xref: /freebsd/sys/kern/kern_clocksource.c (revision c03c5b1c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2010-2013 Alexander Motin <mav@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification, immediately at the beginning of the file.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * Common routines to manage event timers hardware.
34  */
35 
36 #include "opt_device_polling.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/limits.h>
42 #include <sys/lock.h>
43 #include <sys/kdb.h>
44 #include <sys/ktr.h>
45 #include <sys/mutex.h>
46 #include <sys/proc.h>
47 #include <sys/kernel.h>
48 #include <sys/sched.h>
49 #include <sys/smp.h>
50 #include <sys/sysctl.h>
51 #include <sys/timeet.h>
52 #include <sys/timetc.h>
53 
54 #include <machine/atomic.h>
55 #include <machine/clock.h>
56 #include <machine/cpu.h>
57 #include <machine/smp.h>
58 
59 int			cpu_disable_c2_sleep = 0; /* Timer dies in C2. */
60 int			cpu_disable_c3_sleep = 0; /* Timer dies in C3. */
61 
62 static void		setuptimer(void);
63 static void		loadtimer(sbintime_t now, int first);
64 static int		doconfigtimer(void);
65 static void		configtimer(int start);
66 static int		round_freq(struct eventtimer *et, int freq);
67 
68 static sbintime_t	getnextcpuevent(int idle);
69 static sbintime_t	getnextevent(void);
70 static int		handleevents(sbintime_t now, int fake);
71 
72 static struct mtx	et_hw_mtx;
73 
74 #define	ET_HW_LOCK(state)						\
75 	{								\
76 		if (timer->et_flags & ET_FLAGS_PERCPU)			\
77 			mtx_lock_spin(&(state)->et_hw_mtx);		\
78 		else							\
79 			mtx_lock_spin(&et_hw_mtx);			\
80 	}
81 
82 #define	ET_HW_UNLOCK(state)						\
83 	{								\
84 		if (timer->et_flags & ET_FLAGS_PERCPU)			\
85 			mtx_unlock_spin(&(state)->et_hw_mtx);		\
86 		else							\
87 			mtx_unlock_spin(&et_hw_mtx);			\
88 	}
89 
90 static struct eventtimer *timer = NULL;
91 static sbintime_t	timerperiod;	/* Timer period for periodic mode. */
92 static sbintime_t	statperiod;	/* statclock() events period. */
93 static sbintime_t	profperiod;	/* profclock() events period. */
94 static sbintime_t	nexttick;	/* Next global timer tick time. */
95 static u_int		busy = 1;	/* Reconfiguration is in progress. */
96 static int		profiling;	/* Profiling events enabled. */
97 
98 static char		timername[32];	/* Wanted timer. */
99 TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
100 
101 static int		singlemul;	/* Multiplier for periodic mode. */
102 SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RWTUN, &singlemul,
103     0, "Multiplier for periodic mode");
104 
105 static u_int		idletick;	/* Run periodic events when idle. */
106 SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RWTUN, &idletick,
107     0, "Run periodic events when idle");
108 
109 static int		periodic;	/* Periodic or one-shot mode. */
110 static int		want_periodic;	/* What mode to prefer. */
111 TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
112 
113 struct pcpu_state {
114 	struct mtx	et_hw_mtx;	/* Per-CPU timer mutex. */
115 	u_int		action;		/* Reconfiguration requests. */
116 	u_int		handle;		/* Immediate handle resuests. */
117 	sbintime_t	now;		/* Last tick time. */
118 	sbintime_t	nextevent;	/* Next scheduled event on this CPU. */
119 	sbintime_t	nexttick;	/* Next timer tick time. */
120 	sbintime_t	nexthard;	/* Next hardclock() event. */
121 	sbintime_t	nextstat;	/* Next statclock() event. */
122 	sbintime_t	nextprof;	/* Next profclock() event. */
123 	sbintime_t	nextcall;	/* Next callout event. */
124 	sbintime_t	nextcallopt;	/* Next optional callout event. */
125 	int		ipi;		/* This CPU needs IPI. */
126 	int		idle;		/* This CPU is in idle mode. */
127 };
128 
129 DPCPU_DEFINE_STATIC(struct pcpu_state, timerstate);
130 DPCPU_DEFINE(sbintime_t, hardclocktime);
131 
132 /*
133  * Timer broadcast IPI handler.
