vaddr = entry->start;
1715 	phdr->p_paddr = 0;
1716 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1717 	phdr->p_align = PAGE_SIZE;
1718 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1719 
1720 	phc->offset += phdr->p_filesz;
1721 	phc->phdr++;
1722 }
1723 
1724 /*
1725  * A callback for each_dumpable_segment() to gather information about
1726  * the number of segments and their total size.
1727  */
1728 static void
1729 cb_size_segment(vm_map_entry_t entry, void *closure)
1730 {
1731 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1732 
1733 	ssc->count++;
1734 	ssc->size += entry->end - entry->start;
1735 }
1736 
1737 void
1738 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo,
1739     int flags)
1740 {
1741 	seginfo->count = 0;
1742 	seginfo->size = 0;
1743 
1744 	each_dumpable_segment(td, cb_size_segment, seginfo, flags);
1745 }
1746 
1747 /*
1748  * For each writable segment in the process's memory map, call the given
1749  * function with a pointer to the map entry and some arbitrary
1750  * caller-supplied data.
1751  */
1752 static void
1753 each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
1754     int flags)
1755 {
1756 	struct proc *p = td->td_proc;
1757 	vm_map_t map = &p->p_vmspace->vm_map;
1758 	vm_map_entry_t entry;
1759 	vm_object_t backing_object, object;
1760 	bool ignore_entry;
1761 
1762 	vm_map_lock_read(map);
1763 	VM_MAP_ENTRY_FOREACH(entry, map) {
1764 		/*
1765 		 * Don't dump inaccessible mappings, deal with legacy
1766 		 * coredump mode.
1767 		 *
1768 		 * Note that read-only segments related to the elf binary
1769 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1770 		 * need to arbitrarily ignore such segments.
1771 		 */
1772 		if ((flags & SVC_ALL) == 0) {
1773 			if (elf_legacy_coredump) {
1774 				if ((entry->protection & VM_PROT_RW) !=
1775 				    VM_PROT_RW)
1776 					continue;
1777 			} else {
1778 				if ((entry->protection & VM_PROT_ALL) == 0)
1779 					continue;
1780 			}
1781 		}
1782 
1783 		/*
1784 		 * Dont include memory segment in the coredump if
1785 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1786 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1787 		 * kernel map).
1788 		 */
1789 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1790 			continue;
1791 		if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
1792 		    (flags & SVC_ALL) == 0)
1793 			continue;
1794 		if ((object = entry->object.vm_object) == NULL)
1795 			continue;
1796 
1797 		/* Ignore memory-mapped devices and such things. */
1798 		VM_OBJECT_RLOCK(object);
1799 		while ((backing_object = object->backing_object) != NULL) {
1800 			VM_OBJECT_RLOCK(backing_object);
1801 			VM_OBJECT_RUNLOCK(object);
1802 			object = backing_object;
1803 		}
1804 		ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
1805 		VM_OBJECT_RUNLOCK(object);
1806 		if (ignore_entry)
1807 			continue;
1808 
1809 		(*func)(entry, closure);
1810 	}
1811 	vm_map_unlock_read(map);
1812 }
1813 
1814 /*
1815  * Write the core file header to the file, including padding up to
1816  * the page boundary.
1817  */
1818 static int
1819 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1820     size_t hdrsize, struct note_info_list *notelst, size_t notesz,
1821     int flags)
1822 {
1823 	struct note_info *ninfo;
1824 	struct sbuf *sb;
1825 	int error;
1826 
1827 	/* Fill in the header. */
1828 	bzero(hdr, hdrsize);
1829 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
1830 
1831 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1832 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1833 	sbuf_start_section(sb, NULL);
1834 	sbuf_bcat(sb, hdr, hdrsize);
1835 	TAILQ_FOREACH(ninfo, notelst, link)
1836 	    __elfN(putnote)(p->td, ninfo, sb);
1837 	/* Align up to a page boundary for the program segments. */
1838 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1839 	error = sbuf_finish(sb);
1840 	sbuf_delete(sb);
1841 
1842 	return (error);
1843 }
1844 
1845 void
1846 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1847     size_t *sizep)
1848 {
1849 	struct proc *p;
1850 	struct thread *thr;
1851 	size_t size;
1852 
1853 	p = td->td_proc;
1854 	size = 0;
1855 
1856 	size += __elfN(register_note)(td, list, NT_PRPSINFO,
1857 	    __elfN(note_prpsinfo), p);
1858 
1859 	/*
1860 	 * To have the debugger select the right thread (LWP) as the initial
1861 	 * thread, we dump the state of the thread passed to us in td first.
1862 	 * This is the thread that causes the core dump and thus likely to
1863 	 * be the right thread one wants to have selected in the debugger.
