xref: /freebsd/sys/kern/kern_clocksource.c (revision 42249ef2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2010-2013 Alexander Motin <mav@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification, immediately at the beginning of the file.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * Common routines to manage event timers hardware.
34  */
35 
36 #include "opt_device_polling.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/limits.h>
42 #include <sys/lock.h>
43 #include <sys/kdb.h>
44 #include <sys/ktr.h>
45 #include <sys/mutex.h>
46 #include <sys/proc.h>
47 #include <sys/kernel.h>
48 #include <sys/sched.h>
49 #include <sys/smp.h>
50 #include <sys/sysctl.h>
51 #include <sys/timeet.h>
52 #include <sys/timetc.h>
53 
54 #include <machine/atomic.h>
55 #include <machine/clock.h>
56 #include <machine/cpu.h>
57 #include <machine/smp.h>
58 
59 int			cpu_disable_c2_sleep = 0; /* Timer dies in C2. */
60 int			cpu_disable_c3_sleep = 0; /* Timer dies in C3. */
61 
62 static void		setuptimer(void);
63 static void		loadtimer(sbintime_t now, int first);
64 static int		doconfigtimer(void);
65 static void		configtimer(int start);
66 static int		round_freq(struct eventtimer *et, int freq);
67 
68 static sbintime_t	getnextcpuevent(int idle);
69 static sbintime_t	getnextevent(void);
70 static int		handleevents(sbintime_t now, int fake);
71 
72 static struct mtx	et_hw_mtx;
73 
74 #define	ET_HW_LOCK(state)						\
75 	{								\
76 		if (timer->et_flags & ET_FLAGS_PERCPU)			\
77 			mtx_lock_spin(&(state)->et_hw_mtx);		\
78 		else							\
79 			mtx_lock_spin(&et_hw_mtx);			\
80 	}
81 
82 #define	ET_HW_UNLOCK(state)						\
83 	{								\
84 		if (timer->et_flags & ET_FLAGS_PERCPU)			\
85 			mtx_unlock_spin(&(state)->et_hw_mtx);		\
86 		else							\
87 			mtx_unlock_spin(&et_hw_mtx);			\
88 	}
89 
90 static struct eventtimer *timer = NULL;
91 static sbintime_t	timerperiod;	/* Timer period for periodic mode. */
92 static sbintime_t	statperiod;	/* statclock() events period. */
93 static sbintime_t	profperiod;	/* profclock() events period. */
94 static sbintime_t	nexttick;	/* Next global timer tick time. */
95 static u_int		busy = 1;	/* Reconfiguration is in progress. */
96 static int		profiling;	/* Profiling events enabled. */
97 
98 static char		timername[32];	/* Wanted timer. */
99 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
100 
101 static int		singlemul;	/* Multiplier for periodic mode. */
102 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RWTUN, &singlemul,
103     0, "Multiplier for periodic mode");
104 
105 static u_int		idletick;	/* Run periodic events when idle. */
106 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RWTUN, &idletick,
107     0, "Run periodic events when idle");
108 
109 static int		periodic;	/* Periodic or one-shot mode. */
110 static int		want_periodic;	/* What mode to prefer. */
111 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
112 
113 struct pcpu_state {
114 	struct mtx	et_hw_mtx;	/* Per-CPU timer mutex. */
115 	u_int		action;		/* Reconfiguration requests. */
116 	u_int		handle;		/* Immediate handle resuests. */
117 	sbintime_t	now;		/* Last tick time. */
118 	sbintime_t	nextevent;	/* Next scheduled event on this CPU. */
119 	sbintime_t	nexttick;	/* Next timer tick time. */
120 	sbintime_t	nexthard;	/* Next hardclock() event. */
121 	sbintime_t	nextstat;	/* Next statclock() event. */
122 	sbintime_t	nextprof;	/* Next profclock() event. */
123 	sbintime_t	nextcall;	/* Next callout event. */
124 	sbintime_t	nextcallopt;	/* Next optional callout event. */
125 	int		ipi;		/* This CPU needs IPI. */
126 	int		idle;		/* This CPU is in idle mode. */
127 };
128 
129 DPCPU_DEFINE_STATIC(struct pcpu_state, timerstate);
130 DPCPU_DEFINE(sbintime_t, hardclocktime);
131 
132 /*
133  * Timer broadcast IPI handler.
