xref: /freebsd/sys/kern/kern_fork.c (revision 315ee00f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
37  */
38 
39 #include <sys/cdefs.h>
40 #include "opt_ktrace.h"
41 #include "opt_kstack_pages.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/bitstring.h>
46 #include <sys/sysproto.h>
47 #include <sys/eventhandler.h>
48 #include <sys/fcntl.h>
49 #include <sys/filedesc.h>
50 #include <sys/jail.h>
51 #include <sys/kernel.h>
52 #include <sys/kthread.h>
53 #include <sys/sysctl.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/msan.h>
57 #include <sys/mutex.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/procdesc.h>
61 #include <sys/ptrace.h>
62 #include <sys/racct.h>
63 #include <sys/resourcevar.h>
64 #include <sys/sched.h>
65 #include <sys/syscall.h>
66 #include <sys/vmmeter.h>
67 #include <sys/vnode.h>
68 #include <sys/acct.h>
69 #include <sys/ktr.h>
70 #include <sys/ktrace.h>
71 #include <sys/unistd.h>
72 #include <sys/sdt.h>
73 #include <sys/sx.h>
74 #include <sys/sysent.h>
75 #include <sys/signalvar.h>
76 
77 #include <security/audit/audit.h>
78 #include <security/mac/mac_framework.h>
79 
80 #include <vm/vm.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_extern.h>
84 #include <vm/uma.h>
85 
86 #ifdef KDTRACE_HOOKS
87 #include <sys/dtrace_bsd.h>
88 dtrace_fork_func_t	dtrace_fasttrap_fork;
89 #endif
90 
91 SDT_PROVIDER_DECLARE(proc);
92 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
93 
94 #ifndef _SYS_SYSPROTO_H_
95 struct fork_args {
96 	int     dummy;
97 };
98 #endif
99 
100 /* ARGSUSED */
101 int
102 sys_fork(struct thread *td, struct fork_args *uap)
103 {
104 	struct fork_req fr;
105 	int error, pid;
106 
107 	bzero(&fr, sizeof(fr));
108 	fr.fr_flags = RFFDG | RFPROC;
109 	fr.fr_pidp = &pid;
110 	error = fork1(td, &fr);
111 	if (error == 0) {
112 		td->td_retval[0] = pid;
113 		td->td_retval[1] = 0;
114 	}
115 	return (error);
116 }
117 
118 /* ARGUSED */
119 int
120 sys_pdfork(struct thread *td, struct pdfork_args *uap)
121 {
122 	struct fork_req fr;
123 	int error, fd, pid;
124 
125 	bzero(&fr, sizeof(fr));
126 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
127 	fr.fr_pidp = &pid;
128 	fr.fr_pd_fd = &fd;
129 	fr.fr_pd_flags = uap->flags;
130 	AUDIT_ARG_FFLAGS(uap->flags);
131 	/*
132 	 * It is necessary to return fd by reference because 0 is a valid file
133 	 * descriptor number, and the child needs to be able to distinguish
134 	 * itself from the parent using the return value.
135 	 */
136 	error = fork1(td, &fr);
137 	if (error == 0) {
138 		td->td_retval[0] = pid;
139 		td->td_retval[1] = 0;
140 		error = copyout(&fd, uap->fdp, sizeof(fd));
141 	}
142 	return (error);
143 }
144 
145 /* ARGSUSED */
146 int
147 sys_vfork(struct thread *td, struct vfork_args *uap)
148 {
149 	struct fork_req fr;
150 	int error, pid;
151 
152 	bzero(&fr, sizeof(fr));
153 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
154 	fr.fr_pidp = &pid;
155 	error = fork1(td, &fr);
156 	if (error == 0) {
157 		td->td_retval[0] = pid;
158 		td->td_retval[1] = 0;
159 	}
160 	return (error);
161 }
162 
163 int
164 sys_rfork(struct thread *td, struct rfork_args *uap)
165 {
166 	struct fork_req fr;
167 	int error, pid;
168 
169 	/* Don't allow kernel-only flags. */
170 	if ((uap->flags & RFKERNELONLY) != 0)
171 		return (EINVAL);
172 	/* RFSPAWN must not appear with others */
173 	if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN)
174 		return (EINVAL);
175 
176 	AUDIT_ARG_FFLAGS(uap->flags);
177 	bzero(&fr, sizeof(fr));
178 	if ((uap->flags & RFSPAWN) != 0) {
179 		fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
180 		fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
181 	} else {
182 		fr.fr_flags = uap->flags;
183 	}
184 	fr.fr_pidp = &pid;
185 	error = fork1(td, &fr);
186 	if (error == 0) {
187 		td->td_retval[0] = pid;
188 		td->td_retval[1] = 0;
189 	}
190 	return (error);
191 }
192 
193 int __exclusive_cache_line	nprocs = 1;		/* process 0 */
194 int	lastpid = 0;
195 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
196     "Last used PID");
197 
198 /*
199  * Random component to lastpid generation.  We mix in a random factor to make
200  * it a little harder to predict.  We sanity check the modulus value to avoid
201  * doing it in critical paths.  Don't let it be too small or we pointlessly
202  * waste randomness entropy, and don't let it be impossibly large.  Using a
203  * modulus that is too big causes a LOT more process table scans and slows
204  * down fork processing as the pidchecked caching is defeated.
