xref: /freebsd/sys/kern/kern_intr.c (revision f05cddf9)
1 /*-
2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_ddb.h"
31 
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/cpuset.h>
36 #include <sys/rtprio.h>
37 #include <sys/systm.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/ktr.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/random.h>
49 #include <sys/resourcevar.h>
50 #include <sys/sched.h>
51 #include <sys/smp.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/unistd.h>
55 #include <sys/vmmeter.h>
56 #include <machine/atomic.h>
57 #include <machine/cpu.h>
58 #include <machine/md_var.h>
59 #include <machine/stdarg.h>
60 #ifdef DDB
61 #include <ddb/ddb.h>
62 #include <ddb/db_sym.h>
63 #endif
64 
65 /*
66  * Describe an interrupt thread.  There is one of these per interrupt event.
67  */
68 struct intr_thread {
69 	struct intr_event *it_event;
70 	struct thread *it_thread;	/* Kernel thread. */
71 	int	it_flags;		/* (j) IT_* flags. */
72 	int	it_need;		/* Needs service. */
73 };
74 
75 /* Interrupt thread flags kept in it_flags */
76 #define	IT_DEAD		0x000001	/* Thread is waiting to exit. */
77 #define	IT_WAIT		0x000002	/* Thread is waiting for completion. */
78 
79 struct	intr_entropy {
80 	struct	thread *td;
81 	uintptr_t event;
82 };
83 
84 struct	intr_event *clk_intr_event;
85 struct	intr_event *tty_intr_event;
86 void	*vm_ih;
87 struct proc *intrproc;
88 
89 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads");
90 
91 static int intr_storm_threshold = 1000;
92 TUNABLE_INT("hw.intr_storm_threshold", &intr_storm_threshold);
93 SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RW,
94     &intr_storm_threshold, 0,
95     "Number of consecutive interrupts before storm protection is enabled");
96 static TAILQ_HEAD(, intr_event) event_list =
97     TAILQ_HEAD_INITIALIZER(event_list);
98 static struct mtx event_lock;
99 MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF);
100 
101 static void	intr_event_update(struct intr_event *ie);
102 #ifdef INTR_FILTER
103 static int	intr_event_schedule_thread(struct intr_event *ie,
104 		    struct intr_thread *ithd);
105 static int	intr_filter_loop(struct intr_event *ie,
106 		    struct trapframe *frame, struct intr_thread **ithd);
107 static struct intr_thread *ithread_create(const char *name,
108 			      struct intr_handler *ih);
109 #else
110 static int	intr_event_schedule_thread(struct intr_event *ie);
111 static struct intr_thread *ithread_create(const char *name);
112 #endif
113 static void	ithread_destroy(struct intr_thread *ithread);
114 static void	ithread_execute_handlers(struct proc *p,
115 		    struct intr_event *ie);
116 #ifdef INTR_FILTER
117 static void	priv_ithread_execute_handler(struct proc *p,
118 		    struct intr_handler *ih);
119 #endif
120 static void	ithread_loop(void *);
121 static void	ithread_update(struct intr_thread *ithd);
122 static void	start_softintr(void *);
123 
124 /* Map an interrupt type to an ithread priority. */
125 u_char
126 intr_priority(enum intr_type flags)
127 {
128 	u_char pri;
129 
130 	flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET |
131 	    INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV);
132 	switch (flags) {
133 	case INTR_TYPE_TTY:
134 		pri = PI_TTY;
135 		break;
136 	case INTR_TYPE_BIO:
137 		pri = PI_DISK;
138 		break;
139 	case INTR_TYPE_NET:
140 		pri = PI_NET;
141 		break;
142 	case INTR_TYPE_CAM:
143 		pri = PI_DISK;
144 		break;
145 	case INTR_TYPE_AV:
146 		pri = PI_AV;
147 		break;
148 	case INTR_TYPE_CLK:
149 		pri = PI_REALTIME;
150 		break;
151 	case INTR_TYPE_MISC:
152 		pri = PI_DULL;          /* don't care */
153 		break;
154 	default:
155 		/* We didn't specify an interrupt level. */
156 		panic("intr_priority: no interrupt type in flags");
157 	}
158 
159 	return pri;
160 }
161 
162 /*
163  * Update an ithread based on the associated intr_event.
164  */
165 static void
166 ithread_update(struct intr_thread *ithd)
167 {
168 	struct intr_event *ie;
169 	struct thread *td;
170 	u_char pri;
171 
172 	ie = ithd->it_event;
173 	td = ithd->it_thread;
174 
175 	/* Determine the overall priority of this event. */
176 	if (TAILQ_EMPTY(&ie->ie_handlers))
177 		pri = PRI_MAX_ITHD;
178 	else
179 		pri = TAILQ_FIRST(&ie->ie_handlers)->ih_pri;
180 
181 	/* Update name and priority. */
182 	strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name));
183 #ifdef KTR
184 	sched_clear_tdname(td);
185 #endif
186 	thread_lock(td);
187 	sched_prio(td, pri);
188 	thread_unlock(td);
189 }
190 
191 /*
192  * Regenerate the full name of an interrupt event and update its priority.
193  */
194 static void
195 intr_event_update(struct intr_event *ie)
196 {
197 	struct intr_handler *ih;
198 	char *last;
199 	int missed, space;
200 
201 	/* Start off with no entropy and just the name of the event. */
202 	mtx_assert(&ie->ie_lock, MA_OWNED);
203 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
204 	ie->ie_flags &= ~IE_ENTROPY;
205 	missed = 0;
206 	space = 1;
207 
208 	/* Run through all the handlers updating values. */
209 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
210 		if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 <
211 		    sizeof(ie->ie_fullname)) {
212 			strcat(ie->ie_fullname, " ");
213 			strcat(ie->ie_fullname, ih->ih_name);
214 			space = 0;
215 		} else
216 			missed++;
217 		if (ih->ih_flags & IH_ENTROPY)
218 			ie->ie_flags |= IE_ENTROPY;
219 	}
220 
221 	/*
222 	 * If the handler names were too long, add +'s to indicate missing
223 	 * names. If we run out of room and still have +'s to add, change
224 	 * the last character from a + to a *.
225 	 */
226 	last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2];
227 	while (missed-- > 0) {
228 		if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) {
229 			if (*last == '+') {
230 				*last = '*';
231 				break;
232 			} else
233 				*last = '+';
234 		} else if (space) {
235 			strcat(ie->ie_fullname, " +");
236 			space = 0;
237 		} else
238 			strcat(ie->ie_fullname, "+");
239 	}
240 
241 	/*
242 	 * If this event has an ithread, update it's priority and
243 	 * name.
244 	 */
245 	if (ie->ie_thread != NULL)
246 		ithread_update(ie->ie_thread);
247 	CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname);
248 }
249 
250 int
251 intr_event_create(struct intr_event **event, void *source, int flags, int irq,
252     void (*pre_ithread)(void *), void (*post_ithread)(void *),
253     void (*post_filter)(void *), int (*assign_cpu)(void *, u_char),
254     const char *fmt, ...)
255 {
256 	struct intr_event *ie;
257 	va_list ap;
258 
259 	/* The only valid flag during creation is IE_SOFT. */
260 	if ((flags & ~IE_SOFT) != 0)
261 		return (EINVAL);
262 	ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO);
263 	ie->ie_source = source;
264 	ie->ie_pre_ithread = pre_ithread;
265 	ie->ie_post_ithread = post_ithread;
266 	ie->ie_post_filter = post_filter;
267 	ie->ie_assign_cpu = assign_cpu;
268 	ie->ie_flags = flags;
269 	ie->ie_irq = irq;
270 	ie->ie_cpu = NOCPU;
271 	TAILQ_INIT(&ie->ie_handlers);
272 	mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF);
273 
274 	va_start(ap, fmt);
275 	vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap);
276 	va_end(ap);
277 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
278 	mtx_lock(&event_lock);
279 	TAILQ_INSERT_TAIL(&event_list, ie, ie_list);
280 	mtx_unlock(&event_lock);
281 	if (event != NULL)
282 		*event = ie;
283 	CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name);
284 	return (0);
285 }
286 
287 /*
288  * Bind an interrupt event to the specified CPU.  Note that not all
289  * platforms support binding an interrupt to a CPU.  For those
290  * platforms this request will fail.  For supported platforms, any
291  * associated ithreads as well as the primary interrupt context will
292  * be bound to the specificed CPU.  Using a cpu id of NOCPU unbinds
293  * the interrupt event.
