xref: /freebsd/sys/kern/imgact_elf.c (revision 681ce946)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2000-2001, 2003 David O'Brien
6  * Copyright (c) 1995-1996 Søren Schmidt
7  * Copyright (c) 1996 Peter Wemm
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer
15  *    in this position and unchanged.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_capsicum.h"
38 
39 #include <sys/param.h>
40 #include <sys/capsicum.h>
41 #include <sys/compressor.h>
42 #include <sys/exec.h>
43 #include <sys/fcntl.h>
44 #include <sys/imgact.h>
45 #include <sys/imgact_elf.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/mman.h>
52 #include <sys/namei.h>
53 #include <sys/proc.h>
54 #include <sys/procfs.h>
55 #include <sys/ptrace.h>
56 #include <sys/racct.h>
57 #include <sys/reg.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sf_buf.h>
62 #include <sys/smp.h>
63 #include <sys/systm.h>
64 #include <sys/signalvar.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscall.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/vnode.h>
71 #include <sys/syslog.h>
72 #include <sys/eventhandler.h>
73 #include <sys/user.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_param.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 
83 #include <machine/elf.h>
84 #include <machine/md_var.h>
85 
86 #define ELF_NOTE_ROUNDSIZE	4
87 #define OLD_EI_BRAND	8
88 
89 static int __elfN(check_header)(const Elf_Ehdr *hdr);
90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
91     const char *interp, int32_t *osrel, uint32_t *fctl0);
92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
93     u_long *entry);
94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
95     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
98     int32_t *osrel);
99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
100 static bool __elfN(check_note)(struct image_params *imgp,
101     Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0,
102     uint32_t *fctl0);
103 static vm_prot_t __elfN(trans_prot)(Elf_Word);
104 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
105 
106 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
107     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
108     "");
109 
110 int __elfN(fallback_brand) = -1;
111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
112     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
113     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
114 
115 static int elf_legacy_coredump = 0;
116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
117     &elf_legacy_coredump, 0,
118     "include all and only RW pages in core dumps");
119 
120 int __elfN(nxstack) =
121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
122     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
123     defined(__riscv)
124 	1;
125 #else
126 	0;
127 #endif
128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
129     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
130     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
131 
132 #if defined(__amd64__)
133 static int __elfN(vdso) = 1;
134 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
135     vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0,
136     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading");
137 #else
138 static int __elfN(vdso) = 0;
139 #endif
140 
141 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
142 int i386_read_exec = 0;
143 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
144     "enable execution from readable segments");
145 #endif
146 
147 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
148 static int
149 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
150 {
151 	u_long val;
152 	int error;
153 
154 	val = __elfN(pie_base);
155 	error = sysctl_handle_long(oidp, &val, 0, req);
156 	if (error != 0 || req->newptr == NULL)
157 		return (error);
158 	if ((val & PAGE_MASK) != 0)
159 		return (EINVAL);
160 	__elfN(pie_base) = val;
161 	return (0);
162 }
163 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
164     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
165     sysctl_pie_base, "LU",
166     "PIE load base without randomization");
167 
168 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
169     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
170     "");
171 #define	ASLR_NODE_OID	__CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
172 
173 /*
174  * While for 64-bit machines ASLR works properly, there are
175  * still some problems when using 32-bit architectures. For this
176  * reason ASLR is only enabled by default when running native
177  * 64-bit non-PIE executables.
178  */
179 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64;
180 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
181     &__elfN(aslr_enabled), 0,
182     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
183     ": enable address map randomization");
184 
185 /*
186  * Enable ASLR only for 64-bit PIE binaries by default.
187  */
188 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64;
189 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
190     &__elfN(pie_aslr_enabled), 0,
191     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
192     ": enable address map randomization for PIE binaries");
193 
194 /*
195  * Sbrk is now deprecated and it can be assumed, that in most
196  * cases it will not be used anyway. This setting is valid only
197  * for the ASLR enabled and allows for utilizing the bss grow region.
198  */
199 static int __elfN(aslr_honor_sbrk) = 0;
200 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
201     &__elfN(aslr_honor_sbrk), 0,
202     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
203 
204 static int __elfN(aslr_stack_gap) = 0;
205 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW,
206     &__elfN(aslr_stack_gap), 0,
207     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
208     ": maximum percentage of main stack to waste on a random gap");
209 
210 static int __elfN(sigfastblock) = 1;
211 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
212     CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
213     "enable sigfastblock for new processes");
214 
215 static bool __elfN(allow_wx) = true;
216 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx,
217     CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
218     "Allow pages to be mapped simultaneously writable and executable");
219 
220 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
221 
222 #define	aligned(a, t)	(rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
223 
224 Elf_Brandnote __elfN(freebsd_brandnote) = {
225 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
226 	.hdr.n_descsz	= sizeof(int32_t),
227 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
228 	.vendor		= FREEBSD_ABI_VENDOR,
229 	.flags		= BN_TRANSLATE_OSREL,
230 	.trans_osrel	= __elfN(freebsd_trans_osrel)
231 };
232 
233 static bool
234 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
235 {
236 	uintptr_t p;
237 
238 	p = (uintptr_t)(note + 1);
239 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
240 	*osrel = *(const int32_t *)(p);
241 
242 	return (true);
243 }
244 
245 static const char GNU_ABI_VENDOR[] = "GNU";
246 static int GNU_KFREEBSD_ABI_DESC = 3;
247 
248 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
249 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
250 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
251 	.hdr.n_type	= 1,
252 	.vendor		= GNU_ABI_VENDOR,
253 	.flags		= BN_TRANSLATE_OSREL,
254 	.trans_osrel	= kfreebsd_trans_osrel
255 };
256 
257 static bool
258 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
259 {
260 	const Elf32_Word *desc;
261 	uintptr_t p;
262 
263 	p = (uintptr_t)(note + 1);
264 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
265 
266 	desc = (const Elf32_Word *)p;
267 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
268 		return (false);
269 
270 	/*
271 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
272 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
273 	 */
274 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
275 
276 	return (true);
277 }
278 
279 int
280 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
281 {
282 	int i;
283 
284 	for (i = 0; i < MAX_BRANDS; i++) {
285 		if (elf_brand_list[i] == NULL) {
286 			elf_brand_list[i] = entry;
287 			break;
288 		}
289 	}
290 	if (i == MAX_BRANDS) {
291 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
292 			__func__, entry);
293 		return (-1);
294 	}
295 	return (0);
296 }
297 
298 int
299 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
300 {
301 	int i;
302 
303 	for (i = 0; i < MAX_BRANDS; i++) {
304 		if (elf_brand_list[i] == entry) {
305 			elf_brand_list[i] = NULL;
306 			break;
307 		}
308 	}
309 	if (i == MAX_BRANDS)
310 		return (-1);
311 	return (0);
312 }
313 
314 bool
315 __elfN(brand_inuse)(Elf_Brandinfo *entry)
316 {
317 	struct proc *p;
318 	bool rval = false;
319 
320 	sx_slock(&allproc_lock);
321 	FOREACH_PROC_IN_SYSTEM(p) {
322 		if (p->p_sysent == entry->sysvec) {
323 			rval = true;
324 			break;
325 		}
326 	}
327 	sx_sunlock(&allproc_lock);
328 
329 	return (rval);
330 }
331 
332 static Elf_Brandinfo *
333 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
334     int32_t *osrel, uint32_t *fctl0)
335 {
336 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
337 	Elf_Brandinfo *bi, *bi_m;
338 	bool ret, has_fctl0;
339 	int i, interp_name_len;
340 
341 	interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
342 
343 	/*
344 	 * We support four types of branding -- (1) the ELF EI_OSABI field
345 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
346 	 * branding w/in the ELF header, (3) path of the `interp_path'
347 	 * field, and (4) the ".note.ABI-tag" ELF section.
348 	 */
349 
350 	/* Look for an ".note.ABI-tag" ELF section */
351 	bi_m = NULL;
352 	for (i = 0; i < MAX_BRANDS; i++) {
353 		bi = elf_brand_list[i];
354 		if (bi == NULL)
355 			continue;
356 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
357 			continue;
358 		if (hdr->e_machine == bi->machine && (bi->flags &
359 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
360 			has_fctl0 = false;
361 			*fctl0 = 0;
362 			*osrel = 0;
363 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
364 			    &has_fctl0, fctl0);
365 			/* Give brand a chance to veto check_note's guess */
366 			if (ret && bi->header_supported) {
367 				ret = bi->header_supported(imgp, osrel,
368 				    has_fctl0 ? fctl0 : NULL);
369 			}
370 			/*
371 			 * If note checker claimed the binary, but the
372 			 * interpreter path in the image does not
373 			 * match default one for the brand, try to
374 			 * search for other brands with the same
375 			 * interpreter.  Either there is better brand
376 			 * with the right interpreter, or, failing
377 			 * this, we return first brand which accepted
378 			 * our note and, optionally, header.
379 			 */
380 			if (ret && bi_m == NULL && interp != NULL &&
381 			    (bi->interp_path == NULL ||
382 			    (strlen(bi->interp_path) + 1 != interp_name_len ||
383 			    strncmp(interp, bi->interp_path, interp_name_len)
384 			    != 0))) {
385 				bi_m = bi;
386 				ret = 0;
387 			}
388 			if (ret)
389 				return (bi);
390 		}
391 	}
392 	if (bi_m != NULL)
393 		return (bi_m);
394 
395 	/* If the executable has a brand, search for it in the brand list. */
396 	for (i = 0; i < MAX_BRANDS; i++) {
397 		bi = elf_brand_list[i];
398 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
399 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
400 			continue;
401 		if (hdr->e_machine == bi->machine &&
402 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
403 		    (bi->compat_3_brand != NULL &&
404 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
405 		    bi->compat_3_brand) == 0))) {
406 			/* Looks good, but give brand a chance to veto */
407 			if (bi->header_supported == NULL ||
408 			    bi->header_supported(imgp, NULL, NULL)) {
409 				/*
410 				 * Again, prefer strictly matching
411 				 * interpreter path.