205  */
206 static int randompid = 0;
207 
208 static int
209 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
210 {
211 	int error, pid;
212 
213 	error = sysctl_wire_old_buffer(req, sizeof(int));
214 	if (error != 0)
215 		return(error);
216 	sx_xlock(&allproc_lock);
217 	pid = randompid;
218 	error = sysctl_handle_int(oidp, &pid, 0, req);
219 	if (error == 0 && req->newptr != NULL) {
220 		if (pid == 0)
221 			randompid = 0;
222 		else if (pid == 1)
223 			/* generate a random PID modulus between 100 and 1123 */
224 			randompid = 100 + arc4random() % 1024;
225 		else if (pid < 0 || pid > pid_max - 100)
226 			/* out of range */
227 			randompid = pid_max - 100;
228 		else if (pid < 100)
229 			/* Make it reasonable */
230 			randompid = 100;
231 		else
232 			randompid = pid;
233 	}
234 	sx_xunlock(&allproc_lock);
235 	return (error);
236 }
237 
238 SYSCTL_PROC(_kern, OID_AUTO, randompid,
239     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
240     sysctl_kern_randompid, "I",
241     "Random PID modulus. Special values: 0: disable, 1: choose random value");
242 
243 extern bitstr_t proc_id_pidmap;
244 extern bitstr_t proc_id_grpidmap;
245 extern bitstr_t proc_id_sessidmap;
246 extern bitstr_t proc_id_reapmap;
247 
248 /*
249  * Find an unused process ID
250  *
251  * If RFHIGHPID is set (used during system boot), do not allocate
252  * low-numbered pids.
253  */
254 static int
255 fork_findpid(int flags)
256 {
257 	pid_t result;
258 	int trypid, random;
259 
260 	/*
261 	 * Avoid calling arc4random with procid_lock held.
262 	 */
263 	random = 0;
264 	if (__predict_false(randompid))
265 		random = arc4random() % randompid;
266 
267 	mtx_lock(&procid_lock);
268 
269 	trypid = lastpid + 1;
270 	if (flags & RFHIGHPID) {
271 		if (trypid < 10)
272 			trypid = 10;
273 	} else {
274 		trypid += random;
275 	}
276 retry:
277 	if (trypid >= pid_max)
278 		trypid = 2;
279 
280 	bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
281 	if (result == -1) {
282 		KASSERT(trypid != 2, ("unexpectedly ran out of IDs"));
283 		trypid = 2;
284 		goto retry;
285 	}
286 	if (bit_test(&proc_id_grpidmap, result) ||
287 	    bit_test(&proc_id_sessidmap, result) ||
288 	    bit_test(&proc_id_reapmap, result)) {
289 		trypid = result + 1;
290 		goto retry;
291 	}
292 
293 	/*
294 	 * RFHIGHPID does not mess with the lastpid counter during boot.
295 	 */
296 	if ((flags & RFHIGHPID) == 0)
297 		lastpid = result;
298 
299 	bit_set(&proc_id_pidmap, result);
300 	mtx_unlock(&procid_lock);
301 
302 	return (result);
303 }
304 
305 static int
306 fork_norfproc(struct thread *td, int flags)
307 {
308 	struct proc *p1;
309 	int error;
310 
311 	KASSERT((flags & RFPROC) == 0,
312 	    ("fork_norfproc called with RFPROC set"));
313 	p1 = td->td_proc;
314 
315 	/*
316 	 * Quiesce other threads if necessary.  If RFMEM is not specified we
317 	 * must ensure that other threads do not concurrently create a second
318 	 * process sharing the vmspace, see vmspace_unshare().
319 	 */
320 	if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
321 	    ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
322 		PROC_LOCK(p1);
323 		if (thread_single(p1, SINGLE_BOUNDARY)) {
324 			PROC_UNLOCK(p1);
325 			return (ERESTART);
326 		}
327 		PROC_UNLOCK(p1);
328 	}
329 
330 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
331 	if (error != 0)
332 		goto fail;
333 
334 	/*
335 	 * Close all file descriptors.
336 	 */
337 	if ((flags & RFCFDG) != 0) {
338 		struct filedesc *fdtmp;
339 		struct pwddesc *pdtmp;
340 
341 		pdtmp = pdinit(td->td_proc->p_pd, false);
342 		fdtmp = fdinit();
343 		pdescfree(td);
344 		fdescfree(td);
345 		p1->p_fd = fdtmp;
346 		p1->p_pd = pdtmp;
347 	}
348 
349 	/*
350 	 * Unshare file descriptors (from parent).