134  */
135 int
136 hardclockintr(void)
137 {
138 	sbintime_t now;
139 	struct pcpu_state *state;
140 	int done;
141 
142 	if (doconfigtimer() || busy)
143 		return (FILTER_HANDLED);
144 	state = DPCPU_PTR(timerstate);
145 	now = state->now;
146 	CTR3(KTR_SPARE2, "ipi  at %d:    now  %d.%08x",
147 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
148 	done = handleevents(now, 0);
149 	return (done ? FILTER_HANDLED : FILTER_STRAY);
150 }
151 
152 /*
153  * Handle all events for specified time on this CPU
154  */
155 static int
156 handleevents(sbintime_t now, int fake)
157 {
158 	sbintime_t t, *hct;
159 	struct trapframe *frame;
160 	struct pcpu_state *state;
161 	int usermode;
162 	int done, runs;
163 
164 	CTR3(KTR_SPARE2, "handle at %d:  now  %d.%08x",
165 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
166 	done = 0;
167 	if (fake) {
168 		frame = NULL;
169 		usermode = 0;
170 	} else {
171 		frame = curthread->td_intr_frame;
172 		usermode = TRAPF_USERMODE(frame);
173 	}
174 
175 	state = DPCPU_PTR(timerstate);
176 
177 	runs = 0;
178 	while (now >= state->nexthard) {
179 		state->nexthard += tick_sbt;
180 		runs++;
181 	}
182 	if (runs) {
183 		hct = DPCPU_PTR(hardclocktime);
184 		*hct = state->nexthard - tick_sbt;
185 		if (fake < 2) {
186 			hardclock(runs, usermode);
187 			done = 1;
188 		}
189 	}
190 	runs = 0;
191 	while (now >= state->nextstat) {
192 		state->nextstat += statperiod;
193 		runs++;
194 	}
195 	if (runs && fake < 2) {
196 		statclock(runs, usermode);
197 		done = 1;
198 	}
199 	if (profiling) {
200 		runs = 0;
201 		while (now >= state->nextprof) {
202 			state->nextprof += profperiod;
203 			runs++;
204 		}
205 		if (runs && !fake) {
206 			profclock(runs, usermode, TRAPF_PC(frame));
207 			done = 1;
208 		}
209 	} else
210 		state->nextprof = state->nextstat;
211 	if (now >= state->nextcallopt || now >= state->nextcall) {
212 		state->nextcall = state->nextcallopt = SBT_MAX;
213 		callout_process(now);
214 	}
215 
216 	t = getnextcpuevent(0);
217 	ET_HW_LOCK(state);
218 	if (!busy) {
219 		state->idle = 0;
220 		state->nextevent = t;
221 		loadtimer(now, (fake == 2) &&
222 		    (timer->et_flags & ET_FLAGS_PERCPU));
223 	}
224 	ET_HW_UNLOCK(state);
225 	return (done);
226 }
227 
228 /*
229  * Schedule binuptime of the next event on current CPU.
230  */
231 static sbintime_t
232 getnextcpuevent(int idle)
233 {
234 	sbintime_t event;
235 	struct pcpu_state *state;
236 	u_int hardfreq;
237 
238 	state = DPCPU_PTR(timerstate);
239 	/* Handle hardclock() events, skipping some if CPU is idle. */
240 	event = state->nexthard;
241 	if (idle) {
242 		hardfreq = (u_int)hz / 2;
243 		if (tc_min_ticktock_freq > 2
244 #ifdef SMP
245 		    && curcpu == CPU_FIRST()
246 #endif
247 		    )
248 			hardfreq = hz / tc_min_ticktock_freq;
249 		if (hardfreq > 1)
250 			event += tick_sbt * (hardfreq - 1);
251 	}
252 	/* Handle callout events. */
253 	if (event > state->nextcall)
254 		event = state->nextcall;
255 	if (!idle) { /* If CPU is active - handle other types of events. */
256 		if (event > state->nextstat)
257 			event = state->nextstat;
258 		if (profiling && event > state->nextprof)
259 			event = state->nextprof;
260 	}
261 	return (event);
262 }
263 
264 /*
265  * Schedule binuptime of the next event on all CPUs.