1864 	 */
1865 	thr = td;
1866 	while (thr != NULL) {
1867 		size += __elfN(prepare_register_notes)(td, list, thr);
1868 		size += __elfN(register_note)(td, list, -1,
1869 		    __elfN(note_threadmd), thr);
1870 
1871 		thr = thr == td ? TAILQ_FIRST(&p->p_threads) :
1872 		    TAILQ_NEXT(thr, td_plist);
1873 		if (thr == td)
1874 			thr = TAILQ_NEXT(thr, td_plist);
1875 	}
1876 
1877 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC,
1878 	    __elfN(note_procstat_proc), p);
1879 	size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES,
1880 	    note_procstat_files, p);
1881 	size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP,
1882 	    note_procstat_vmmap, p);
1883 	size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS,
1884 	    note_procstat_groups, p);
1885 	size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK,
1886 	    note_procstat_umask, p);
1887 	size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT,
1888 	    note_procstat_rlimit, p);
1889 	size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL,
1890 	    note_procstat_osrel, p);
1891 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS,
1892 	    __elfN(note_procstat_psstrings), p);
1893 	size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV,
1894 	    __elfN(note_procstat_auxv), p);
1895 
1896 	*sizep = size;
1897 }
1898 
1899 void
1900 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1901     size_t notesz, int flags)
1902 {
1903 	Elf_Ehdr *ehdr;
1904 	Elf_Phdr *phdr;
1905 	Elf_Shdr *shdr;
1906 	struct phdr_closure phc;
1907 	Elf_Brandinfo *bi;
1908 
1909 	ehdr = (Elf_Ehdr *)hdr;
1910 	bi = td->td_proc->p_elf_brandinfo;
1911 
1912 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1913 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1914 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1915 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1916 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1917 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1918 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1919 	ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi;
1920 	ehdr->e_ident[EI_ABIVERSION] = 0;
1921 	ehdr->e_ident[EI_PAD] = 0;
1922 	ehdr->e_type = ET_CORE;
1923 	ehdr->e_machine = bi->machine;
1924 	ehdr->e_version = EV_CURRENT;
1925 	ehdr->e_entry = 0;
1926 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1927 	ehdr->e_flags = td->td_proc->p_elf_flags;
1928 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1929 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1930 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1931 	ehdr->e_shstrndx = SHN_UNDEF;
1932 	if (numsegs + 1 < PN_XNUM) {
1933 		ehdr->e_phnum = numsegs + 1;
1934 		ehdr->e_shnum = 0;
1935 	} else {
1936 		ehdr->e_phnum = PN_XNUM;
1937 		ehdr->e_shnum = 1;
1938 
1939 		ehdr->e_shoff = ehdr->e_phoff +
1940 		    (numsegs + 1) * ehdr->e_phentsize;
1941 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1942 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1943 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1944 
1945 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1946 		memset(shdr, 0, sizeof(*shdr));
1947 		/*
1948 		 * A special first section is used to hold large segment and
1949 		 * section counts.  This was proposed by Sun Microsystems in
1950 		 * Solaris and has been adopted by Linux; the standard ELF
1951 		 * tools are already familiar with the technique.
1952 		 *
1953 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1954 		 * (or 12-7 depending on the version of the document) for more
1955 		 * details.
1956 		 */
1957 		shdr->sh_type = SHT_NULL;
1958 		shdr->sh_size = ehdr->e_shnum;
1959 		shdr->sh_link = ehdr->e_shstrndx;
1960 		shdr->sh_info = numsegs + 1;
1961 	}
1962 
1963 	/*
1964 	 * Fill in the program header entries.
1965 	 */
1966 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1967 
1968 	/* The note segement. */
1969 	phdr->p_type = PT_NOTE;
1970 	phdr->p_offset = hdrsize;
1971 	phdr->p_vaddr = 0;
1972 	phdr->p_paddr = 0;
1973 	phdr->p_filesz = notesz;
1974 	phdr->p_memsz = 0;
1975 	phdr->p_flags = PF_R;
1976 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1977 	phdr++;
1978 
1979 	/* All the writable segments from the program. */
1980 	phc.phdr = phdr;
1981 	phc.offset = round_page(hdrsize + notesz);
1982 	each_dumpable_segment(td, cb_put_phdr, &phc, flags);
1983 }
1984 
1985 static size_t
1986 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list,
1987     struct regset *regset, struct thread *target_td)
1988 {
1989 	const struct sysentvec *sv;
1990 	struct note_info *ninfo;
1991 	size_t size, notesize;
1992 
1993 	size = 0;
1994 	if (!regset->get(regset, target_td, NULL, &size) || size == 0)
1995 		return (0);
1996 