134  */
135 int
136 hardclockintr(void)
137 {
138 	sbintime_t now;
139 	struct pcpu_state *state;
140 	int done;
141 
142 	if (doconfigtimer() || busy)
143 		return (FILTER_HANDLED);
144 	state = DPCPU_PTR(timerstate);
145 	now = state->now;
146 	CTR3(KTR_SPARE2, "ipi  at %d:    now  %d.%08x",
147 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
148 	done = handleevents(now, 0);
149 	return (done ? FILTER_HANDLED : FILTER_STRAY);
150 }
151 
152 /*
153  * Handle all events for specified time on this CPU
154  */
155 static int
156 handleevents(sbintime_t now, int fake)
157 {
158 	sbintime_t t, *hct;
159 	struct trapframe *frame;
160 	struct pcpu_state *state;
161 	int usermode;
162 	int done, runs;
163 
164 	CTR3(KTR_SPARE2, "handle at %d:  now  %d.%08x",
165 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
166 	done = 0;
167 	if (fake) {
168 		frame = NULL;
169 		usermode = 0;
170 	} else {
171 		frame = curthread->td_intr_frame;
172 		usermode = TRAPF_USERMODE(frame);
173 	}
174 
175 	state = DPCPU_PTR(timerstate);
176 
177 	runs = 0;
178 	while (now >= state->nexthard) {
179 		state->nexthard += tick_sbt;
180 		runs++;
181 	}
182 	if (runs) {
183 		hct = DPCPU_PTR(hardclocktime);
184 		*hct = state->nexthard - tick_sbt;
185 		if (fake < 2) {
186 			hardclock(runs, usermode);
187 			done = 1;
188 		}
189 	}
190 	runs = 0;
191 	while (now >= state->nextstat) {
192 		state->nextstat += statperiod;
193 		runs++;
194 	}
195 	if (runs && fake < 2) {
196 		statclock(runs, usermode);
197 		done = 1;
198 	}
199 	if (profiling) {
200 		runs = 0;
201 		while (now >= state->nextprof) {
202 			state->nextprof += profperiod;
203 			runs++;
204 		}
205 		if (runs && !fake) {
206 			profclock(runs, usermode, TRAPF_PC(frame));
207 			done = 1;
208 		}
209 	} else
210 		state->nextprof = state->nextstat;
211 	if (now >= state->nextcallopt || now >= state->nextcall) {
212 		state->nextcall = state->nextcallopt = SBT_MAX;
213 		callout_process(now);
214 	}
215 
216 	t = getnextcpuevent(0);
217 	ET_HW_LOCK(state);
218 	if (!busy) {
219 		state->idle = 0;
220 		state->nextevent = t;
221 		loadtimer(now, (fake == 2) &&
222 		    (timer->et_flags & ET_FLAGS_PERCPU));
223 	}
224 	ET_HW_UNLOCK(state);
225 	return (done);
226 }
227 
228 /*
229  * Schedule binuptime of the next event on current CPU.
230  */
231 static sbintime_t
232 getnextcpuevent(int idle)
233 {
234 	sbintime_t event;
235 	struct pcpu_state *state;
236 	u_int hardfreq;
237 
238 	state = DPCPU_PTR(timerstate);
239 	/* Handle hardclock() events, skipping some if CPU is idle. */
240 	event = state->nexthard;
241 	if (idle) {
242 		if (tc_min_ticktock_freq > 1
243 #ifdef SMP
244 		    && curcpu == CPU_FIRST()
245 #endif
246 		    )
247 			hardfreq = hz / tc_min_ticktock_freq;
248 		else
249 			hardfreq = hz;
250 		if (hardfreq > 1)
251 			event += tick_sbt * (hardfreq - 1);
252 	}
253 	/* Handle callout events. */
254 	if (event > state->nextcall)
255 		event = state->nextcall;
256 	if (!idle) { /* If CPU is active - handle other types of events. */
257 		if (event > state->nextstat)
258 			event = state->nextstat;
259 		if (profiling && event > state->nextprof)
260 			event = state->nextprof;
261 	}
262 	return (event);
263 }
264 
265 /*
266  * Schedule binuptime of the next event on all CPUs.