266  */
267 static sbintime_t
268 getnextevent(void)
269 {
270 	struct pcpu_state *state;
271 	sbintime_t event;
272 #ifdef SMP
273 	int	cpu;
274 #endif
275 #ifdef KTR
276 	int	c;
277 
278 	c = -1;
279 #endif
280 	state = DPCPU_PTR(timerstate);
281 	event = state->nextevent;
282 #ifdef SMP
283 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
284 		CPU_FOREACH(cpu) {
285 			state = DPCPU_ID_PTR(cpu, timerstate);
286 			if (event > state->nextevent) {
287 				event = state->nextevent;
288 #ifdef KTR
289 				c = cpu;
290 #endif
291 			}
292 		}
293 	}
294 #endif
295 	CTR4(KTR_SPARE2, "next at %d:    next %d.%08x by %d",
296 	    curcpu, (int)(event >> 32), (u_int)(event & 0xffffffff), c);
297 	return (event);
298 }
299 
300 /* Hardware timer callback function. */
301 static void
302 timercb(struct eventtimer *et, void *arg)
303 {
304 	sbintime_t now;
305 	sbintime_t *next;
306 	struct pcpu_state *state;
307 #ifdef SMP
308 	int cpu, bcast;
309 #endif
310 
311 	/* Do not touch anything if somebody reconfiguring timers. */
312 	if (busy)
313 		return;
314 	/* Update present and next tick times. */
315 	state = DPCPU_PTR(timerstate);
316 	if (et->et_flags & ET_FLAGS_PERCPU) {
317 		next = &state->nexttick;
318 	} else
319 		next = &nexttick;
320 	now = sbinuptime();
321 	if (periodic)
322 		*next = now + timerperiod;
323 	else
324 		*next = -1;	/* Next tick is not scheduled yet. */
325 	state->now = now;
326 	CTR3(KTR_SPARE2, "intr at %d:    now  %d.%08x",
327 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
328 
329 #ifdef SMP
330 #ifdef EARLY_AP_STARTUP
331 	MPASS(mp_ncpus == 1 || smp_started);
332 #endif
333 	/* Prepare broadcasting to other CPUs for non-per-CPU timers. */
334 	bcast = 0;
335 #ifdef EARLY_AP_STARTUP
336 	if ((et->et_flags & ET_FLAGS_PERCPU) == 0) {
337 #else
338 	if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
339 #endif
340 		CPU_FOREACH(cpu) {
341 			state = DPCPU_ID_PTR(cpu, timerstate);
342 			ET_HW_LOCK(state);
343 			state->now = now;
344 			if (now >= state->nextevent) {
345 				state->nextevent += SBT_1S;
346 				if (curcpu != cpu) {
347 					state->ipi = 1;
348 					bcast = 1;
349 				}
350 			}
351 			ET_HW_UNLOCK(state);
352 		}
353 	}
354 #endif
355 
356 	/* Handle events for this time on this CPU. */
357 	handleevents(now, 0);
358 
359 #ifdef SMP
360 	/* Broadcast interrupt to other CPUs for non-per-CPU timers. */
361 	if (bcast) {
362 		CPU_FOREACH(cpu) {
363 			if (curcpu == cpu)
364 				continue;
365 			state = DPCPU_ID_PTR(cpu, timerstate);
366 			if (state->ipi) {
367 				state->ipi = 0;
368 				ipi_cpu(cpu, IPI_HARDCLOCK);
369 			}
370 		}
371 	}
372 #endif
373 }
374 
375 /*
376  * Load new value into hardware timer.
