xref: /freebsd/sys/kern/kern_clock.c (revision d6b92ffa)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_kdb.h"
41 #include "opt_device_polling.h"
42 #include "opt_hwpmc_hooks.h"
43 #include "opt_ntp.h"
44 #include "opt_watchdog.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/callout.h>
49 #include <sys/kdb.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/ktr.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/proc.h>
56 #include <sys/resource.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sched.h>
59 #include <sys/sdt.h>
60 #include <sys/signalvar.h>
61 #include <sys/sleepqueue.h>
62 #include <sys/smp.h>
63 #include <vm/vm.h>
64 #include <vm/pmap.h>
65 #include <vm/vm_map.h>
66 #include <sys/sysctl.h>
67 #include <sys/bus.h>
68 #include <sys/interrupt.h>
69 #include <sys/limits.h>
70 #include <sys/timetc.h>
71 
72 #ifdef GPROF
73 #include <sys/gmon.h>
74 #endif
75 
76 #ifdef HWPMC_HOOKS
77 #include <sys/pmckern.h>
78 PMC_SOFT_DEFINE( , , clock, hard);
79 PMC_SOFT_DEFINE( , , clock, stat);
80 PMC_SOFT_DEFINE_EX( , , clock, prof, \
81     cpu_startprofclock, cpu_stopprofclock);
82 #endif
83 
84 #ifdef DEVICE_POLLING
85 extern void hardclock_device_poll(void);
86 #endif /* DEVICE_POLLING */
87 
88 static void initclocks(void *dummy);
89 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
90 
91 /* Spin-lock protecting profiling statistics. */
92 static struct mtx time_lock;
93 
94 SDT_PROVIDER_DECLARE(sched);
95 SDT_PROBE_DEFINE2(sched, , , tick, "struct thread *", "struct proc *");
96 
97 static int
98 sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
99 {
100 	int error;
101 	long cp_time[CPUSTATES];
102 #ifdef SCTL_MASK32
103 	int i;
104 	unsigned int cp_time32[CPUSTATES];
105 #endif
106 
107 	read_cpu_time(cp_time);
108 #ifdef SCTL_MASK32
109 	if (req->flags & SCTL_MASK32) {
110 		if (!req->oldptr)
111 			return SYSCTL_OUT(req, 0, sizeof(cp_time32));
112 		for (i = 0; i < CPUSTATES; i++)
113 			cp_time32[i] = (unsigned int)cp_time[i];
114 		error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
115 	} else
116 #endif
117 	{
118 		if (!req->oldptr)
119 			return SYSCTL_OUT(req, 0, sizeof(cp_time));
120 		error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
121 	}
122 	return error;
123 }
124 
125 SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
126     0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
127 
128 static long empty[CPUSTATES];
129 
130 static int
131 sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS)
132 {
133 	struct pcpu *pcpu;
134 	int error;
135 	int c;
136 	long *cp_time;
137 #ifdef SCTL_MASK32
138 	unsigned int cp_time32[CPUSTATES];
139 	int i;
140 #endif
141 
142 	if (!req->oldptr) {
143 #ifdef SCTL_MASK32
144 		if (req->flags & SCTL_MASK32)
145 			return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1));
146 		else
147 #endif
148 			return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1));
149 	}
150 	for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) {
151 		if (!CPU_ABSENT(c)) {
152 			pcpu = pcpu_find(c);
153 			cp_time = pcpu->pc_cp_time;
154 		} else {
155 			cp_time = empty;
156 		}
157 #ifdef SCTL_MASK32
158 		if (req->flags & SCTL_MASK32) {
159 			for (i = 0; i < CPUSTATES; i++)
160 				cp_time32[i] = (unsigned int)cp_time[i];
161 			error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
162 		} else
163 #endif
164 			error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES);
165 	}
166 	return error;
167 }
168 
169 SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
170     0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics");
171 
172 #ifdef DEADLKRES
173 static const char *blessed[] = {
174 	"getblk",
175 	"so_snd_sx",
176 	"so_rcv_sx",
177 	NULL
178 };
179 static int slptime_threshold = 1800;
180 static int blktime_threshold = 900;
181 static int sleepfreq = 3;
182 
183 static void
184 deadlkres(void)
185 {
186 	struct proc *p;
187 	struct thread *td;
188 	void *wchan;
189 	int blkticks, i, slpticks, slptype, tryl, tticks;
190 
191 	tryl = 0;
192 	for (;;) {
193 		blkticks = blktime_threshold * hz;
194 		slpticks = slptime_threshold * hz;
195 
196 		/*
197 		 * Avoid to sleep on the sx_lock in order to avoid a possible
198 		 * priority inversion problem leading to starvation.
