xref: /freebsd/sys/kern/kern_fork.c (revision 206b73d0)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 #include "opt_kstack_pages.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bitstring.h>
48 #include <sys/sysproto.h>
49 #include <sys/eventhandler.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/sysctl.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mutex.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/procdesc.h>
62 #include <sys/pioctl.h>
63 #include <sys/ptrace.h>
64 #include <sys/racct.h>
65 #include <sys/resourcevar.h>
66 #include <sys/sched.h>
67 #include <sys/syscall.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 #include <sys/acct.h>
71 #include <sys/ktr.h>
72 #include <sys/ktrace.h>
73 #include <sys/unistd.h>
74 #include <sys/sdt.h>
75 #include <sys/sx.h>
76 #include <sys/sysent.h>
77 #include <sys/signalvar.h>
78 
79 #include <security/audit/audit.h>
80 #include <security/mac/mac_framework.h>
81 
82 #include <vm/vm.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_extern.h>
86 #include <vm/uma.h>
87 
88 #ifdef KDTRACE_HOOKS
89 #include <sys/dtrace_bsd.h>
90 dtrace_fork_func_t	dtrace_fasttrap_fork;
91 #endif
92 
93 SDT_PROVIDER_DECLARE(proc);
94 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
95 
96 #ifndef _SYS_SYSPROTO_H_
97 struct fork_args {
98 	int     dummy;
99 };
100 #endif
101 
102 /* ARGSUSED */
103 int
104 sys_fork(struct thread *td, struct fork_args *uap)
105 {
106 	struct fork_req fr;
107 	int error, pid;
108 
109 	bzero(&fr, sizeof(fr));
110 	fr.fr_flags = RFFDG | RFPROC;
111 	fr.fr_pidp = &pid;
112 	error = fork1(td, &fr);
113 	if (error == 0) {
114 		td->td_retval[0] = pid;
115 		td->td_retval[1] = 0;
116 	}
117 	return (error);
118 }
119 
120 /* ARGUSED */
121 int
122 sys_pdfork(struct thread *td, struct pdfork_args *uap)
123 {
124 	struct fork_req fr;
125 	int error, fd, pid;
126 
127 	bzero(&fr, sizeof(fr));
128 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
129 	fr.fr_pidp = &pid;
130 	fr.fr_pd_fd = &fd;
131 	fr.fr_pd_flags = uap->flags;
132 	/*
133 	 * It is necessary to return fd by reference because 0 is a valid file
134 	 * descriptor number, and the child needs to be able to distinguish
135 	 * itself from the parent using the return value.
136 	 */
137 	error = fork1(td, &fr);
138 	if (error == 0) {
139 		td->td_retval[0] = pid;
140 		td->td_retval[1] = 0;
141 		error = copyout(&fd, uap->fdp, sizeof(fd));
142 	}
143 	return (error);
144 }
145 
146 /* ARGSUSED */
147 int
148 sys_vfork(struct thread *td, struct vfork_args *uap)
149 {
150 	struct fork_req fr;
151 	int error, pid;
152 
153 	bzero(&fr, sizeof(fr));
154 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
155 	fr.fr_pidp = &pid;
156 	error = fork1(td, &fr);
157 	if (error == 0) {
158 		td->td_retval[0] = pid;
159 		td->td_retval[1] = 0;
160 	}
161 	return (error);
162 }
163 
164 int
165 sys_rfork(struct thread *td, struct rfork_args *uap)
166 {
167 	struct fork_req fr;
168 	int error, pid;
169 
170 	/* Don't allow kernel-only flags. */
171 	if ((uap->flags & RFKERNELONLY) != 0)
172 		return (EINVAL);
173 
174 	AUDIT_ARG_FFLAGS(uap->flags);
175 	bzero(&fr, sizeof(fr));
176 	fr.fr_flags = uap->flags;
177 	fr.fr_pidp = &pid;
178 	error = fork1(td, &fr);
179 	if (error == 0) {
180 		td->td_retval[0] = pid;
181 		td->td_retval[1] = 0;
182 	}
183 	return (error);
184 }
185 
186 int __exclusive_cache_line	nprocs = 1;		/* process 0 */
187 int	lastpid = 0;
188 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
189     "Last used PID");
190 
191 /*
192  * Random component to lastpid generation.  We mix in a random factor to make
193  * it a little harder to predict.  We sanity check the modulus value to avoid
194  * doing it in critical paths.  Don't let it be too small or we pointlessly
195  * waste randomness entropy, and don't let it be impossibly large.  Using a
196  * modulus that is too big causes a LOT more process table scans and slows
197  * down fork processing as the pidchecked caching is defeated.