351 	 */
352 	if ((flags & RFFDG) != 0) {
353 		fdunshare(td);
354 		pdunshare(td);
355 	}
356 
357 fail:
358 	if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
359 	    ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
360 		PROC_LOCK(p1);
361 		thread_single_end(p1, SINGLE_BOUNDARY);
362 		PROC_UNLOCK(p1);
363 	}
364 	return (error);
365 }
366 
367 static void
368 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
369     struct vmspace *vm2, struct file *fp_procdesc)
370 {
371 	struct proc *p1, *pptr;
372 	struct filedesc *fd;
373 	struct filedesc_to_leader *fdtol;
374 	struct pwddesc *pd;
375 	struct sigacts *newsigacts;
376 
377 	p1 = td->td_proc;
378 
379 	PROC_LOCK(p1);
380 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
381 	    __rangeof(struct proc, p_startcopy, p_endcopy));
382 	pargs_hold(p2->p_args);
383 	PROC_UNLOCK(p1);
384 
385 	bzero(&p2->p_startzero,
386 	    __rangeof(struct proc, p_startzero, p_endzero));
387 
388 	/* Tell the prison that we exist. */
389 	prison_proc_hold(p2->p_ucred->cr_prison);
390 
391 	p2->p_state = PRS_NEW;		/* protect against others */
392 	p2->p_pid = fork_findpid(fr->fr_flags);
393 	AUDIT_ARG_PID(p2->p_pid);
394 	TSFORK(p2->p_pid, p1->p_pid);
395 
396 	sx_xlock(&allproc_lock);
397 	LIST_INSERT_HEAD(&allproc, p2, p_list);
398 	allproc_gen++;
399 	prison_proc_link(p2->p_ucred->cr_prison, p2);
400 	sx_xunlock(&allproc_lock);
401 
402 	sx_xlock(PIDHASHLOCK(p2->p_pid));
403 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
404 	sx_xunlock(PIDHASHLOCK(p2->p_pid));
405 
406 	tidhash_add(td2);
407 
408 	/*
409 	 * Malloc things while we don't hold any locks.
410 	 */
411 	if (fr->fr_flags & RFSIGSHARE)
412 		newsigacts = NULL;
413 	else
414 		newsigacts = sigacts_alloc();
415 
416 	/*
417 	 * Copy filedesc.
418 	 */
419 	if (fr->fr_flags & RFCFDG) {
420 		pd = pdinit(p1->p_pd, false);
421 		fd = fdinit();
422 		fdtol = NULL;
423 	} else if (fr->fr_flags & RFFDG) {
424 		if (fr->fr_flags2 & FR2_SHARE_PATHS)
425 			pd = pdshare(p1->p_pd);
426 		else
427 			pd = pdcopy(p1->p_pd);
428 		fd = fdcopy(p1->p_fd);
429 		fdtol = NULL;
430 	} else {
431 		if (fr->fr_flags2 & FR2_SHARE_PATHS)
432 			pd = pdcopy(p1->p_pd);
433 		else
434 			pd = pdshare(p1->p_pd);
435 		fd = fdshare(p1->p_fd);
436 		if (p1->p_fdtol == NULL)
437 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
438 			    p1->p_leader);
439 		if ((fr->fr_flags & RFTHREAD) != 0) {
440 			/*
441 			 * Shared file descriptor table, and shared
442 			 * process leaders.
443 			 */
444 			fdtol = filedesc_to_leader_share(p1->p_fdtol, p1->p_fd);
445 		} else {
446 			/*
447 			 * Shared file descriptor table, and different
448 			 * process leaders.
449 			 */
450 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
451 			    p1->p_fd, p2);
452 		}
453 	}
454 	/*
455 	 * Make a proc table entry for the new process.
456 	 * Start by zeroing the section of proc that is zero-initialized,
457 	 * then copy the section that is copied directly from the parent.
458 	 */
459 
460 	PROC_LOCK(p2);
461 	PROC_LOCK(p1);
462 
463 	bzero(&td2->td_startzero,
464 	    __rangeof(struct thread, td_startzero, td_endzero));
465 
466 	bcopy(&td->td_startcopy, &td2->td_startcopy,
467 	    __rangeof(struct thread, td_startcopy, td_endcopy));
468 
469 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
470 	td2->td_sigstk = td->td_sigstk;
471 	td2->td_flags = TDF_INMEM;
472 	td2->td_lend_user_pri = PRI_MAX;
473 
474 #ifdef VIMAGE
475 	td2->td_vnet = NULL;
476 	td2->td_vnet_lpush = NULL;
477 #endif
478 
479 	/*
480 	 * Allow the scheduler to initialize the child.
481 	 */
482 	thread_lock(td);
483 	sched_fork(td, td2);
484 	/*
485 	 * Request AST to check for TDP_RFPPWAIT.  Do it here
486 	 * to avoid calling thread_lock() again.
487 	 */
488 	if ((fr->fr_flags & RFPPWAIT) != 0)
489 		ast_sched_locked(td, TDA_VFORK);
490 	thread_unlock(td);
491 
492 	/*
493 	 * Duplicate sub-structures as needed.
494 	 * Increase reference counts on shared objects.