377  */
378 static void
379 loadtimer(sbintime_t now, int start)
380 {
381 	struct pcpu_state *state;
382 	sbintime_t new;
383 	sbintime_t *next;
384 	uint64_t tmp;
385 	int eq;
386 
387 	if (timer->et_flags & ET_FLAGS_PERCPU) {
388 		state = DPCPU_PTR(timerstate);
389 		next = &state->nexttick;
390 	} else
391 		next = &nexttick;
392 	if (periodic) {
393 		if (start) {
394 			/*
395 			 * Try to start all periodic timers aligned
396 			 * to period to make events synchronous.
397 			 */
398 			tmp = now % timerperiod;
399 			new = timerperiod - tmp;
400 			if (new < tmp)		/* Left less then passed. */
401 				new += timerperiod;
402 			CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
403 			    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff),
404 			    (int)(new >> 32), (u_int)(new & 0xffffffff));
405 			*next = new + now;
406 			et_start(timer, new, timerperiod);
407 		}
408 	} else {
409 		new = getnextevent();
410 		eq = (new == *next);
411 		CTR4(KTR_SPARE2, "load at %d:    next %d.%08x eq %d",
412 		    curcpu, (int)(new >> 32), (u_int)(new & 0xffffffff), eq);
413 		if (!eq) {
414 			*next = new;
415 			et_start(timer, new - now, 0);
416 		}
417 	}
418 }
419 
420 /*
421  * Prepare event timer parameters after configuration changes.
422  */
423 static void
424 setuptimer(void)
425 {
426 	int freq;
427 
428 	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
429 		periodic = 0;
430 	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
431 		periodic = 1;
432 	singlemul = MIN(MAX(singlemul, 1), 20);
433 	freq = hz * singlemul;
434 	while (freq < (profiling ? profhz : stathz))
435 		freq += hz;
436 	freq = round_freq(timer, freq);
437 	timerperiod = SBT_1S / freq;
438 }
439 
440 /*
441  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
442  */
443 static int
444 doconfigtimer(void)
445 {
446 	sbintime_t now;
447 	struct pcpu_state *state;
448 
449 	state = DPCPU_PTR(timerstate);
450 	switch (atomic_load_acq_int(&state->action)) {
451 	case 1:
452 		now = sbinuptime();
453 		ET_HW_LOCK(state);
454 		loadtimer(now, 1);
455 		ET_HW_UNLOCK(state);
456 		state->handle = 0;
457 		atomic_store_rel_int(&state->action, 0);
458 		return (1);
459 	case 2:
460 		ET_HW_LOCK(state);
461 		et_stop(timer);
462 		ET_HW_UNLOCK(state);
463 		state->handle = 0;
464 		atomic_store_rel_int(&state->action, 0);
465 		return (1);
466 	}
467 	if (atomic_readandclear_int(&state->handle) && !busy) {
468 		now = sbinuptime();
469 		handleevents(now, 0);
470 		return (1);
471 	}
472 	return (0);
473 }
474 
475 /*
476  * Reconfigure specified timer.
477  * For per-CPU timers use IPI to make other CPUs to reconfigure.