198  */
199 static int randompid = 0;
200 
201 static int
202 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
203 {
204 	int error, pid;
205 
206 	error = sysctl_wire_old_buffer(req, sizeof(int));
207 	if (error != 0)
208 		return(error);
209 	sx_xlock(&allproc_lock);
210 	pid = randompid;
211 	error = sysctl_handle_int(oidp, &pid, 0, req);
212 	if (error == 0 && req->newptr != NULL) {
213 		if (pid == 0)
214 			randompid = 0;
215 		else if (pid == 1)
216 			/* generate a random PID modulus between 100 and 1123 */
217 			randompid = 100 + arc4random() % 1024;
218 		else if (pid < 0 || pid > pid_max - 100)
219 			/* out of range */
220 			randompid = pid_max - 100;
221 		else if (pid < 100)
222 			/* Make it reasonable */
223 			randompid = 100;
224 		else
225 			randompid = pid;
226 	}
227 	sx_xunlock(&allproc_lock);
228 	return (error);
229 }
230 
231 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
232     0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value");
233 
234 extern bitstr_t proc_id_pidmap;
235 extern bitstr_t proc_id_grpidmap;
236 extern bitstr_t proc_id_sessidmap;
237 extern bitstr_t proc_id_reapmap;
238 
239 /*
240  * Find an unused process ID
241  *
242  * If RFHIGHPID is set (used during system boot), do not allocate
243  * low-numbered pids.
244  */
245 static int
246 fork_findpid(int flags)
247 {
248 	pid_t result;
249 	int trypid, random;
250 
251 	/*
252 	 * Avoid calling arc4random with procid_lock held.
253 	 */
254 	random = 0;
255 	if (__predict_false(randompid))
256 		random = arc4random() % randompid;
257 
258 	mtx_lock(&procid_lock);
259 
260 	trypid = lastpid + 1;
261 	if (flags & RFHIGHPID) {
262 		if (trypid < 10)
263 			trypid = 10;
264 	} else {
265 		trypid += random;
266 	}
267 retry:
268 	if (trypid >= pid_max)
269 		trypid = 2;
270 
271 	bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
272 	if (result == -1) {
273 		KASSERT(trypid != 2, ("unexpectedly ran out of IDs"));
274 		trypid = 2;
275 		goto retry;
276 	}
277 	if (bit_test(&proc_id_grpidmap, result) ||
278 	    bit_test(&proc_id_sessidmap, result) ||
279 	    bit_test(&proc_id_reapmap, result)) {
280 		trypid = result + 1;
281 		goto retry;
282 	}
283 
284 	/*
285 	 * RFHIGHPID does not mess with the lastpid counter during boot.
286 	 */
287 	if ((flags & RFHIGHPID) == 0)
288 		lastpid = result;
289 
290 	bit_set(&proc_id_pidmap, result);
291 	mtx_unlock(&procid_lock);
292 
293 	return (result);
294 }
295 
296 static int
297 fork_norfproc(struct thread *td, int flags)
298 {
299 	int error;
300 	struct proc *p1;
301 
302 	KASSERT((flags & RFPROC) == 0,
303 	    ("fork_norfproc called with RFPROC set"));
304 	p1 = td->td_proc;
305 
306 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
307 	    (flags & (RFCFDG | RFFDG))) {
308 		PROC_LOCK(p1);
309 		if (thread_single(p1, SINGLE_BOUNDARY)) {
310 			PROC_UNLOCK(p1);
311 			return (ERESTART);
312 		}
313 		PROC_UNLOCK(p1);
314 	}
315 
316 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
317 	if (error)
318 		goto fail;
319 
320 	/*
321 	 * Close all file descriptors.
322 	 */
323 	if (flags & RFCFDG) {
324 		struct filedesc *fdtmp;
325 		fdtmp = fdinit(td->td_proc->p_fd, false);
326 		fdescfree(td);
327 		p1->p_fd = fdtmp;
328 	}
329 
330 	/*
331 	 * Unshare file descriptors (from parent).