495 	 */
496 	p2->p_flag = P_INMEM;
497 	p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
498 	    P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC |
499 	    P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP |
500 	    P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC | P2_NO_NEW_PRIVS |
501 	    P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
502 	p2->p_swtick = ticks;
503 	if (p1->p_flag & P_PROFIL)
504 		startprofclock(p2);
505 
506 	if (fr->fr_flags & RFSIGSHARE) {
507 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
508 	} else {
509 		sigacts_copy(newsigacts, p1->p_sigacts);
510 		p2->p_sigacts = newsigacts;
511 		if ((fr->fr_flags2 & (FR2_DROPSIG_CAUGHT | FR2_KPROC)) != 0) {
512 			mtx_lock(&p2->p_sigacts->ps_mtx);
513 			if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0)
514 				sig_drop_caught(p2);
515 			if ((fr->fr_flags2 & FR2_KPROC) != 0)
516 				p2->p_sigacts->ps_flag |= PS_NOCLDWAIT;
517 			mtx_unlock(&p2->p_sigacts->ps_mtx);
518 		}
519 	}
520 
521 	if (fr->fr_flags & RFTSIGZMB)
522 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
523 	else if (fr->fr_flags & RFLINUXTHPN)
524 	        p2->p_sigparent = SIGUSR1;
525 	else
526 	        p2->p_sigparent = SIGCHLD;
527 
528 	if ((fr->fr_flags2 & FR2_KPROC) != 0) {
529 		p2->p_flag |= P_SYSTEM | P_KPROC;
530 		td2->td_pflags |= TDP_KTHREAD;
531 	}
532 
533 	p2->p_textvp = p1->p_textvp;
534 	p2->p_textdvp = p1->p_textdvp;
535 	p2->p_fd = fd;
536 	p2->p_fdtol = fdtol;
537 	p2->p_pd = pd;
538 
539 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
540 		p2->p_flag |= P_PROTECTED;
541 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
542 	}
543 
544 	/*
545 	 * p_limit is copy-on-write.  Bump its refcount.
546 	 */
547 	lim_fork(p1, p2);
548 
549 	thread_cow_get_proc(td2, p2);
550 
551 	pstats_fork(p1->p_stats, p2->p_stats);
552 
553 	PROC_UNLOCK(p1);
554 	PROC_UNLOCK(p2);
555 
556 	/*
557 	 * Bump references to the text vnode and directory, and copy
558 	 * the hardlink name.
559 	 */
560 	if (p2->p_textvp != NULL)
561 		vrefact(p2->p_textvp);
562 	if (p2->p_textdvp != NULL)
563 		vrefact(p2->p_textdvp);
564 	p2->p_binname = p1->p_binname == NULL ? NULL :
565 	    strdup(p1->p_binname, M_PARGS);
566 
567 	/*
568 	 * Set up linkage for kernel based threading.
569 	 */
570 	if ((fr->fr_flags & RFTHREAD) != 0) {
571 		mtx_lock(&ppeers_lock);
572 		p2->p_peers = p1->p_peers;
573 		p1->p_peers = p2;
574 		p2->p_leader = p1->p_leader;
575 		mtx_unlock(&ppeers_lock);
576 		PROC_LOCK(p1->p_leader);
577 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
578 			PROC_UNLOCK(p1->p_leader);
579 			/*
580 			 * The task leader is exiting, so process p1 is
581 			 * going to be killed shortly.  Since p1 obviously
582 			 * isn't dead yet, we know that the leader is either
583 			 * sending SIGKILL's to all the processes in this
584 			 * task or is sleeping waiting for all the peers to
585 			 * exit.  We let p1 complete the fork, but we need
586 			 * to go ahead and kill the new process p2 since
587 			 * the task leader may not get a chance to send
588 			 * SIGKILL to it.  We leave it on the list so that
589 			 * the task leader will wait for this new process
590 			 * to commit suicide.
591 			 */
592 			PROC_LOCK(p2);
593 			kern_psignal(p2, SIGKILL);
594 			PROC_UNLOCK(p2);
595 		} else
596 			PROC_UNLOCK(p1->p_leader);
597 	} else {
598 		p2->p_peers = NULL;
599 		p2->p_leader = p2;
600 	}
601 
602 	sx_xlock(&proctree_lock);
603 	PGRP_LOCK(p1->p_pgrp);
604 	PROC_LOCK(p2);
605 	PROC_LOCK(p1);
606 
607 	/*
608 	 * Preserve some more flags in subprocess.  P_PROFIL has already
609 	 * been preserved.
610 	 */
611 	p2->p_flag |= p1->p_flag & P_SUGID;
612 	td2->td_pflags |= (td->td_pflags & (TDP_ALTSTACK | TDP_SIGFASTBLOCK));
613 	SESS_LOCK(p1->p_session);
614 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
615 		p2->p_flag |= P_CONTROLT;
616 	SESS_UNLOCK(p1->p_session);
617 	if (fr->fr_flags & RFPPWAIT)
618 		p2->p_flag |= P_PPWAIT;
619 
620 	p2->p_pgrp = p1->p_pgrp;
621 	LIST_INSERT_AFTER(p1, p2, p_pglist);
622 	PGRP_UNLOCK(p1->p_pgrp);
623 	LIST_INIT(&p2->p_children);
624 	LIST_INIT(&p2->p_orphans);
625 
626 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
627 	TAILQ_INIT(&p2->p_kqtim_stop);
628 
629 	/*
630 	 * This begins the section where we must prevent the parent
631 	 * from being swapped.
632 	 */
633 	_PHOLD(p1);
634 	PROC_UNLOCK(p1);
635 
636 	/*
637 	 * Attach the new process to its parent.
638 	 *
639 	 * If RFNOWAIT is set, the newly created process becomes a child
640 	 * of init.  This effectively disassociates the child from the
641 	 * parent.