1997 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1998 	ninfo->type = regset->note;
1999 	ninfo->regset = regset;
2000 	ninfo->outarg = target_td;
2001 	ninfo->outsize = size;
2002 	TAILQ_INSERT_TAIL(list, ninfo, link);
2003 
2004 	sv = td->td_proc->p_sysent;
2005 	notesize = sizeof(Elf_Note) +		/* note header */
2006 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2007 						/* note name */
2008 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2009 
2010 	return (notesize);
2011 }
2012 
2013 size_t
2014 __elfN(register_note)(struct thread *td, struct note_info_list *list,
2015     int type, outfunc_t out, void *arg)
2016 {
2017 	const struct sysentvec *sv;
2018 	struct note_info *ninfo;
2019 	size_t size, notesize;
2020 
2021 	sv = td->td_proc->p_sysent;
2022 	size = 0;
2023 	out(arg, NULL, &size);
2024 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2025 	ninfo->type = type;
2026 	ninfo->outfunc = out;
2027 	ninfo->outarg = arg;
2028 	ninfo->outsize = size;
2029 	TAILQ_INSERT_TAIL(list, ninfo, link);
2030 
2031 	if (type == -1)
2032 		return (size);
2033 
2034 	notesize = sizeof(Elf_Note) +		/* note header */
2035 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2036 						/* note name */
2037 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2038 
2039 	return (notesize);
2040 }
2041 
2042 static size_t
2043 append_note_data(const void *src, void *dst, size_t len)
2044 {
2045 	size_t padded_len;
2046 
2047 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
2048 	if (dst != NULL) {
2049 		bcopy(src, dst, len);
2050 		bzero((char *)dst + len, padded_len - len);
2051 	}
2052 	return (padded_len);
2053 }
2054 
2055 size_t
2056 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2057 {
2058 	Elf_Note *note;
2059 	char *buf;
2060 	size_t notesize;
2061 
2062 	buf = dst;
2063 	if (buf != NULL) {
2064 		note = (Elf_Note *)buf;
2065 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2066 		note->n_descsz = size;
2067 		note->n_type = type;
2068 		buf += sizeof(*note);
2069 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2070 		    sizeof(FREEBSD_ABI_VENDOR));
2071 		append_note_data(src, buf, size);
2072 		if (descp != NULL)
2073 			*descp = buf;
2074 	}
2075 
2076 	notesize = sizeof(Elf_Note) +		/* note header */
2077 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2078 						/* note name */
2079 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2080 
2081 	return (notesize);
2082 }
2083 
2084 static void
2085 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb)
2086 {
2087 	Elf_Note note;
2088 	const struct sysentvec *sv;
2089 	ssize_t old_len, sect_len;
2090 	size_t new_len, descsz, i;
2091 
2092 	if (ninfo->type == -1) {
2093 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2094 		return;
2095 	}
2096 
2097 	sv = td->td_proc->p_sysent;
2098 
2099 	note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1;
2100 	note.n_descsz = ninfo->outsize;
2101 	note.n_type = ninfo->type;
2102 
2103 	sbuf_bcat(sb, &note, sizeof(note));
2104 	sbuf_start_section(sb, &old_len);
2105 	sbuf_bcat(sb, sv->sv_elf_core_abi_vendor,
2106 	    strlen(sv->sv_elf_core_abi_vendor) + 1);
2107 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2108 	if (note.n_descsz == 0)
2109 		return;
2110 	sbuf_start_section(sb, &old_len);
2111 	if (ninfo->regset != NULL) {
2112 		struct regset *regset = ninfo->regset;
2113 		void *buf;
2114 
2115 		buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK);
2116 		(void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize);
2117 		sbuf_bcat(sb, buf, ninfo->outsize);
2118 		free(buf, M_TEMP);
2119 	} else
2120 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2121 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2122 	if (sect_len < 0)
2123 		return;
2124 
2125 	new_len = (size_t)sect_len;
2126 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2127 	if (new_len < descsz) {
2128 		/*
2129 		 * It is expected that individual note emitters will correctly
2130 		 * predict their expected output size and fill up to that size
2131 		 * themselves, padding in a format-specific way if needed.
2132 		 * However, in case they don't, just do it here with zeros.
2133 		 */
2134 		for (i = 0; i < descsz - new_len; i++)
2135 			sbuf_putc(sb, 0);
2136 	} else if (new_len > descsz) {
2137 		/*
2138 		 * We can't always truncate sb -- we may have drained some
2139 		 * of it already.
2140 		 */
2141 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2142 		    "read it (%zu > %zu).  Since it is longer than "
2143 		    "expected, this coredump's notes are corrupt.  THIS "
2144 		    "IS A BUG in the note_procstat routine for type %u.\n",
2145 		    __func__, (unsigned)note.n_type, new_len, descsz,
2146 		    (unsigned)note.n_type));
2147 	}
2148 }
2149 
2150 /*
2151  * Miscellaneous note out functions.