294  */
295 int
296 intr_event_bind(struct intr_event *ie, u_char cpu)
297 {
298 	cpuset_t mask;
299 	lwpid_t id;
300 	int error;
301 
302 	/* Need a CPU to bind to. */
303 	if (cpu != NOCPU && CPU_ABSENT(cpu))
304 		return (EINVAL);
305 
306 	if (ie->ie_assign_cpu == NULL)
307 		return (EOPNOTSUPP);
308 
309 	error = priv_check(curthread, PRIV_SCHED_CPUSET_INTR);
310 	if (error)
311 		return (error);
312 
313 	/*
314 	 * If we have any ithreads try to set their mask first to verify
315 	 * permissions, etc.
316 	 */
317 	mtx_lock(&ie->ie_lock);
318 	if (ie->ie_thread != NULL) {
319 		CPU_ZERO(&mask);
320 		if (cpu == NOCPU)
321 			CPU_COPY(cpuset_root, &mask);
322 		else
323 			CPU_SET(cpu, &mask);
324 		id = ie->ie_thread->it_thread->td_tid;
325 		mtx_unlock(&ie->ie_lock);
326 		error = cpuset_setthread(id, &mask);
327 		if (error)
328 			return (error);
329 	} else
330 		mtx_unlock(&ie->ie_lock);
331 	error = ie->ie_assign_cpu(ie->ie_source, cpu);
332 	if (error) {
333 		mtx_lock(&ie->ie_lock);
334 		if (ie->ie_thread != NULL) {
335 			CPU_ZERO(&mask);
336 			if (ie->ie_cpu == NOCPU)
337 				CPU_COPY(cpuset_root, &mask);
338 			else
339 				CPU_SET(ie->ie_cpu, &mask);
340 			id = ie->ie_thread->it_thread->td_tid;
341 			mtx_unlock(&ie->ie_lock);
342 			(void)cpuset_setthread(id, &mask);
343 		} else
344 			mtx_unlock(&ie->ie_lock);
345 		return (error);
346 	}
347 
348 	mtx_lock(&ie->ie_lock);
349 	ie->ie_cpu = cpu;
350 	mtx_unlock(&ie->ie_lock);
351 
352 	return (error);
353 }
354 
355 static struct intr_event *
356 intr_lookup(int irq)
357 {
358 	struct intr_event *ie;
359 
360 	mtx_lock(&event_lock);
361 	TAILQ_FOREACH(ie, &event_list, ie_list)
362 		if (ie->ie_irq == irq &&
363 		    (ie->ie_flags & IE_SOFT) == 0 &&
364 		    TAILQ_FIRST(&ie->ie_handlers) != NULL)
365 			break;
366 	mtx_unlock(&event_lock);
367 	return (ie);
368 }
369 
370 int
371 intr_setaffinity(int irq, void *m)
372 {
373 	struct intr_event *ie;
374 	cpuset_t *mask;
375 	u_char cpu;
376 	int n;
377 
378 	mask = m;
379 	cpu = NOCPU;
380 	/*
381 	 * If we're setting all cpus we can unbind.  Otherwise make sure
382 	 * only one cpu is in the set.
383 	 */
384 	if (CPU_CMP(cpuset_root, mask)) {
385 		for (n = 0; n < CPU_SETSIZE; n++) {
386 			if (!CPU_ISSET(n, mask))
387 				continue;
388 			if (cpu != NOCPU)
389 				return (EINVAL);
390 			cpu = (u_char)n;
391 		}
392 	}
393 	ie = intr_lookup(irq);
394 	if (ie == NULL)
395 		return (ESRCH);
396 	return (intr_event_bind(ie, cpu));
397 }
398 
399 int
400 intr_getaffinity(int irq, void *m)
401 {
402 	struct intr_event *ie;
403 	cpuset_t *mask;
404 
405 	mask = m;
406 	ie = intr_lookup(irq);
407 	if (ie == NULL)
408 		return (ESRCH);
409 	CPU_ZERO(mask);
410 	mtx_lock(&ie->ie_lock);
411 	if (ie->ie_cpu == NOCPU)
412 		CPU_COPY(cpuset_root, mask);
413 	else
414 		CPU_SET(ie->ie_cpu, mask);
415 	mtx_unlock(&ie->ie_lock);
416 	return (0);
417 }
418 
419 int
420 intr_event_destroy(struct intr_event *ie)
421 {
422 
423 	mtx_lock(&event_lock);
424 	mtx_lock(&ie->ie_lock);
425 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
426 		mtx_unlock(&ie->ie_lock);
427 		mtx_unlock(&event_lock);
428 		return (EBUSY);
429 	}
430 	TAILQ_REMOVE(&event_list, ie, ie_list);
431 #ifndef notyet
432 	if (ie->ie_thread != NULL) {
433 		ithread_destroy(ie->ie_thread);
434 		ie->ie_thread = NULL;
435 	}
436 #endif
437 	mtx_unlock(&ie->ie_lock);
438 	mtx_unlock(&event_lock);
439 	mtx_destroy(&ie->ie_lock);
440 	free(ie, M_ITHREAD);
441 	return (0);
442 }
443 
444 #ifndef INTR_FILTER
445 static struct intr_thread *
446 ithread_create(const char *name)
447 {
448 	struct intr_thread *ithd;
449 	struct thread *td;
450 	int error;
451 
452 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
453 
454 	error = kproc_kthread_add(ithread_loop, ithd, &intrproc,
455 		    &td, RFSTOPPED | RFHIGHPID,
456 	    	    0, "intr", "%s", name);
457 	if (error)
458 		panic("kproc_create() failed with %d", error);
459 	thread_lock(td);
460 	sched_class(td, PRI_ITHD);
461 	TD_SET_IWAIT(td);
462 	thread_unlock(td);
463 	td->td_pflags |= TDP_ITHREAD;
464 	ithd->it_thread = td;
465 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
466 	return (ithd);
467 }
468 #else
469 static struct intr_thread *
470 ithread_create(const char *name, struct intr_handler *ih)
471 {
472 	struct intr_thread *ithd;
473 	struct thread *td;
474 	int error;
475 
476 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
477 
478 	error = kproc_kthread_add(ithread_loop, ih, &intrproc,
479 		    &td, RFSTOPPED | RFHIGHPID,
480 	    	    0, "intr", "%s", name);
481 	if (error)
482 		panic("kproc_create() failed with %d", error);
483 	thread_lock(td);
484 	sched_class(td, PRI_ITHD);
485 	TD_SET_IWAIT(td);
486 	thread_unlock(td);
487 	td->td_pflags |= TDP_ITHREAD;
488 	ithd->it_thread = td;
489 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
490 	return (ithd);
491 }
492 #endif
493 
494 static void
495 ithread_destroy(struct intr_thread *ithread)
496 {
497 	struct thread *td;
498 
499 	CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name);
500 	td = ithread->it_thread;
501 	thread_lock(td);
502 	ithread->it_flags |= IT_DEAD;
503 	if (TD_AWAITING_INTR(td)) {
504 		TD_CLR_IWAIT(td);
505 		sched_add(td, SRQ_INTR);
506 	}
507 	thread_unlock(td);
508 }
509 
510 #ifndef INTR_FILTER
511 int
512 intr_event_add_handler(struct intr_event *ie, const char *name,
513     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
514     enum intr_type flags, void **cookiep)
515 {
516 	struct intr_handler *ih, *temp_ih;
517 	struct intr_thread *it;
518 
519 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
520 		return (EINVAL);
521 
522 	/* Allocate and populate an interrupt handler structure. */
523 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
524 	ih->ih_filter = filter;
525 	ih->ih_handler = handler;
526 	ih->ih_argument = arg;
527 	strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
528 	ih->ih_event = ie;
529 	ih->ih_pri = pri;
530 	if (flags & INTR_EXCL)
531 		ih->ih_flags = IH_EXCLUSIVE;
532 	if (flags & INTR_MPSAFE)
533 		ih->ih_flags |= IH_MPSAFE;
534 	if (flags & INTR_ENTROPY)
535 		ih->ih_flags |= IH_ENTROPY;
536 
537 	/* We can only have one exclusive handler in a event. */
538 	mtx_lock(&ie->ie_lock);
539 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