199 		 * If the lock can't be held after 100 tries, panic.
200 		 */
201 		if (!sx_try_slock(&allproc_lock)) {
202 			if (tryl > 100)
203 		panic("%s: possible deadlock detected on allproc_lock\n",
204 				    __func__);
205 			tryl++;
206 			pause("allproc", sleepfreq * hz);
207 			continue;
208 		}
209 		tryl = 0;
210 		FOREACH_PROC_IN_SYSTEM(p) {
211 			PROC_LOCK(p);
212 			if (p->p_state == PRS_NEW) {
213 				PROC_UNLOCK(p);
214 				continue;
215 			}
216 			FOREACH_THREAD_IN_PROC(p, td) {
217 
218 				thread_lock(td);
219 				if (TD_ON_LOCK(td)) {
220 
221 					/*
222 					 * The thread should be blocked on a
223 					 * turnstile, simply check if the
224 					 * turnstile channel is in good state.
225 					 */
226 					MPASS(td->td_blocked != NULL);
227 
228 					tticks = ticks - td->td_blktick;
229 					thread_unlock(td);
230 					if (tticks > blkticks) {
231 
232 						/*
233 						 * Accordingly with provided
234 						 * thresholds, this thread is
235 						 * stuck for too long on a
236 						 * turnstile.
237 						 */
238 						PROC_UNLOCK(p);
239 						sx_sunlock(&allproc_lock);
240 	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
241 						    __func__, td, tticks);
242 					}
243 				} else if (TD_IS_SLEEPING(td) &&
244 				    TD_ON_SLEEPQ(td)) {
245 
246 					/*
247 					 * Check if the thread is sleeping on a
248 					 * lock, otherwise skip the check.
249 					 * Drop the thread lock in order to
250 					 * avoid a LOR with the sleepqueue
251 					 * spinlock.
252 					 */
253 					wchan = td->td_wchan;
254 					tticks = ticks - td->td_slptick;
255 					thread_unlock(td);
256 					slptype = sleepq_type(wchan);
257 					if ((slptype == SLEEPQ_SX ||
258 					    slptype == SLEEPQ_LK) &&
259 					    tticks > slpticks) {
260 
261 						/*
262 						 * Accordingly with provided
263 						 * thresholds, this thread is
264 						 * stuck for too long on a
265 						 * sleepqueue.
266 						 * However, being on a
267 						 * sleepqueue, we might still
268 						 * check for the blessed
269 						 * list.