2152  */
2153 
2154 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2155 #include <compat/freebsd32/freebsd32.h>
2156 #include <compat/freebsd32/freebsd32_signal.h>
2157 
2158 typedef struct prstatus32 elf_prstatus_t;
2159 typedef struct prpsinfo32 elf_prpsinfo_t;
2160 typedef struct fpreg32 elf_prfpregset_t;
2161 typedef struct fpreg32 elf_fpregset_t;
2162 typedef struct reg32 elf_gregset_t;
2163 typedef struct thrmisc32 elf_thrmisc_t;
2164 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t;
2165 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
2166 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2167 typedef uint32_t elf_ps_strings_t;
2168 #else
2169 typedef prstatus_t elf_prstatus_t;
2170 typedef prpsinfo_t elf_prpsinfo_t;
2171 typedef prfpregset_t elf_prfpregset_t;
2172 typedef prfpregset_t elf_fpregset_t;
2173 typedef gregset_t elf_gregset_t;
2174 typedef thrmisc_t elf_thrmisc_t;
2175 typedef struct ptrace_lwpinfo elf_lwpinfo_t;
2176 #define ELF_KERN_PROC_MASK	0
2177 typedef struct kinfo_proc elf_kinfo_proc_t;
2178 typedef vm_offset_t elf_ps_strings_t;
2179 #endif
2180 
2181 static void
2182 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2183 {
2184 	struct sbuf sbarg;
2185 	size_t len;
2186 	char *cp, *end;
2187 	struct proc *p;
2188 	elf_prpsinfo_t *psinfo;
2189 	int error;
2190 
2191 	p = arg;
2192 	if (sb != NULL) {
2193 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2194 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2195 		psinfo->pr_version = PRPSINFO_VERSION;
2196 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2197 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2198 		PROC_LOCK(p);
2199 		if (p->p_args != NULL) {
2200 			len = sizeof(psinfo->pr_psargs) - 1;
2201 			if (len > p->p_args->ar_length)
2202 				len = p->p_args->ar_length;
2203 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2204 			PROC_UNLOCK(p);
2205 			error = 0;
2206 		} else {
2207 			_PHOLD(p);
2208 			PROC_UNLOCK(p);
2209 			sbuf_new(&sbarg, psinfo->pr_psargs,
2210 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2211 			error = proc_getargv(curthread, p, &sbarg);
2212 			PRELE(p);
2213 			if (sbuf_finish(&sbarg) == 0) {
2214 				len = sbuf_len(&sbarg);
2215 				if (len > 0)
2216 					len--;
2217 			} else {
2218 				len = sizeof(psinfo->pr_psargs) - 1;
2219 			}
2220 			sbuf_delete(&sbarg);
2221 		}
2222 		if (error != 0 || len == 0 || (ssize_t)len == -1)
2223 			strlcpy(psinfo->pr_psargs, p->p_comm,
2224 			    sizeof(psinfo->pr_psargs));
2225 		else {
2226 			KASSERT(len < sizeof(psinfo->pr_psargs),
2227 			    ("len is too long: %zu vs %zu", len,
2228 			    sizeof(psinfo->pr_psargs)));
2229 			cp = psinfo->pr_psargs;
2230 			end = cp + len - 1;
2231 			for (;;) {
2232 				cp = memchr(cp, '\0', end - cp);
2233 				if (cp == NULL)
2234 					break;
2235 				*cp = ' ';
2236 			}
2237 		}
2238 		psinfo->pr_pid = p->p_pid;
2239 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2240 		free(psinfo, M_TEMP);
2241 	}
2242 	*sizep = sizeof(*psinfo);
2243 }
2244 
2245 static bool
2246 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf,
2247     size_t *sizep)
2248 {
2249 	elf_prstatus_t *status;
2250 
2251 	if (buf != NULL) {
2252 		KASSERT(*sizep == sizeof(*status), ("%s: invalid size",
2253 		    __func__));
2254 		status = buf;
2255 		memset(status, 0, *sizep);
2256 		status->pr_version = PRSTATUS_VERSION;
2257 		status->pr_statussz = sizeof(elf_prstatus_t);
2258 		status->pr_gregsetsz = sizeof(elf_gregset_t);
2259 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2260 		status->pr_osreldate = osreldate;
2261 		status->pr_cursig = td->td_proc->p_sig;
2262 		status->pr_pid = td->td_tid;
2263 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2264 		fill_regs32(td, &status->pr_reg);
2265 #else
2266 		fill_regs(td, &status->pr_reg);
2267 #endif
2268 	}
2269 	*sizep = sizeof(*status);
2270 	return (true);
2271 }
2272 
2273 static bool
2274 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf,
2275     size_t size)
2276 {
2277 	elf_prstatus_t *status;
2278 
2279 	KASSERT(size == sizeof(*status), ("%s: invalid size", __func__));
2280 	status = buf;
2281 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2282 	set_regs32(td, &status->pr_reg);
2283 #else
2284 	set_regs(td, &status->pr_reg);
2285 #endif
2286 	return (true);
2287 }
2288 
2289 static struct regset __elfN(regset_prstatus) = {
2290 	.note = NT_PRSTATUS,