540 		if ((flags & INTR_EXCL) ||
541 		    (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
542 			mtx_unlock(&ie->ie_lock);
543 			free(ih, M_ITHREAD);
544 			return (EINVAL);
545 		}
546 	}
547 
548 	/* Create a thread if we need one. */
549 	while (ie->ie_thread == NULL && handler != NULL) {
550 		if (ie->ie_flags & IE_ADDING_THREAD)
551 			msleep(ie, &ie->ie_lock, 0, "ithread", 0);
552 		else {
553 			ie->ie_flags |= IE_ADDING_THREAD;
554 			mtx_unlock(&ie->ie_lock);
555 			it = ithread_create("intr: newborn");
556 			mtx_lock(&ie->ie_lock);
557 			ie->ie_flags &= ~IE_ADDING_THREAD;
558 			ie->ie_thread = it;
559 			it->it_event = ie;
560 			ithread_update(it);
561 			wakeup(ie);
562 		}
563 	}
564 
565 	/* Add the new handler to the event in priority order. */
566 	TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
567 		if (temp_ih->ih_pri > ih->ih_pri)
568 			break;
569 	}
570 	if (temp_ih == NULL)
571 		TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
572 	else
573 		TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
574 	intr_event_update(ie);
575 
576 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
577 	    ie->ie_name);
578 	mtx_unlock(&ie->ie_lock);
579 
580 	if (cookiep != NULL)
581 		*cookiep = ih;
582 	return (0);
583 }
584 #else
585 int
586 intr_event_add_handler(struct intr_event *ie, const char *name,
587     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
588     enum intr_type flags, void **cookiep)
589 {
590 	struct intr_handler *ih, *temp_ih;
591 	struct intr_thread *it;
592 
593 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
594 		return (EINVAL);
595 
596 	/* Allocate and populate an interrupt handler structure. */
597 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
598 	ih->ih_filter = filter;
599 	ih->ih_handler = handler;
600 	ih->ih_argument = arg;
601 	strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
602 	ih->ih_event = ie;
603 	ih->ih_pri = pri;
604 	if (flags & INTR_EXCL)
605 		ih->ih_flags = IH_EXCLUSIVE;
606 	if (flags & INTR_MPSAFE)
607 		ih->ih_flags |= IH_MPSAFE;
608 	if (flags & INTR_ENTROPY)
609 		ih->ih_flags |= IH_ENTROPY;
610 
611 	/* We can only have one exclusive handler in a event. */
612 	mtx_lock(&ie->ie_lock);
613 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
614 		if ((flags & INTR_EXCL) ||
615 		    (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
616 			mtx_unlock(&ie->ie_lock);
617 			free(ih, M_ITHREAD);
618 			return (EINVAL);
619 		}
620 	}
621 
622 	/* For filtered handlers, create a private ithread to run on. */
623 	if (filter != NULL && handler != NULL) {
624 		mtx_unlock(&ie->ie_lock);
625 		it = ithread_create("intr: newborn", ih);
626 		mtx_lock(&ie->ie_lock);
627 		it->it_event = ie;
628 		ih->ih_thread = it;
629 		ithread_update(it); /* XXX - do we really need this?!?!? */
630 	} else { /* Create the global per-event thread if we need one. */
631 		while (ie->ie_thread == NULL && handler != NULL) {
632 			if (ie->ie_flags & IE_ADDING_THREAD)
633 				msleep(ie, &ie->ie_lock, 0, "ithread", 0);
634 			else {
635 				ie->ie_flags |= IE_ADDING_THREAD;
636 				mtx_unlock(&ie->ie_lock);
637 				it = ithread_create("intr: newborn", ih);
638 				mtx_lock(&ie->ie_lock);
639 				ie->ie_flags &= ~IE_ADDING_THREAD;
640 				ie->ie_thread = it;
641 				it->it_event = ie;
642 				ithread_update(it);
643 				wakeup(ie);
644 			}
645 		}
646 	}
647 
648 	/* Add the new handler to the event in priority order. */
649 	TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
650 		if (temp_ih->ih_pri > ih->ih_pri)
651 			break;
652 	}
653 	if (temp_ih == NULL)
654 		TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
655 	else
656 		TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
657 	intr_event_update(ie);
658 
659 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
660 	    ie->ie_name);
661 	mtx_unlock(&ie->ie_lock);
662 
663 	if (cookiep != NULL)
664 		*cookiep = ih;
665 	return (0);
666 }
667 #endif
668 
669 /*
670  * Append a description preceded by a ':' to the name of the specified
671  * interrupt handler.
672  */
673 int
674 intr_event_describe_handler(struct intr_event *ie, void *cookie,
675     const char *descr)
676 {
677 	struct intr_handler *ih;
678 	size_t space;
679 	char *start;
680 
681 	mtx_lock(&ie->ie_lock);
682 #ifdef INVARIANTS
683 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
684 		if (ih == cookie)
685 			break;
686 	}
687 	if (ih == NULL) {
688 		mtx_unlock(&ie->ie_lock);
689 		panic("handler %p not found in interrupt event %p", cookie, ie);
690 	}
691 #endif
692 	ih = cookie;
693 
694 	/*
695 	 * Look for an existing description by checking for an
696 	 * existing ":".  This assumes device names do not include
697 	 * colons.  If one is found, prepare to insert the new
698 	 * description at that point.  If one is not found, find the
699 	 * end of the name to use as the insertion point.
700 	 */
701 	start = strchr(ih->ih_name, ':');
702 	if (start == NULL)
703 		start = strchr(ih->ih_name, 0);
704 
705 	/*
706 	 * See if there is enough remaining room in the string for the
707 	 * description + ":".  The "- 1" leaves room for the trailing
708 	 * '\0'.  The "+ 1" accounts for the colon.
709 	 */
710 	space = sizeof(ih->ih_name) - (start - ih->ih_name) - 1;
711 	if (strlen(descr) + 1 > space) {
712 		mtx_unlock(&ie->ie_lock);
713 		return (ENOSPC);
714 	}
715 
716 	/* Append a colon followed by the description. */
717 	*start = ':';
718 	strcpy(start + 1, descr);
719 	intr_event_update(ie);
720 	mtx_unlock(&ie->ie_lock);
721 	return (0);
722 }
723 
724 /*
725  * Return the ie_source field from the intr_event an intr_handler is
726  * associated with.
727  */
728 void *
729 intr_handler_source(void *cookie)
730 {
731 	struct intr_handler *ih;
732 	struct intr_event *ie;
733 
734 	ih = (struct intr_handler *)cookie;
735 	if (ih == NULL)
736 		return (NULL);
737 	ie = ih->ih_event;
738 	KASSERT(ie != NULL,
739 	    ("interrupt handler \"%s\" has a NULL interrupt event",
740 	    ih->ih_name));
741 	return (ie->ie_source);
742 }
743 
744 /*
745  * Sleep until an ithread finishes executing an interrupt handler.
746  *
747  * XXX Doesn't currently handle interrupt filters or fast interrupt
748  * handlers.  This is intended for compatibility with linux drivers
749  * only.  Do not use in BSD code.