332 	 */
333 	if (flags & RFFDG)
334 		fdunshare(td);
335 
336 fail:
337 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
338 	    (flags & (RFCFDG | RFFDG))) {
339 		PROC_LOCK(p1);
340 		thread_single_end(p1, SINGLE_BOUNDARY);
341 		PROC_UNLOCK(p1);
342 	}
343 	return (error);
344 }
345 
346 static void
347 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
348     struct vmspace *vm2, struct file *fp_procdesc)
349 {
350 	struct proc *p1, *pptr;
351 	struct filedesc *fd;
352 	struct filedesc_to_leader *fdtol;
353 	struct sigacts *newsigacts;
354 
355 	p1 = td->td_proc;
356 
357 	PROC_LOCK(p1);
358 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
359 	    __rangeof(struct proc, p_startcopy, p_endcopy));
360 	pargs_hold(p2->p_args);
361 	PROC_UNLOCK(p1);
362 
363 	bzero(&p2->p_startzero,
364 	    __rangeof(struct proc, p_startzero, p_endzero));
365 
366 	/* Tell the prison that we exist. */
367 	prison_proc_hold(p2->p_ucred->cr_prison);
368 
369 	p2->p_state = PRS_NEW;		/* protect against others */
370 	p2->p_pid = fork_findpid(fr->fr_flags);
371 	AUDIT_ARG_PID(p2->p_pid);
372 
373 	sx_xlock(&allproc_lock);
374 	LIST_INSERT_HEAD(&allproc, p2, p_list);
375 	allproc_gen++;
376 	sx_xunlock(&allproc_lock);
377 
378 	sx_xlock(PIDHASHLOCK(p2->p_pid));
379 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
380 	sx_xunlock(PIDHASHLOCK(p2->p_pid));
381 
382 	tidhash_add(td2);
383 
384 	/*
385 	 * Malloc things while we don't hold any locks.
386 	 */
387 	if (fr->fr_flags & RFSIGSHARE)
388 		newsigacts = NULL;
389 	else
390 		newsigacts = sigacts_alloc();
391 
392 	/*
393 	 * Copy filedesc.
394 	 */
395 	if (fr->fr_flags & RFCFDG) {
396 		fd = fdinit(p1->p_fd, false);
397 		fdtol = NULL;
398 	} else if (fr->fr_flags & RFFDG) {
399 		fd = fdcopy(p1->p_fd);
400 		fdtol = NULL;
401 	} else {
402 		fd = fdshare(p1->p_fd);
403 		if (p1->p_fdtol == NULL)
404 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
405 			    p1->p_leader);
406 		if ((fr->fr_flags & RFTHREAD) != 0) {
407 			/*
408 			 * Shared file descriptor table, and shared
409 			 * process leaders.
410 			 */
411 			fdtol = p1->p_fdtol;
412 			FILEDESC_XLOCK(p1->p_fd);
413 			fdtol->fdl_refcount++;
414 			FILEDESC_XUNLOCK(p1->p_fd);
415 		} else {
416 			/*
417 			 * Shared file descriptor table, and different
418 			 * process leaders.
419 			 */
420 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
421 			    p1->p_fd, p2);
422 		}
423 	}
424 	/*
425 	 * Make a proc table entry for the new process.
426 	 * Start by zeroing the section of proc that is zero-initialized,
427 	 * then copy the section that is copied directly from the parent.
428 	 */
429 
430 	PROC_LOCK(p2);
431 	PROC_LOCK(p1);
432 
433 	bzero(&td2->td_startzero,
434 	    __rangeof(struct thread, td_startzero, td_endzero));
435 
436 	bcopy(&td->td_startcopy, &td2->td_startcopy,
437 	    __rangeof(struct thread, td_startcopy, td_endcopy));
438 
439 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
440 	td2->td_sigstk = td->td_sigstk;
441 	td2->td_flags = TDF_INMEM;
442 	td2->td_lend_user_pri = PRI_MAX;
443 
444 #ifdef VIMAGE
445 	td2->td_vnet = NULL;
446 	td2->td_vnet_lpush = NULL;
447 #endif
448 
449 	/*
450 	 * Allow the scheduler to initialize the child.
451 	 */
452 	thread_lock(td);
453 	sched_fork(td, td2);
454 	thread_unlock(td);
455 
456 	/*
457 	 * Duplicate sub-structures as needed.
458 	 * Increase reference counts on shared objects.