2291 	.size = sizeof(elf_prstatus_t),
2292 	.get = __elfN(get_prstatus),
2293 	.set = __elfN(set_prstatus),
2294 };
2295 ELF_REGSET(__elfN(regset_prstatus));
2296 
2297 static bool
2298 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf,
2299     size_t *sizep)
2300 {
2301 	elf_prfpregset_t *fpregset;
2302 
2303 	if (buf != NULL) {
2304 		KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size",
2305 		    __func__));
2306 		fpregset = buf;
2307 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2308 		fill_fpregs32(td, fpregset);
2309 #else
2310 		fill_fpregs(td, fpregset);
2311 #endif
2312 	}
2313 	*sizep = sizeof(*fpregset);
2314 	return (true);
2315 }
2316 
2317 static bool
2318 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf,
2319     size_t size)
2320 {
2321 	elf_prfpregset_t *fpregset;
2322 
2323 	fpregset = buf;
2324 	KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__));
2325 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2326 	set_fpregs32(td, fpregset);
2327 #else
2328 	set_fpregs(td, fpregset);
2329 #endif
2330 	return (true);
2331 }
2332 
2333 static struct regset __elfN(regset_fpregset) = {
2334 	.note = NT_FPREGSET,
2335 	.size = sizeof(elf_prfpregset_t),
2336 	.get = __elfN(get_fpregset),
2337 	.set = __elfN(set_fpregset),
2338 };
2339 ELF_REGSET(__elfN(regset_fpregset));
2340 
2341 static bool
2342 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf,
2343     size_t *sizep)
2344 {
2345 	elf_thrmisc_t *thrmisc;
2346 
2347 	if (buf != NULL) {
2348 		KASSERT(*sizep == sizeof(*thrmisc),
2349 		    ("%s: invalid size", __func__));
2350 		thrmisc = buf;
2351 		bzero(thrmisc, sizeof(*thrmisc));
2352 		strcpy(thrmisc->pr_tname, td->td_name);
2353 	}
2354 	*sizep = sizeof(*thrmisc);
2355 	return (true);
2356 }
2357 
2358 static struct regset __elfN(regset_thrmisc) = {
2359 	.note = NT_THRMISC,
2360 	.size = sizeof(elf_thrmisc_t),
2361 	.get = __elfN(get_thrmisc),
2362 };
2363 ELF_REGSET(__elfN(regset_thrmisc));
2364 
2365 static bool
2366 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf,
2367     size_t *sizep)
2368 {
2369 	elf_lwpinfo_t pl;
2370 	size_t size;
2371 	int structsize;
2372 
2373 	size = sizeof(structsize) + sizeof(pl);
2374 	if (buf != NULL) {
2375 		KASSERT(*sizep == size, ("%s: invalid size", __func__));
2376 		structsize = sizeof(pl);
2377 		memcpy(buf, &structsize, sizeof(structsize));
2378 		bzero(&pl, sizeof(pl));
2379 		pl.pl_lwpid = td->td_tid;
2380 		pl.pl_event = PL_EVENT_NONE;
2381 		pl.pl_sigmask = td->td_sigmask;
2382 		pl.pl_siglist = td->td_siglist;
2383 		if (td->td_si.si_signo != 0) {
2384 			pl.pl_event = PL_EVENT_SIGNAL;
2385 			pl.pl_flags |= PL_FLAG_SI;
2386 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2387 			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2388 #else
2389 			pl.pl_siginfo = td->td_si;
2390 #endif
2391 		}
2392 		strcpy(pl.pl_tdname, td->td_name);
2393 		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2394 		memcpy((int *)buf + 1, &pl, sizeof(pl));
2395 	}
2396 	*sizep = size;
2397 	return (true);
2398 }
2399 
2400 static struct regset __elfN(regset_lwpinfo) = {
2401 	.note = NT_PTLWPINFO,
2402 	.size = sizeof(int) + sizeof(elf_lwpinfo_t),
2403 	.get = __elfN(get_lwpinfo),
2404 };
2405 ELF_REGSET(__elfN(regset_lwpinfo));
2406 
2407 static size_t
2408 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list,
2409     struct thread *target_td)
2410 {
2411 	struct sysentvec *sv = td->td_proc->p_sysent;
2412 	struct regset **regsetp, **regset_end, *regset;
2413 	size_t size;
2414 
2415 	size = 0;
2416 
2417 	/* NT_PRSTATUS must be the first register set note. */
2418 	size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus),
2419 	    target_td);
2420 
2421 	regsetp = sv->sv_regset_begin;
2422 	if (regsetp == NULL) {
2423 		/* XXX: This shouldn't be true for any FreeBSD ABIs. */
2424 		size += __elfN(register_regset_note)(td, list,
2425 		    &__elfN(regset_fpregset), target_td);
2426 		return (size);
2427 	}
2428 	regset_end = sv->sv_regset_end;
2429 	MPASS(regset_end != NULL);
2430 	for (; regsetp < regset_end; regsetp++) {
2431 		regset = *regsetp;
2432 		if (regset->note == NT_PRSTATUS)
2433 			continue;
2434 		size += __elfN(register_regset_note)(td, list, regset,
2435 		    target_td);
2436 	}
2437 	return (size);
2438 }
2439 
2440 /*
2441  * Allow for MD specific notes, as well as any MD
2442  * specific preparations for writing MI notes.