267  */
268 static sbintime_t
269 getnextevent(void)
270 {
271 	struct pcpu_state *state;
272 	sbintime_t event;
273 #ifdef SMP
274 	int	cpu;
275 #endif
276 #ifdef KTR
277 	int	c;
278 
279 	c = -1;
280 #endif
281 	state = DPCPU_PTR(timerstate);
282 	event = state->nextevent;
283 #ifdef SMP
284 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
285 		CPU_FOREACH(cpu) {
286 			state = DPCPU_ID_PTR(cpu, timerstate);
287 			if (event > state->nextevent) {
288 				event = state->nextevent;
289 #ifdef KTR
290 				c = cpu;
291 #endif
292 			}
293 		}
294 	}
295 #endif
296 	CTR4(KTR_SPARE2, "next at %d:    next %d.%08x by %d",
297 	    curcpu, (int)(event >> 32), (u_int)(event & 0xffffffff), c);
298 	return (event);
299 }
300 
301 /* Hardware timer callback function. */
302 static void
303 timercb(struct eventtimer *et, void *arg)
304 {
305 	sbintime_t now;
306 	sbintime_t *next;
307 	struct pcpu_state *state;
308 #ifdef SMP
309 	int cpu, bcast;
310 #endif
311 
312 	/* Do not touch anything if somebody reconfiguring timers. */
313 	if (busy)
314 		return;
315 	/* Update present and next tick times. */
316 	state = DPCPU_PTR(timerstate);
317 	if (et->et_flags & ET_FLAGS_PERCPU) {
318 		next = &state->nexttick;
319 	} else
320 		next = &nexttick;
321 	now = sbinuptime();
322 	if (periodic)
323 		*next = now + timerperiod;
324 	else
325 		*next = -1;	/* Next tick is not scheduled yet. */
326 	state->now = now;
327 	CTR3(KTR_SPARE2, "intr at %d:    now  %d.%08x",
328 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
329 
330 #ifdef SMP
331 #ifdef EARLY_AP_STARTUP
332 	MPASS(mp_ncpus == 1 || smp_started);
333 #endif
334 	/* Prepare broadcasting to other CPUs for non-per-CPU timers. */
335 	bcast = 0;
336 #ifdef EARLY_AP_STARTUP
337 	if ((et->et_flags & ET_FLAGS_PERCPU) == 0) {
338 #else
339 	if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
340 #endif
341 		CPU_FOREACH(cpu) {
342 			state = DPCPU_ID_PTR(cpu, timerstate);
343 			ET_HW_LOCK(state);
344 			state->now = now;
345 			if (now >= state->nextevent) {
346 				state->nextevent += SBT_1S;
347 				if (curcpu != cpu) {
348 					state->ipi = 1;
349 					bcast = 1;
350 				}
351 			}
352 			ET_HW_UNLOCK(state);
353 		}
354 	}
355 #endif
356 
357 	/* Handle events for this time on this CPU. */
358 	handleevents(now, 0);
359 
360 #ifdef SMP
361 	/* Broadcast interrupt to other CPUs for non-per-CPU timers. */
362 	if (bcast) {
363 		CPU_FOREACH(cpu) {
364 			if (curcpu == cpu)
365 				continue;
366 			state = DPCPU_ID_PTR(cpu, timerstate);
367 			if (state->ipi) {
368 				state->ipi = 0;
369 				ipi_cpu(cpu, IPI_HARDCLOCK);
370 			}
371 		}
372 	}
373 #endif
374 }
375 
376 /*
377  * Load new value into hardware timer.