750  */
751 void
752 _intr_drain(int irq)
753 {
754 	struct intr_event *ie;
755 	struct intr_thread *ithd;
756 	struct thread *td;
757 
758 	ie = intr_lookup(irq);
759 	if (ie == NULL)
760 		return;
761 	if (ie->ie_thread == NULL)
762 		return;
763 	ithd = ie->ie_thread;
764 	td = ithd->it_thread;
765 	/*
766 	 * We set the flag and wait for it to be cleared to avoid
767 	 * long delays with potentially busy interrupt handlers
768 	 * were we to only sample TD_AWAITING_INTR() every tick.
769 	 */
770 	thread_lock(td);
771 	if (!TD_AWAITING_INTR(td)) {
772 		ithd->it_flags |= IT_WAIT;
773 		while (ithd->it_flags & IT_WAIT) {
774 			thread_unlock(td);
775 			pause("idrain", 1);
776 			thread_lock(td);
777 		}
778 	}
779 	thread_unlock(td);
780 	return;
781 }
782 
783 
784 #ifndef INTR_FILTER
785 int
786 intr_event_remove_handler(void *cookie)
787 {
788 	struct intr_handler *handler = (struct intr_handler *)cookie;
789 	struct intr_event *ie;
790 #ifdef INVARIANTS
791 	struct intr_handler *ih;
792 #endif
793 #ifdef notyet
794 	int dead;
795 #endif
796 
797 	if (handler == NULL)
798 		return (EINVAL);
799 	ie = handler->ih_event;
800 	KASSERT(ie != NULL,
801 	    ("interrupt handler \"%s\" has a NULL interrupt event",
802 	    handler->ih_name));
803 	mtx_lock(&ie->ie_lock);
804 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
805 	    ie->ie_name);
806 #ifdef INVARIANTS
807 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
808 		if (ih == handler)
809 			goto ok;
810 	mtx_unlock(&ie->ie_lock);
811 	panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
812 	    ih->ih_name, ie->ie_name);
813 ok:
814 #endif
815 	/*
816 	 * If there is no ithread, then just remove the handler and return.
817 	 * XXX: Note that an INTR_FAST handler might be running on another
818 	 * CPU!
819 	 */
820 	if (ie->ie_thread == NULL) {
821 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
822 		mtx_unlock(&ie->ie_lock);
823 		free(handler, M_ITHREAD);
824 		return (0);
825 	}
826 
827 	/*
828 	 * If the interrupt thread is already running, then just mark this
829 	 * handler as being dead and let the ithread do the actual removal.
830 	 *
831 	 * During a cold boot while cold is set, msleep() does not sleep,
832 	 * so we have to remove the handler here rather than letting the
833 	 * thread do it.
834 	 */
835 	thread_lock(ie->ie_thread->it_thread);
836 	if (!TD_AWAITING_INTR(ie->ie_thread->it_thread) && !cold) {
837 		handler->ih_flags |= IH_DEAD;
838 
839 		/*
840 		 * Ensure that the thread will process the handler list
841 		 * again and remove this handler if it has already passed
842 		 * it on the list.
843 		 */
844 		atomic_store_rel_int(&ie->ie_thread->it_need, 1);
845 	} else
846 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
847 	thread_unlock(ie->ie_thread->it_thread);
848 	while (handler->ih_flags & IH_DEAD)
849 		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
850 	intr_event_update(ie);
851 #ifdef notyet
852 	/*
853 	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
854 	 * this could lead to races of stale data when servicing an
855 	 * interrupt.
856 	 */
857 	dead = 1;
858 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
859 		if (!(ih->ih_flags & IH_FAST)) {
860 			dead = 0;
861 			break;
862 		}
863 	}
864 	if (dead) {
865 		ithread_destroy(ie->ie_thread);
866 		ie->ie_thread = NULL;
867 	}
868 #endif
869 	mtx_unlock(&ie->ie_lock);
870 	free(handler, M_ITHREAD);
871 	return (0);
872 }
873 
874 static int
875 intr_event_schedule_thread(struct intr_event *ie)
876 {
877 	struct intr_entropy entropy;
878 	struct intr_thread *it;
879 	struct thread *td;
880 	struct thread *ctd;
881 	struct proc *p;
882 
883 	/*
884 	 * If no ithread or no handlers, then we have a stray interrupt.
885 	 */
886 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) ||
887 	    ie->ie_thread == NULL)
888 		return (EINVAL);
889 
890 	ctd = curthread;
891 	it = ie->ie_thread;
892 	td = it->it_thread;
893 	p = td->td_proc;
894 
895 	/*
896 	 * If any of the handlers for this ithread claim to be good
897 	 * sources of entropy, then gather some.
898 	 */
899 	if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) {
900 		CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__,
901 		    p->p_pid, td->td_name);
902 		entropy.event = (uintptr_t)ie;
903 		entropy.td = ctd;
904 		random_harvest(&entropy, sizeof(entropy), 2, 0,
905 		    RANDOM_INTERRUPT);
906 	}
907 
908 	KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
909 
910 	/*
911 	 * Set it_need to tell the thread to keep running if it is already
912 	 * running.  Then, lock the thread and see if we actually need to
913 	 * put it on the runqueue.
914 	 */
915 	atomic_store_rel_int(&it->it_need, 1);
916 	thread_lock(td);
917 	if (TD_AWAITING_INTR(td)) {
918 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
919 		    td->td_name);
920 		TD_CLR_IWAIT(td);
921 		sched_add(td, SRQ_INTR);
922 	} else {
923 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
924 		    __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
925 	}
926 	thread_unlock(td);
927 
928 	return (0);
929 }
930 #else
931 int
932 intr_event_remove_handler(void *cookie)
933 {
934 	struct intr_handler *handler = (struct intr_handler *)cookie;
935 	struct intr_event *ie;
936 	struct intr_thread *it;
937 #ifdef INVARIANTS
938 	struct intr_handler *ih;
939 #endif
940 #ifdef notyet
941 	int dead;
942 #endif
943 
944 	if (handler == NULL)
945 		return (EINVAL);
946 	ie = handler->ih_event;
947 	KASSERT(ie != NULL,
948 	    ("interrupt handler \"%s\" has a NULL interrupt event",
949 	    handler->ih_name));
950 	mtx_lock(&ie->ie_lock);
951 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
952 	    ie->ie_name);
953 #ifdef INVARIANTS
954 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
955 		if (ih == handler)
956 			goto ok;
957 	mtx_unlock(&ie->ie_lock);
958 	panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
959 	    ih->ih_name, ie->ie_name);
960 ok:
961 #endif
962 	/*
963 	 * If there are no ithreads (per event and per handler), then
964 	 * just remove the handler and return.
965 	 * XXX: Note that an INTR_FAST handler might be running on another CPU!
966 	 */
967 	if (ie->ie_thread == NULL && handler->ih_thread == NULL) {
968 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
969 		mtx_unlock(&ie->ie_lock);
970 		free(handler, M_ITHREAD);
971 		return (0);
972 	}
973 
974 	/* Private or global ithread? */
975 	it = (handler->ih_thread) ? handler->ih_thread : ie->ie_thread;
976 	/*
977 	 * If the interrupt thread is already running, then just mark this
978 	 * handler as being dead and let the ithread do the actual removal.
979 	 *
980 	 * During a cold boot while cold is set, msleep() does not sleep,
981 	 * so we have to remove the handler here rather than letting the
982 	 * thread do it.
983 	 */
984 	thread_lock(it->it_thread);
985 	if (!TD_AWAITING_INTR(it->it_thread) && !cold) {
986 		handler->ih_flags |= IH_DEAD;
987 
988 		/*
989 		 * Ensure that the thread will process the handler list
990 		 * again and remove this handler if it has already passed
991 		 * it on the list.
992 		 */
993 		atomic_store_rel_int(&it->it_need, 1);
994 	} else
995 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
996 	thread_unlock(it->it_thread);
997 	while (handler->ih_flags & IH_DEAD)
998 		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
999 	/*
1000 	 * At this point, the handler has been disconnected from the event,
1001 	 * so we can kill the private ithread if any.