459 	 */
460 	p2->p_flag = P_INMEM;
461 	p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
462 	    P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC |
463 	    P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP);
464 	p2->p_swtick = ticks;
465 	if (p1->p_flag & P_PROFIL)
466 		startprofclock(p2);
467 
468 	if (fr->fr_flags & RFSIGSHARE) {
469 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
470 	} else {
471 		sigacts_copy(newsigacts, p1->p_sigacts);
472 		p2->p_sigacts = newsigacts;
473 	}
474 
475 	if (fr->fr_flags & RFTSIGZMB)
476 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
477 	else if (fr->fr_flags & RFLINUXTHPN)
478 	        p2->p_sigparent = SIGUSR1;
479 	else
480 	        p2->p_sigparent = SIGCHLD;
481 
482 	p2->p_textvp = p1->p_textvp;
483 	p2->p_fd = fd;
484 	p2->p_fdtol = fdtol;
485 
486 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
487 		p2->p_flag |= P_PROTECTED;
488 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
489 	}
490 
491 	/*
492 	 * p_limit is copy-on-write.  Bump its refcount.
493 	 */
494 	lim_fork(p1, p2);
495 
496 	thread_cow_get_proc(td2, p2);
497 
498 	pstats_fork(p1->p_stats, p2->p_stats);
499 
500 	PROC_UNLOCK(p1);
501 	PROC_UNLOCK(p2);
502 
503 	/* Bump references to the text vnode (for procfs). */
504 	if (p2->p_textvp)
505 		vrefact(p2->p_textvp);
506 
507 	/*
508 	 * Set up linkage for kernel based threading.
509 	 */
510 	if ((fr->fr_flags & RFTHREAD) != 0) {
511 		mtx_lock(&ppeers_lock);
512 		p2->p_peers = p1->p_peers;
513 		p1->p_peers = p2;
514 		p2->p_leader = p1->p_leader;
515 		mtx_unlock(&ppeers_lock);
516 		PROC_LOCK(p1->p_leader);
517 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
518 			PROC_UNLOCK(p1->p_leader);
519 			/*
520 			 * The task leader is exiting, so process p1 is
521 			 * going to be killed shortly.  Since p1 obviously
522 			 * isn't dead yet, we know that the leader is either
523 			 * sending SIGKILL's to all the processes in this
524 			 * task or is sleeping waiting for all the peers to
525 			 * exit.  We let p1 complete the fork, but we need
526 			 * to go ahead and kill the new process p2 since
527 			 * the task leader may not get a chance to send
528 			 * SIGKILL to it.  We leave it on the list so that
529 			 * the task leader will wait for this new process
530 			 * to commit suicide.
531 			 */
532 			PROC_LOCK(p2);
533 			kern_psignal(p2, SIGKILL);
534 			PROC_UNLOCK(p2);
535 		} else
536 			PROC_UNLOCK(p1->p_leader);
537 	} else {
538 		p2->p_peers = NULL;
539 		p2->p_leader = p2;
540 	}
541 
542 	sx_xlock(&proctree_lock);
543 	PGRP_LOCK(p1->p_pgrp);
544 	PROC_LOCK(p2);
545 	PROC_LOCK(p1);
546 
547 	/*
548 	 * Preserve some more flags in subprocess.  P_PROFIL has already
549 	 * been preserved.
550 	 */
551 	p2->p_flag |= p1->p_flag & P_SUGID;
552 	td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
553 	SESS_LOCK(p1->p_session);
554 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
555 		p2->p_flag |= P_CONTROLT;
556 	SESS_UNLOCK(p1->p_session);
557 	if (fr->fr_flags & RFPPWAIT)
558 		p2->p_flag |= P_PPWAIT;
559 
560 	p2->p_pgrp = p1->p_pgrp;
561 	LIST_INSERT_AFTER(p1, p2, p_pglist);
562 	PGRP_UNLOCK(p1->p_pgrp);
563 	LIST_INIT(&p2->p_children);
564 	LIST_INIT(&p2->p_orphans);
565 
566 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
567 
568 	/*
569 	 * If PF_FORK is set, the child process inherits the
570 	 * procfs ioctl flags from its parent.
571 	 */
572 	if (p1->p_pfsflags & PF_FORK) {
573 		p2->p_stops = p1->p_stops;
574 		p2->p_pfsflags = p1->p_pfsflags;
575 	}
576 
577 	/*
578 	 * This begins the section where we must prevent the parent
579 	 * from being swapped.
580 	 */
581 	_PHOLD(p1);
582 	PROC_UNLOCK(p1);
583 
584 	/*
585 	 * Attach the new process to its parent.
586 	 *
587 	 * If RFNOWAIT is set, the newly created process becomes a child
588 	 * of init.  This effectively disassociates the child from the
589 	 * parent.