642 	 */
643 	if ((fr->fr_flags & RFNOWAIT) != 0) {
644 		pptr = p1->p_reaper;
645 		p2->p_reaper = pptr;
646 	} else {
647 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
648 		    p1 : p1->p_reaper;
649 		pptr = p1;
650 	}
651 	p2->p_pptr = pptr;
652 	p2->p_oppid = pptr->p_pid;
653 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
654 	LIST_INIT(&p2->p_reaplist);
655 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
656 	if (p2->p_reaper == p1 && p1 != initproc) {
657 		p2->p_reapsubtree = p2->p_pid;
658 		proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
659 	}
660 	sx_xunlock(&proctree_lock);
661 
662 	/* Inform accounting that we have forked. */
663 	p2->p_acflag = AFORK;
664 	PROC_UNLOCK(p2);
665 
666 #ifdef KTRACE
667 	ktrprocfork(p1, p2);
668 #endif
669 
670 	/*
671 	 * Finish creating the child process.  It will return via a different
672 	 * execution path later.  (ie: directly into user mode)
673 	 */
674 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
675 
676 	if (fr->fr_flags == (RFFDG | RFPROC)) {
677 		VM_CNT_INC(v_forks);
678 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
679 		    p2->p_vmspace->vm_ssize);
680 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
681 		VM_CNT_INC(v_vforks);
682 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
683 		    p2->p_vmspace->vm_ssize);
684 	} else if (p1 == &proc0) {
685 		VM_CNT_INC(v_kthreads);
686 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
687 		    p2->p_vmspace->vm_ssize);
688 	} else {
689 		VM_CNT_INC(v_rforks);
690 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
691 		    p2->p_vmspace->vm_ssize);
692 	}
693 
694 	/*
695 	 * Associate the process descriptor with the process before anything
696 	 * can happen that might cause that process to need the descriptor.
697 	 * However, don't do this until after fork(2) can no longer fail.
698 	 */
699 	if (fr->fr_flags & RFPROCDESC)
700 		procdesc_new(p2, fr->fr_pd_flags);
701 
702 	/*
703 	 * Both processes are set up, now check if any loadable modules want
704 	 * to adjust anything.
705 	 */
706 	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
707 
708 	/*
709 	 * Set the child start time and mark the process as being complete.
710 	 */
711 	PROC_LOCK(p2);
712 	PROC_LOCK(p1);
713 	microuptime(&p2->p_stats->p_start);
714 	PROC_SLOCK(p2);
715 	p2->p_state = PRS_NORMAL;
716 	PROC_SUNLOCK(p2);
717 
718 #ifdef KDTRACE_HOOKS
719 	/*
720 	 * Tell the DTrace fasttrap provider about the new process so that any
721 	 * tracepoints inherited from the parent can be removed. We have to do
722 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
723 	 * use pfind() later on.
724 	 */
725 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
726 		dtrace_fasttrap_fork(p1, p2);
727 #endif
728 	if (fr->fr_flags & RFPPWAIT) {
729 		td->td_pflags |= TDP_RFPPWAIT;
730 		td->td_rfppwait_p = p2;
731 		td->td_dbgflags |= TDB_VFORK;
732 	}
733 	PROC_UNLOCK(p2);
734 
735 	/*
736 	 * Tell any interested parties about the new process.
737 	 */
738 	knote_fork(p1->p_klist, p2->p_pid);
739 
740 	/*
741 	 * Now can be swapped.
742 	 */
743 	_PRELE(p1);
744 	PROC_UNLOCK(p1);
745 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
746 
747 	if (fr->fr_flags & RFPROCDESC) {
748 		procdesc_finit(p2->p_procdesc, fp_procdesc);
749 		fdrop(fp_procdesc, td);
750 	}
751 
752 	/*
753 	 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
754 	 * synced with forks in progress so it is OK if we miss it
755 	 * if being set atm.
756 	 */
757 	if ((p1->p_ptevents & PTRACE_FORK) != 0) {
758 		sx_xlock(&proctree_lock);
759 		PROC_LOCK(p2);
760 
761 		/*
762 		 * p1->p_ptevents & p1->p_pptr are protected by both
763 		 * process and proctree locks for modifications,
764 		 * so owning proctree_lock allows the race-free read.
765 		 */
766 		if ((p1->p_ptevents & PTRACE_FORK) != 0) {
767 			/*
768 			 * Arrange for debugger to receive the fork event.
769 			 *
770 			 * We can report PL_FLAG_FORKED regardless of
771 			 * P_FOLLOWFORK settings, but it does not make a sense
772 			 * for runaway child.
773 			 */
774 			td->td_dbgflags |= TDB_FORK;
775 			td->td_dbg_forked = p2->p_pid;
776 			td2->td_dbgflags |= TDB_STOPATFORK;
777 			proc_set_traced(p2, true);
778 			CTR2(KTR_PTRACE,
779 			    "do_fork: attaching to new child pid %d: oppid %d",
780 			    p2->p_pid, p2->p_oppid);
781 			proc_reparent(p2, p1->p_pptr, false);
782 		}
783 		PROC_UNLOCK(p2);
784 		sx_xunlock(&proctree_lock);
785 	}
786 
787 	racct_proc_fork_done(p2);
788 
789 	if ((fr->fr_flags & RFSTOPPED) == 0) {
790 		if (fr->fr_pidp != NULL)
791 			*fr->fr_pidp = p2->p_pid;
792 		/*
793 		 * If RFSTOPPED not requested, make child runnable and
794 		 * add to run queue.