478  */
479 static void
480 configtimer(int start)
481 {
482 	sbintime_t now, next;
483 	struct pcpu_state *state;
484 	int cpu;
485 
486 	if (start) {
487 		setuptimer();
488 		now = sbinuptime();
489 	} else
490 		now = 0;
491 	critical_enter();
492 	ET_HW_LOCK(DPCPU_PTR(timerstate));
493 	if (start) {
494 		/* Initialize time machine parameters. */
495 		next = now + timerperiod;
496 		if (periodic)
497 			nexttick = next;
498 		else
499 			nexttick = -1;
500 #ifdef EARLY_AP_STARTUP
501 		MPASS(mp_ncpus == 1 || smp_started);
502 #endif
503 		CPU_FOREACH(cpu) {
504 			state = DPCPU_ID_PTR(cpu, timerstate);
505 			state->now = now;
506 #ifndef EARLY_AP_STARTUP
507 			if (!smp_started && cpu != CPU_FIRST())
508 				state->nextevent = SBT_MAX;
509 			else
510 #endif
511 				state->nextevent = next;
512 			if (periodic)
513 				state->nexttick = next;
514 			else
515 				state->nexttick = -1;
516 			state->nexthard = next;
517 			state->nextstat = next;
518 			state->nextprof = next;
519 			state->nextcall = next;
520 			state->nextcallopt = next;
521 			hardclock_sync(cpu);
522 		}
523 		busy = 0;
524 		/* Start global timer or per-CPU timer of this CPU. */
525 		loadtimer(now, 1);
526 	} else {
527 		busy = 1;
528 		/* Stop global timer or per-CPU timer of this CPU. */
529 		et_stop(timer);
530 	}
531 	ET_HW_UNLOCK(DPCPU_PTR(timerstate));
532 #ifdef SMP
533 #ifdef EARLY_AP_STARTUP
534 	/* If timer is global we are done. */
535 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
536 #else
537 	/* If timer is global or there is no other CPUs yet - we are done. */
538 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
539 #endif
540 		critical_exit();
541 		return;
542 	}
543 	/* Set reconfigure flags for other CPUs. */
544 	CPU_FOREACH(cpu) {
545 		state = DPCPU_ID_PTR(cpu, timerstate);
546 		atomic_store_rel_int(&state->action,
547 		    (cpu == curcpu) ? 0 : ( start ? 1 : 2));
548 	}
549 	/* Broadcast reconfigure IPI. */
550 	ipi_all_but_self(IPI_HARDCLOCK);
551 	/* Wait for reconfiguration completed. */
552 restart:
553 	cpu_spinwait();
554 	CPU_FOREACH(cpu) {
555 		if (cpu == curcpu)
556 			continue;
557 		state = DPCPU_ID_PTR(cpu, timerstate);
558 		if (atomic_load_acq_int(&state->action))
559 			goto restart;
560 	}
561 #endif
562 	critical_exit();
563 }
564 
565 /*
566  * Calculate nearest frequency supported by hardware timer.
567  */
568 static int
569 round_freq(struct eventtimer *et, int freq)
570 {
571 	uint64_t div;
572 
573 	if (et->et_frequency != 0) {
574 		div = lmax((et->et_frequency + freq / 2) / freq, 1);
575 		if (et->et_flags & ET_FLAGS_POW2DIV)
576 			div = 1 << (flsl(div + div / 2) - 1);
577 		freq = (et->et_frequency + div / 2) / div;
578 	}
579 	if (et->et_min_period > SBT_1S)
580 		panic("Event timer \"%s\" doesn't support sub-second periods!",
581 		    et->et_name);
582 	else if (et->et_min_period != 0)
583 		freq = min(freq, SBT2FREQ(et->et_min_period));
584 	if (et->et_max_period < SBT_1S && et->et_max_period != 0)
585 		freq = max(freq, SBT2FREQ(et->et_max_period));
586 	return (freq);
587 }
588 
589 /*
590  * Configure and start event timers (BSP part).
591  */
592 void
593 cpu_initclocks_bsp(void)
594 {
595 	struct pcpu_state *state;
596 	int base, div, cpu;
597 
598 	mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
599 	CPU_FOREACH(cpu) {
600 		state = DPCPU_ID_PTR(cpu, timerstate);
601 		mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
602 		state->nextcall = SBT_MAX;
603 		state->nextcallopt = SBT_MAX;
604 	}
605 	periodic = want_periodic;
606 	/* Grab requested timer or the best of present. */
607 	if (timername[0])
608 		timer = et_find(timername, 0, 0);
609 	if (timer == NULL && periodic) {
610 		timer = et_find(NULL,
611 		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
612 	}
613 	if (timer == NULL) {
614 		timer = et_find(NULL,
615 		    ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
616 	}
617 	if (timer == NULL && !periodic) {
618 		timer = et_find(NULL,
619 		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
620 	}
621 	if (timer == NULL)
622 		panic("No usable event timer found!");
623 	et_init(timer, timercb, NULL, NULL);
624 
625 	/* Adapt to timer capabilities. */
626 	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
627 		periodic = 0;
628 	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
629 		periodic = 1;
630 	if (timer->et_flags & ET_FLAGS_C3STOP)
631 		cpu_disable_c3_sleep++;
632 
633 	/*
634 	 * We honor the requested 'hz' value.