378  */
379 static void
380 loadtimer(sbintime_t now, int start)
381 {
382 	struct pcpu_state *state;
383 	sbintime_t new;
384 	sbintime_t *next;
385 	uint64_t tmp;
386 	int eq;
387 
388 	if (timer->et_flags & ET_FLAGS_PERCPU) {
389 		state = DPCPU_PTR(timerstate);
390 		next = &state->nexttick;
391 	} else
392 		next = &nexttick;
393 	if (periodic) {
394 		if (start) {
395 			/*
396 			 * Try to start all periodic timers aligned
397 			 * to period to make events synchronous.
398 			 */
399 			tmp = now % timerperiod;
400 			new = timerperiod - tmp;
401 			if (new < tmp)		/* Left less then passed. */
402 				new += timerperiod;
403 			CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
404 			    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff),
405 			    (int)(new >> 32), (u_int)(new & 0xffffffff));
406 			*next = new + now;
407 			et_start(timer, new, timerperiod);
408 		}
409 	} else {
410 		new = getnextevent();
411 		eq = (new == *next);
412 		CTR4(KTR_SPARE2, "load at %d:    next %d.%08x eq %d",
413 		    curcpu, (int)(new >> 32), (u_int)(new & 0xffffffff), eq);
414 		if (!eq) {
415 			*next = new;
416 			et_start(timer, new - now, 0);
417 		}
418 	}
419 }
420 
421 /*
422  * Prepare event timer parameters after configuration changes.
423  */
424 static void
425 setuptimer(void)
426 {
427 	int freq;
428 
429 	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
430 		periodic = 0;
431 	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
432 		periodic = 1;
433 	singlemul = MIN(MAX(singlemul, 1), 20);
434 	freq = hz * singlemul;
435 	while (freq < (profiling ? profhz : stathz))
436 		freq += hz;
437 	freq = round_freq(timer, freq);
438 	timerperiod = SBT_1S / freq;
439 }
440 
441 /*
442  * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
443  */
444 static int
445 doconfigtimer(void)
446 {
447 	sbintime_t now;
448 	struct pcpu_state *state;
449 
450 	state = DPCPU_PTR(timerstate);
451 	switch (atomic_load_acq_int(&state->action)) {
452 	case 1:
453 		now = sbinuptime();
454 		ET_HW_LOCK(state);
455 		loadtimer(now, 1);
456 		ET_HW_UNLOCK(state);
457 		state->handle = 0;
458 		atomic_store_rel_int(&state->action, 0);
459 		return (1);
460 	case 2:
461 		ET_HW_LOCK(state);
462 		et_stop(timer);
463 		ET_HW_UNLOCK(state);
464 		state->handle = 0;
465 		atomic_store_rel_int(&state->action, 0);
466 		return (1);
467 	}
468 	if (atomic_readandclear_int(&state->handle) && !busy) {
469 		now = sbinuptime();
470 		handleevents(now, 0);
471 		return (1);
472 	}
473 	return (0);
474 }
475 
476 /*
477  * Reconfigure specified timer.
478  * For per-CPU timers use IPI to make other CPUs to reconfigure.