590 	 */
591 	if ((fr->fr_flags & RFNOWAIT) != 0) {
592 		pptr = p1->p_reaper;
593 		p2->p_reaper = pptr;
594 	} else {
595 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
596 		    p1 : p1->p_reaper;
597 		pptr = p1;
598 	}
599 	p2->p_pptr = pptr;
600 	p2->p_oppid = pptr->p_pid;
601 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
602 	LIST_INIT(&p2->p_reaplist);
603 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
604 	if (p2->p_reaper == p1 && p1 != initproc) {
605 		p2->p_reapsubtree = p2->p_pid;
606 		proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
607 	}
608 	sx_xunlock(&proctree_lock);
609 
610 	/* Inform accounting that we have forked. */
611 	p2->p_acflag = AFORK;
612 	PROC_UNLOCK(p2);
613 
614 #ifdef KTRACE
615 	ktrprocfork(p1, p2);
616 #endif
617 
618 	/*
619 	 * Finish creating the child process.  It will return via a different
620 	 * execution path later.  (ie: directly into user mode)
621 	 */
622 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
623 
624 	if (fr->fr_flags == (RFFDG | RFPROC)) {
625 		VM_CNT_INC(v_forks);
626 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
627 		    p2->p_vmspace->vm_ssize);
628 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
629 		VM_CNT_INC(v_vforks);
630 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
631 		    p2->p_vmspace->vm_ssize);
632 	} else if (p1 == &proc0) {
633 		VM_CNT_INC(v_kthreads);
634 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
635 		    p2->p_vmspace->vm_ssize);
636 	} else {
637 		VM_CNT_INC(v_rforks);
638 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
639 		    p2->p_vmspace->vm_ssize);
640 	}
641 
642 	/*
643 	 * Associate the process descriptor with the process before anything
644 	 * can happen that might cause that process to need the descriptor.
645 	 * However, don't do this until after fork(2) can no longer fail.
646 	 */
647 	if (fr->fr_flags & RFPROCDESC)
648 		procdesc_new(p2, fr->fr_pd_flags);
649 
650 	/*
651 	 * Both processes are set up, now check if any loadable modules want
652 	 * to adjust anything.
653 	 */
654 	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
655 
656 	/*
657 	 * Set the child start time and mark the process as being complete.
658 	 */
659 	PROC_LOCK(p2);
660 	PROC_LOCK(p1);
661 	microuptime(&p2->p_stats->p_start);
662 	PROC_SLOCK(p2);
663 	p2->p_state = PRS_NORMAL;
664 	PROC_SUNLOCK(p2);
665 
666 #ifdef KDTRACE_HOOKS
667 	/*
668 	 * Tell the DTrace fasttrap provider about the new process so that any
669 	 * tracepoints inherited from the parent can be removed. We have to do
670 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
671 	 * use pfind() later on.
672 	 */
673 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
674 		dtrace_fasttrap_fork(p1, p2);
675 #endif
676 	if (fr->fr_flags & RFPPWAIT) {
677 		td->td_pflags |= TDP_RFPPWAIT;
678 		td->td_rfppwait_p = p2;
679 		td->td_dbgflags |= TDB_VFORK;
680 	}
681 	PROC_UNLOCK(p2);
682 
683 	/*
684 	 * Tell any interested parties about the new process.
685 	 */
686 	knote_fork(p1->p_klist, p2->p_pid);
687 
688 	/*
689 	 * Now can be swapped.
690 	 */
691 	_PRELE(p1);
692 	PROC_UNLOCK(p1);
693 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
694 
695 	if (fr->fr_flags & RFPROCDESC) {
696 		procdesc_finit(p2->p_procdesc, fp_procdesc);
697 		fdrop(fp_procdesc, td);
698 	}
699 
700 	/*
701 	 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
702 	 * synced with forks in progress so it is OK if we miss it
703 	 * if being set atm.
704 	 */
705 	if ((p1->p_ptevents & PTRACE_FORK) != 0) {
706 		sx_xlock(&proctree_lock);
707 		PROC_LOCK(p2);
708 
709 		/*
710 		 * p1->p_ptevents & p1->p_pptr are protected by both
711 		 * process and proctree locks for modifications,
712 		 * so owning proctree_lock allows the race-free read.
713 		 */
714 		if ((p1->p_ptevents & PTRACE_FORK) != 0) {
715 			/*
716 			 * Arrange for debugger to receive the fork event.