795 		 */
796 		thread_lock(td2);
797 		TD_SET_CAN_RUN(td2);
798 		sched_add(td2, SRQ_BORING);
799 	} else {
800 		*fr->fr_procp = p2;
801 	}
802 }
803 
804 static void
805 ast_vfork(struct thread *td, int tda __unused)
806 {
807 	struct proc *p, *p2;
808 
809 	MPASS(td->td_pflags & TDP_RFPPWAIT);
810 
811 	p = td->td_proc;
812 	/*
813 	 * Preserve synchronization semantics of vfork.  If
814 	 * waiting for child to exec or exit, fork set
815 	 * P_PPWAIT on child, and there we sleep on our proc
816 	 * (in case of exit).
817 	 *
818 	 * Do it after the ptracestop() above is finished, to
819 	 * not block our debugger until child execs or exits
820 	 * to finish vfork wait.
821 	 */
822 	td->td_pflags &= ~TDP_RFPPWAIT;
823 	p2 = td->td_rfppwait_p;
824 again:
825 	PROC_LOCK(p2);
826 	while (p2->p_flag & P_PPWAIT) {
827 		PROC_LOCK(p);
828 		if (thread_suspend_check_needed()) {
829 			PROC_UNLOCK(p2);
830 			thread_suspend_check(0);
831 			PROC_UNLOCK(p);
832 			goto again;
833 		} else {
834 			PROC_UNLOCK(p);
835 		}
836 		cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz);
837 	}
838 	PROC_UNLOCK(p2);
839 
840 	if (td->td_dbgflags & TDB_VFORK) {
841 		PROC_LOCK(p);
842 		if (p->p_ptevents & PTRACE_VFORK)
843 			ptracestop(td, SIGTRAP, NULL);
844 		td->td_dbgflags &= ~TDB_VFORK;
845 		PROC_UNLOCK(p);
846 	}
847 }
848 
849 int
850 fork1(struct thread *td, struct fork_req *fr)
851 {
852 	struct proc *p1, *newproc;
853 	struct thread *td2;
854 	struct vmspace *vm2;
855 	struct ucred *cred;
856 	struct file *fp_procdesc;
857 	struct pgrp *pg;
858 	vm_ooffset_t mem_charged;
859 	int error, nprocs_new;
860 	static int curfail;
861 	static struct timeval lastfail;
862 	int flags, pages;
863 	bool killsx_locked, singlethreaded;
864 
865 	flags = fr->fr_flags;
866 	pages = fr->fr_pages;
867 
868 	if ((flags & RFSTOPPED) != 0)
869 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
870 	else
871 		MPASS(fr->fr_procp == NULL);
872 
873 	/* Check for the undefined or unimplemented flags. */
874 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
875 		return (EINVAL);
876 
877 	/* Signal value requires RFTSIGZMB. */
878 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
879 		return (EINVAL);
880 
881 	/* Can't copy and clear. */
882 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
883 		return (EINVAL);
884 
885 	/* Check the validity of the signal number. */
886 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
887 		return (EINVAL);
888 
889 	if ((flags & RFPROCDESC) != 0) {
890 		/* Can't not create a process yet get a process descriptor. */
891 		if ((flags & RFPROC) == 0)
892 			return (EINVAL);
893 
894 		/* Must provide a place to put a procdesc if creating one. */
895 		if (fr->fr_pd_fd == NULL)
896 			return (EINVAL);
897 
898 		/* Check if we are using supported flags. */
899 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
900 			return (EINVAL);
901 	}
902 
903 	p1 = td->td_proc;
904 
905 	/*
906 	 * Here we don't create a new process, but we divorce
907 	 * certain parts of a process from itself.
908 	 */
909 	if ((flags & RFPROC) == 0) {
910 		if (fr->fr_procp != NULL)
911 			*fr->fr_procp = NULL;
912 		else if (fr->fr_pidp != NULL)
913 			*fr->fr_pidp = 0;
914 		return (fork_norfproc(td, flags));
915 	}
916 
917 	fp_procdesc = NULL;
918 	newproc = NULL;
919 	vm2 = NULL;
920 	killsx_locked = false;
921 	singlethreaded = false;
922 
923 	/*
924 	 * Increment the nprocs resource before allocations occur.
925 	 * Although process entries are dynamically created, we still
926 	 * keep a global limit on the maximum number we will
927 	 * create. There are hard-limits as to the number of processes
928 	 * that can run, established by the KVA and memory usage for
929 	 * the process data.
930 	 *
931 	 * Don't allow a nonprivileged user to use the last ten
932 	 * processes; don't let root exceed the limit.