479  */
480 static void
481 configtimer(int start)
482 {
483 	sbintime_t now, next;
484 	struct pcpu_state *state;
485 	int cpu;
486 
487 	if (start) {
488 		setuptimer();
489 		now = sbinuptime();
490 	} else
491 		now = 0;
492 	critical_enter();
493 	ET_HW_LOCK(DPCPU_PTR(timerstate));
494 	if (start) {
495 		/* Initialize time machine parameters. */
496 		next = now + timerperiod;
497 		if (periodic)
498 			nexttick = next;
499 		else
500 			nexttick = -1;
501 #ifdef EARLY_AP_STARTUP
502 		MPASS(mp_ncpus == 1 || smp_started);
503 #endif
504 		CPU_FOREACH(cpu) {
505 			state = DPCPU_ID_PTR(cpu, timerstate);
506 			state->now = now;
507 #ifndef EARLY_AP_STARTUP
508 			if (!smp_started && cpu != CPU_FIRST())
509 				state->nextevent = SBT_MAX;
510 			else
511 #endif
512 				state->nextevent = next;
513 			if (periodic)
514 				state->nexttick = next;
515 			else
516 				state->nexttick = -1;
517 			state->nexthard = next;
518 			state->nextstat = next;
519 			state->nextprof = next;
520 			state->nextcall = next;
521 			state->nextcallopt = next;
522 			hardclock_sync(cpu);
523 		}
524 		busy = 0;
525 		/* Start global timer or per-CPU timer of this CPU. */
526 		loadtimer(now, 1);
527 	} else {
528 		busy = 1;
529 		/* Stop global timer or per-CPU timer of this CPU. */
530 		et_stop(timer);
531 	}
532 	ET_HW_UNLOCK(DPCPU_PTR(timerstate));
533 #ifdef SMP
534 #ifdef EARLY_AP_STARTUP
535 	/* If timer is global we are done. */
536 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
537 #else
538 	/* If timer is global or there is no other CPUs yet - we are done. */
539 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
540 #endif
541 		critical_exit();
542 		return;
543 	}
544 	/* Set reconfigure flags for other CPUs. */
545 	CPU_FOREACH(cpu) {
546 		state = DPCPU_ID_PTR(cpu, timerstate);
547 		atomic_store_rel_int(&state->action,
548 		    (cpu == curcpu) ? 0 : ( start ? 1 : 2));
549 	}
550 	/* Broadcast reconfigure IPI. */
551 	ipi_all_but_self(IPI_HARDCLOCK);
552 	/* Wait for reconfiguration completed. */
553 restart:
554 	cpu_spinwait();
555 	CPU_FOREACH(cpu) {
556 		if (cpu == curcpu)
557 			continue;
558 		state = DPCPU_ID_PTR(cpu, timerstate);
559 		if (atomic_load_acq_int(&state->action))
560 			goto restart;
561 	}
562 #endif
563 	critical_exit();
564 }
565 
566 /*
567  * Calculate nearest frequency supported by hardware timer.
568  */
569 static int
570 round_freq(struct eventtimer *et, int freq)
571 {
572 	uint64_t div;
573 
574 	if (et->et_frequency != 0) {
575 		div = lmax((et->et_frequency + freq / 2) / freq, 1);
576 		if (et->et_flags & ET_FLAGS_POW2DIV)
577 			div = 1 << (flsl(div + div / 2) - 1);
578 		freq = (et->et_frequency + div / 2) / div;
579 	}
580 	if (et->et_min_period > SBT_1S)
581 		panic("Event timer \"%s\" doesn't support sub-second periods!",
582 		    et->et_name);
583 	else if (et->et_min_period != 0)
584 		freq = min(freq, SBT2FREQ(et->et_min_period));
585 	if (et->et_max_period < SBT_1S && et->et_max_period != 0)
586 		freq = max(freq, SBT2FREQ(et->et_max_period));
587 	return (freq);
588 }
589 
590 /*
591  * Configure and start event timers (BSP part).
592  */
593 void
594 cpu_initclocks_bsp(void)
595 {
596 	struct pcpu_state *state;
597 	int base, div, cpu;
598 
599 	mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
600 	CPU_FOREACH(cpu) {
601 		state = DPCPU_ID_PTR(cpu, timerstate);
602 		mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
603 		state->nextcall = SBT_MAX;
604 		state->nextcallopt = SBT_MAX;
605 	}
606 	periodic = want_periodic;
607 	/* Grab requested timer or the best of present. */
608 	if (timername[0])
609 		timer = et_find(timername, 0, 0);
610 	if (timer == NULL && periodic) {
611 		timer = et_find(NULL,
612 		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
613 	}
614 	if (timer == NULL) {
615 		timer = et_find(NULL,
616 		    ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
617 	}
618 	if (timer == NULL && !periodic) {
619 		timer = et_find(NULL,
620 		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
621 	}
622 	if (timer == NULL)
623 		panic("No usable event timer found!");
624 	et_init(timer, timercb, NULL, NULL);
625 
626 	/* Adapt to timer capabilities. */
627 	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
628 		periodic = 0;
629 	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
630 		periodic = 1;
631 	if (timer->et_flags & ET_FLAGS_C3STOP)
632 		cpu_disable_c3_sleep++;
633 
634 	/*
635 	 * We honor the requested 'hz' value.