270 						 */
271 						tryl = 0;
272 						for (i = 0; blessed[i] != NULL;
273 						    i++) {
274 							if (!strcmp(blessed[i],
275 							    td->td_wmesg)) {
276 								tryl = 1;
277 								break;
278 							}
279 						}
280 						if (tryl != 0) {
281 							tryl = 0;
282 							continue;
283 						}
284 						PROC_UNLOCK(p);
285 						sx_sunlock(&allproc_lock);
286 	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
287 						    __func__, td, tticks);
288 					}
289 				} else
290 					thread_unlock(td);
291 			}
292 			PROC_UNLOCK(p);
293 		}
294 		sx_sunlock(&allproc_lock);
295 
296 		/* Sleep for sleepfreq seconds. */
297 		pause("-", sleepfreq * hz);
298 	}
299 }
300 
301 static struct kthread_desc deadlkres_kd = {
302 	"deadlkres",
303 	deadlkres,
304 	(struct thread **)NULL
305 };
306 
307 SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd);
308 
309 static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0,
310     "Deadlock resolver");
311 SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW,
312     &slptime_threshold, 0,
313     "Number of seconds within is valid to sleep on a sleepqueue");
314 SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW,
315     &blktime_threshold, 0,
316     "Number of seconds within is valid to block on a turnstile");
317 SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0,
318     "Number of seconds between any deadlock resolver thread run");
319 #endif	/* DEADLKRES */
320 
321 void
322 read_cpu_time(long *cp_time)
323 {
324 	struct pcpu *pc;
325 	int i, j;
326 
327 	/* Sum up global cp_time[]. */
328 	bzero(cp_time, sizeof(long) * CPUSTATES);
329 	CPU_FOREACH(i) {
330 		pc = pcpu_find(i);
331 		for (j = 0; j < CPUSTATES; j++)
332 			cp_time[j] += pc->pc_cp_time[j];
333 	}
334 }
335 
336 #ifdef SW_WATCHDOG
337 #include <sys/watchdog.h>
338 
339 static int watchdog_ticks;
340 static int watchdog_enabled;
341 static void watchdog_fire(void);
342 static void watchdog_config(void *, u_int, int *);
343 #endif /* SW_WATCHDOG */
344 
345 /*
346  * Clock handling routines.
347  *
348  * This code is written to operate with two timers that run independently of
349  * each other.
350  *
351  * The main timer, running hz times per second, is used to trigger interval
352  * timers, timeouts and rescheduling as needed.
353  *
354  * The second timer handles kernel and user profiling,
355  * and does resource use estimation.  If the second timer is programmable,
356  * it is randomized to avoid aliasing between the two clocks.  For example,
357  * the randomization prevents an adversary from always giving up the cpu
358  * just before its quantum expires.  Otherwise, it would never accumulate
359  * cpu ticks.  The mean frequency of the second timer is stathz.
360  *
361  * If no second timer exists, stathz will be zero; in this case we drive
362  * profiling and statistics off the main clock.  This WILL NOT be accurate;
363  * do not do it unless absolutely necessary.
364  *
365  * The statistics clock may (or may not) be run at a higher rate while
366  * profiling.  This profile clock runs at profhz.  We require that profhz
367  * be an integral multiple of stathz.
368  *
369  * If the statistics clock is running fast, it must be divided by the ratio
370  * profhz/stathz for statistics.  (For profiling, every tick counts.)
371  *
372  * Time-of-day is maintained using a "timecounter", which may or may
373  * not be related to the hardware generating the above mentioned
374  * interrupts.
375  */
376 
377 int	stathz;
378 int	profhz;
379 int	profprocs;
380 volatile int	ticks;
381 int	psratio;
382 
383 static DPCPU_DEFINE(int, pcputicks);	/* Per-CPU version of ticks. */
384 #ifdef DEVICE_POLLING
385 static int devpoll_run = 0;
386 #endif
387 
388 /*
389  * Initialize clock frequencies and start both clocks running.
390  */
391 /* ARGSUSED*/
392 static void
393 initclocks(void *dummy)
394 {
395 	int i;
396 
397 	/*
398 	 * Set divisors to 1 (normal case) and let the machine-specific
399 	 * code do its bit.
400 	 */
401 	mtx_init(&time_lock, "time lock", NULL, MTX_DEF);
402 	cpu_initclocks();
403 
404 	/*
405 	 * Compute profhz/stathz, and fix profhz if needed.
406 	 */
407 	i = stathz ? stathz : hz;
408 	if (profhz == 0)
409 		profhz = i;
410 	psratio = profhz / i;
411 #ifdef SW_WATCHDOG
412 	EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
413 #endif
414 }
415 
416 /*
417  * Each time the real-time timer fires, this function is called on all CPUs.