412 				 */
413 				if (interp_name_len == 0 &&
414 				    bi->interp_path == NULL)
415 					return (bi);
416 				if (bi->interp_path != NULL &&
417 				    strlen(bi->interp_path) + 1 ==
418 				    interp_name_len && strncmp(interp,
419 				    bi->interp_path, interp_name_len) == 0)
420 					return (bi);
421 				if (bi_m == NULL)
422 					bi_m = bi;
423 			}
424 		}
425 	}
426 	if (bi_m != NULL)
427 		return (bi_m);
428 
429 	/* No known brand, see if the header is recognized by any brand */
430 	for (i = 0; i < MAX_BRANDS; i++) {
431 		bi = elf_brand_list[i];
432 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
433 		    bi->header_supported == NULL)
434 			continue;
435 		if (hdr->e_machine == bi->machine) {
436 			ret = bi->header_supported(imgp, NULL, NULL);
437 			if (ret)
438 				return (bi);
439 		}
440 	}
441 
442 	/* Lacking a known brand, search for a recognized interpreter. */
443 	if (interp != NULL) {
444 		for (i = 0; i < MAX_BRANDS; i++) {
445 			bi = elf_brand_list[i];
446 			if (bi == NULL || (bi->flags &
447 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
448 			    != 0)
449 				continue;
450 			if (hdr->e_machine == bi->machine &&
451 			    bi->interp_path != NULL &&
452 			    /* ELF image p_filesz includes terminating zero */
453 			    strlen(bi->interp_path) + 1 == interp_name_len &&
454 			    strncmp(interp, bi->interp_path, interp_name_len)
455 			    == 0 && (bi->header_supported == NULL ||
456 			    bi->header_supported(imgp, NULL, NULL)))
457 				return (bi);
458 		}
459 	}
460 
461 	/* Lacking a recognized interpreter, try the default brand */
462 	for (i = 0; i < MAX_BRANDS; i++) {
463 		bi = elf_brand_list[i];
464 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
465 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
466 			continue;
467 		if (hdr->e_machine == bi->machine &&
468 		    __elfN(fallback_brand) == bi->brand &&
469 		    (bi->header_supported == NULL ||
470 		    bi->header_supported(imgp, NULL, NULL)))
471 			return (bi);
472 	}
473 	return (NULL);
474 }
475 
476 static bool
477 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
478 {
479 	return (hdr->e_phoff <= PAGE_SIZE &&
480 	    (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
481 }
482 
483 static int
484 __elfN(check_header)(const Elf_Ehdr *hdr)
485 {
486 	Elf_Brandinfo *bi;
487 	int i;
488 
489 	if (!IS_ELF(*hdr) ||
490 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
491 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
492 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
493 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
494 	    hdr->e_version != ELF_TARG_VER)
495 		return (ENOEXEC);
496 
497 	/*
498 	 * Make sure we have at least one brand for this machine.
499 	 */
500 
501 	for (i = 0; i < MAX_BRANDS; i++) {
502 		bi = elf_brand_list[i];
503 		if (bi != NULL && bi->machine == hdr->e_machine)
504 			break;
505 	}
506 	if (i == MAX_BRANDS)
507 		return (ENOEXEC);
508 
509 	return (0);
510 }
511 
512 static int
513 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
514     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
515 {
516 	struct sf_buf *sf;
517 	int error;
518 	vm_offset_t off;
519 
520 	/*
521 	 * Create the page if it doesn't exist yet. Ignore errors.
522 	 */
523 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
524 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
525 
526 	/*
527 	 * Find the page from the underlying object.
528 	 */
529 	if (object != NULL) {
530 		sf = vm_imgact_map_page(object, offset);
531 		if (sf == NULL)
532 			return (KERN_FAILURE);
533 		off = offset - trunc_page(offset);
534 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
535 		    end - start);
536 		vm_imgact_unmap_page(sf);
537 		if (error != 0)
538 			return (KERN_FAILURE);
539 	}
540 
541 	return (KERN_SUCCESS);
542 }
543 
544 static int
545 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
546     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
547     int cow)
548 {
549 	struct sf_buf *sf;
550 	vm_offset_t off;
551 	vm_size_t sz;
552 	int error, locked, rv;
553 
554 	if (start != trunc_page(start)) {
555 		rv = __elfN(map_partial)(map, object, offset, start,
556 		    round_page(start), prot);
557 		if (rv != KERN_SUCCESS)
558 			return (rv);
559 		offset += round_page(start) - start;
560 		start = round_page(start);
561 	}
562 	if (end != round_page(end)) {
563 		rv = __elfN(map_partial)(map, object, offset +
564 		    trunc_page(end) - start, trunc_page(end), end, prot);
565 		if (rv != KERN_SUCCESS)
566 			return (rv);
567 		end = trunc_page(end);
568 	}
569 	if (start >= end)
570 		return (KERN_SUCCESS);
571 	if ((offset & PAGE_MASK) != 0) {
572 		/*
573 		 * The mapping is not page aligned.  This means that we have
574 		 * to copy the data.
575 		 */
576 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
577 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
578 		if (rv != KERN_SUCCESS)
579 			return (rv);
580 		if (object == NULL)
581 			return (KERN_SUCCESS);
582 		for (; start < end; start += sz) {
583 			sf = vm_imgact_map_page(object, offset);
584 			if (sf == NULL)
585 				return (KERN_FAILURE);
586 			off = offset - trunc_page(offset);
587 			sz = end - start;
588 			if (sz > PAGE_SIZE - off)
589 				sz = PAGE_SIZE - off;
590 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
591 			    (caddr_t)start, sz);
592 			vm_imgact_unmap_page(sf);
593 			if (error != 0)
594 				return (KERN_FAILURE);
595 			offset += sz;
596 		}
597 	} else {
598 		vm_object_reference(object);
599 		rv = vm_map_fixed(map, object, offset, start, end - start,
600 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
601 		    (object != NULL ? MAP_VN_EXEC : 0));
602 		if (rv != KERN_SUCCESS) {
603 			locked = VOP_ISLOCKED(imgp->vp);
604 			VOP_UNLOCK(imgp->vp);
605 			vm_object_deallocate(object);
606 			vn_lock(imgp->vp, locked | LK_RETRY);
607 			return (rv);
608 		} else if (object != NULL) {
609 			MPASS(imgp->vp->v_object == object);
610 			VOP_SET_TEXT_CHECKED(imgp->vp);
611 		}
612 	}
613 	return (KERN_SUCCESS);
614 }
615 
616 static int
617 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
618     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
619 {
620 	struct sf_buf *sf;
621 	size_t map_len;
622 	vm_map_t map;
623 	vm_object_t object;
624 	vm_offset_t map_addr;
625 	int error, rv, cow;
626 	size_t copy_len;
627 	vm_ooffset_t file_addr;
628 
629 	/*
630 	 * It's necessary to fail if the filsz + offset taken from the
631 	 * header is greater than the actual file pager object's size.
632 	 * If we were to allow this, then the vm_map_find() below would
633 	 * walk right off the end of the file object and into the ether.
634 	 *
635 	 * While I'm here, might as well check for something else that
636 	 * is invalid: filsz cannot be greater than memsz.
637 	 */
638 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
639 	    filsz > memsz) {
640 		uprintf("elf_load_section: truncated ELF file\n");
641 		return (ENOEXEC);
642 	}
643 
644 	object = imgp->object;
645 	map = &imgp->proc->p_vmspace->vm_map;
646 	map_addr = trunc_page((vm_offset_t)vmaddr);
647 	file_addr = trunc_page(offset);
648 
649 	/*
650 	 * We have two choices.  We can either clear the data in the last page
651 	 * of an oversized mapping, or we can start the anon mapping a page
652 	 * early and copy the initialized data into that first page.  We
653 	 * choose the second.
654 	 */
655 	if (filsz == 0)
656 		map_len = 0;
657 	else if (memsz > filsz)
658 		map_len = trunc_page(offset + filsz) - file_addr;
659 	else
660 		map_len = round_page(offset + filsz) - file_addr;
661 
662 	if (map_len != 0) {
663 		/* cow flags: don't dump readonly sections in core */
664 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
665 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
666 
667 		rv = __elfN(map_insert)(imgp, map, object, file_addr,
668 		    map_addr, map_addr + map_len, prot, cow);
669 		if (rv != KERN_SUCCESS)
670 			return (EINVAL);
671 
672 		/* we can stop now if we've covered it all */
673 		if (memsz == filsz)
674 			return (0);
675 	}
676 
677 	/*
678 	 * We have to get the remaining bit of the file into the first part
679 	 * of the oversized map segment.  This is normally because the .data
680 	 * segment in the file is extended to provide bss.  It's a neat idea
681 	 * to try and save a page, but it's a pain in the behind to implement.
682 	 */
683 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
684 	    filsz);
685 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
686 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
687 
688 	/* This had damn well better be true! */
689 	if (map_len != 0) {
690 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
691 		    map_addr + map_len, prot, 0);
692 		if (rv != KERN_SUCCESS)
693 			return (EINVAL);
694 	}
695 
696 	if (copy_len != 0) {
697 		sf = vm_imgact_map_page(object, offset + filsz);
698 		if (sf == NULL)
699 			return (EIO);
700 
701 		/* send the page fragment to user space */
702 		error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
703 		    copy_len);
704 		vm_imgact_unmap_page(sf);
705 		if (error != 0)
706 			return (error);
707 	}
708 
709 	/*
710 	 * Remove write access to the page if it was only granted by map_insert
711 	 * to allow copyout.
712 	 */
713 	if ((prot & VM_PROT_WRITE) == 0)
714 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
715 		    map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
716 
717 	return (0);
718 }
719 
720 static int
721 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr,
722     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
723 {
724 	vm_prot_t prot;
725 	u_long base_addr;
726 	bool first;
727 	int error, i;
728 
729 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
730 
731 	base_addr = 0;
732 	first = true;
733 
734 	for (i = 0; i < hdr->e_phnum; i++) {
735 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
736 			continue;
737 
738 		/* Loadable segment */
739 		prot = __elfN(trans_prot)(phdr[i].p_flags);
740 		error = __elfN(load_section)(imgp, phdr[i].p_offset,
741 		    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
742 		    phdr[i].p_memsz, phdr[i].p_filesz, prot);
743 		if (error != 0)
744 			return (error);
745 
746 		/*
747 		 * Establish the base address if this is the first segment.
748 		 */
749 		if (first) {
750   			base_addr = trunc_page(phdr[i].p_vaddr + rbase);
751 			first = false;
752 		}
753 	}
754 
755 	if (base_addrp != NULL)
756 		*base_addrp = base_addr;
757 
758 	return (0);
759 }
760 
761 /*
762  * Load the file "file" into memory.  It may be either a shared object
763  * or an executable.
764  *
765  * The "addr" reference parameter is in/out.  On entry, it specifies
766  * the address where a shared object should be loaded.  If the file is
767  * an executable, this value is ignored.  On exit, "addr" specifies
768  * where the file was actually loaded.
769  *
770  * The "entry" reference parameter is out only.  On exit, it specifies
771  * the entry point for the loaded file.