636 	 * We want to run stathz in the neighborhood of 128hz.
637 	 * We would like profhz to run as often as possible.
638 	 */
639 	if (singlemul <= 0 || singlemul > 20) {
640 		if (hz >= 1500 || (hz % 128) == 0)
641 			singlemul = 1;
642 		else if (hz >= 750)
643 			singlemul = 2;
644 		else
645 			singlemul = 4;
646 	}
647 	if (periodic) {
648 		base = round_freq(timer, hz * singlemul);
649 		singlemul = max((base + hz / 2) / hz, 1);
650 		hz = (base + singlemul / 2) / singlemul;
651 		if (base <= 128)
652 			stathz = base;
653 		else {
654 			div = base / 128;
655 			if (div >= singlemul && (div % singlemul) == 0)
656 				div++;
657 			stathz = base / div;
658 		}
659 		profhz = stathz;
660 		while ((profhz + stathz) <= 128 * 64)
661 			profhz += stathz;
662 		profhz = round_freq(timer, profhz);
663 	} else {
664 		hz = round_freq(timer, hz);
665 		stathz = round_freq(timer, 127);
666 		profhz = round_freq(timer, stathz * 64);
667 	}
668 	tick = 1000000 / hz;
669 	tick_sbt = SBT_1S / hz;
670 	tick_bt = sbttobt(tick_sbt);
671 	statperiod = SBT_1S / stathz;
672 	profperiod = SBT_1S / profhz;
673 	ET_LOCK();
674 	configtimer(1);
675 	ET_UNLOCK();
676 }
677 
678 /*
679  * Start per-CPU event timers on APs.
680  */
681 void
682 cpu_initclocks_ap(void)
683 {
684 	sbintime_t now;
685 	struct pcpu_state *state;
686 	struct thread *td;
687 
688 	state = DPCPU_PTR(timerstate);
689 	now = sbinuptime();
690 	ET_HW_LOCK(state);
691 	state->now = now;
692 	hardclock_sync(curcpu);
693 	spinlock_enter();
694 	ET_HW_UNLOCK(state);
695 	td = curthread;
696 	td->td_intr_nesting_level++;
697 	handleevents(state->now, 2);
698 	td->td_intr_nesting_level--;
699 	spinlock_exit();
700 }
701 
702 void
703 suspendclock(void)
704 {
705 	ET_LOCK();
706 	configtimer(0);
707 	ET_UNLOCK();
708 }
709 
710 void
711 resumeclock(void)
712 {
713 	ET_LOCK();
714 	configtimer(1);
715 	ET_UNLOCK();
716 }
717 
718 /*
719  * Switch to profiling clock rates.
720  */
721 void
722 cpu_startprofclock(void)
723 {
724 
725 	ET_LOCK();
726 	if (profiling == 0) {
727 		if (periodic) {
728 			configtimer(0);
729 			profiling = 1;
730 			configtimer(1);
731 		} else
732 			profiling = 1;
733 	} else
734 		profiling++;
735 	ET_UNLOCK();
736 }
737 
738 /*
739  * Switch to regular clock rates.
740  */
741 void
742 cpu_stopprofclock(void)
743 {
744 
745 	ET_LOCK();
746 	if (profiling == 1) {
747 		if (periodic) {
748 			configtimer(0);
749 			profiling = 0;
750 			configtimer(1);
751 		} else
752 		profiling = 0;
753 	} else
754 		profiling--;
755 	ET_UNLOCK();
756 }
757 
758 /*
759  * Switch to idle mode (all ticks handled).