1002 	 */
1003 	if (handler->ih_thread) {
1004 		ithread_destroy(handler->ih_thread);
1005 		handler->ih_thread = NULL;
1006 	}
1007 	intr_event_update(ie);
1008 #ifdef notyet
1009 	/*
1010 	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
1011 	 * this could lead to races of stale data when servicing an
1012 	 * interrupt.
1013 	 */
1014 	dead = 1;
1015 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1016 		if (handler != NULL) {
1017 			dead = 0;
1018 			break;
1019 		}
1020 	}
1021 	if (dead) {
1022 		ithread_destroy(ie->ie_thread);
1023 		ie->ie_thread = NULL;
1024 	}
1025 #endif
1026 	mtx_unlock(&ie->ie_lock);
1027 	free(handler, M_ITHREAD);
1028 	return (0);
1029 }
1030 
1031 static int
1032 intr_event_schedule_thread(struct intr_event *ie, struct intr_thread *it)
1033 {
1034 	struct intr_entropy entropy;
1035 	struct thread *td;
1036 	struct thread *ctd;
1037 	struct proc *p;
1038 
1039 	/*
1040 	 * If no ithread or no handlers, then we have a stray interrupt.
1041 	 */
1042 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) || it == NULL)
1043 		return (EINVAL);
1044 
1045 	ctd = curthread;
1046 	td = it->it_thread;
1047 	p = td->td_proc;
1048 
1049 	/*
1050 	 * If any of the handlers for this ithread claim to be good
1051 	 * sources of entropy, then gather some.
1052 	 */
1053 	if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) {
1054 		CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__,
1055 		    p->p_pid, td->td_name);
1056 		entropy.event = (uintptr_t)ie;
1057 		entropy.td = ctd;
1058 		random_harvest(&entropy, sizeof(entropy), 2, 0,
1059 		    RANDOM_INTERRUPT);
1060 	}
1061 
1062 	KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
1063 
1064 	/*
1065 	 * Set it_need to tell the thread to keep running if it is already
1066 	 * running.  Then, lock the thread and see if we actually need to
1067 	 * put it on the runqueue.
1068 	 */
1069 	atomic_store_rel_int(&it->it_need, 1);
1070 	thread_lock(td);
1071 	if (TD_AWAITING_INTR(td)) {
1072 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
1073 		    td->td_name);
1074 		TD_CLR_IWAIT(td);
1075 		sched_add(td, SRQ_INTR);
1076 	} else {
1077 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
1078 		    __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
1079 	}
1080 	thread_unlock(td);
1081 
1082 	return (0);
1083 }
1084 #endif
1085 
1086 /*
1087  * Allow interrupt event binding for software interrupt handlers -- a no-op,
1088  * since interrupts are generated in software rather than being directed by
1089  * a PIC.
1090  */
1091 static int
1092 swi_assign_cpu(void *arg, u_char cpu)
1093 {
1094 
1095 	return (0);
1096 }
1097 
1098 /*
1099  * Add a software interrupt handler to a specified event.  If a given event
1100  * is not specified, then a new event is created.
1101  */
1102 int
1103 swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler,
1104 	    void *arg, int pri, enum intr_type flags, void **cookiep)
1105 {
1106 	struct intr_event *ie;
1107 	int error;
1108 
1109 	if (flags & INTR_ENTROPY)
1110 		return (EINVAL);
1111 
1112 	ie = (eventp != NULL) ? *eventp : NULL;
1113 
1114 	if (ie != NULL) {
1115 		if (!(ie->ie_flags & IE_SOFT))
1116 			return (EINVAL);
1117 	} else {
1118 		error = intr_event_create(&ie, NULL, IE_SOFT, 0,
1119 		    NULL, NULL, NULL, swi_assign_cpu, "swi%d:", pri);
1120 		if (error)
1121 			return (error);
1122 		if (eventp != NULL)
1123 			*eventp = ie;
1124 	}
1125 	error = intr_event_add_handler(ie, name, NULL, handler, arg,
1126 	    PI_SWI(pri), flags, cookiep);
1127 	return (error);
1128 }
1129 
1130 /*
1131  * Schedule a software interrupt thread.
1132  */
1133 void
1134 swi_sched(void *cookie, int flags)
1135 {
1136 	struct intr_handler *ih = (struct intr_handler *)cookie;
1137 	struct intr_event *ie = ih->ih_event;
1138 	struct intr_entropy entropy;
1139 	int error;
1140 
1141 	CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name,
1142 	    ih->ih_need);
1143 
1144 	if (harvest.swi) {
1145 		CTR2(KTR_INTR, "swi_sched: pid %d (%s) gathering entropy",
1146 		    curproc->p_pid, curthread->td_name);
1147 		entropy.event = (uintptr_t)ih;
1148 		entropy.td = curthread;
1149 		random_harvest(&entropy, sizeof(entropy), 1, 0,
1150 		    RANDOM_INTERRUPT);
1151 	}
1152 
1153 	/*
1154 	 * Set ih_need for this handler so that if the ithread is already
1155 	 * running it will execute this handler on the next pass.  Otherwise,
1156 	 * it will execute it the next time it runs.
1157 	 */
1158 	atomic_store_rel_int(&ih->ih_need, 1);
1159 
1160 	if (!(flags & SWI_DELAY)) {
1161 		PCPU_INC(cnt.v_soft);
1162 #ifdef INTR_FILTER
1163 		error = intr_event_schedule_thread(ie, ie->ie_thread);
1164 #else
1165 		error = intr_event_schedule_thread(ie);
1166 #endif
1167 		KASSERT(error == 0, ("stray software interrupt"));
1168 	}
1169 }
1170 
1171 /*
1172  * Remove a software interrupt handler.  Currently this code does not
1173  * remove the associated interrupt event if it becomes empty.  Calling code
1174  * may do so manually via intr_event_destroy(), but that's not really
1175  * an optimal interface.
1176  */
1177 int
1178 swi_remove(void *cookie)
1179 {
1180 
1181 	return (intr_event_remove_handler(cookie));
1182 }
1183 
1184 #ifdef INTR_FILTER
1185 static void
1186 priv_ithread_execute_handler(struct proc *p, struct intr_handler *ih)
1187 {
1188 	struct intr_event *ie;
1189 
1190 	ie = ih->ih_event;
1191 	/*
1192 	 * If this handler is marked for death, remove it from
1193 	 * the list of handlers and wake up the sleeper.
1194 	 */
1195 	if (ih->ih_flags & IH_DEAD) {
1196 		mtx_lock(&ie->ie_lock);
1197 		TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
1198 		ih->ih_flags &= ~IH_DEAD;
1199 		wakeup(ih);
1200 		mtx_unlock(&ie->ie_lock);
1201 		return;
1202 	}
1203 
1204 	/* Execute this handler. */
1205 	CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1206 	     __func__, p->p_pid, (void *)ih->ih_handler, ih->ih_argument,
1207 	     ih->ih_name, ih->ih_flags);
1208 
1209 	if (!(ih->ih_flags & IH_MPSAFE))
1210 		mtx_lock(&Giant);
1211 	ih->ih_handler(ih->ih_argument);
1212 	if (!(ih->ih_flags & IH_MPSAFE))
1213 		mtx_unlock(&Giant);
1214 }
1215 #endif
1216 
1217 /*
1218  * This is a public function for use by drivers that mux interrupt
1219  * handlers for child devices from their interrupt handler.
1220  */
1221 void
1222 intr_event_execute_handlers(struct proc *p, struct intr_event *ie)
1223 {
1224 	struct intr_handler *ih, *ihn;
1225 
1226 	TAILQ_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) {
1227 		/*
1228 		 * If this handler is marked for death, remove it from
1229 		 * the list of handlers and wake up the sleeper.
1230 		 */
1231 		if (ih->ih_flags & IH_DEAD) {
1232 			mtx_lock(&ie->ie_lock);
1233 			TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
1234 			ih->ih_flags &= ~IH_DEAD;
1235 			wakeup(ih);
1236 			mtx_unlock(&ie->ie_lock);
1237 			continue;
1238 		}
1239 
1240 		/* Skip filter only handlers */
1241 		if (ih->ih_handler == NULL)
1242 			continue;
1243 
1244 		/*
1245 		 * For software interrupt threads, we only execute
1246 		 * handlers that have their need flag set.  Hardware
1247 		 * interrupt threads always invoke all of their handlers.