772  */
773 static int
774 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
775 	u_long *entry)
776 {
777 	struct {
778 		struct nameidata nd;
779 		struct vattr attr;
780 		struct image_params image_params;
781 	} *tempdata;
782 	const Elf_Ehdr *hdr = NULL;
783 	const Elf_Phdr *phdr = NULL;
784 	struct nameidata *nd;
785 	struct vattr *attr;
786 	struct image_params *imgp;
787 	u_long rbase;
788 	u_long base_addr = 0;
789 	int error;
790 
791 #ifdef CAPABILITY_MODE
792 	/*
793 	 * XXXJA: This check can go away once we are sufficiently confident
794 	 * that the checks in namei() are correct.
795 	 */
796 	if (IN_CAPABILITY_MODE(curthread))
797 		return (ECAPMODE);
798 #endif
799 
800 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
801 	nd = &tempdata->nd;
802 	attr = &tempdata->attr;
803 	imgp = &tempdata->image_params;
804 
805 	/*
806 	 * Initialize part of the common data
807 	 */
808 	imgp->proc = p;
809 	imgp->attr = attr;
810 
811 	NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
812 	    UIO_SYSSPACE, file);
813 	if ((error = namei(nd)) != 0) {
814 		nd->ni_vp = NULL;
815 		goto fail;
816 	}
817 	NDFREE(nd, NDF_ONLY_PNBUF);
818 	imgp->vp = nd->ni_vp;
819 
820 	/*
821 	 * Check permissions, modes, uid, etc on the file, and "open" it.
822 	 */
823 	error = exec_check_permissions(imgp);
824 	if (error)
825 		goto fail;
826 
827 	error = exec_map_first_page(imgp);
828 	if (error)
829 		goto fail;
830 
831 	imgp->object = nd->ni_vp->v_object;
832 
833 	hdr = (const Elf_Ehdr *)imgp->image_header;
834 	if ((error = __elfN(check_header)(hdr)) != 0)
835 		goto fail;
836 	if (hdr->e_type == ET_DYN)
837 		rbase = *addr;
838 	else if (hdr->e_type == ET_EXEC)
839 		rbase = 0;
840 	else {
841 		error = ENOEXEC;
842 		goto fail;
843 	}
844 
845 	/* Only support headers that fit within first page for now      */
846 	if (!__elfN(phdr_in_zero_page)(hdr)) {
847 		error = ENOEXEC;
848 		goto fail;
849 	}
850 
851 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
852 	if (!aligned(phdr, Elf_Addr)) {
853 		error = ENOEXEC;
854 		goto fail;
855 	}
856 
857 	error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
858 	if (error != 0)
859 		goto fail;
860 
861 	*addr = base_addr;
862 	*entry = (unsigned long)hdr->e_entry + rbase;
863 
864 fail:
865 	if (imgp->firstpage)
866 		exec_unmap_first_page(imgp);
867 
868 	if (nd->ni_vp) {
869 		if (imgp->textset)
870 			VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
871 		vput(nd->ni_vp);
872 	}
873 	free(tempdata, M_TEMP);
874 
875 	return (error);
876 }
877 
878 /*
879  * Select randomized valid address in the map map, between minv and
880  * maxv, with specified alignment.  The [minv, maxv) range must belong
881  * to the map.  Note that function only allocates the address, it is
882  * up to caller to clamp maxv in a way that the final allocation
883  * length fit into the map.
884  *
885  * Result is returned in *resp, error code indicates that arguments
886  * did not pass sanity checks for overflow and range correctness.
887  */
888 static int
889 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv,
890     u_int align, u_long *resp)
891 {
892 	u_long rbase, res;
893 
894 	MPASS(vm_map_min(map) <= minv);
895 
896 	if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) {
897 		uprintf("Invalid ELF segments layout\n");
898 		return (ENOEXEC);
899 	}
900 
901 	arc4rand(&rbase, sizeof(rbase), 0);
902 	res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
903 	res &= ~((u_long)align - 1);
904 	if (res >= maxv)
905 		res -= align;
906 
907 	KASSERT(res >= minv,
908 	    ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
909 	    res, minv, maxv, rbase));
910 	KASSERT(res < maxv,
911 	    ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
912 	    res, maxv, minv, rbase));
913 
914 	*resp = res;
915 	return (0);
916 }
917 
918 static int
919 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
920     const Elf_Phdr *phdr, u_long et_dyn_addr)
921 {
922 	struct vmspace *vmspace;
923 	const char *err_str;
924 	u_long text_size, data_size, total_size, text_addr, data_addr;
925 	u_long seg_size, seg_addr;
926 	int i;
927 
928 	err_str = NULL;
929 	text_size = data_size = total_size = text_addr = data_addr = 0;
930 
931 	for (i = 0; i < hdr->e_phnum; i++) {
932 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
933 			continue;
934 
935 		seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
936 		seg_size = round_page(phdr[i].p_memsz +
937 		    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
938 
939 		/*
940 		 * Make the largest executable segment the official
941 		 * text segment and all others data.
942 		 *
943 		 * Note that obreak() assumes that data_addr + data_size == end
944 		 * of data load area, and the ELF file format expects segments
945 		 * to be sorted by address.  If multiple data segments exist,
946 		 * the last one will be used.
947 		 */
948 
949 		if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
950 			text_size = seg_size;
951 			text_addr = seg_addr;
952 		} else {
953 			data_size = seg_size;
954 			data_addr = seg_addr;
955 		}
956 		total_size += seg_size;
957 	}
958 
959 	if (data_addr == 0 && data_size == 0) {
960 		data_addr = text_addr;
961 		data_size = text_size;
962 	}
963 
964 	/*
965 	 * Check limits.  It should be safe to check the
966 	 * limits after loading the segments since we do
967 	 * not actually fault in all the segments pages.
968 	 */
969 	PROC_LOCK(imgp->proc);
970 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
971 		err_str = "Data segment size exceeds process limit";
972 	else if (text_size > maxtsiz)
973 		err_str = "Text segment size exceeds system limit";
974 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
975 		err_str = "Total segment size exceeds process limit";
976 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
977 		err_str = "Data segment size exceeds resource limit";
978 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
979 		err_str = "Total segment size exceeds resource limit";
980 	PROC_UNLOCK(imgp->proc);
981 	if (err_str != NULL) {
982 		uprintf("%s\n", err_str);
983 		return (ENOMEM);
984 	}
985 
986 	vmspace = imgp->proc->p_vmspace;
987 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
988 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
989 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
990 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
991 
992 	return (0);
993 }
994 
995 static int
996 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
997     char **interpp, bool *free_interpp)
998 {
999 	struct thread *td;
1000 	char *interp;
1001 	int error, interp_name_len;
1002 
1003 	KASSERT(phdr->p_type == PT_INTERP,
1004 	    ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
1005 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
1006 
1007 	td = curthread;
1008 
1009 	/* Path to interpreter */
1010 	if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
1011 		uprintf("Invalid PT_INTERP\n");
1012 		return (ENOEXEC);
1013 	}
1014 
1015 	interp_name_len = phdr->p_filesz;
1016 	if (phdr->p_offset > PAGE_SIZE ||
1017 	    interp_name_len > PAGE_SIZE - phdr->p_offset) {
1018 		/*
1019 		 * The vnode lock might be needed by the pagedaemon to
1020 		 * clean pages owned by the vnode.  Do not allow sleep
1021 		 * waiting for memory with the vnode locked, instead
1022 		 * try non-sleepable allocation first, and if it
1023 		 * fails, go to the slow path were we drop the lock
1024 		 * and do M_WAITOK.  A text reference prevents
1025 		 * modifications to the vnode content.
1026 		 */
1027 		interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
1028 		if (interp == NULL) {
1029 			VOP_UNLOCK(imgp->vp);
1030 			interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
1031 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1032 		}
1033 
1034 		error = vn_rdwr(UIO_READ, imgp->vp, interp,
1035 		    interp_name_len, phdr->p_offset,
1036 		    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
1037 		    NOCRED, NULL, td);
1038 		if (error != 0) {
1039 			free(interp, M_TEMP);
1040 			uprintf("i/o error PT_INTERP %d\n", error);
1041 			return (error);
1042 		}
1043 		interp[interp_name_len] = '\0';
1044 
1045 		*interpp = interp;
1046 		*free_interpp = true;
1047 		return (0);
1048 	}
1049 
1050 	interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
1051 	if (interp[interp_name_len - 1] != '\0') {
1052 		uprintf("Invalid PT_INTERP\n");
1053 		return (ENOEXEC);
1054 	}
1055 
1056 	*interpp = interp;
1057 	*free_interpp = false;
1058 	return (0);
1059 }
1060 
1061 static int
1062 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1063     const char *interp, u_long *addr, u_long *entry)
1064 {
1065 	char *path;
1066 	int error;
1067 
1068 	if (brand_info->emul_path != NULL &&
1069 	    brand_info->emul_path[0] != '\0') {
1070 		path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1071 		snprintf(path, MAXPATHLEN, "%s%s",
1072 		    brand_info->emul_path, interp);
1073 		error = __elfN(load_file)(imgp->proc, path, addr, entry);
1074 		free(path, M_TEMP);
1075 		if (error == 0)
1076 			return (0);
1077 	}
1078 
1079 	if (brand_info->interp_newpath != NULL &&
1080 	    (brand_info->interp_path == NULL ||
1081 	    strcmp(interp, brand_info->interp_path) == 0)) {
1082 		error = __elfN(load_file)(imgp->proc,
1083 		    brand_info->interp_newpath, addr, entry);
1084 		if (error == 0)
1085 			return (0);
1086 	}
1087 
1088 	error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1089 	if (error == 0)
1090 		return (0);
1091 
1092 	uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1093 	return (error);
1094 }
1095 
1096 /*
1097  * Impossible et_dyn_addr initial value indicating that the real base
1098  * must be calculated later with some randomization applied.
1099  */
1100 #define	ET_DYN_ADDR_RAND	1
1101 
1102 static int
1103 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1104 {
1105 	struct thread *td;
1106 	const Elf_Ehdr *hdr;
1107 	const Elf_Phdr *phdr;
1108 	Elf_Auxargs *elf_auxargs;
1109 	struct vmspace *vmspace;
1110 	vm_map_t map;
1111 	char *interp;
1112 	Elf_Brandinfo *brand_info;
1113 	struct sysentvec *sv;
1114 	u_long addr, baddr, et_dyn_addr, entry, proghdr;
1115 	u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc;
1116 	uint32_t fctl0;
1117 	int32_t osrel;
1118 	bool free_interp;
1119 	int error, i, n;
1120 
1121 	hdr = (const Elf_Ehdr *)imgp->image_header;
1122 
1123 	/*
1124 	 * Do we have a valid ELF header ?
1125 	 *
1126 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1127 	 * if particular brand doesn't support it.
1128 	 */
1129 	if (__elfN(check_header)(hdr) != 0 ||
1130 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1131 		return (-1);
1132 
1133 	/*
1134 	 * From here on down, we return an errno, not -1, as we've
1135 	 * detected an ELF file.