418  * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only
419  * the other CPUs in the system need to call this function.
420  */
421 void
422 hardclock_cpu(int usermode)
423 {
424 	struct pstats *pstats;
425 	struct thread *td = curthread;
426 	struct proc *p = td->td_proc;
427 	int flags;
428 
429 	/*
430 	 * Run current process's virtual and profile time, as needed.
431 	 */
432 	pstats = p->p_stats;
433 	flags = 0;
434 	if (usermode &&
435 	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
436 		PROC_ITIMLOCK(p);
437 		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
438 			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
439 		PROC_ITIMUNLOCK(p);
440 	}
441 	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
442 		PROC_ITIMLOCK(p);
443 		if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
444 			flags |= TDF_PROFPEND | TDF_ASTPENDING;
445 		PROC_ITIMUNLOCK(p);
446 	}
447 	thread_lock(td);
448 	td->td_flags |= flags;
449 	thread_unlock(td);
450 
451 #ifdef HWPMC_HOOKS
452 	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
453 		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
454 	if (td->td_intr_frame != NULL)
455 		PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
456 #endif
457 	callout_process(sbinuptime());
458 }
459 
460 /*
461  * The real-time timer, interrupting hz times per second.
462  */
463 void
464 hardclock(int usermode, uintfptr_t pc)
465 {
466 
467 	atomic_add_int(&ticks, 1);
468 	hardclock_cpu(usermode);
469 	tc_ticktock(1);
470 	cpu_tick_calibration();
471 	/*
472 	 * If no separate statistics clock is available, run it from here.
473 	 *
474 	 * XXX: this only works for UP
475 	 */
476 	if (stathz == 0) {
477 		profclock(usermode, pc);
478 		statclock(usermode);
479 	}
480 #ifdef DEVICE_POLLING
481 	hardclock_device_poll();	/* this is very short and quick */
482 #endif /* DEVICE_POLLING */
483 #ifdef SW_WATCHDOG
484 	if (watchdog_enabled > 0 && --watchdog_ticks <= 0)
485 		watchdog_fire();
486 #endif /* SW_WATCHDOG */
487 }
488 
489 void
490 hardclock_cnt(int cnt, int usermode)
491 {
492 	struct pstats *pstats;
493 	struct thread *td = curthread;
494 	struct proc *p = td->td_proc;
495 	int *t = DPCPU_PTR(pcputicks);
496 	int flags, global, newticks;
497 #ifdef SW_WATCHDOG
498 	int i;
499 #endif /* SW_WATCHDOG */
500 
501 	/*
502 	 * Update per-CPU and possibly global ticks values.
503 	 */
504 	*t += cnt;
505 	do {
506 		global = ticks;
507 		newticks = *t - global;
508 		if (newticks <= 0) {
509 			if (newticks < -1)
510 				*t = global - 1;
511 			newticks = 0;
512 			break;
513 		}
514 	} while (!atomic_cmpset_int(&ticks, global, *t));
515 
516 	/*
517 	 * Run current process's virtual and profile time, as needed.