933 	 */
934 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
935 	if (nprocs_new >= maxproc - 10) {
936 		if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 ||
937 		    nprocs_new >= maxproc) {
938 			error = EAGAIN;
939 			sx_xlock(&allproc_lock);
940 			if (ppsratecheck(&lastfail, &curfail, 1)) {
941 				printf("maxproc limit exceeded by uid %u "
942 				    "(pid %d); see tuning(7) and "
943 				    "login.conf(5)\n",
944 				    td->td_ucred->cr_ruid, p1->p_pid);
945 			}
946 			sx_xunlock(&allproc_lock);
947 			goto fail2;
948 		}
949 	}
950 
951 	/*
952 	 * If we are possibly multi-threaded, and there is a process
953 	 * sending a signal to our group right now, ensure that our
954 	 * other threads cannot be chosen for the signal queueing.
955 	 * Otherwise, this might delay signal action, and make the new
956 	 * child escape the signaling.
957 	 */
958 	pg = p1->p_pgrp;
959 	if (p1->p_numthreads > 1) {
960 		if (sx_try_slock(&pg->pg_killsx) != 0) {
961 			killsx_locked = true;
962 		} else {
963 			PROC_LOCK(p1);
964 			if (thread_single(p1, SINGLE_BOUNDARY)) {
965 				PROC_UNLOCK(p1);
966 				error = ERESTART;
967 				goto fail2;
968 			}
969 			PROC_UNLOCK(p1);
970 			singlethreaded = true;
971 		}
972 	}
973 
974 	/*
975 	 * Atomically check for signals and block processes from sending
976 	 * a signal to our process group until the child is visible.
977 	 */
978 	if (!killsx_locked && sx_slock_sig(&pg->pg_killsx) != 0) {
979 		error = ERESTART;
980 		goto fail2;
981 	}
982 	if (__predict_false(p1->p_pgrp != pg || sig_intr() != 0)) {
983 		/*
984 		 * Either the process was moved to other process
985 		 * group, or there is pending signal.  sx_slock_sig()
986 		 * does not check for signals if not sleeping for the
987 		 * lock.
988 		 */
989 		sx_sunlock(&pg->pg_killsx);
990 		killsx_locked = false;
991 		error = ERESTART;
992 		goto fail2;
993 	} else {
994 		killsx_locked = true;
995 	}
996 
997 	/*
998 	 * If required, create a process descriptor in the parent first; we
999 	 * will abandon it if something goes wrong. We don't finit() until
1000 	 * later.
1001 	 */
1002 	if (flags & RFPROCDESC) {
1003 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
1004 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
1005 		if (error != 0)
1006 			goto fail2;
1007 		AUDIT_ARG_FD(*fr->fr_pd_fd);
1008 	}
1009 
1010 	mem_charged = 0;
1011 	if (pages == 0)
1012 		pages = kstack_pages;
1013 	/* Allocate new proc. */
1014 	newproc = uma_zalloc(proc_zone, M_WAITOK);
1015 	td2 = FIRST_THREAD_IN_PROC(newproc);
1016 	if (td2 == NULL) {
1017 		td2 = thread_alloc(pages);
1018 		if (td2 == NULL) {
1019 			error = ENOMEM;
1020 			goto fail2;
1021 		}
1022 		proc_linkup(newproc, td2);
1023 	} else {
1024 		kmsan_thread_alloc(td2);
1025 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
1026 			if (td2->td_kstack != 0)
1027 				vm_thread_dispose(td2);
1028 			if (!thread_alloc_stack(td2, pages)) {
1029 				error = ENOMEM;
1030 				goto fail2;
1031 			}
1032 		}
1033 	}
1034 
1035 	if ((flags & RFMEM) == 0) {
1036 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
1037 		if (vm2 == NULL) {
1038 			error = ENOMEM;
1039 			goto fail2;
1040 		}
1041 		if (!swap_reserve(mem_charged)) {
1042 			/*
1043 			 * The swap reservation failed. The accounting
1044 			 * from the entries of the copied vm2 will be
1045 			 * subtracted in vmspace_free(), so force the
1046 			 * reservation there.
1047 			 */
1048 			swap_reserve_force(mem_charged);
1049 			error = ENOMEM;
1050 			goto fail2;
1051 		}
1052 	} else
1053 		vm2 = NULL;
1054 
1055 	/*
1056 	 * XXX: This is ugly; when we copy resource usage, we need to bump
1057 	 *      per-cred resource counters.
1058 	 */
1059 	proc_set_cred_init(newproc, td->td_ucred);
1060 
1061 	/*
1062 	 * Initialize resource accounting for the child process.
1063 	 */
1064 	error = racct_proc_fork(p1, newproc);
1065 	if (error != 0) {
1066 		error = EAGAIN;
1067 		goto fail1;
1068 	}
1069 
1070 #ifdef MAC
1071 	mac_proc_init(newproc);
1072 #endif
1073 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
1074 	STAILQ_INIT(&newproc->p_ktr);
1075 
1076 	/*
1077 	 * Increment the count of procs running with this uid. Don't allow
1078 	 * a nonprivileged user to exceed their current limit.