635 	 * We want to run stathz in the neighborhood of 128hz.
636 	 * We would like profhz to run as often as possible.
637 	 */
638 	if (singlemul <= 0 || singlemul > 20) {
639 		if (hz >= 1500 || (hz % 128) == 0)
640 			singlemul = 1;
641 		else if (hz >= 750)
642 			singlemul = 2;
643 		else
644 			singlemul = 4;
645 	}
646 	if (periodic) {
647 		base = round_freq(timer, hz * singlemul);
648 		singlemul = max((base + hz / 2) / hz, 1);
649 		hz = (base + singlemul / 2) / singlemul;
650 		if (base <= 128)
651 			stathz = base;
652 		else {
653 			div = base / 128;
654 			if (div >= singlemul && (div % singlemul) == 0)
655 				div++;
656 			stathz = base / div;
657 		}
658 		profhz = stathz;
659 		while ((profhz + stathz) <= 128 * 64)
660 			profhz += stathz;
661 		profhz = round_freq(timer, profhz);
662 	} else {
663 		hz = round_freq(timer, hz);
664 		stathz = round_freq(timer, 127);
665 		profhz = round_freq(timer, stathz * 64);
666 	}
667 	tick = 1000000 / hz;
668 	tick_sbt = SBT_1S / hz;
669 	tick_bt = sbttobt(tick_sbt);
670 	statperiod = SBT_1S / stathz;
671 	profperiod = SBT_1S / profhz;
672 	ET_LOCK();
673 	configtimer(1);
674 	ET_UNLOCK();
675 }
676 
677 /*
678  * Start per-CPU event timers on APs.
679  */
680 void
681 cpu_initclocks_ap(void)
682 {
683 	sbintime_t now;
684 	struct pcpu_state *state;
685 	struct thread *td;
686 
687 	state = DPCPU_PTR(timerstate);
688 	now = sbinuptime();
689 	ET_HW_LOCK(state);
690 	state->now = now;
691 	hardclock_sync(curcpu);
692 	spinlock_enter();
693 	ET_HW_UNLOCK(state);
694 	td = curthread;
695 	td->td_intr_nesting_level++;
696 	handleevents(state->now, 2);
697 	td->td_intr_nesting_level--;
698 	spinlock_exit();
699 }
700 
701 void
702 suspendclock(void)
703 {
704 	ET_LOCK();
705 	configtimer(0);
706 	ET_UNLOCK();
707 }
708 
709 void
710 resumeclock(void)
711 {
712 	ET_LOCK();
713 	configtimer(1);
714 	ET_UNLOCK();
715 }
716 
717 /*
718  * Switch to profiling clock rates.
719  */
720 void
721 cpu_startprofclock(void)
722 {
723 
724 	ET_LOCK();
725 	if (profiling == 0) {
726 		if (periodic) {
727 			configtimer(0);
728 			profiling = 1;
729 			configtimer(1);
730 		} else
731 			profiling = 1;
732 	} else
733 		profiling++;
734 	ET_UNLOCK();
735 }
736 
737 /*
738  * Switch to regular clock rates.
739  */
740 void
741 cpu_stopprofclock(void)
742 {
743 
744 	ET_LOCK();
745 	if (profiling == 1) {
746 		if (periodic) {
747 			configtimer(0);
748 			profiling = 0;
749 			configtimer(1);
750 		} else
751 		profiling = 0;
752 	} else
753 		profiling--;
754 	ET_UNLOCK();
755 }
756 
757 /*
758  * Switch to idle mode (all ticks handled).