1136 	 */
1137 
1138 	if (!__elfN(phdr_in_zero_page)(hdr)) {
1139 		uprintf("Program headers not in the first page\n");
1140 		return (ENOEXEC);
1141 	}
1142 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1143 	if (!aligned(phdr, Elf_Addr)) {
1144 		uprintf("Unaligned program headers\n");
1145 		return (ENOEXEC);
1146 	}
1147 
1148 	n = error = 0;
1149 	baddr = 0;
1150 	osrel = 0;
1151 	fctl0 = 0;
1152 	entry = proghdr = 0;
1153 	interp = NULL;
1154 	free_interp = false;
1155 	td = curthread;
1156 
1157 	/*
1158 	 * Somewhat arbitrary, limit accepted max alignment for the
1159 	 * loadable segment to the max supported superpage size. Too
1160 	 * large alignment requests are not useful and are indicators
1161 	 * of corrupted or outright malicious binary.
1162 	 */
1163 	maxalign = PAGE_SIZE;
1164 	maxsalign = PAGE_SIZE * 1024;
1165 	for (i = MAXPAGESIZES - 1; i > 0; i--) {
1166 		if (pagesizes[i] > maxsalign)
1167 			maxsalign = pagesizes[i];
1168 	}
1169 
1170 	mapsz = 0;
1171 
1172 	for (i = 0; i < hdr->e_phnum; i++) {
1173 		switch (phdr[i].p_type) {
1174 		case PT_LOAD:
1175 			if (n == 0)
1176 				baddr = phdr[i].p_vaddr;
1177 			if (!powerof2(phdr[i].p_align) ||
1178 			    phdr[i].p_align > maxsalign) {
1179 				uprintf("Invalid segment alignment\n");
1180 				error = ENOEXEC;
1181 				goto ret;
1182 			}
1183 			if (phdr[i].p_align > maxalign)
1184 				maxalign = phdr[i].p_align;
1185 			if (mapsz + phdr[i].p_memsz < mapsz) {
1186 				uprintf("Mapsize overflow\n");
1187 				error = ENOEXEC;
1188 				goto ret;
1189 			}
1190 			mapsz += phdr[i].p_memsz;
1191 			n++;
1192 
1193 			/*
1194 			 * If this segment contains the program headers,
1195 			 * remember their virtual address for the AT_PHDR
1196 			 * aux entry. Static binaries don't usually include
1197 			 * a PT_PHDR entry.
1198 			 */
1199 			if (phdr[i].p_offset == 0 &&
1200 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <=
1201 			    phdr[i].p_filesz)
1202 				proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1203 			break;
1204 		case PT_INTERP:
1205 			/* Path to interpreter */
1206 			if (interp != NULL) {
1207 				uprintf("Multiple PT_INTERP headers\n");
1208 				error = ENOEXEC;
1209 				goto ret;
1210 			}
1211 			error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1212 			    &free_interp);
1213 			if (error != 0)
1214 				goto ret;
1215 			break;
1216 		case PT_GNU_STACK:
1217 			if (__elfN(nxstack))
1218 				imgp->stack_prot =
1219 				    __elfN(trans_prot)(phdr[i].p_flags);
1220 			imgp->stack_sz = phdr[i].p_memsz;
1221 			break;
1222 		case PT_PHDR: 	/* Program header table info */
1223 			proghdr = phdr[i].p_vaddr;
1224 			break;
1225 		}
1226 	}
1227 
1228 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1229 	if (brand_info == NULL) {
1230 		uprintf("ELF binary type \"%u\" not known.\n",
1231 		    hdr->e_ident[EI_OSABI]);
1232 		error = ENOEXEC;
1233 		goto ret;
1234 	}
1235 	sv = brand_info->sysvec;
1236 	et_dyn_addr = 0;
1237 	if (hdr->e_type == ET_DYN) {
1238 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1239 			uprintf("Cannot execute shared object\n");
1240 			error = ENOEXEC;
1241 			goto ret;
1242 		}
1243 		/*
1244 		 * Honour the base load address from the dso if it is
1245 		 * non-zero for some reason.
1246 		 */
1247 		if (baddr == 0) {
1248 			if ((sv->sv_flags & SV_ASLR) == 0 ||
1249 			    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1250 				et_dyn_addr = __elfN(pie_base);
1251 			else if ((__elfN(pie_aslr_enabled) &&
1252 			    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1253 			    (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1254 				et_dyn_addr = ET_DYN_ADDR_RAND;
1255 			else
1256 				et_dyn_addr = __elfN(pie_base);
1257 		}
1258 	}
1259 
1260 	/*
1261 	 * Avoid a possible deadlock if the current address space is destroyed
1262 	 * and that address space maps the locked vnode.  In the common case,
1263 	 * the locked vnode's v_usecount is decremented but remains greater
1264 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
1265 	 * However, in cases where the vnode lock is external, such as nullfs,
1266 	 * v_usecount may become zero.
1267 	 *
1268 	 * The VV_TEXT flag prevents modifications to the executable while
1269 	 * the vnode is unlocked.
1270 	 */
1271 	VOP_UNLOCK(imgp->vp);
1272 
1273 	/*
1274 	 * Decide whether to enable randomization of user mappings.
1275 	 * First, reset user preferences for the setid binaries.
1276 	 * Then, account for the support of the randomization by the
1277 	 * ABI, by user preferences, and make special treatment for
1278 	 * PIE binaries.
1279 	 */
1280 	if (imgp->credential_setid) {
1281 		PROC_LOCK(imgp->proc);
1282 		imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE |
1283 		    P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
1284 		PROC_UNLOCK(imgp->proc);
1285 	}
1286 	if ((sv->sv_flags & SV_ASLR) == 0 ||
1287 	    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1288 	    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1289 		KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND,
1290 		    ("et_dyn_addr == RAND and !ASLR"));
1291 	} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1292 	    (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1293 	    et_dyn_addr == ET_DYN_ADDR_RAND) {
1294 		imgp->map_flags |= MAP_ASLR;
1295 		/*
1296 		 * If user does not care about sbrk, utilize the bss
1297 		 * grow region for mappings as well.  We can select
1298 		 * the base for the image anywere and still not suffer
1299 		 * from the fragmentation.
1300 		 */
1301 		if (!__elfN(aslr_honor_sbrk) ||
1302 		    (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1303 			imgp->map_flags |= MAP_ASLR_IGNSTART;
1304 	}
1305 
1306 	if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 &&
1307 	    (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) ||
1308 	    (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
1309 		imgp->map_flags |= MAP_WXORX;
1310 
1311 	error = exec_new_vmspace(imgp, sv);
1312 	vmspace = imgp->proc->p_vmspace;
1313 	map = &vmspace->vm_map;
1314 
1315 	imgp->proc->p_sysent = sv;
1316 	imgp->proc->p_elf_brandinfo = brand_info;
1317 
1318 	maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK);
1319 	if (mapsz >= maxv - vm_map_min(map)) {
1320 		uprintf("Excessive mapping size\n");
1321 		error = ENOEXEC;
1322 	}
1323 
1324 	if (error == 0 && et_dyn_addr == ET_DYN_ADDR_RAND) {
1325 		KASSERT((map->flags & MAP_ASLR) != 0,
1326 		    ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1327 		error = __CONCAT(rnd_, __elfN(base))(map,
1328 		    vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1329 		    /* reserve half of the address space to interpreter */
1330 		    maxv / 2, maxalign, &et_dyn_addr);
1331 	}
1332 
1333 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1334 	if (error != 0)
1335 		goto ret;
1336 
1337 	error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL);
1338 	if (error != 0)
1339 		goto ret;
1340 
1341 	error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr);
1342 	if (error != 0)
1343 		goto ret;
1344 
1345 	entry = (u_long)hdr->e_entry + et_dyn_addr;
1346 
1347 	/*
1348 	 * We load the dynamic linker where a userland call
1349 	 * to mmap(0, ...) would put it.  The rationale behind this
1350 	 * calculation is that it leaves room for the heap to grow to
1351 	 * its maximum allowed size.
1352 	 */
1353 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1354 	    RLIMIT_DATA));
1355 	if ((map->flags & MAP_ASLR) != 0) {
1356 		maxv1 = maxv / 2 + addr / 2;
1357 		error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1358 		    (MAXPAGESIZES > 1 && pagesizes[1] != 0) ?
1359 		    pagesizes[1] : pagesizes[0], &anon_loc);
1360 		if (error != 0)
1361 			goto ret;
1362 		map->anon_loc = anon_loc;
1363 	} else {
1364 		map->anon_loc = addr;
1365 	}
1366 
1367 	imgp->entry_addr = entry;
1368 
1369 	if (interp != NULL) {
1370 		VOP_UNLOCK(imgp->vp);
1371 		if ((map->flags & MAP_ASLR) != 0) {
1372 			/* Assume that interpreter fits into 1/4 of AS */
1373 			maxv1 = maxv / 2 + addr / 2;
1374 			error = __CONCAT(rnd_, __elfN(base))(map, addr,
1375 			    maxv1, PAGE_SIZE, &addr);
1376 		}
1377 		if (error == 0) {
1378 			error = __elfN(load_interp)(imgp, brand_info, interp,
1379 			    &addr, &imgp->entry_addr);
1380 		}
1381 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1382 		if (error != 0)
1383 			goto ret;
1384 	} else
1385 		addr = et_dyn_addr;
1386 
1387 	/*
1388 	 * Construct auxargs table (used by the copyout_auxargs routine)
1389 	 */
1390 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1391 	if (elf_auxargs == NULL) {
1392 		VOP_UNLOCK(imgp->vp);
1393 		elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1394 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1395 	}
1396 	elf_auxargs->execfd = -1;
1397 	elf_auxargs->phdr = proghdr + et_dyn_addr;
1398 	elf_auxargs->phent = hdr->e_phentsize;
1399 	elf_auxargs->phnum = hdr->e_phnum;
1400 	elf_auxargs->pagesz = PAGE_SIZE;
1401 	elf_auxargs->base = addr;
1402 	elf_auxargs->flags = 0;
1403 	elf_auxargs->entry = entry;
1404 	elf_auxargs->hdr_eflags = hdr->e_flags;
1405 
1406 	imgp->auxargs = elf_auxargs;
1407 	imgp->interpreted = 0;
1408 	imgp->reloc_base = addr;
1409 	imgp->proc->p_osrel = osrel;
1410 	imgp->proc->p_fctl0 = fctl0;
1411 	imgp->proc->p_elf_flags = hdr->e_flags;
1412 
1413 ret:
1414 	ASSERT_VOP_LOCKED(imgp->vp, "skipped relock");
1415 	if (free_interp)
1416 		free(interp, M_TEMP);
1417 	return (error);
1418 }
1419 
1420 #define	elf_suword __CONCAT(suword, __ELF_WORD_SIZE)
1421 
1422 int
1423 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1424 {
1425 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1426 	Elf_Auxinfo *argarray, *pos;
1427 	int error;
1428 
1429 	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1430 	    M_WAITOK | M_ZERO);
1431 
1432 	if (args->execfd != -1)
1433 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1434 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1435 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1436 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1437 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1438 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1439 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1440 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1441 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1442 	if (imgp->execpathp != 0)
1443 		AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
1444 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1445 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1446 	if (imgp->canary != 0) {
1447 		AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
1448 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1449 	}
1450 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1451 	if (imgp->pagesizes != 0) {
1452 		AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
1453 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1454 	}
1455 	if (imgp->sysent->sv_timekeep_base != 0) {
1456 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1457 		    imgp->sysent->sv_timekeep_base);
1458 	}
1459 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1460 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1461 	    imgp->sysent->sv_stackprot);
1462 	if (imgp->sysent->sv_hwcap != NULL)
1463 		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1464 	if (imgp->sysent->sv_hwcap2 != NULL)
1465 		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1466 	AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ?