717 			 *
718 			 * We can report PL_FLAG_FORKED regardless of
719 			 * P_FOLLOWFORK settings, but it does not make a sense
720 			 * for runaway child.
721 			 */
722 			td->td_dbgflags |= TDB_FORK;
723 			td->td_dbg_forked = p2->p_pid;
724 			td2->td_dbgflags |= TDB_STOPATFORK;
725 			proc_set_traced(p2, true);
726 			CTR2(KTR_PTRACE,
727 			    "do_fork: attaching to new child pid %d: oppid %d",
728 			    p2->p_pid, p2->p_oppid);
729 			proc_reparent(p2, p1->p_pptr, false);
730 		}
731 		PROC_UNLOCK(p2);
732 		sx_xunlock(&proctree_lock);
733 	}
734 
735 	racct_proc_fork_done(p2);
736 
737 	if ((fr->fr_flags & RFSTOPPED) == 0) {
738 		if (fr->fr_pidp != NULL)
739 			*fr->fr_pidp = p2->p_pid;
740 		/*
741 		 * If RFSTOPPED not requested, make child runnable and
742 		 * add to run queue.
743 		 */
744 		thread_lock(td2);
745 		TD_SET_CAN_RUN(td2);
746 		sched_add(td2, SRQ_BORING);
747 		thread_unlock(td2);
748 	} else {
749 		*fr->fr_procp = p2;
750 	}
751 }
752 
753 void
754 fork_rfppwait(struct thread *td)
755 {
756 	struct proc *p, *p2;
757 
758 	MPASS(td->td_pflags & TDP_RFPPWAIT);
759 
760 	p = td->td_proc;
761 	/*
762 	 * Preserve synchronization semantics of vfork.  If
763 	 * waiting for child to exec or exit, fork set
764 	 * P_PPWAIT on child, and there we sleep on our proc
765 	 * (in case of exit).
766 	 *
767 	 * Do it after the ptracestop() above is finished, to
768 	 * not block our debugger until child execs or exits
769 	 * to finish vfork wait.
770 	 */
771 	td->td_pflags &= ~TDP_RFPPWAIT;
772 	p2 = td->td_rfppwait_p;
773 again:
774 	PROC_LOCK(p2);
775 	while (p2->p_flag & P_PPWAIT) {
776 		PROC_LOCK(p);
777 		if (thread_suspend_check_needed()) {
778 			PROC_UNLOCK(p2);
779 			thread_suspend_check(0);
780 			PROC_UNLOCK(p);
781 			goto again;
782 		} else {
783 			PROC_UNLOCK(p);
784 		}
785 		cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz);
786 	}
787 	PROC_UNLOCK(p2);
788 
789 	if (td->td_dbgflags & TDB_VFORK) {
790 		PROC_LOCK(p);
791 		if (p->p_ptevents & PTRACE_VFORK)
792 			ptracestop(td, SIGTRAP, NULL);
793 		td->td_dbgflags &= ~TDB_VFORK;
794 		PROC_UNLOCK(p);
795 	}
796 }
797 
798 int
799 fork1(struct thread *td, struct fork_req *fr)
800 {
801 	struct proc *p1, *newproc;
802 	struct thread *td2;
803 	struct vmspace *vm2;
804 	struct ucred *cred;
805 	struct file *fp_procdesc;
806 	vm_ooffset_t mem_charged;
807 	int error, nprocs_new;
808 	static int curfail;
809 	static struct timeval lastfail;
810 	int flags, pages;
811 
812 	flags = fr->fr_flags;
813 	pages = fr->fr_pages;
814 
815 	if ((flags & RFSTOPPED) != 0)
816 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
817 	else
818 		MPASS(fr->fr_procp == NULL);
819 
820 	/* Check for the undefined or unimplemented flags. */
821 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
822 		return (EINVAL);
823 
824 	/* Signal value requires RFTSIGZMB. */
825 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
826 		return (EINVAL);
827 
828 	/* Can't copy and clear. */
829 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
830 		return (EINVAL);
831 
832 	/* Check the validity of the signal number. */
833 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
834 		return (EINVAL);
835 
836 	if ((flags & RFPROCDESC) != 0) {
837 		/* Can't not create a process yet get a process descriptor. */
838 		if ((flags & RFPROC) == 0)
839 			return (EINVAL);
840 
841 		/* Must provide a place to put a procdesc if creating one. */
842 		if (fr->fr_pd_fd == NULL)
843 			return (EINVAL);
844 
845 		/* Check if we are using supported flags. */
846 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
847 			return (EINVAL);
848 	}
849 
850 	p1 = td->td_proc;
851 
852 	/*
853 	 * Here we don't create a new process, but we divorce
854 	 * certain parts of a process from itself.