1079 	 */
1080 	cred = td->td_ucred;
1081 	if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) {
1082 		if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0)
1083 			goto fail0;
1084 		chgproccnt(cred->cr_ruidinfo, 1, 0);
1085 	}
1086 
1087 	do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
1088 	error = 0;
1089 	goto cleanup;
1090 fail0:
1091 	error = EAGAIN;
1092 #ifdef MAC
1093 	mac_proc_destroy(newproc);
1094 #endif
1095 	racct_proc_exit(newproc);
1096 fail1:
1097 	proc_unset_cred(newproc);
1098 fail2:
1099 	if (vm2 != NULL)
1100 		vmspace_free(vm2);
1101 	uma_zfree(proc_zone, newproc);
1102 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1103 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1104 		fdrop(fp_procdesc, td);
1105 	}
1106 	atomic_add_int(&nprocs, -1);
1107 cleanup:
1108 	if (killsx_locked)
1109 		sx_sunlock(&pg->pg_killsx);
1110 	if (singlethreaded) {
1111 		PROC_LOCK(p1);
1112 		thread_single_end(p1, SINGLE_BOUNDARY);
1113 		PROC_UNLOCK(p1);
1114 	}
1115 	if (error != 0)
1116 		pause("fork", hz / 2);
1117 	return (error);
1118 }
1119 
1120 /*
1121  * Handle the return of a child process from fork1().  This function
1122  * is called from the MD fork_trampoline() entry point.
1123  */
1124 void
1125 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1126     struct trapframe *frame)
1127 {
1128 	struct proc *p;
1129 	struct thread *td;
1130 	struct thread *dtd;
1131 
1132 	kmsan_mark(frame, sizeof(*frame), KMSAN_STATE_INITED);
1133 
1134 	td = curthread;
1135 	p = td->td_proc;
1136 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1137 
1138 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1139 	    td, td_get_sched(td), p->p_pid, td->td_name);
1140 
1141 	sched_fork_exit(td);
1142 
1143 	/*
1144 	 * Processes normally resume in mi_switch() after being
1145 	 * cpu_switch()'ed to, but when children start up they arrive here
1146 	 * instead, so we must do much the same things as mi_switch() would.
1147 	 */
1148 	if ((dtd = PCPU_GET(deadthread))) {
1149 		PCPU_SET(deadthread, NULL);
1150 		thread_stash(dtd);
1151 	}
1152 	thread_unlock(td);
1153 
1154 	/*
1155 	 * cpu_fork_kthread_handler intercepts this function call to
1156 	 * have this call a non-return function to stay in kernel mode.
1157 	 * initproc has its own fork handler, but it does return.
1158 	 */
1159 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1160 	callout(arg, frame);
1161 
1162 	/*
1163 	 * Check if a kernel thread misbehaved and returned from its main
1164 	 * function.
1165 	 */
1166 	if (p->p_flag & P_KPROC) {
1167 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1168 		    td->td_name, p->p_pid);
1169 		kthread_exit();
1170 	}
1171 	mtx_assert(&Giant, MA_NOTOWNED);
1172 
1173 	if (p->p_sysent->sv_schedtail != NULL)
1174 		(p->p_sysent->sv_schedtail)(td);
1175 }
1176 
1177 /*
1178  * Simplified back end of syscall(), used when returning from fork()
1179  * directly into user mode.  This function is passed in to fork_exit()
1180  * as the first parameter and is called when returning to a new
1181  * userland process.
1182  */
1183 void
1184 fork_return(struct thread *td, struct trapframe *frame)
1185 {
1186 	struct proc *p;
1187 
1188 	p = td->td_proc;
1189 	if (td->td_dbgflags & TDB_STOPATFORK) {
1190 		PROC_LOCK(p);
1191 		if ((p->p_flag & P_TRACED) != 0) {
1192 			/*
1193 			 * Inform the debugger if one is still present.
1194 			 */
1195 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1196 			ptracestop(td, SIGSTOP, NULL);
1197 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1198 		} else {
1199 			/*
1200 			 * ... otherwise clear the request.
1201 			 */
1202 			td->td_dbgflags &= ~TDB_STOPATFORK;
1203 		}
1204 		PROC_UNLOCK(p);
1205 	} else if (p->p_flag & P_TRACED) {
1206  		/*
1207 		 * This is the start of a new thread in a traced
1208 		 * process.  Report a system call exit event.
1209 		 */
1210 		PROC_LOCK(p);
1211 		td->td_dbgflags |= TDB_SCX;
1212 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1213 		    (td->td_dbgflags & TDB_BORN) != 0)
1214 			ptracestop(td, SIGTRAP, NULL);
1215 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1216 		PROC_UNLOCK(p);
1217 	}
1218 
1219 	/*
1220 	 * If the prison was killed mid-fork, die along with it.
1221 	 */
1222 	if (!prison_isalive(td->td_ucred->cr_prison))
1223 		exit1(td, 0, SIGKILL);
1224 
1225 	userret(td, frame);
1226 
1227 #ifdef KTRACE
1228 	if (KTRPOINT(td, KTR_SYSRET))
1229 		ktrsysret(td->td_sa.code, 0, 0);
1230 #endif
1231 }
1232 
1233 static void
1234 fork_init(void *arg __unused)
1235 {
1236 	ast_register(TDA_VFORK, ASTR_ASTF_REQUIRED | ASTR_TDP, TDP_RFPPWAIT,
1237 	    ast_vfork);
1238 }
1239 SYSINIT(fork, SI_SUB_INTRINSIC, SI_ORDER_ANY, fork_init, NULL);
1240