2443  */
2444 static void
2445 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2446 {
2447 	struct thread *td;
2448 	void *buf;
2449 	size_t size;
2450 
2451 	td = (struct thread *)arg;
2452 	size = *sizep;
2453 	if (size != 0 && sb != NULL)
2454 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2455 	else
2456 		buf = NULL;
2457 	size = 0;
2458 	__elfN(dump_thread)(td, buf, &size);
2459 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2460 	if (size != 0 && sb != NULL)
2461 		sbuf_bcat(sb, buf, size);
2462 	free(buf, M_TEMP);
2463 	*sizep = size;
2464 }
2465 
2466 #ifdef KINFO_PROC_SIZE
2467 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2468 #endif
2469 
2470 static void
2471 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2472 {
2473 	struct proc *p;
2474 	size_t size;
2475 	int structsize;
2476 
2477 	p = arg;
2478 	size = sizeof(structsize) + p->p_numthreads *
2479 	    sizeof(elf_kinfo_proc_t);
2480 
2481 	if (sb != NULL) {
2482 		KASSERT(*sizep == size, ("invalid size"));
2483 		structsize = sizeof(elf_kinfo_proc_t);
2484 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2485 		sx_slock(&proctree_lock);
2486 		PROC_LOCK(p);
2487 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2488 		sx_sunlock(&proctree_lock);
2489 	}
2490 	*sizep = size;
2491 }
2492 
2493 #ifdef KINFO_FILE_SIZE
2494 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2495 #endif
2496 
2497 static void
2498 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2499 {
2500 	struct proc *p;
2501 	size_t size, sect_sz, i;
2502 	ssize_t start_len, sect_len;
2503 	int structsize, filedesc_flags;
2504 
2505 	if (coredump_pack_fileinfo)
2506 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2507 	else
2508 		filedesc_flags = 0;
2509 
2510 	p = arg;
2511 	structsize = sizeof(struct kinfo_file);
2512 	if (sb == NULL) {
2513 		size = 0;
2514 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2515 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2516 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2517 		PROC_LOCK(p);
2518 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2519 		sbuf_finish(sb);
2520 		sbuf_delete(sb);
2521 		*sizep = size;
2522 	} else {
2523 		sbuf_start_section(sb, &start_len);
2524 
2525 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2526 		PROC_LOCK(p);
2527 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2528 		    filedesc_flags);
2529 
2530 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2531 		if (sect_len < 0)
2532 			return;
2533 		sect_sz = sect_len;
2534 
2535 		KASSERT(sect_sz <= *sizep,
2536 		    ("kern_proc_filedesc_out did not respect maxlen; "
2537 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2538 		     sect_sz - sizeof(structsize)));
2539 
2540 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2541 			sbuf_putc(sb, 0);
2542 	}
2543 }
2544 
2545 #ifdef KINFO_VMENTRY_SIZE
2546 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2547 #endif
2548 
2549 static void
2550 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2551 {
2552 	struct proc *p;
2553 	size_t size;
2554 	int structsize, vmmap_flags;
2555 
2556 	if (coredump_pack_vmmapinfo)
2557 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2558 	else
2559 		vmmap_flags = 0;
2560 
2561 	p = arg;
2562 	structsize = sizeof(struct kinfo_vmentry);
2563 	if (sb == NULL) {
2564 		size = 0;
2565 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2566 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2567 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2568 		PROC_LOCK(p);
2569 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2570 		sbuf_finish(sb);
2571 		sbuf_delete(sb);
2572 		*sizep = size;
2573 	} else {
2574 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2575 		PROC_LOCK(p);
2576 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2577 		    vmmap_flags);
2578 	}
2579 }
2580 
2581 static void
2582 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2583 {
2584 	struct proc *p;
2585 	size_t size;
2586 	int structsize;
2587 
2588 	p = arg;
2589 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2590 	if (sb != NULL) {
2591 		KASSERT(*sizep == size, ("invalid size"));
2592 		structsize = sizeof(gid_t);
2593 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2594 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2595 		    sizeof(gid_t));
2596 	}
2597 	*sizep = size;
2598 }
2599 
2600 static void
2601 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2602 {
2603 	struct proc *p;
2604 	size_t size;
2605 	int structsize;
2606 
2607 	p = arg;
2608 	size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
2609 	if (sb != NULL) {
2610 		KASSERT(*sizep == size, ("invalid size"));
2611 		structsize = sizeof(p->p_pd->pd_cmask);
2612 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2613 		sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
2614 	}
2615 	*sizep = size;
2616 }
2617 
2618 static void
2619 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2620 {
2621 	struct proc *p;
2622 	struct rlimit rlim[RLIM_NLIMITS];
2623 	size_t size;
2624 	int structsize, i;
2625 
2626 	p = arg;
2627 	size = sizeof(structsize) + sizeof(rlim);
2628 	if (sb != NULL) {
2629 		KASSERT(*sizep == size, ("invalid size"));
2630 		structsize = sizeof(rlim);