518 	 */
519 	pstats = p->p_stats;
520 	flags = 0;
521 	if (usermode &&
522 	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
523 		PROC_ITIMLOCK(p);
524 		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL],
525 		    tick * cnt) == 0)
526 			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
527 		PROC_ITIMUNLOCK(p);
528 	}
529 	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
530 		PROC_ITIMLOCK(p);
531 		if (itimerdecr(&pstats->p_timer[ITIMER_PROF],
532 		    tick * cnt) == 0)
533 			flags |= TDF_PROFPEND | TDF_ASTPENDING;
534 		PROC_ITIMUNLOCK(p);
535 	}
536 	if (flags != 0) {
537 		thread_lock(td);
538 		td->td_flags |= flags;
539 		thread_unlock(td);
540 	}
541 
542 #ifdef	HWPMC_HOOKS
543 	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
544 		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
545 	if (td->td_intr_frame != NULL)
546 		PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
547 #endif
548 	/* We are in charge to handle this tick duty. */
549 	if (newticks > 0) {
550 		tc_ticktock(newticks);
551 #ifdef DEVICE_POLLING
552 		/* Dangerous and no need to call these things concurrently. */
553 		if (atomic_cmpset_acq_int(&devpoll_run, 0, 1)) {
554 			/* This is very short and quick. */
555 			hardclock_device_poll();
556 			atomic_store_rel_int(&devpoll_run, 0);
557 		}
558 #endif /* DEVICE_POLLING */
559 #ifdef SW_WATCHDOG
560 		if (watchdog_enabled > 0) {
561 			i = atomic_fetchadd_int(&watchdog_ticks, -newticks);
562 			if (i > 0 && i <= newticks)
563 				watchdog_fire();
564 		}
565 #endif /* SW_WATCHDOG */
566 	}
567 	if (curcpu == CPU_FIRST())
568 		cpu_tick_calibration();
569 }
570 
571 void
572 hardclock_sync(int cpu)
573 {
574 	int	*t = DPCPU_ID_PTR(cpu, pcputicks);
575 
576 	*t = ticks;
577 }
578 
579 /*
580  * Compute number of ticks in the specified amount of time.
581  */
582 int
583 tvtohz(struct timeval *tv)
584 {
585 	unsigned long ticks;
586 	long sec, usec;
587 
588 	/*
589 	 * If the number of usecs in the whole seconds part of the time
590 	 * difference fits in a long, then the total number of usecs will
591 	 * fit in an unsigned long.  Compute the total and convert it to
592 	 * ticks, rounding up and adding 1 to allow for the current tick
593 	 * to expire.  Rounding also depends on unsigned long arithmetic
594 	 * to avoid overflow.
595 	 *
596 	 * Otherwise, if the number of ticks in the whole seconds part of
597 	 * the time difference fits in a long, then convert the parts to
598 	 * ticks separately and add, using similar rounding methods and
599 	 * overflow avoidance.  This method would work in the previous
600 	 * case but it is slightly slower and assumes that hz is integral.
601 	 *
602 	 * Otherwise, round the time difference down to the maximum
603 	 * representable value.
604 	 *
605 	 * If ints have 32 bits, then the maximum value for any timeout in
606 	 * 10ms ticks is 248 days.
607 	 */
608 	sec = tv->tv_sec;
609 	usec = tv->tv_usec;
610 	if (usec < 0) {
611 		sec--;
612 		usec += 1000000;
613 	}
614 	if (sec < 0) {
615 #ifdef DIAGNOSTIC
616 		if (usec > 0) {
617 			sec++;
618 			usec -= 1000000;
619 		}
620 		printf("tvotohz: negative time difference %ld sec %ld usec\n",
621 		       sec, usec);
622 #endif
623 		ticks = 1;
624 	} else if (sec <= LONG_MAX / 1000000)
625 		ticks = howmany(sec * 1000000 + (unsigned long)usec, tick) + 1;
626 	else if (sec <= LONG_MAX / hz)
627 		ticks = sec * hz
628 			+ howmany((unsigned long)usec, tick) + 1;
629 	else
630 		ticks = LONG_MAX;
631 	if (ticks > INT_MAX)
632 		ticks = INT_MAX;
633 	return ((int)ticks);
634 }
635 
636 /*
637  * Start profiling on a process.
638  *
639  * Kernel profiling passes proc0 which never exits and hence
640  * keeps the profile clock running constantly.
641  */
642 void
643 startprofclock(struct proc *p)
644 {
645 
646 	PROC_LOCK_ASSERT(p, MA_OWNED);
647 	if (p->p_flag & P_STOPPROF)
648 		return;
649 	if ((p->p_flag & P_PROFIL) == 0) {
650 		p->p_flag |= P_PROFIL;
651 		mtx_lock(&time_lock);
652 		if (++profprocs == 1)
653 			cpu_startprofclock();
654 		mtx_unlock(&time_lock);
655 	}
656 }
657 
658 /*
659  * Stop profiling on a process.