759  */
760 sbintime_t
761 cpu_idleclock(void)
762 {
763 	sbintime_t now, t;
764 	struct pcpu_state *state;
765 
766 	if (idletick || busy ||
767 	    (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
768 #ifdef DEVICE_POLLING
769 	    || curcpu == CPU_FIRST()
770 #endif
771 	    )
772 		return (-1);
773 	state = DPCPU_PTR(timerstate);
774 	if (periodic)
775 		now = state->now;
776 	else
777 		now = sbinuptime();
778 	CTR3(KTR_SPARE2, "idle at %d:    now  %d.%08x",
779 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
780 	t = getnextcpuevent(1);
781 	ET_HW_LOCK(state);
782 	state->idle = 1;
783 	state->nextevent = t;
784 	if (!periodic)
785 		loadtimer(now, 0);
786 	ET_HW_UNLOCK(state);
787 	return (MAX(t - now, 0));
788 }
789 
790 /*
791  * Switch to active mode (skip empty ticks).
792  */
793 void
794 cpu_activeclock(void)
795 {
796 	sbintime_t now;
797 	struct pcpu_state *state;
798 	struct thread *td;
799 
800 	state = DPCPU_PTR(timerstate);
801 	if (state->idle == 0 || busy)
802 		return;
803 	if (periodic)
804 		now = state->now;
805 	else
806 		now = sbinuptime();
807 	CTR3(KTR_SPARE2, "active at %d:  now  %d.%08x",
808 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
809 	spinlock_enter();
810 	td = curthread;
811 	td->td_intr_nesting_level++;
812 	handleevents(now, 1);
813 	td->td_intr_nesting_level--;
814 	spinlock_exit();
815 }
816 
817 /*
818  * Change the frequency of the given timer.  This changes et->et_frequency and
819  * if et is the active timer it reconfigures the timer on all CPUs.  This is
820  * intended to be a private interface for the use of et_change_frequency() only.
821  */
822 void
823 cpu_et_frequency(struct eventtimer *et, uint64_t newfreq)
824 {
825 
826 	ET_LOCK();
827 	if (et == timer) {
828 		configtimer(0);
829 		et->et_frequency = newfreq;
830 		configtimer(1);
831 	} else
832 		et->et_frequency = newfreq;
833 	ET_UNLOCK();
834 }
835 
836 void
837 cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt)
838 {
839 	struct pcpu_state *state;
840 
841 	/* Do not touch anything if somebody reconfiguring timers. */
842 	if (busy)
843 		return;
844 	CTR6(KTR_SPARE2, "new co at %d:    on %d at %d.%08x - %d.%08x",
845 	    curcpu, cpu, (int)(bt_opt >> 32), (u_int)(bt_opt & 0xffffffff),
846 	    (int)(bt >> 32), (u_int)(bt & 0xffffffff));
847 
848 	KASSERT(!CPU_ABSENT(cpu), ("Absent CPU %d", cpu));
849 	state = DPCPU_ID_PTR(cpu, timerstate);
850 	ET_HW_LOCK(state);
851 
852 	/*
853 	 * If there is callout time already set earlier -- do nothing.
854 	 * This check may appear redundant because we check already in
855 	 * callout_process() but this double check guarantees we're safe
856 	 * with respect to race conditions between interrupts execution
857 	 * and scheduling.
858 	 */
859 	state->nextcallopt = bt_opt;
860 	if (bt >= state->nextcall)
861 		goto done;
862 	state->nextcall = bt;
863 	/* If there is some other event set earlier -- do nothing. */
864 	if (bt >= state->nextevent)
865 		goto done;
866 	state->nextevent = bt;
867 	/* If timer is periodic -- there is nothing to reprogram. */
868 	if (periodic)
869 		goto done;
870 	/* If timer is global or of the current CPU -- reprogram it. */
871 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || cpu == curcpu) {
872 		loadtimer(sbinuptime(), 0);
873 done:
874 		ET_HW_UNLOCK(state);
875 		return;
876 	}
877 	/* Otherwise make other CPU to reprogram it. */
878 	state->handle = 1;
879 	ET_HW_UNLOCK(state);
880 #ifdef SMP
881 	ipi_cpu(cpu, IPI_HARDCLOCK);
882 #endif
883 }
884 
885 /*
886  * Report or change the active event timers hardware.