1467 	    ELF_BSDF_SIGFASTBLK : 0);
1468 	AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
1469 	AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
1470 	AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
1471 	AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
1472 	AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
1473 	if (imgp->sysent->sv_fxrng_gen_base != 0)
1474 		AUXARGS_ENTRY(pos, AT_FXRNG, imgp->sysent->sv_fxrng_gen_base);
1475 	if (imgp->sysent->sv_vdso_base != 0 && __elfN(vdso) != 0)
1476 		AUXARGS_ENTRY(pos, AT_KPRELOAD, imgp->sysent->sv_vdso_base);
1477 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1478 
1479 	free(imgp->auxargs, M_TEMP);
1480 	imgp->auxargs = NULL;
1481 	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1482 
1483 	error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1484 	free(argarray, M_TEMP);
1485 	return (error);
1486 }
1487 
1488 int
1489 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1490 {
1491 	Elf_Addr *base;
1492 
1493 	base = (Elf_Addr *)*stack_base;
1494 	base--;
1495 	if (elf_suword(base, imgp->args->argc) == -1)
1496 		return (EFAULT);
1497 	*stack_base = (uintptr_t)base;
1498 	return (0);
1499 }
1500 
1501 /*
1502  * Code for generating ELF core dumps.
1503  */
1504 
1505 typedef void (*segment_callback)(vm_map_entry_t, void *);
1506 
1507 /* Closure for cb_put_phdr(). */
1508 struct phdr_closure {
1509 	Elf_Phdr *phdr;		/* Program header to fill in */
1510 	Elf_Off offset;		/* Offset of segment in core file */
1511 };
1512 
1513 struct note_info {
1514 	int		type;		/* Note type. */
1515 	outfunc_t 	outfunc; 	/* Output function. */
1516 	void		*outarg;	/* Argument for the output function. */
1517 	size_t		outsize;	/* Output size. */
1518 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1519 };
1520 
1521 TAILQ_HEAD(note_info_list, note_info);
1522 
1523 extern int compress_user_cores;
1524 extern int compress_user_cores_level;
1525 
1526 static void cb_put_phdr(vm_map_entry_t, void *);
1527 static void cb_size_segment(vm_map_entry_t, void *);
1528 static void each_dumpable_segment(struct thread *, segment_callback, void *,
1529     int);
1530 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1531     struct note_info_list *, size_t, int);
1532 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *);
1533 
1534 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *);
1535 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1536 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *);
1537 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1538 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *);
1539 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *);
1540 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1541 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1542 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1543 static void note_procstat_files(void *, struct sbuf *, size_t *);
1544 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1545 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1546 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1547 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1548 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1549 
1550 static int
1551 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1552 {
1553 
1554 	return (core_write((struct coredump_params *)arg, base, len, offset,
1555 	    UIO_SYSSPACE, NULL));
1556 }
1557 
1558 int
1559 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1560 {
1561 	struct ucred *cred = td->td_ucred;
1562 	int compm, error = 0;
1563 	struct sseg_closure seginfo;
1564 	struct note_info_list notelst;
1565 	struct coredump_params params;
1566 	struct note_info *ninfo;
1567 	void *hdr, *tmpbuf;
1568 	size_t hdrsize, notesz, coresize;
1569 
1570 	hdr = NULL;
1571 	tmpbuf = NULL;
1572 	TAILQ_INIT(&notelst);
1573 
1574 	/* Size the program segments. */
1575 	__elfN(size_segments)(td, &seginfo, flags);
1576 
1577 	/*
1578 	 * Collect info about the core file header area.
1579 	 */
1580 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1581 	if (seginfo.count + 1 >= PN_XNUM)
1582 		hdrsize += sizeof(Elf_Shdr);
1583 	td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, &notelst, &notesz);
1584 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1585 
1586 	/* Set up core dump parameters. */
1587 	params.offset = 0;
1588 	params.active_cred = cred;
1589 	params.file_cred = NOCRED;
1590 	params.td = td;
1591 	params.vp = vp;
1592 	params.comp = NULL;
1593 
1594 #ifdef RACCT
1595 	if (racct_enable) {
1596 		PROC_LOCK(td->td_proc);
1597 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1598 		PROC_UNLOCK(td->td_proc);
1599 		if (error != 0) {
1600 			error = EFAULT;
1601 			goto done;
1602 		}
1603 	}
1604 #endif
1605 	if (coresize >= limit) {
1606 		error = EFAULT;
1607 		goto done;
1608 	}
1609 
1610 	/* Create a compression stream if necessary. */
1611 	compm = compress_user_cores;
1612 	if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
1613 	    compm == 0)
1614 		compm = COMPRESS_GZIP;
1615 	if (compm != 0) {
1616 		params.comp = compressor_init(core_compressed_write,
1617 		    compm, CORE_BUF_SIZE,
1618 		    compress_user_cores_level, &params);
1619 		if (params.comp == NULL) {
1620 			error = EFAULT;
1621 			goto done;
1622 		}
1623 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1624         }
1625 
1626 	/*
1627 	 * Allocate memory for building the header, fill it up,
1628 	 * and write it out following the notes.
1629 	 */
1630 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1631 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1632 	    notesz, flags);
1633 
1634 	/* Write the contents of all of the writable segments. */
1635 	if (error == 0) {
1636 		Elf_Phdr *php;
1637 		off_t offset;
1638 		int i;
1639 
1640 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1641 		offset = round_page(hdrsize + notesz);
1642 		for (i = 0; i < seginfo.count; i++) {
1643 			error = core_output((char *)(uintptr_t)php->p_vaddr,
1644 			    php->p_filesz, offset, &params, tmpbuf);
1645 			if (error != 0)
1646 				break;
1647 			offset += php->p_filesz;
1648 			php++;
1649 		}
1650 		if (error == 0 && params.comp != NULL)
1651 			error = compressor_flush(params.comp);
1652 	}
1653 	if (error) {
1654 		log(LOG_WARNING,
1655 		    "Failed to write core file for process %s (error %d)\n",
1656 		    curproc->p_comm, error);
1657 	}
1658 
1659 done:
1660 	free(tmpbuf, M_TEMP);
1661 	if (params.comp != NULL)
1662 		compressor_fini(params.comp);
1663 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1664 		TAILQ_REMOVE(&notelst, ninfo, link);
1665 		free(ninfo, M_TEMP);
1666 	}
1667 	if (hdr != NULL)
1668 		free(hdr, M_TEMP);
1669 
1670 	return (error);
1671 }
1672 
1673 /*
1674  * A callback for each_dumpable_segment() to write out the segment's
1675  * program header entry.
1676  */
1677 static void
1678 cb_put_phdr(vm_map_entry_t entry, void *closure)
1679 {
1680 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1681 	Elf_Phdr *phdr = phc->phdr;
1682 
1683 	phc->offset = round_page(phc->offset);
1684 
1685 	phdr->p_type = PT_LOAD;
1686 	phdr->p_offset = phc->offset;
1687 	phdr->p_vaddr = entry->start;
1688 	phdr->p_paddr = 0;
1689 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1690 	phdr->p_align = PAGE_SIZE;
1691 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1692 
1693 	phc->offset += phdr->p_filesz;
1694 	phc->phdr++;
1695 }
1696 
1697 /*
1698  * A callback for each_dumpable_segment() to gather information about
1699  * the number of segments and their total size.
1700  */
1701 static void
1702 cb_size_segment(vm_map_entry_t entry, void *closure)
1703 {
1704 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1705 
1706 	ssc->count++;
1707 	ssc->size += entry->end - entry->start;
1708 }
1709 
1710 void
1711 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo,
1712     int flags)
1713 {
1714 	seginfo->count = 0;
1715 	seginfo->size = 0;
1716 
1717 	each_dumpable_segment(td, cb_size_segment, seginfo, flags);
1718 }
1719 
1720 /*
1721  * For each writable segment in the process's memory map, call the given
1722  * function with a pointer to the map entry and some arbitrary
1723  * caller-supplied data.
1724  */
1725 static void
1726 each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
1727     int flags)
1728 {
1729 	struct proc *p = td->td_proc;
1730 	vm_map_t map = &p->p_vmspace->vm_map;
1731 	vm_map_entry_t entry;
1732 	vm_object_t backing_object, object;
1733 	bool ignore_entry;
1734 
1735 	vm_map_lock_read(map);
1736 	VM_MAP_ENTRY_FOREACH(entry, map) {
1737 		/*
1738 		 * Don't dump inaccessible mappings, deal with legacy
1739 		 * coredump mode.
1740 		 *
1741 		 * Note that read-only segments related to the elf binary
1742 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1743 		 * need to arbitrarily ignore such segments.
1744 		 */
1745 		if ((flags & SVC_ALL) == 0) {
1746 			if (elf_legacy_coredump) {
1747 				if ((entry->protection & VM_PROT_RW) !=
1748 				    VM_PROT_RW)
1749 					continue;
1750 			} else {
1751 				if ((entry->protection & VM_PROT_ALL) == 0)
1752 					continue;
1753 			}
1754 		}
1755 
1756 		/*
1757 		 * Dont include memory segment in the coredump if
1758 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1759 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1760 		 * kernel map).
1761 		 */
1762 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1763 			continue;
1764 		if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
1765 		    (flags & SVC_ALL) == 0)
1766 			continue;
1767 		if ((object = entry->object.vm_object) == NULL)
1768 			continue;
1769 
1770 		/* Ignore memory-mapped devices and such things. */
1771 		VM_OBJECT_RLOCK(object);
1772 		while ((backing_object = object->backing_object) != NULL) {
1773 			VM_OBJECT_RLOCK(backing_object);
1774 			VM_OBJECT_RUNLOCK(object);
1775 			object = backing_object;
1776 		}
1777 		ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
1778 		VM_OBJECT_RUNLOCK(object);
1779 		if (ignore_entry)
1780 			continue;
1781 
1782 		(*func)(entry, closure);
1783 	}
1784 	vm_map_unlock_read(map);
1785 }
1786 
1787 /*
1788  * Write the core file header to the file, including padding up to
1789  * the page boundary.