1248 		 */
1249 		if (ie->ie_flags & IE_SOFT) {
1250 			if (atomic_load_acq_int(&ih->ih_need) == 0)
1251 				continue;
1252 			else
1253 				atomic_store_rel_int(&ih->ih_need, 0);
1254 		}
1255 
1256 		/* Execute this handler. */
1257 		CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1258 		    __func__, p->p_pid, (void *)ih->ih_handler,
1259 		    ih->ih_argument, ih->ih_name, ih->ih_flags);
1260 
1261 		if (!(ih->ih_flags & IH_MPSAFE))
1262 			mtx_lock(&Giant);
1263 		ih->ih_handler(ih->ih_argument);
1264 		if (!(ih->ih_flags & IH_MPSAFE))
1265 			mtx_unlock(&Giant);
1266 	}
1267 }
1268 
1269 static void
1270 ithread_execute_handlers(struct proc *p, struct intr_event *ie)
1271 {
1272 
1273 	/* Interrupt handlers should not sleep. */
1274 	if (!(ie->ie_flags & IE_SOFT))
1275 		THREAD_NO_SLEEPING();
1276 	intr_event_execute_handlers(p, ie);
1277 	if (!(ie->ie_flags & IE_SOFT))
1278 		THREAD_SLEEPING_OK();
1279 
1280 	/*
1281 	 * Interrupt storm handling:
1282 	 *
1283 	 * If this interrupt source is currently storming, then throttle
1284 	 * it to only fire the handler once  per clock tick.
1285 	 *
1286 	 * If this interrupt source is not currently storming, but the
1287 	 * number of back to back interrupts exceeds the storm threshold,
1288 	 * then enter storming mode.
1289 	 */
1290 	if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold &&
1291 	    !(ie->ie_flags & IE_SOFT)) {
1292 		/* Report the message only once every second. */
1293 		if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) {
1294 			printf(
1295 	"interrupt storm detected on \"%s\"; throttling interrupt source\n",
1296 			    ie->ie_name);
1297 		}
1298 		pause("istorm", 1);
1299 	} else
1300 		ie->ie_count++;
1301 
1302 	/*
1303 	 * Now that all the handlers have had a chance to run, reenable
1304 	 * the interrupt source.
1305 	 */
1306 	if (ie->ie_post_ithread != NULL)
1307 		ie->ie_post_ithread(ie->ie_source);
1308 }
1309 
1310 #ifndef INTR_FILTER
1311 /*
1312  * This is the main code for interrupt threads.
1313  */
1314 static void
1315 ithread_loop(void *arg)
1316 {
1317 	struct intr_thread *ithd;
1318 	struct intr_event *ie;
1319 	struct thread *td;
1320 	struct proc *p;
1321 	int wake;
1322 
1323 	td = curthread;
1324 	p = td->td_proc;
1325 	ithd = (struct intr_thread *)arg;
1326 	KASSERT(ithd->it_thread == td,
1327 	    ("%s: ithread and proc linkage out of sync", __func__));
1328 	ie = ithd->it_event;
1329 	ie->ie_count = 0;
1330 	wake = 0;
1331 
1332 	/*
1333 	 * As long as we have interrupts outstanding, go through the
1334 	 * list of handlers, giving each one a go at it.
1335 	 */
1336 	for (;;) {
1337 		/*
1338 		 * If we are an orphaned thread, then just die.
1339 		 */
1340 		if (ithd->it_flags & IT_DEAD) {
1341 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1342 			    p->p_pid, td->td_name);
1343 			free(ithd, M_ITHREAD);
1344 			kthread_exit();
1345 		}
1346 
1347 		/*
1348 		 * Service interrupts.  If another interrupt arrives while
1349 		 * we are running, it will set it_need to note that we
1350 		 * should make another pass.
1351 		 */
1352 		while (atomic_load_acq_int(&ithd->it_need) != 0) {
1353 			/*
1354 			 * This might need a full read and write barrier
1355 			 * to make sure that this write posts before any
1356 			 * of the memory or device accesses in the
1357 			 * handlers.
1358 			 */
1359 			atomic_store_rel_int(&ithd->it_need, 0);
1360 			ithread_execute_handlers(p, ie);
1361 		}
1362 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1363 		mtx_assert(&Giant, MA_NOTOWNED);
1364 
1365 		/*
1366 		 * Processed all our interrupts.  Now get the sched
1367 		 * lock.  This may take a while and it_need may get
1368 		 * set again, so we have to check it again.
1369 		 */
1370 		thread_lock(td);
1371 		if ((atomic_load_acq_int(&ithd->it_need) == 0) &&
1372 		    !(ithd->it_flags & (IT_DEAD | IT_WAIT))) {
1373 			TD_SET_IWAIT(td);
1374 			ie->ie_count = 0;
1375 			mi_switch(SW_VOL | SWT_IWAIT, NULL);
1376 		}
1377 		if (ithd->it_flags & IT_WAIT) {
1378 			wake = 1;
1379 			ithd->it_flags &= ~IT_WAIT;
1380 		}
1381 		thread_unlock(td);
1382 		if (wake) {
1383 			wakeup(ithd);
1384 			wake = 0;
1385 		}
1386 	}
1387 }
1388 
1389 /*
1390  * Main interrupt handling body.
1391  *
1392  * Input:
1393  * o ie:                        the event connected to this interrupt.
1394  * o frame:                     some archs (i.e. i386) pass a frame to some.
1395  *                              handlers as their main argument.
1396  * Return value:
1397  * o 0:                         everything ok.
1398  * o EINVAL:                    stray interrupt.
1399  */
1400 int
1401 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1402 {
1403 	struct intr_handler *ih;
1404 	struct trapframe *oldframe;
1405 	struct thread *td;
1406 	int error, ret, thread;
1407 
1408 	td = curthread;
1409 
1410 	/* An interrupt with no event or handlers is a stray interrupt. */
1411 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
1412 		return (EINVAL);
1413 
1414 	/*
1415 	 * Execute fast interrupt handlers directly.
1416 	 * To support clock handlers, if a handler registers
1417 	 * with a NULL argument, then we pass it a pointer to
1418 	 * a trapframe as its argument.
1419 	 */
1420 	td->td_intr_nesting_level++;
1421 	thread = 0;
1422 	ret = 0;
1423 	critical_enter();
1424 	oldframe = td->td_intr_frame;
1425 	td->td_intr_frame = frame;
1426 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1427 		if (ih->ih_filter == NULL) {
1428 			thread = 1;
1429 			continue;
1430 		}
1431 		CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__,
1432 		    ih->ih_filter, ih->ih_argument == NULL ? frame :
1433 		    ih->ih_argument, ih->ih_name);
1434 		if (ih->ih_argument == NULL)
1435 			ret = ih->ih_filter(frame);
1436 		else
1437 			ret = ih->ih_filter(ih->ih_argument);
1438 		KASSERT(ret == FILTER_STRAY ||
1439 		    ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
1440 		    (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
1441 		    ("%s: incorrect return value %#x from %s", __func__, ret,
1442 		    ih->ih_name));
1443 
1444 		/*
1445 		 * Wrapper handler special handling:
1446 		 *
1447 		 * in some particular cases (like pccard and pccbb),
1448 		 * the _real_ device handler is wrapped in a couple of
1449 		 * functions - a filter wrapper and an ithread wrapper.
1450 		 * In this case (and just in this case), the filter wrapper
1451 		 * could ask the system to schedule the ithread and mask
1452 		 * the interrupt source if the wrapped handler is composed
1453 		 * of just an ithread handler.