2631 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2632 		PROC_LOCK(p);
2633 		for (i = 0; i < RLIM_NLIMITS; i++)
2634 			lim_rlimit_proc(p, i, &rlim[i]);
2635 		PROC_UNLOCK(p);
2636 		sbuf_bcat(sb, rlim, sizeof(rlim));
2637 	}
2638 	*sizep = size;
2639 }
2640 
2641 static void
2642 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2643 {
2644 	struct proc *p;
2645 	size_t size;
2646 	int structsize;
2647 
2648 	p = arg;
2649 	size = sizeof(structsize) + sizeof(p->p_osrel);
2650 	if (sb != NULL) {
2651 		KASSERT(*sizep == size, ("invalid size"));
2652 		structsize = sizeof(p->p_osrel);
2653 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2654 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2655 	}
2656 	*sizep = size;
2657 }
2658 
2659 static void
2660 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2661 {
2662 	struct proc *p;
2663 	elf_ps_strings_t ps_strings;
2664 	size_t size;
2665 	int structsize;
2666 
2667 	p = arg;
2668 	size = sizeof(structsize) + sizeof(ps_strings);
2669 	if (sb != NULL) {
2670 		KASSERT(*sizep == size, ("invalid size"));
2671 		structsize = sizeof(ps_strings);
2672 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2673 		ps_strings = PTROUT(PROC_PS_STRINGS(p));
2674 #else
2675 		ps_strings = PROC_PS_STRINGS(p);
2676 #endif
2677 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2678 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2679 	}
2680 	*sizep = size;
2681 }
2682 
2683 static void
2684 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2685 {
2686 	struct proc *p;
2687 	size_t size;
2688 	int structsize;
2689 
2690 	p = arg;
2691 	if (sb == NULL) {
2692 		size = 0;
2693 		sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo),
2694 		    SBUF_FIXEDLEN);
2695 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2696 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2697 		PHOLD(p);
2698 		proc_getauxv(curthread, p, sb);
2699 		PRELE(p);
2700 		sbuf_finish(sb);
2701 		sbuf_delete(sb);
2702 		*sizep = size;
2703 	} else {
2704 		structsize = sizeof(Elf_Auxinfo);
2705 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2706 		PHOLD(p);
2707 		proc_getauxv(curthread, p, sb);
2708 		PRELE(p);
2709 	}
2710 }
2711 
2712 #define	MAX_NOTES_LOOP	4096
2713 bool
2714 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
2715     const char *note_vendor, const Elf_Phdr *pnote,
2716     bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg)
2717 {
2718 	const Elf_Note *note, *note0, *note_end;
2719 	const char *note_name;
2720 	char *buf;
2721 	int i, error;
2722 	bool res;
2723 
2724 	/* We need some limit, might as well use PAGE_SIZE. */
2725 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2726 		return (false);
2727 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2728 	if (pnote->p_offset > PAGE_SIZE ||
2729 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2730 		buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2731 		if (buf == NULL) {
2732 			VOP_UNLOCK(imgp->vp);
2733 			buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2734 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2735 		}
2736 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2737 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2738 		    curthread->td_ucred, NOCRED, NULL, curthread);
2739 		if (error != 0) {
2740 			uprintf("i/o error PT_NOTE\n");
2741 			goto retf;
2742 		}
2743 		note = note0 = (const Elf_Note *)buf;
2744 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2745 	} else {
2746 		note = note0 = (const Elf_Note *)(imgp->image_header +
2747 		    pnote->p_offset);
2748 		note_end = (const Elf_Note *)(imgp->image_header +
2749 		    pnote->p_offset + pnote->p_filesz);
2750 		buf = NULL;
2751 	}
2752 	for (i = 0; i < MAX_NOTES_LOOP && note >= note0 && note < note_end;
2753 	    i++) {
2754 		if (!aligned(note, Elf32_Addr)) {
2755 			uprintf("Unaligned ELF note\n");
2756 			goto retf;
2757 		}
2758 		if ((const char *)note_end - (const char *)note <
2759 		    sizeof(Elf_Note)) {
2760 			uprintf("ELF note to short\n");
2761 			goto retf;
2762 		}
2763 		if (note->n_namesz != checknote->n_namesz ||
2764 		    note->n_descsz != checknote->n_descsz ||
2765 		    note->n_type != checknote->n_type)
2766 			goto nextnote;
2767 		note_name = (const char *)(note + 1);
2768 		if (note_name + checknote->n_namesz >=
2769 		    (const char *)note_end || strncmp(note_vendor,
2770 		    note_name, checknote->n_namesz) != 0)
2771 			goto nextnote;
2772 
2773 		if (cb(note, cb_arg, &res))
2774 			goto ret;
2775 nextnote:
2776 		note = (const Elf_Note *)((const char *)(note + 1) +
2777 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2778 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2779 	}
2780 	if (i >= MAX_NOTES_LOOP)
2781 		uprintf("ELF note parser reached %d notes\n", i);
2782 retf:
2783 	res = false;
2784 ret:
2785 	free(buf, M_TEMP);
2786 	return (res);
2787 }
2788 
2789 struct brandnote_cb_arg {
2790 	Elf_Brandnote *brandnote;
2791 	int32_t *osrel;
2792 };
2793 
2794 static bool
2795 brandnote_cb(const Elf_Note *note, void *arg0, bool *res)
2796 {
2797 	struct brandnote_cb_arg *arg;
2798 
2799 	arg = arg0;
2800 
2801 	/*
2802 	 * Fetch the osreldate for binary from the ELF OSABI-note if
2803 	 * necessary.