1790  */
1791 static int
1792 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1793     size_t hdrsize, struct note_info_list *notelst, size_t notesz,
1794     int flags)
1795 {
1796 	struct note_info *ninfo;
1797 	struct sbuf *sb;
1798 	int error;
1799 
1800 	/* Fill in the header. */
1801 	bzero(hdr, hdrsize);
1802 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
1803 
1804 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1805 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1806 	sbuf_start_section(sb, NULL);
1807 	sbuf_bcat(sb, hdr, hdrsize);
1808 	TAILQ_FOREACH(ninfo, notelst, link)
1809 	    __elfN(putnote)(p->td, ninfo, sb);
1810 	/* Align up to a page boundary for the program segments. */
1811 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1812 	error = sbuf_finish(sb);
1813 	sbuf_delete(sb);
1814 
1815 	return (error);
1816 }
1817 
1818 void
1819 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1820     size_t *sizep)
1821 {
1822 	struct proc *p;
1823 	struct thread *thr;
1824 	size_t size;
1825 
1826 	p = td->td_proc;
1827 	size = 0;
1828 
1829 	size += __elfN(register_note)(td, list, NT_PRPSINFO, __elfN(note_prpsinfo), p);
1830 
1831 	/*
1832 	 * To have the debugger select the right thread (LWP) as the initial
1833 	 * thread, we dump the state of the thread passed to us in td first.
1834 	 * This is the thread that causes the core dump and thus likely to
1835 	 * be the right thread one wants to have selected in the debugger.
1836 	 */
1837 	thr = td;
1838 	while (thr != NULL) {
1839 		size += __elfN(register_note)(td, list, NT_PRSTATUS,
1840 		    __elfN(note_prstatus), thr);
1841 		size += __elfN(register_note)(td, list, NT_FPREGSET,
1842 		    __elfN(note_fpregset), thr);
1843 		size += __elfN(register_note)(td, list, NT_THRMISC,
1844 		    __elfN(note_thrmisc), thr);
1845 		size += __elfN(register_note)(td, list, NT_PTLWPINFO,
1846 		    __elfN(note_ptlwpinfo), thr);
1847 		size += __elfN(register_note)(td, list, -1,
1848 		    __elfN(note_threadmd), thr);
1849 
1850 		thr = thr == td ? TAILQ_FIRST(&p->p_threads) :
1851 		    TAILQ_NEXT(thr, td_plist);
1852 		if (thr == td)
1853 			thr = TAILQ_NEXT(thr, td_plist);
1854 	}
1855 
1856 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC,
1857 	    __elfN(note_procstat_proc), p);
1858 	size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES,
1859 	    note_procstat_files, p);
1860 	size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP,
1861 	    note_procstat_vmmap, p);
1862 	size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS,
1863 	    note_procstat_groups, p);
1864 	size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK,
1865 	    note_procstat_umask, p);
1866 	size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT,
1867 	    note_procstat_rlimit, p);
1868 	size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL,
1869 	    note_procstat_osrel, p);
1870 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS,
1871 	    __elfN(note_procstat_psstrings), p);
1872 	size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV,
1873 	    __elfN(note_procstat_auxv), p);
1874 
1875 	*sizep = size;
1876 }
1877 
1878 void
1879 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1880     size_t notesz, int flags)
1881 {
1882 	Elf_Ehdr *ehdr;
1883 	Elf_Phdr *phdr;
1884 	Elf_Shdr *shdr;
1885 	struct phdr_closure phc;
1886 	Elf_Brandinfo *bi;
1887 
1888 	ehdr = (Elf_Ehdr *)hdr;
1889 	bi = td->td_proc->p_elf_brandinfo;
1890 
1891 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1892 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1893 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1894 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1895 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1896 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1897 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1898 	ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi;
1899 	ehdr->e_ident[EI_ABIVERSION] = 0;
1900 	ehdr->e_ident[EI_PAD] = 0;
1901 	ehdr->e_type = ET_CORE;
1902 	ehdr->e_machine = bi->machine;
1903 	ehdr->e_version = EV_CURRENT;
1904 	ehdr->e_entry = 0;
1905 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1906 	ehdr->e_flags = td->td_proc->p_elf_flags;
1907 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1908 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1909 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1910 	ehdr->e_shstrndx = SHN_UNDEF;
1911 	if (numsegs + 1 < PN_XNUM) {
1912 		ehdr->e_phnum = numsegs + 1;
1913 		ehdr->e_shnum = 0;
1914 	} else {
1915 		ehdr->e_phnum = PN_XNUM;
1916 		ehdr->e_shnum = 1;
1917 
1918 		ehdr->e_shoff = ehdr->e_phoff +
1919 		    (numsegs + 1) * ehdr->e_phentsize;
1920 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1921 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1922 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1923 
1924 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1925 		memset(shdr, 0, sizeof(*shdr));
1926 		/*
1927 		 * A special first section is used to hold large segment and
1928 		 * section counts.  This was proposed by Sun Microsystems in
1929 		 * Solaris and has been adopted by Linux; the standard ELF
1930 		 * tools are already familiar with the technique.
1931 		 *
1932 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1933 		 * (or 12-7 depending on the version of the document) for more
1934 		 * details.
1935 		 */
1936 		shdr->sh_type = SHT_NULL;
1937 		shdr->sh_size = ehdr->e_shnum;
1938 		shdr->sh_link = ehdr->e_shstrndx;
1939 		shdr->sh_info = numsegs + 1;
1940 	}
1941 
1942 	/*
1943 	 * Fill in the program header entries.
1944 	 */
1945 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1946 
1947 	/* The note segement. */
1948 	phdr->p_type = PT_NOTE;
1949 	phdr->p_offset = hdrsize;
1950 	phdr->p_vaddr = 0;
1951 	phdr->p_paddr = 0;
1952 	phdr->p_filesz = notesz;
1953 	phdr->p_memsz = 0;
1954 	phdr->p_flags = PF_R;
1955 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1956 	phdr++;
1957 
1958 	/* All the writable segments from the program. */
1959 	phc.phdr = phdr;
1960 	phc.offset = round_page(hdrsize + notesz);
1961 	each_dumpable_segment(td, cb_put_phdr, &phc, flags);
1962 }
1963 
1964 size_t
1965 __elfN(register_note)(struct thread *td, struct note_info_list *list,
1966     int type, outfunc_t out, void *arg)
1967 {
1968 	const struct sysentvec *sv;
1969 	struct note_info *ninfo;
1970 	size_t size, notesize;
1971 
1972 	sv = td->td_proc->p_sysent;
1973 	size = 0;
1974 	out(arg, NULL, &size);
1975 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1976 	ninfo->type = type;
1977 	ninfo->outfunc = out;
1978 	ninfo->outarg = arg;
1979 	ninfo->outsize = size;
1980 	TAILQ_INSERT_TAIL(list, ninfo, link);
1981 
1982 	if (type == -1)
1983 		return (size);
1984 
1985 	notesize = sizeof(Elf_Note) +		/* note header */
1986 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
1987 						/* note name */
1988 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1989 
1990 	return (notesize);
1991 }
1992 
1993 static size_t
1994 append_note_data(const void *src, void *dst, size_t len)
1995 {
1996 	size_t padded_len;
1997 
1998 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
1999 	if (dst != NULL) {
2000 		bcopy(src, dst, len);
2001 		bzero((char *)dst + len, padded_len - len);
2002 	}
2003 	return (padded_len);
2004 }
2005 
2006 size_t
2007 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2008 {
2009 	Elf_Note *note;
2010 	char *buf;
2011 	size_t notesize;
2012 
2013 	buf = dst;
2014 	if (buf != NULL) {
2015 		note = (Elf_Note *)buf;
2016 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2017 		note->n_descsz = size;
2018 		note->n_type = type;
2019 		buf += sizeof(*note);
2020 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2021 		    sizeof(FREEBSD_ABI_VENDOR));
2022 		append_note_data(src, buf, size);
2023 		if (descp != NULL)
2024 			*descp = buf;
2025 	}
2026 
2027 	notesize = sizeof(Elf_Note) +		/* note header */
2028 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2029 						/* note name */
2030 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2031 
2032 	return (notesize);
2033 }
2034 
2035 static void
2036 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb)
2037 {
2038 	Elf_Note note;
2039 	const struct sysentvec *sv;
2040 	ssize_t old_len, sect_len;
2041 	size_t new_len, descsz, i;
2042 
2043 	if (ninfo->type == -1) {
2044 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2045 		return;
2046 	}
2047 
2048 	sv = td->td_proc->p_sysent;
2049 
2050 	note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1;
2051 	note.n_descsz = ninfo->outsize;
2052 	note.n_type = ninfo->type;
2053 
2054 	sbuf_bcat(sb, &note, sizeof(note));
2055 	sbuf_start_section(sb, &old_len);
2056 	sbuf_bcat(sb, sv->sv_elf_core_abi_vendor,
2057 	    strlen(sv->sv_elf_core_abi_vendor) + 1);
2058 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2059 	if (note.n_descsz == 0)
2060 		return;
2061 	sbuf_start_section(sb, &old_len);
2062 	ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2063 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2064 	if (sect_len < 0)
2065 		return;
2066 
2067 	new_len = (size_t)sect_len;
2068 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2069 	if (new_len < descsz) {
2070 		/*
2071 		 * It is expected that individual note emitters will correctly
2072 		 * predict their expected output size and fill up to that size
2073 		 * themselves, padding in a format-specific way if needed.
2074 		 * However, in case they don't, just do it here with zeros.
2075 		 */
2076 		for (i = 0; i < descsz - new_len; i++)
2077 			sbuf_putc(sb, 0);
2078 	} else if (new_len > descsz) {
2079 		/*
2080 		 * We can't always truncate sb -- we may have drained some
2081 		 * of it already.
2082 		 */
2083 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2084 		    "read it (%zu > %zu).  Since it is longer than "
2085 		    "expected, this coredump's notes are corrupt.  THIS "
2086 		    "IS A BUG in the note_procstat routine for type %u.\n",
2087 		    __func__, (unsigned)note.n_type, new_len, descsz,
2088 		    (unsigned)note.n_type));
2089 	}
2090 }
2091 
2092 /*
2093  * Miscellaneous note out functions.