1454 		 *
1455 		 * TODO: write a generic wrapper to avoid people rolling
1456 		 * their own
1457 		 */
1458 		if (!thread) {
1459 			if (ret == FILTER_SCHEDULE_THREAD)
1460 				thread = 1;
1461 		}
1462 	}
1463 	td->td_intr_frame = oldframe;
1464 
1465 	if (thread) {
1466 		if (ie->ie_pre_ithread != NULL)
1467 			ie->ie_pre_ithread(ie->ie_source);
1468 	} else {
1469 		if (ie->ie_post_filter != NULL)
1470 			ie->ie_post_filter(ie->ie_source);
1471 	}
1472 
1473 	/* Schedule the ithread if needed. */
1474 	if (thread) {
1475 		error = intr_event_schedule_thread(ie);
1476 #ifndef XEN
1477 		KASSERT(error == 0, ("bad stray interrupt"));
1478 #else
1479 		if (error != 0)
1480 			log(LOG_WARNING, "bad stray interrupt");
1481 #endif
1482 	}
1483 	critical_exit();
1484 	td->td_intr_nesting_level--;
1485 	return (0);
1486 }
1487 #else
1488 /*
1489  * This is the main code for interrupt threads.
1490  */
1491 static void
1492 ithread_loop(void *arg)
1493 {
1494 	struct intr_thread *ithd;
1495 	struct intr_handler *ih;
1496 	struct intr_event *ie;
1497 	struct thread *td;
1498 	struct proc *p;
1499 	int priv;
1500 	int wake;
1501 
1502 	td = curthread;
1503 	p = td->td_proc;
1504 	ih = (struct intr_handler *)arg;
1505 	priv = (ih->ih_thread != NULL) ? 1 : 0;
1506 	ithd = (priv) ? ih->ih_thread : ih->ih_event->ie_thread;
1507 	KASSERT(ithd->it_thread == td,
1508 	    ("%s: ithread and proc linkage out of sync", __func__));
1509 	ie = ithd->it_event;
1510 	ie->ie_count = 0;
1511 	wake = 0;
1512 
1513 	/*
1514 	 * As long as we have interrupts outstanding, go through the
1515 	 * list of handlers, giving each one a go at it.
1516 	 */
1517 	for (;;) {
1518 		/*
1519 		 * If we are an orphaned thread, then just die.
1520 		 */
1521 		if (ithd->it_flags & IT_DEAD) {
1522 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1523 			    p->p_pid, td->td_name);
1524 			free(ithd, M_ITHREAD);
1525 			kthread_exit();
1526 		}
1527 
1528 		/*
1529 		 * Service interrupts.  If another interrupt arrives while
1530 		 * we are running, it will set it_need to note that we
1531 		 * should make another pass.
1532 		 */
1533 		while (atomic_load_acq_int(&ithd->it_need) != 0) {
1534 			/*
1535 			 * This might need a full read and write barrier
1536 			 * to make sure that this write posts before any
1537 			 * of the memory or device accesses in the
1538 			 * handlers.
1539 			 */
1540 			atomic_store_rel_int(&ithd->it_need, 0);
1541 			if (priv)
1542 				priv_ithread_execute_handler(p, ih);
1543 			else
1544 				ithread_execute_handlers(p, ie);
1545 		}
1546 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1547 		mtx_assert(&Giant, MA_NOTOWNED);
1548 
1549 		/*
1550 		 * Processed all our interrupts.  Now get the sched
1551 		 * lock.  This may take a while and it_need may get
1552 		 * set again, so we have to check it again.
1553 		 */
1554 		thread_lock(td);
1555 		if ((atomic_load_acq_int(&ithd->it_need) == 0) &&
1556 		    !(ithd->it_flags & (IT_DEAD | IT_WAIT))) {
1557 			TD_SET_IWAIT(td);
1558 			ie->ie_count = 0;
1559 			mi_switch(SW_VOL | SWT_IWAIT, NULL);
1560 		}
1561 		if (ithd->it_flags & IT_WAIT) {
1562 			wake = 1;
1563 			ithd->it_flags &= ~IT_WAIT;
1564 		}
1565 		thread_unlock(td);
1566 		if (wake) {
1567 			wakeup(ithd);
1568 			wake = 0;
1569 		}
1570 	}
1571 }
1572 
1573 /*
1574  * Main loop for interrupt filter.
1575  *
1576  * Some architectures (i386, amd64 and arm) require the optional frame
1577  * parameter, and use it as the main argument for fast handler execution
1578  * when ih_argument == NULL.
1579  *
1580  * Return value:
1581  * o FILTER_STRAY:              No filter recognized the event, and no
1582  *                              filter-less handler is registered on this
1583  *                              line.
1584  * o FILTER_HANDLED:            A filter claimed the event and served it.
1585  * o FILTER_SCHEDULE_THREAD:    No filter claimed the event, but there's at
1586  *                              least one filter-less handler on this line.
1587  * o FILTER_HANDLED |
1588  *   FILTER_SCHEDULE_THREAD:    A filter claimed the event, and asked for
1589  *                              scheduling the per-handler ithread.
1590  *
1591  * In case an ithread has to be scheduled, in *ithd there will be a
1592  * pointer to a struct intr_thread containing the thread to be
1593  * scheduled.
1594  */
1595 
1596 static int
1597 intr_filter_loop(struct intr_event *ie, struct trapframe *frame,
1598 		 struct intr_thread **ithd)
1599 {
1600 	struct intr_handler *ih;
1601 	void *arg;
1602 	int ret, thread_only;
1603 
1604 	ret = 0;
1605 	thread_only = 0;
1606 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1607 		/*
1608 		 * Execute fast interrupt handlers directly.
1609 		 * To support clock handlers, if a handler registers
1610 		 * with a NULL argument, then we pass it a pointer to
1611 		 * a trapframe as its argument.
1612 		 */
1613 		arg = ((ih->ih_argument == NULL) ? frame : ih->ih_argument);
1614 
1615 		CTR5(KTR_INTR, "%s: exec %p/%p(%p) for %s", __func__,
1616 		     ih->ih_filter, ih->ih_handler, arg, ih->ih_name);
1617 
1618 		if (ih->ih_filter != NULL)
1619 			ret = ih->ih_filter(arg);
1620 		else {
1621 			thread_only = 1;
1622 			continue;
1623 		}
1624 		KASSERT(ret == FILTER_STRAY ||
1625 		    ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
1626 		    (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
1627 		    ("%s: incorrect return value %#x from %s", __func__, ret,
1628 		    ih->ih_name));
1629 		if (ret & FILTER_STRAY)
1630 			continue;
1631 		else {
1632 			*ithd = ih->ih_thread;
1633 			return (ret);
1634 		}
1635 	}
1636 
1637 	/*
1638 	 * No filters handled the interrupt and we have at least
1639 	 * one handler without a filter.  In this case, we schedule
1640 	 * all of the filter-less handlers to run in the ithread.
1641 	 */
1642 	if (thread_only) {
1643 		*ithd = ie->ie_thread;
1644 		return (FILTER_SCHEDULE_THREAD);
1645 	}
1646 	return (FILTER_STRAY);
1647 }
1648 
1649 /*
1650  * Main interrupt handling body.
1651  *
1652  * Input:
1653  * o ie:                        the event connected to this interrupt.
1654  * o frame:                     some archs (i.e. i386) pass a frame to some.
1655  *                              handlers as their main argument.
1656  * Return value:
1657  * o 0:                         everything ok.
1658  * o EINVAL:                    stray interrupt.