660  */
661 void
662 stopprofclock(struct proc *p)
663 {
664 
665 	PROC_LOCK_ASSERT(p, MA_OWNED);
666 	if (p->p_flag & P_PROFIL) {
667 		if (p->p_profthreads != 0) {
668 			while (p->p_profthreads != 0) {
669 				p->p_flag |= P_STOPPROF;
670 				msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
671 				    "stopprof", 0);
672 			}
673 		}
674 		if ((p->p_flag & P_PROFIL) == 0)
675 			return;
676 		p->p_flag &= ~P_PROFIL;
677 		mtx_lock(&time_lock);
678 		if (--profprocs == 0)
679 			cpu_stopprofclock();
680 		mtx_unlock(&time_lock);
681 	}
682 }
683 
684 /*
685  * Statistics clock.  Updates rusage information and calls the scheduler
686  * to adjust priorities of the active thread.
687  *
688  * This should be called by all active processors.
689  */
690 void
691 statclock(int usermode)
692 {
693 
694 	statclock_cnt(1, usermode);
695 }
696 
697 void
698 statclock_cnt(int cnt, int usermode)
699 {
700 	struct rusage *ru;
701 	struct vmspace *vm;
702 	struct thread *td;
703 	struct proc *p;
704 	long rss;
705 	long *cp_time;
706 
707 	td = curthread;
708 	p = td->td_proc;
709 
710 	cp_time = (long *)PCPU_PTR(cp_time);
711 	if (usermode) {
712 		/*
713 		 * Charge the time as appropriate.
714 		 */
715 		td->td_uticks += cnt;
716 		if (p->p_nice > NZERO)
717 			cp_time[CP_NICE] += cnt;
718 		else
719 			cp_time[CP_USER] += cnt;
720 	} else {
721 		/*
722 		 * Came from kernel mode, so we were:
723 		 * - handling an interrupt,
724 		 * - doing syscall or trap work on behalf of the current
725 		 *   user process, or
726 		 * - spinning in the idle loop.
727 		 * Whichever it is, charge the time as appropriate.
728 		 * Note that we charge interrupts to the current process,
729 		 * regardless of whether they are ``for'' that process,
730 		 * so that we know how much of its real time was spent
731 		 * in ``non-process'' (i.e., interrupt) work.
732 		 */
733 		if ((td->td_pflags & TDP_ITHREAD) ||
734 		    td->td_intr_nesting_level >= 2) {
735 			td->td_iticks += cnt;
736 			cp_time[CP_INTR] += cnt;
737 		} else {
738 			td->td_pticks += cnt;
739 			td->td_sticks += cnt;
740 			if (!TD_IS_IDLETHREAD(td))
741 				cp_time[CP_SYS] += cnt;
742 			else
743 				cp_time[CP_IDLE] += cnt;
744 		}
745 	}
746 
747 	/* Update resource usage integrals and maximums. */
748 	MPASS(p->p_vmspace != NULL);
749 	vm = p->p_vmspace;
750 	ru = &td->td_ru;
751 	ru->ru_ixrss += pgtok(vm->vm_tsize) * cnt;
752 	ru->ru_idrss += pgtok(vm->vm_dsize) * cnt;
753 	ru->ru_isrss += pgtok(vm->vm_ssize) * cnt;
754 	rss = pgtok(vmspace_resident_count(vm));
755 	if (ru->ru_maxrss < rss)
756 		ru->ru_maxrss = rss;
757 	KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock",
758 	    "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz);
759 	SDT_PROBE2(sched, , , tick, td, td->td_proc);
760 	thread_lock_flags(td, MTX_QUIET);
761 	for ( ; cnt > 0; cnt--)
762 		sched_clock(td);
763 	thread_unlock(td);
764 #ifdef HWPMC_HOOKS
765 	if (td->td_intr_frame != NULL)
766 		PMC_SOFT_CALL_TF( , , clock, stat, td->td_intr_frame);
767 #endif
768 }
769 
770 void
771 profclock(int usermode, uintfptr_t pc)
772 {
773 
774 	profclock_cnt(1, usermode, pc);
775 }
776 
777 void
778 profclock_cnt(int cnt, int usermode, uintfptr_t pc)
779 {
780 	struct thread *td;
781 #ifdef GPROF
782 	struct gmonparam *g;
783 	uintfptr_t i;
784 #endif
785 
786 	td = curthread;
787 	if (usermode) {
788 		/*
789 		 * Came from user mode; CPU was in user state.