855 	 */
856 	if ((flags & RFPROC) == 0) {
857 		if (fr->fr_procp != NULL)
858 			*fr->fr_procp = NULL;
859 		else if (fr->fr_pidp != NULL)
860 			*fr->fr_pidp = 0;
861 		return (fork_norfproc(td, flags));
862 	}
863 
864 	fp_procdesc = NULL;
865 	newproc = NULL;
866 	vm2 = NULL;
867 
868 	/*
869 	 * Increment the nprocs resource before allocations occur.
870 	 * Although process entries are dynamically created, we still
871 	 * keep a global limit on the maximum number we will
872 	 * create. There are hard-limits as to the number of processes
873 	 * that can run, established by the KVA and memory usage for
874 	 * the process data.
875 	 *
876 	 * Don't allow a nonprivileged user to use the last ten
877 	 * processes; don't let root exceed the limit.
878 	 */
879 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
880 	if (nprocs_new >= maxproc - 10) {
881 		if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 ||
882 		    nprocs_new >= maxproc) {
883 			error = EAGAIN;
884 			sx_xlock(&allproc_lock);
885 			if (ppsratecheck(&lastfail, &curfail, 1)) {
886 				printf("maxproc limit exceeded by uid %u "
887 				    "(pid %d); see tuning(7) and "
888 				    "login.conf(5)\n",
889 				    td->td_ucred->cr_ruid, p1->p_pid);
890 			}
891 			sx_xunlock(&allproc_lock);
892 			goto fail2;
893 		}
894 	}
895 
896 	/*
897 	 * If required, create a process descriptor in the parent first; we
898 	 * will abandon it if something goes wrong. We don't finit() until
899 	 * later.
900 	 */
901 	if (flags & RFPROCDESC) {
902 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
903 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
904 		if (error != 0)
905 			goto fail2;
906 	}
907 
908 	mem_charged = 0;
909 	if (pages == 0)
910 		pages = kstack_pages;
911 	/* Allocate new proc. */
912 	newproc = uma_zalloc(proc_zone, M_WAITOK);
913 	td2 = FIRST_THREAD_IN_PROC(newproc);
914 	if (td2 == NULL) {
915 		td2 = thread_alloc(pages);
916 		if (td2 == NULL) {
917 			error = ENOMEM;
918 			goto fail2;
919 		}
920 		proc_linkup(newproc, td2);
921 	} else {
922 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
923 			if (td2->td_kstack != 0)
924 				vm_thread_dispose(td2);
925 			if (!thread_alloc_stack(td2, pages)) {
926 				error = ENOMEM;
927 				goto fail2;
928 			}
929 		}
930 	}
931 
932 	if ((flags & RFMEM) == 0) {
933 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
934 		if (vm2 == NULL) {
935 			error = ENOMEM;
936 			goto fail2;
937 		}
938 		if (!swap_reserve(mem_charged)) {
939 			/*
940 			 * The swap reservation failed. The accounting
941 			 * from the entries of the copied vm2 will be
942 			 * subtracted in vmspace_free(), so force the
943 			 * reservation there.
944 			 */
945 			swap_reserve_force(mem_charged);
946 			error = ENOMEM;
947 			goto fail2;
948 		}
949 	} else
950 		vm2 = NULL;
951 
952 	/*
953 	 * XXX: This is ugly; when we copy resource usage, we need to bump
954 	 *      per-cred resource counters.
955 	 */
956 	proc_set_cred_init(newproc, crhold(td->td_ucred));
957 
958 	/*
959 	 * Initialize resource accounting for the child process.
960 	 */
961 	error = racct_proc_fork(p1, newproc);
962 	if (error != 0) {
963 		error = EAGAIN;
964 		goto fail1;
965 	}
966 
967 #ifdef MAC
968 	mac_proc_init(newproc);
969 #endif
970 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
971 	STAILQ_INIT(&newproc->p_ktr);
972 
973 	/*
974 	 * Increment the count of procs running with this uid. Don't allow
975 	 * a nonprivileged user to exceed their current limit.