887  */
888 static int
889 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
890 {
891 	char buf[32];
892 	struct eventtimer *et;
893 	int error;
894 
895 	ET_LOCK();
896 	et = timer;
897 	snprintf(buf, sizeof(buf), "%s", et->et_name);
898 	ET_UNLOCK();
899 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
900 	ET_LOCK();
901 	et = timer;
902 	if (error != 0 || req->newptr == NULL ||
903 	    strcasecmp(buf, et->et_name) == 0) {
904 		ET_UNLOCK();
905 		return (error);
906 	}
907 	et = et_find(buf, 0, 0);
908 	if (et == NULL) {
909 		ET_UNLOCK();
910 		return (ENOENT);
911 	}
912 	configtimer(0);
913 	et_free(timer);
914 	if (et->et_flags & ET_FLAGS_C3STOP)
915 		cpu_disable_c3_sleep++;
916 	if (timer->et_flags & ET_FLAGS_C3STOP)
917 		cpu_disable_c3_sleep--;
918 	periodic = want_periodic;
919 	timer = et;
920 	et_init(timer, timercb, NULL, NULL);
921 	configtimer(1);
922 	ET_UNLOCK();
923 	return (error);
924 }
925 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
926     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
927     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
928 
929 /*
930  * Report or change the active event timer periodicity.
931  */
932 static int
933 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
934 {
935 	int error, val;
936 
937 	val = periodic;
938 	error = sysctl_handle_int(oidp, &val, 0, req);
939 	if (error != 0 || req->newptr == NULL)
940 		return (error);
941 	ET_LOCK();
942 	configtimer(0);
943 	periodic = want_periodic = val;
944 	configtimer(1);
945 	ET_UNLOCK();
946 	return (error);
947 }
948 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
949     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
950     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");
951 
952 #include "opt_ddb.h"
953 
954 #ifdef DDB
955 #include <ddb/ddb.h>
956 
957 DB_SHOW_COMMAND(clocksource, db_show_clocksource)
958 {
959 	struct pcpu_state *st;
960 	int c;
961 
962 	CPU_FOREACH(c) {
963 		st = DPCPU_ID_PTR(c, timerstate);
964 		db_printf(
965 		    "CPU %2d: action %d handle %d  ipi %d idle %d\n"
966 		    "        now %#jx nevent %#jx (%jd)\n"
967 		    "        ntick %#jx (%jd) nhard %#jx (%jd)\n"
968 		    "        nstat %#jx (%jd) nprof %#jx (%jd)\n"
969 		    "        ncall %#jx (%jd) ncallopt %#jx (%jd)\n",
970 		    c, st->action, st->handle, st->ipi, st->idle,
971 		    (uintmax_t)st->now,
972 		    (uintmax_t)st->nextevent,
973 		    (uintmax_t)(st->nextevent - st->now) / tick_sbt,
974 		    (uintmax_t)st->nexttick,
975 		    (uintmax_t)(st->nexttick - st->now) / tick_sbt,
976 		    (uintmax_t)st->nexthard,
977 		    (uintmax_t)(st->nexthard - st->now) / tick_sbt,
978 		    (uintmax_t)st->nextstat,
979 		    (uintmax_t)(st->nextstat - st->now) / tick_sbt,
980 		    (uintmax_t)st->nextprof,
981 		    (uintmax_t)(st->nextprof - st->now) / tick_sbt,
982 		    (uintmax_t)st->nextcall,
983 		    (uintmax_t)(st->nextcall - st->now) / tick_sbt,
984 		    (uintmax_t)st->nextcallopt,
985 		    (uintmax_t)(st->nextcallopt - st->now) / tick_sbt);
986 	}
987 }
988 
989 #endif
990