2094  */
2095 
2096 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2097 #include <compat/freebsd32/freebsd32.h>
2098 #include <compat/freebsd32/freebsd32_signal.h>
2099 
2100 typedef struct prstatus32 elf_prstatus_t;
2101 typedef struct prpsinfo32 elf_prpsinfo_t;
2102 typedef struct fpreg32 elf_prfpregset_t;
2103 typedef struct fpreg32 elf_fpregset_t;
2104 typedef struct reg32 elf_gregset_t;
2105 typedef struct thrmisc32 elf_thrmisc_t;
2106 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
2107 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2108 typedef uint32_t elf_ps_strings_t;
2109 #else
2110 typedef prstatus_t elf_prstatus_t;
2111 typedef prpsinfo_t elf_prpsinfo_t;
2112 typedef prfpregset_t elf_prfpregset_t;
2113 typedef prfpregset_t elf_fpregset_t;
2114 typedef gregset_t elf_gregset_t;
2115 typedef thrmisc_t elf_thrmisc_t;
2116 #define ELF_KERN_PROC_MASK	0
2117 typedef struct kinfo_proc elf_kinfo_proc_t;
2118 typedef vm_offset_t elf_ps_strings_t;
2119 #endif
2120 
2121 static void
2122 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2123 {
2124 	struct sbuf sbarg;
2125 	size_t len;
2126 	char *cp, *end;
2127 	struct proc *p;
2128 	elf_prpsinfo_t *psinfo;
2129 	int error;
2130 
2131 	p = arg;
2132 	if (sb != NULL) {
2133 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2134 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2135 		psinfo->pr_version = PRPSINFO_VERSION;
2136 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2137 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2138 		PROC_LOCK(p);
2139 		if (p->p_args != NULL) {
2140 			len = sizeof(psinfo->pr_psargs) - 1;
2141 			if (len > p->p_args->ar_length)
2142 				len = p->p_args->ar_length;
2143 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2144 			PROC_UNLOCK(p);
2145 			error = 0;
2146 		} else {
2147 			_PHOLD(p);
2148 			PROC_UNLOCK(p);
2149 			sbuf_new(&sbarg, psinfo->pr_psargs,
2150 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2151 			error = proc_getargv(curthread, p, &sbarg);
2152 			PRELE(p);
2153 			if (sbuf_finish(&sbarg) == 0)
2154 				len = sbuf_len(&sbarg) - 1;
2155 			else
2156 				len = sizeof(psinfo->pr_psargs) - 1;
2157 			sbuf_delete(&sbarg);
2158 		}
2159 		if (error || len == 0)
2160 			strlcpy(psinfo->pr_psargs, p->p_comm,
2161 			    sizeof(psinfo->pr_psargs));
2162 		else {
2163 			KASSERT(len < sizeof(psinfo->pr_psargs),
2164 			    ("len is too long: %zu vs %zu", len,
2165 			    sizeof(psinfo->pr_psargs)));
2166 			cp = psinfo->pr_psargs;
2167 			end = cp + len - 1;
2168 			for (;;) {
2169 				cp = memchr(cp, '\0', end - cp);
2170 				if (cp == NULL)
2171 					break;
2172 				*cp = ' ';
2173 			}
2174 		}
2175 		psinfo->pr_pid = p->p_pid;
2176 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2177 		free(psinfo, M_TEMP);
2178 	}
2179 	*sizep = sizeof(*psinfo);
2180 }
2181 
2182 static void
2183 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep)
2184 {
2185 	struct thread *td;
2186 	elf_prstatus_t *status;
2187 
2188 	td = arg;
2189 	if (sb != NULL) {
2190 		KASSERT(*sizep == sizeof(*status), ("invalid size"));
2191 		status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK);
2192 		status->pr_version = PRSTATUS_VERSION;
2193 		status->pr_statussz = sizeof(elf_prstatus_t);
2194 		status->pr_gregsetsz = sizeof(elf_gregset_t);
2195 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2196 		status->pr_osreldate = osreldate;
2197 		status->pr_cursig = td->td_proc->p_sig;
2198 		status->pr_pid = td->td_tid;
2199 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2200 		fill_regs32(td, &status->pr_reg);
2201 #else
2202 		fill_regs(td, &status->pr_reg);
2203 #endif
2204 		sbuf_bcat(sb, status, sizeof(*status));
2205 		free(status, M_TEMP);
2206 	}
2207 	*sizep = sizeof(*status);
2208 }
2209 
2210 static void
2211 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep)
2212 {
2213 	struct thread *td;
2214 	elf_prfpregset_t *fpregset;
2215 
2216 	td = arg;
2217 	if (sb != NULL) {
2218 		KASSERT(*sizep == sizeof(*fpregset), ("invalid size"));
2219 		fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK);
2220 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2221 		fill_fpregs32(td, fpregset);
2222 #else
2223 		fill_fpregs(td, fpregset);
2224 #endif
2225 		sbuf_bcat(sb, fpregset, sizeof(*fpregset));
2226 		free(fpregset, M_TEMP);
2227 	}
2228 	*sizep = sizeof(*fpregset);
2229 }
2230 
2231 static void
2232 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep)
2233 {
2234 	struct thread *td;
2235 	elf_thrmisc_t thrmisc;
2236 
2237 	td = arg;
2238 	if (sb != NULL) {
2239 		KASSERT(*sizep == sizeof(thrmisc), ("invalid size"));
2240 		bzero(&thrmisc, sizeof(thrmisc));
2241 		strcpy(thrmisc.pr_tname, td->td_name);
2242 		sbuf_bcat(sb, &thrmisc, sizeof(thrmisc));
2243 	}
2244 	*sizep = sizeof(thrmisc);
2245 }
2246 
2247 static void
2248 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2249 {
2250 	struct thread *td;
2251 	size_t size;
2252 	int structsize;
2253 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2254 	struct ptrace_lwpinfo32 pl;
2255 #else
2256 	struct ptrace_lwpinfo pl;
2257 #endif
2258 
2259 	td = arg;
2260 	size = sizeof(structsize) + sizeof(pl);
2261 	if (sb != NULL) {
2262 		KASSERT(*sizep == size, ("invalid size"));
2263 		structsize = sizeof(pl);
2264 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2265 		bzero(&pl, sizeof(pl));
2266 		pl.pl_lwpid = td->td_tid;
2267 		pl.pl_event = PL_EVENT_NONE;
2268 		pl.pl_sigmask = td->td_sigmask;
2269 		pl.pl_siglist = td->td_siglist;
2270 		if (td->td_si.si_signo != 0) {
2271 			pl.pl_event = PL_EVENT_SIGNAL;
2272 			pl.pl_flags |= PL_FLAG_SI;
2273 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2274 			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2275 #else
2276 			pl.pl_siginfo = td->td_si;
2277 #endif
2278 		}
2279 		strcpy(pl.pl_tdname, td->td_name);
2280 		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2281 		sbuf_bcat(sb, &pl, sizeof(pl));
2282 	}
2283 	*sizep = size;
2284 }
2285 
2286 /*
2287  * Allow for MD specific notes, as well as any MD
2288  * specific preparations for writing MI notes.
2289  */
2290 static void
2291 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2292 {
2293 	struct thread *td;
2294 	void *buf;
2295 	size_t size;
2296 
2297 	td = (struct thread *)arg;
2298 	size = *sizep;
2299 	if (size != 0 && sb != NULL)
2300 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2301 	else
2302 		buf = NULL;
2303 	size = 0;
2304 	__elfN(dump_thread)(td, buf, &size);
2305 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2306 	if (size != 0 && sb != NULL)
2307 		sbuf_bcat(sb, buf, size);
2308 	free(buf, M_TEMP);
2309 	*sizep = size;
2310 }
2311 
2312 #ifdef KINFO_PROC_SIZE
2313 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2314 #endif
2315 
2316 static void
2317 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2318 {
2319 	struct proc *p;
2320 	size_t size;
2321 	int structsize;
2322 
2323 	p = arg;
2324 	size = sizeof(structsize) + p->p_numthreads *
2325 	    sizeof(elf_kinfo_proc_t);
2326 
2327 	if (sb != NULL) {
2328 		KASSERT(*sizep == size, ("invalid size"));
2329 		structsize = sizeof(elf_kinfo_proc_t);
2330 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2331 		sx_slock(&proctree_lock);
2332 		PROC_LOCK(p);
2333 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2334 		sx_sunlock(&proctree_lock);
2335 	}
2336 	*sizep = size;
2337 }
2338 
2339 #ifdef KINFO_FILE_SIZE
2340 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2341 #endif
2342 
2343 static void
2344 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2345 {
2346 	struct proc *p;
2347 	size_t size, sect_sz, i;
2348 	ssize_t start_len, sect_len;
2349 	int structsize, filedesc_flags;
2350 
2351 	if (coredump_pack_fileinfo)
2352 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2353 	else
2354 		filedesc_flags = 0;
2355 
2356 	p = arg;
2357 	structsize = sizeof(struct kinfo_file);
2358 	if (sb == NULL) {
2359 		size = 0;
2360 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2361 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2362 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2363 		PROC_LOCK(p);
2364 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2365 		sbuf_finish(sb);
2366 		sbuf_delete(sb);
2367 		*sizep = size;
2368 	} else {
2369 		sbuf_start_section(sb, &start_len);
2370 
2371 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2372 		PROC_LOCK(p);
2373 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2374 		    filedesc_flags);
2375 
2376 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2377 		if (sect_len < 0)
2378 			return;
2379 		sect_sz = sect_len;
2380 
2381 		KASSERT(sect_sz <= *sizep,
2382 		    ("kern_proc_filedesc_out did not respect maxlen; "
2383 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2384 		     sect_sz - sizeof(structsize)));
2385 
2386 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2387 			sbuf_putc(sb, 0);
2388 	}
2389 }
2390 
2391 #ifdef KINFO_VMENTRY_SIZE
2392 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2393 #endif
2394 
2395 static void
2396 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2397 {
2398 	struct proc *p;
2399 	size_t size;
2400 	int structsize, vmmap_flags;
2401 
2402 	if (coredump_pack_vmmapinfo)
2403 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2404 	else
2405 		vmmap_flags = 0;
2406 
2407 	p = arg;
2408 	structsize = sizeof(struct kinfo_vmentry);
2409 	if (sb == NULL) {
2410 		size = 0;
2411 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2412 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2413 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2414 		PROC_LOCK(p);
2415 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2416 		sbuf_finish(sb);
2417 		sbuf_delete(sb);
2418 		*sizep = size;
2419 	} else {
2420 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2421 		PROC_LOCK(p);
2422 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2423 		    vmmap_flags);
2424 	}
2425 }
2426 
2427 static void
2428 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2429 {