760  */
761 sbintime_t
762 cpu_idleclock(void)
763 {
764 	sbintime_t now, t;
765 	struct pcpu_state *state;
766 
767 	if (idletick || busy ||
768 	    (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
769 #ifdef DEVICE_POLLING
770 	    || curcpu == CPU_FIRST()
771 #endif
772 	    )
773 		return (-1);
774 	state = DPCPU_PTR(timerstate);
775 	if (periodic)
776 		now = state->now;
777 	else
778 		now = sbinuptime();
779 	CTR3(KTR_SPARE2, "idle at %d:    now  %d.%08x",
780 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
781 	t = getnextcpuevent(1);
782 	ET_HW_LOCK(state);
783 	state->idle = 1;
784 	state->nextevent = t;
785 	if (!periodic)
786 		loadtimer(now, 0);
787 	ET_HW_UNLOCK(state);
788 	return (MAX(t - now, 0));
789 }
790 
791 /*
792  * Switch to active mode (skip empty ticks).
793  */
794 void
795 cpu_activeclock(void)
796 {
797 	sbintime_t now;
798 	struct pcpu_state *state;
799 	struct thread *td;
800 
801 	state = DPCPU_PTR(timerstate);
802 	if (state->idle == 0 || busy)
803 		return;
804 	if (periodic)
805 		now = state->now;
806 	else
807 		now = sbinuptime();
808 	CTR3(KTR_SPARE2, "active at %d:  now  %d.%08x",
809 	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
810 	spinlock_enter();
811 	td = curthread;
812 	td->td_intr_nesting_level++;
813 	handleevents(now, 1);
814 	td->td_intr_nesting_level--;
815 	spinlock_exit();
816 }
817 
818 /*
819  * Change the frequency of the given timer.  This changes et->et_frequency and
820  * if et is the active timer it reconfigures the timer on all CPUs.  This is
821  * intended to be a private interface for the use of et_change_frequency() only.
822  */
823 void
824 cpu_et_frequency(struct eventtimer *et, uint64_t newfreq)
825 {
826 
827 	ET_LOCK();
828 	if (et == timer) {
829 		configtimer(0);
830 		et->et_frequency = newfreq;
831 		configtimer(1);
832 	} else
833 		et->et_frequency = newfreq;
834 	ET_UNLOCK();
835 }
836 
837 void
838 cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt)
839 {
840 	struct pcpu_state *state;
841 
842 	/* Do not touch anything if somebody reconfiguring timers. */
843 	if (busy)
844 		return;
845 	CTR6(KTR_SPARE2, "new co at %d:    on %d at %d.%08x - %d.%08x",
846 	    curcpu, cpu, (int)(bt_opt >> 32), (u_int)(bt_opt & 0xffffffff),
847 	    (int)(bt >> 32), (u_int)(bt & 0xffffffff));
848 
849 	KASSERT(!CPU_ABSENT(cpu), ("Absent CPU %d", cpu));
850 	state = DPCPU_ID_PTR(cpu, timerstate);
851 	ET_HW_LOCK(state);
852 
853 	/*
854 	 * If there is callout time already set earlier -- do nothing.
855 	 * This check may appear redundant because we check already in
856 	 * callout_process() but this double check guarantees we're safe
857 	 * with respect to race conditions between interrupts execution
858 	 * and scheduling.
859 	 */
860 	state->nextcallopt = bt_opt;
861 	if (bt >= state->nextcall)
862 		goto done;
863 	state->nextcall = bt;
864 	/* If there is some other event set earlier -- do nothing. */
865 	if (bt >= state->nextevent)
866 		goto done;
867 	state->nextevent = bt;
868 	/* If timer is periodic -- there is nothing to reprogram. */
869 	if (periodic)
870 		goto done;
871 	/* If timer is global or of the current CPU -- reprogram it. */
872 	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || cpu == curcpu) {
873 		loadtimer(sbinuptime(), 0);
874 done:
875 		ET_HW_UNLOCK(state);
876 		return;
877 	}
878 	/* Otherwise make other CPU to reprogram it. */
879 	state->handle = 1;
880 	ET_HW_UNLOCK(state);
881 #ifdef SMP
882 	ipi_cpu(cpu, IPI_HARDCLOCK);
883 #endif
884 }
885 
886 /*
887  * Report or change the active event timers hardware.