976 	 */
977 	cred = td->td_ucred;
978 	if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) {
979 		if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0)
980 			goto fail0;
981 		chgproccnt(cred->cr_ruidinfo, 1, 0);
982 	}
983 
984 	do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
985 	return (0);
986 fail0:
987 	error = EAGAIN;
988 #ifdef MAC
989 	mac_proc_destroy(newproc);
990 #endif
991 	racct_proc_exit(newproc);
992 fail1:
993 	crfree(newproc->p_ucred);
994 	newproc->p_ucred = NULL;
995 fail2:
996 	if (vm2 != NULL)
997 		vmspace_free(vm2);
998 	uma_zfree(proc_zone, newproc);
999 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1000 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1001 		fdrop(fp_procdesc, td);
1002 	}
1003 	atomic_add_int(&nprocs, -1);
1004 	pause("fork", hz / 2);
1005 	return (error);
1006 }
1007 
1008 /*
1009  * Handle the return of a child process from fork1().  This function
1010  * is called from the MD fork_trampoline() entry point.
1011  */
1012 void
1013 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1014     struct trapframe *frame)
1015 {
1016 	struct proc *p;
1017 	struct thread *td;
1018 	struct thread *dtd;
1019 
1020 	td = curthread;
1021 	p = td->td_proc;
1022 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1023 
1024 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1025 	    td, td_get_sched(td), p->p_pid, td->td_name);
1026 
1027 	sched_fork_exit(td);
1028 	/*
1029 	* Processes normally resume in mi_switch() after being
1030 	* cpu_switch()'ed to, but when children start up they arrive here
1031 	* instead, so we must do much the same things as mi_switch() would.
1032 	*/
1033 	if ((dtd = PCPU_GET(deadthread))) {
1034 		PCPU_SET(deadthread, NULL);
1035 		thread_stash(dtd);
1036 	}
1037 	thread_unlock(td);
1038 
1039 	/*
1040 	 * cpu_fork_kthread_handler intercepts this function call to
1041 	 * have this call a non-return function to stay in kernel mode.
1042 	 * initproc has its own fork handler, but it does return.
1043 	 */
1044 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1045 	callout(arg, frame);
1046 
1047 	/*
1048 	 * Check if a kernel thread misbehaved and returned from its main
1049 	 * function.
1050 	 */
1051 	if (p->p_flag & P_KPROC) {
1052 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1053 		    td->td_name, p->p_pid);
1054 		kthread_exit();
1055 	}
1056 	mtx_assert(&Giant, MA_NOTOWNED);
1057 
1058 	if (p->p_sysent->sv_schedtail != NULL)
1059 		(p->p_sysent->sv_schedtail)(td);
1060 	td->td_pflags &= ~TDP_FORKING;
1061 }
1062 
1063 /*
1064  * Simplified back end of syscall(), used when returning from fork()
1065  * directly into user mode.  This function is passed in to fork_exit()
1066  * as the first parameter and is called when returning to a new
1067  * userland process.
1068  */
1069 void
1070 fork_return(struct thread *td, struct trapframe *frame)
1071 {
1072 	struct proc *p;
1073 
1074 	p = td->td_proc;
1075 	if (td->td_dbgflags & TDB_STOPATFORK) {
1076 		PROC_LOCK(p);
1077 		if ((p->p_flag & P_TRACED) != 0) {
1078 			/*
1079 			 * Inform the debugger if one is still present.
1080 			 */
1081 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1082 			ptracestop(td, SIGSTOP, NULL);
1083 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1084 		} else {
1085 			/*
1086 			 * ... otherwise clear the request.
1087 			 */
1088 			td->td_dbgflags &= ~TDB_STOPATFORK;
1089 		}
1090 		PROC_UNLOCK(p);
1091 	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1092  		/*
1093 		 * This is the start of a new thread in a traced
1094 		 * process.  Report a system call exit event.
1095 		 */
1096 		PROC_LOCK(p);
1097 		td->td_dbgflags |= TDB_SCX;
1098 		_STOPEVENT(p, S_SCX, td->td_sa.code);
1099 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1100 		    (td->td_dbgflags & TDB_BORN) != 0)
1101 			ptracestop(td, SIGTRAP, NULL);
1102 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1103 		PROC_UNLOCK(p);
1104 	}
1105 
1106 	userret(td, frame);
1107 
1108 #ifdef KTRACE
1109 	if (KTRPOINT(td, KTR_SYSRET))
1110 		ktrsysret(SYS_fork, 0, 0);
1111 #endif
1112 }
1113