2804 	 */
2805 	*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2806 	    arg->brandnote->trans_osrel != NULL ?
2807 	    arg->brandnote->trans_osrel(note, arg->osrel) : true;
2808 
2809 	return (true);
2810 }
2811 
2812 static Elf_Note fctl_note = {
2813 	.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2814 	.n_descsz = sizeof(uint32_t),
2815 	.n_type = NT_FREEBSD_FEATURE_CTL,
2816 };
2817 
2818 struct fctl_cb_arg {
2819 	bool *has_fctl0;
2820 	uint32_t *fctl0;
2821 };
2822 
2823 static bool
2824 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res)
2825 {
2826 	struct fctl_cb_arg *arg;
2827 	const Elf32_Word *desc;
2828 	uintptr_t p;
2829 
2830 	arg = arg0;
2831 	p = (uintptr_t)(note + 1);
2832 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2833 	desc = (const Elf32_Word *)p;
2834 	*arg->has_fctl0 = true;
2835 	*arg->fctl0 = desc[0];
2836 	*res = true;
2837 	return (true);
2838 }
2839 
2840 /*
2841  * Try to find the appropriate ABI-note section for checknote, fetch
2842  * the osreldate and feature control flags for binary from the ELF
2843  * OSABI-note.  Only the first page of the image is searched, the same
2844  * as for headers.
2845  */
2846 static bool
2847 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2848     int32_t *osrel, bool *has_fctl0, uint32_t *fctl0)
2849 {
2850 	const Elf_Phdr *phdr;
2851 	const Elf_Ehdr *hdr;
2852 	struct brandnote_cb_arg b_arg;
2853 	struct fctl_cb_arg f_arg;
2854 	int i, j;
2855 
2856 	hdr = (const Elf_Ehdr *)imgp->image_header;
2857 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2858 	b_arg.brandnote = brandnote;
2859 	b_arg.osrel = osrel;
2860 	f_arg.has_fctl0 = has_fctl0;
2861 	f_arg.fctl0 = fctl0;
2862 
2863 	for (i = 0; i < hdr->e_phnum; i++) {
2864 		if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2865 		    &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2866 		    &b_arg)) {
2867 			for (j = 0; j < hdr->e_phnum; j++) {
2868 				if (phdr[j].p_type == PT_NOTE &&
2869 				    __elfN(parse_notes)(imgp, &fctl_note,
2870 				    FREEBSD_ABI_VENDOR, &phdr[j],
2871 				    note_fctl_cb, &f_arg))
2872 					break;
2873 			}
2874 			return (true);
2875 		}
2876 	}
2877 	return (false);
2878 
2879 }
2880 
2881 /*
2882  * Tell kern_execve.c about it, with a little help from the linker.
2883  */
2884 static struct execsw __elfN(execsw) = {
2885 	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2886 	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2887 };
2888 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2889 
2890 static vm_prot_t
2891 __elfN(trans_prot)(Elf_Word flags)
2892 {
2893 	vm_prot_t prot;
2894 
2895 	prot = 0;
2896 	if (flags & PF_X)
2897 		prot |= VM_PROT_EXECUTE;
2898 	if (flags & PF_W)
2899 		prot |= VM_PROT_WRITE;
2900 	if (flags & PF_R)
2901 		prot |= VM_PROT_READ;
2902 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2903 	if (i386_read_exec && (flags & PF_R))
2904 		prot |= VM_PROT_EXECUTE;
2905 #endif
2906 	return (prot);
2907 }
2908 
2909 static Elf_Word
2910 __elfN(untrans_prot)(vm_prot_t prot)
2911 {
2912 	Elf_Word flags;
2913 
2914 	flags = 0;
2915 	if (prot & VM_PROT_EXECUTE)
2916 		flags |= PF_X;
2917 	if (prot & VM_PROT_READ)
2918 		flags |= PF_R;
2919 	if (prot & VM_PROT_WRITE)
2920 		flags |= PF_W;
2921 	return (flags);
2922 }
2923