2430 	struct proc *p;
2431 	size_t size;
2432 	int structsize;
2433 
2434 	p = arg;
2435 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2436 	if (sb != NULL) {
2437 		KASSERT(*sizep == size, ("invalid size"));
2438 		structsize = sizeof(gid_t);
2439 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2440 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2441 		    sizeof(gid_t));
2442 	}
2443 	*sizep = size;
2444 }
2445 
2446 static void
2447 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2448 {
2449 	struct proc *p;
2450 	size_t size;
2451 	int structsize;
2452 
2453 	p = arg;
2454 	size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
2455 	if (sb != NULL) {
2456 		KASSERT(*sizep == size, ("invalid size"));
2457 		structsize = sizeof(p->p_pd->pd_cmask);
2458 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2459 		sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
2460 	}
2461 	*sizep = size;
2462 }
2463 
2464 static void
2465 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2466 {
2467 	struct proc *p;
2468 	struct rlimit rlim[RLIM_NLIMITS];
2469 	size_t size;
2470 	int structsize, i;
2471 
2472 	p = arg;
2473 	size = sizeof(structsize) + sizeof(rlim);
2474 	if (sb != NULL) {
2475 		KASSERT(*sizep == size, ("invalid size"));
2476 		structsize = sizeof(rlim);
2477 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2478 		PROC_LOCK(p);
2479 		for (i = 0; i < RLIM_NLIMITS; i++)
2480 			lim_rlimit_proc(p, i, &rlim[i]);
2481 		PROC_UNLOCK(p);
2482 		sbuf_bcat(sb, rlim, sizeof(rlim));
2483 	}
2484 	*sizep = size;
2485 }
2486 
2487 static void
2488 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2489 {
2490 	struct proc *p;
2491 	size_t size;
2492 	int structsize;
2493 
2494 	p = arg;
2495 	size = sizeof(structsize) + sizeof(p->p_osrel);
2496 	if (sb != NULL) {
2497 		KASSERT(*sizep == size, ("invalid size"));
2498 		structsize = sizeof(p->p_osrel);
2499 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2500 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2501 	}
2502 	*sizep = size;
2503 }
2504 
2505 static void
2506 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2507 {
2508 	struct proc *p;
2509 	elf_ps_strings_t ps_strings;
2510 	size_t size;
2511 	int structsize;
2512 
2513 	p = arg;
2514 	size = sizeof(structsize) + sizeof(ps_strings);
2515 	if (sb != NULL) {
2516 		KASSERT(*sizep == size, ("invalid size"));
2517 		structsize = sizeof(ps_strings);
2518 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2519 		ps_strings = PTROUT(p->p_sysent->sv_psstrings);
2520 #else
2521 		ps_strings = p->p_sysent->sv_psstrings;
2522 #endif
2523 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2524 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2525 	}
2526 	*sizep = size;
2527 }
2528 
2529 static void
2530 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2531 {
2532 	struct proc *p;
2533 	size_t size;
2534 	int structsize;
2535 
2536 	p = arg;
2537 	if (sb == NULL) {
2538 		size = 0;
2539 		sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo),
2540 		    SBUF_FIXEDLEN);
2541 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2542 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2543 		PHOLD(p);
2544 		proc_getauxv(curthread, p, sb);
2545 		PRELE(p);
2546 		sbuf_finish(sb);
2547 		sbuf_delete(sb);
2548 		*sizep = size;
2549 	} else {
2550 		structsize = sizeof(Elf_Auxinfo);
2551 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2552 		PHOLD(p);
2553 		proc_getauxv(curthread, p, sb);
2554 		PRELE(p);
2555 	}
2556 }
2557 
2558 static bool
2559 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
2560     const char *note_vendor, const Elf_Phdr *pnote,
2561     bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg)
2562 {
2563 	const Elf_Note *note, *note0, *note_end;
2564 	const char *note_name;
2565 	char *buf;
2566 	int i, error;
2567 	bool res;
2568 
2569 	/* We need some limit, might as well use PAGE_SIZE. */
2570 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2571 		return (false);
2572 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2573 	if (pnote->p_offset > PAGE_SIZE ||
2574 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2575 		buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2576 		if (buf == NULL) {
2577 			VOP_UNLOCK(imgp->vp);
2578 			buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2579 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2580 		}
2581 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2582 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2583 		    curthread->td_ucred, NOCRED, NULL, curthread);
2584 		if (error != 0) {
2585 			uprintf("i/o error PT_NOTE\n");
2586 			goto retf;
2587 		}
2588 		note = note0 = (const Elf_Note *)buf;
2589 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2590 	} else {
2591 		note = note0 = (const Elf_Note *)(imgp->image_header +
2592 		    pnote->p_offset);
2593 		note_end = (const Elf_Note *)(imgp->image_header +
2594 		    pnote->p_offset + pnote->p_filesz);
2595 		buf = NULL;
2596 	}
2597 	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2598 		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2599 		    (const char *)note < sizeof(Elf_Note)) {
2600 			goto retf;
2601 		}
2602 		if (note->n_namesz != checknote->n_namesz ||
2603 		    note->n_descsz != checknote->n_descsz ||
2604 		    note->n_type != checknote->n_type)
2605 			goto nextnote;
2606 		note_name = (const char *)(note + 1);
2607 		if (note_name + checknote->n_namesz >=
2608 		    (const char *)note_end || strncmp(note_vendor,
2609 		    note_name, checknote->n_namesz) != 0)
2610 			goto nextnote;
2611 
2612 		if (cb(note, cb_arg, &res))
2613 			goto ret;
2614 nextnote:
2615 		note = (const Elf_Note *)((const char *)(note + 1) +
2616 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2617 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2618 	}
2619 retf:
2620 	res = false;
2621 ret:
2622 	free(buf, M_TEMP);
2623 	return (res);
2624 }
2625 
2626 struct brandnote_cb_arg {
2627 	Elf_Brandnote *brandnote;
2628 	int32_t *osrel;
2629 };
2630 
2631 static bool
2632 brandnote_cb(const Elf_Note *note, void *arg0, bool *res)
2633 {
2634 	struct brandnote_cb_arg *arg;
2635 
2636 	arg = arg0;
2637 
2638 	/*
2639 	 * Fetch the osreldate for binary from the ELF OSABI-note if
2640 	 * necessary.
2641 	 */
2642 	*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2643 	    arg->brandnote->trans_osrel != NULL ?
2644 	    arg->brandnote->trans_osrel(note, arg->osrel) : true;
2645 
2646 	return (true);
2647 }
2648 
2649 static Elf_Note fctl_note = {
2650 	.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2651 	.n_descsz = sizeof(uint32_t),
2652 	.n_type = NT_FREEBSD_FEATURE_CTL,
2653 };
2654 
2655 struct fctl_cb_arg {
2656 	bool *has_fctl0;
2657 	uint32_t *fctl0;
2658 };
2659 
2660 static bool
2661 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res)
2662 {
2663 	struct fctl_cb_arg *arg;
2664 	const Elf32_Word *desc;
2665 	uintptr_t p;
2666 
2667 	arg = arg0;
2668 	p = (uintptr_t)(note + 1);
2669 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2670 	desc = (const Elf32_Word *)p;
2671 	*arg->has_fctl0 = true;
2672 	*arg->fctl0 = desc[0];
2673 	*res = true;
2674 	return (true);
2675 }
2676 
2677 /*
2678  * Try to find the appropriate ABI-note section for checknote, fetch
2679  * the osreldate and feature control flags for binary from the ELF
2680  * OSABI-note.  Only the first page of the image is searched, the same
2681  * as for headers.
2682  */
2683 static bool
2684 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2685     int32_t *osrel, bool *has_fctl0, uint32_t *fctl0)
2686 {
2687 	const Elf_Phdr *phdr;
2688 	const Elf_Ehdr *hdr;
2689 	struct brandnote_cb_arg b_arg;
2690 	struct fctl_cb_arg f_arg;
2691 	int i, j;
2692 
2693 	hdr = (const Elf_Ehdr *)imgp->image_header;
2694 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2695 	b_arg.brandnote = brandnote;
2696 	b_arg.osrel = osrel;
2697 	f_arg.has_fctl0 = has_fctl0;
2698 	f_arg.fctl0 = fctl0;
2699 
2700 	for (i = 0; i < hdr->e_phnum; i++) {
2701 		if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2702 		    &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2703 		    &b_arg)) {
2704 			for (j = 0; j < hdr->e_phnum; j++) {
2705 				if (phdr[j].p_type == PT_NOTE &&
2706 				    __elfN(parse_notes)(imgp, &fctl_note,
2707 				    FREEBSD_ABI_VENDOR, &phdr[j],
2708 				    note_fctl_cb, &f_arg))
2709 					break;
2710 			}
2711 			return (true);
2712 		}
2713 	}
2714 	return (false);
2715 
2716 }
2717 
2718 /*
2719  * Tell kern_execve.c about it, with a little help from the linker.
2720  */
2721 static struct execsw __elfN(execsw) = {
2722 	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2723 	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2724 };
2725 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2726 
2727 static vm_prot_t
2728 __elfN(trans_prot)(Elf_Word flags)
2729 {
2730 	vm_prot_t prot;
2731 
2732 	prot = 0;
2733 	if (flags & PF_X)
2734 		prot |= VM_PROT_EXECUTE;
2735 	if (flags & PF_W)
2736 		prot |= VM_PROT_WRITE;
2737 	if (flags & PF_R)
2738 		prot |= VM_PROT_READ;
2739 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2740 	if (i386_read_exec && (flags & PF_R))
2741 		prot |= VM_PROT_EXECUTE;
2742 #endif
2743 	return (prot);
2744 }
2745 
2746 static Elf_Word
2747 __elfN(untrans_prot)(vm_prot_t prot)
2748 {
2749 	Elf_Word flags;
2750 
2751 	flags = 0;
2752 	if (prot & VM_PROT_EXECUTE)
2753 		flags |= PF_X;
2754 	if (prot & VM_PROT_READ)
2755 		flags |= PF_R;
2756 	if (prot & VM_PROT_WRITE)
2757 		flags |= PF_W;
2758 	return (flags);
2759 }
2760 
2761 vm_size_t
2762 __elfN(stackgap)(struct image_params *imgp, uintptr_t *stack_base)
2763 {
2764 	uintptr_t range, rbase, gap;
2765 	int pct;
2766 
2767 	pct = __elfN(aslr_stack_gap);
2768 	if (pct == 0)
2769 		return (0);
2770 	if (pct > 50)
2771 		pct = 50;
2772 	range = imgp->eff_stack_sz * pct / 100;
2773 	arc4rand(&rbase, sizeof(rbase), 0);
2774 	gap = rbase % range;
2775 	gap &= ~(sizeof(u_long) - 1);
2776 	*stack_base -= gap;
2777 	return (gap);
2778 }
2779