888  */
889 static int
890 sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
891 {
892 	char buf[32];
893 	struct eventtimer *et;
894 	int error;
895 
896 	ET_LOCK();
897 	et = timer;
898 	snprintf(buf, sizeof(buf), "%s", et->et_name);
899 	ET_UNLOCK();
900 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
901 	ET_LOCK();
902 	et = timer;
903 	if (error != 0 || req->newptr == NULL ||
904 	    strcasecmp(buf, et->et_name) == 0) {
905 		ET_UNLOCK();
906 		return (error);
907 	}
908 	et = et_find(buf, 0, 0);
909 	if (et == NULL) {
910 		ET_UNLOCK();
911 		return (ENOENT);
912 	}
913 	configtimer(0);
914 	et_free(timer);
915 	if (et->et_flags & ET_FLAGS_C3STOP)
916 		cpu_disable_c3_sleep++;
917 	if (timer->et_flags & ET_FLAGS_C3STOP)
918 		cpu_disable_c3_sleep--;
919 	periodic = want_periodic;
920 	timer = et;
921 	et_init(timer, timercb, NULL, NULL);
922 	configtimer(1);
923 	ET_UNLOCK();
924 	return (error);
925 }
926 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
927     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
928     0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
929 
930 /*
931  * Report or change the active event timer periodicity.
932  */
933 static int
934 sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
935 {
936 	int error, val;
937 
938 	val = periodic;
939 	error = sysctl_handle_int(oidp, &val, 0, req);
940 	if (error != 0 || req->newptr == NULL)
941 		return (error);
942 	ET_LOCK();
943 	configtimer(0);
944 	periodic = want_periodic = val;
945 	configtimer(1);
946 	ET_UNLOCK();
947 	return (error);
948 }
949 SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
950     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
951     0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");
952 
953 #include "opt_ddb.h"
954 
955 #ifdef DDB
956 #include <ddb/ddb.h>
957 
958 DB_SHOW_COMMAND(clocksource, db_show_clocksource)
959 {
960 	struct pcpu_state *st;
961 	int c;
962 
963 	CPU_FOREACH(c) {
964 		st = DPCPU_ID_PTR(c, timerstate);
965 		db_printf(
966 		    "CPU %2d: action %d handle %d  ipi %d idle %d\n"
967 		    "        now %#jx nevent %#jx (%jd)\n"
968 		    "        ntick %#jx (%jd) nhard %#jx (%jd)\n"
969 		    "        nstat %#jx (%jd) nprof %#jx (%jd)\n"
970 		    "        ncall %#jx (%jd) ncallopt %#jx (%jd)\n",
971 		    c, st->action, st->handle, st->ipi, st->idle,
972 		    (uintmax_t)st->now,
973 		    (uintmax_t)st->nextevent,
974 		    (uintmax_t)(st->nextevent - st->now) / tick_sbt,
975 		    (uintmax_t)st->nexttick,
976 		    (uintmax_t)(st->nexttick - st->now) / tick_sbt,
977 		    (uintmax_t)st->nexthard,
978 		    (uintmax_t)(st->nexthard - st->now) / tick_sbt,
979 		    (uintmax_t)st->nextstat,
980 		    (uintmax_t)(st->nextstat - st->now) / tick_sbt,
981 		    (uintmax_t)st->nextprof,
982 		    (uintmax_t)(st->nextprof - st->now) / tick_sbt,
983 		    (uintmax_t)st->nextcall,
984 		    (uintmax_t)(st->nextcall - st->now) / tick_sbt,
985 		    (uintmax_t)st->nextcallopt,
986 		    (uintmax_t)(st->nextcallopt - st->now) / tick_sbt);
987 	}
988 }
989 
990 #endif
991