790 		 * If this process is being profiled, record the tick.
791 		 * if there is no related user location yet, don't
792 		 * bother trying to count it.
793 		 */
794 		if (td->td_proc->p_flag & P_PROFIL)
795 			addupc_intr(td, pc, cnt);
796 	}
797 #ifdef GPROF
798 	else {
799 		/*
800 		 * Kernel statistics are just like addupc_intr, only easier.
801 		 */
802 		g = &_gmonparam;
803 		if (g->state == GMON_PROF_ON && pc >= g->lowpc) {
804 			i = PC_TO_I(g, pc);
805 			if (i < g->textsize) {
806 				KCOUNT(g, i) += cnt;
807 			}
808 		}
809 	}
810 #endif
811 #ifdef HWPMC_HOOKS
812 	if (td->td_intr_frame != NULL)
813 		PMC_SOFT_CALL_TF( , , clock, prof, td->td_intr_frame);
814 #endif
815 }
816 
817 /*
818  * Return information about system clocks.
819  */
820 static int
821 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
822 {
823 	struct clockinfo clkinfo;
824 	/*
825 	 * Construct clockinfo structure.
826 	 */
827 	bzero(&clkinfo, sizeof(clkinfo));
828 	clkinfo.hz = hz;
829 	clkinfo.tick = tick;
830 	clkinfo.profhz = profhz;
831 	clkinfo.stathz = stathz ? stathz : hz;
832 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
833 }
834 
835 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate,
836 	CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE,
837 	0, 0, sysctl_kern_clockrate, "S,clockinfo",
838 	"Rate and period of various kernel clocks");
839 
840 #ifdef SW_WATCHDOG
841 
842 static void
843 watchdog_config(void *unused __unused, u_int cmd, int *error)
844 {
845 	u_int u;
846 
847 	u = cmd & WD_INTERVAL;
848 	if (u >= WD_TO_1SEC) {
849 		watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
850 		watchdog_enabled = 1;
851 		*error = 0;
852 	} else {
853 		watchdog_enabled = 0;
854 	}
855 }
856 
857 /*
858  * Handle a watchdog timeout by dumping interrupt information and
859  * then either dropping to DDB or panicking.
860  */
861 static void
862 watchdog_fire(void)
863 {
864 	int nintr;
865 	uint64_t inttotal;
866 	u_long *curintr;
867 	char *curname;
868 
869 	curintr = intrcnt;
870 	curname = intrnames;
871 	inttotal = 0;
872 	nintr = sintrcnt / sizeof(u_long);
873 
874 	printf("interrupt                   total\n");
875 	while (--nintr >= 0) {
876 		if (*curintr)
877 			printf("%-12s %20lu\n", curname, *curintr);
878 		curname += strlen(curname) + 1;
879 		inttotal += *curintr++;
880 	}
881 	printf("Total        %20ju\n", (uintmax_t)inttotal);
882 
883 #if defined(KDB) && !defined(KDB_UNATTENDED)
884 	kdb_backtrace();
885 	kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout");
886 #else
887 	panic("watchdog timeout");
888 #endif
889 }
890 
891 #endif /* SW_WATCHDOG */
892