1659  */
1660 int
1661 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1662 {
1663 	struct intr_thread *ithd;
1664 	struct trapframe *oldframe;
1665 	struct thread *td;
1666 	int thread;
1667 
1668 	ithd = NULL;
1669 	td = curthread;
1670 
1671 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
1672 		return (EINVAL);
1673 
1674 	td->td_intr_nesting_level++;
1675 	thread = 0;
1676 	critical_enter();
1677 	oldframe = td->td_intr_frame;
1678 	td->td_intr_frame = frame;
1679 	thread = intr_filter_loop(ie, frame, &ithd);
1680 	if (thread & FILTER_HANDLED) {
1681 		if (ie->ie_post_filter != NULL)
1682 			ie->ie_post_filter(ie->ie_source);
1683 	} else {
1684 		if (ie->ie_pre_ithread != NULL)
1685 			ie->ie_pre_ithread(ie->ie_source);
1686 	}
1687 	td->td_intr_frame = oldframe;
1688 	critical_exit();
1689 
1690 	/* Interrupt storm logic */
1691 	if (thread & FILTER_STRAY) {
1692 		ie->ie_count++;
1693 		if (ie->ie_count < intr_storm_threshold)
1694 			printf("Interrupt stray detection not present\n");
1695 	}
1696 
1697 	/* Schedule an ithread if needed. */
1698 	if (thread & FILTER_SCHEDULE_THREAD) {
1699 		if (intr_event_schedule_thread(ie, ithd) != 0)
1700 			panic("%s: impossible stray interrupt", __func__);
1701 	}
1702 	td->td_intr_nesting_level--;
1703 	return (0);
1704 }
1705 #endif
1706 
1707 #ifdef DDB
1708 /*
1709  * Dump details about an interrupt handler
1710  */
1711 static void
1712 db_dump_intrhand(struct intr_handler *ih)
1713 {
1714 	int comma;
1715 
1716 	db_printf("\t%-10s ", ih->ih_name);
1717 	switch (ih->ih_pri) {
1718 	case PI_REALTIME:
1719 		db_printf("CLK ");
1720 		break;
1721 	case PI_AV:
1722 		db_printf("AV  ");
1723 		break;
1724 	case PI_TTY:
1725 		db_printf("TTY ");
1726 		break;
1727 	case PI_NET:
1728 		db_printf("NET ");
1729 		break;
1730 	case PI_DISK:
1731 		db_printf("DISK");
1732 		break;
1733 	case PI_DULL:
1734 		db_printf("DULL");
1735 		break;
1736 	default:
1737 		if (ih->ih_pri >= PI_SOFT)
1738 			db_printf("SWI ");
1739 		else
1740 			db_printf("%4u", ih->ih_pri);
1741 		break;
1742 	}
1743 	db_printf(" ");
1744 	if (ih->ih_filter != NULL) {
1745 		db_printf("[F]");
1746 		db_printsym((uintptr_t)ih->ih_filter, DB_STGY_PROC);
1747 	}
1748 	if (ih->ih_handler != NULL) {
1749 		if (ih->ih_filter != NULL)
1750 			db_printf(",");
1751 		db_printf("[H]");
1752 		db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC);
1753 	}
1754 	db_printf("(%p)", ih->ih_argument);
1755 	if (ih->ih_need ||
1756 	    (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD |
1757 	    IH_MPSAFE)) != 0) {
1758 		db_printf(" {");
1759 		comma = 0;
1760 		if (ih->ih_flags & IH_EXCLUSIVE) {
1761 			if (comma)
1762 				db_printf(", ");
1763 			db_printf("EXCL");
1764 			comma = 1;
1765 		}
1766 		if (ih->ih_flags & IH_ENTROPY) {
1767 			if (comma)
1768 				db_printf(", ");
1769 			db_printf("ENTROPY");
1770 			comma = 1;
1771 		}
1772 		if (ih->ih_flags & IH_DEAD) {
1773 			if (comma)
1774 				db_printf(", ");
1775 			db_printf("DEAD");
1776 			comma = 1;
1777 		}
1778 		if (ih->ih_flags & IH_MPSAFE) {
1779 			if (comma)
1780 				db_printf(", ");
1781 			db_printf("MPSAFE");
1782 			comma = 1;
1783 		}
1784 		if (ih->ih_need) {
1785 			if (comma)
1786 				db_printf(", ");
1787 			db_printf("NEED");
1788 		}
1789 		db_printf("}");
1790 	}
1791 	db_printf("\n");
1792 }
1793 
1794 /*
1795  * Dump details about a event.
1796  */
1797 void
1798 db_dump_intr_event(struct intr_event *ie, int handlers)
1799 {
1800 	struct intr_handler *ih;
1801 	struct intr_thread *it;
1802 	int comma;
1803 
1804 	db_printf("%s ", ie->ie_fullname);
1805 	it = ie->ie_thread;
1806 	if (it != NULL)
1807 		db_printf("(pid %d)", it->it_thread->td_proc->p_pid);
1808 	else
1809 		db_printf("(no thread)");
1810 	if ((ie->ie_flags & (IE_SOFT | IE_ENTROPY | IE_ADDING_THREAD)) != 0 ||
1811 	    (it != NULL && it->it_need)) {
1812 		db_printf(" {");
1813 		comma = 0;
1814 		if (ie->ie_flags & IE_SOFT) {
1815 			db_printf("SOFT");
1816 			comma = 1;
1817 		}
1818 		if (ie->ie_flags & IE_ENTROPY) {
1819 			if (comma)
1820 				db_printf(", ");
1821 			db_printf("ENTROPY");
1822 			comma = 1;
1823 		}
1824 		if (ie->ie_flags & IE_ADDING_THREAD) {
1825 			if (comma)
1826 				db_printf(", ");
1827 			db_printf("ADDING_THREAD");
1828 			comma = 1;
1829 		}
1830 		if (it != NULL && it->it_need) {
1831 			if (comma)
1832 				db_printf(", ");
1833 			db_printf("NEED");
1834 		}
1835 		db_printf("}");
1836 	}
1837 	db_printf("\n");
1838 
1839 	if (handlers)
1840 		TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
1841 		    db_dump_intrhand(ih);
1842 }
1843 
1844 /*
1845  * Dump data about interrupt handlers
1846  */
1847 DB_SHOW_COMMAND(intr, db_show_intr)
1848 {
1849 	struct intr_event *ie;
1850 	int all, verbose;
1851 
1852 	verbose = strchr(modif, 'v') != NULL;
1853 	all = strchr(modif, 'a') != NULL;
1854 	TAILQ_FOREACH(ie, &event_list, ie_list) {
1855 		if (!all && TAILQ_EMPTY(&ie->ie_handlers))
1856 			continue;
1857 		db_dump_intr_event(ie, verbose);
1858 		if (db_pager_quit)
1859 			break;
1860 	}
1861 }
1862 #endif /* DDB */
1863 
1864 /*
1865  * Start standard software interrupt threads
1866  */
1867 static void
1868 start_softintr(void *dummy)
1869 {
1870 
1871 	if (swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih))
1872 		panic("died while creating vm swi ithread");
1873 }
1874 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr,
1875     NULL);
1876 
1877 /*
1878  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1879  * The data for this machine dependent, and the declarations are in machine
1880  * dependent code.  The layout of intrnames and intrcnt however is machine
1881  * independent.
1882  *
1883  * We do not know the length of intrcnt and intrnames at compile time, so
1884  * calculate things at run time.
1885  */
1886 static int
1887 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1888 {
1889 	return (sysctl_handle_opaque(oidp, intrnames, sintrnames, req));
1890 }
1891 
1892 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1893     NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1894 
1895 static int
1896 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1897 {
1898 #ifdef SCTL_MASK32
1899 	uint32_t *intrcnt32;
1900 	unsigned i;
1901 	int error;
1902 
1903 	if (req->flags & SCTL_MASK32) {
1904 		if (!req->oldptr)
1905 			return (sysctl_handle_opaque(oidp, NULL, sintrcnt / 2, req));
1906 		intrcnt32 = malloc(sintrcnt / 2, M_TEMP, M_NOWAIT);
1907 		if (intrcnt32 == NULL)
1908 			return (ENOMEM);
1909 		for (i = 0; i < sintrcnt / sizeof (u_long); i++)
1910 			intrcnt32[i] = intrcnt[i];
1911 		error = sysctl_handle_opaque(oidp, intrcnt32, sintrcnt / 2, req);
1912 		free(intrcnt32, M_TEMP);
1913 		return (error);
1914 	}
1915 #endif
1916 	return (sysctl_handle_opaque(oidp, intrcnt, sintrcnt, req));
1917 }
1918 
1919 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1920     NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1921 
1922 #ifdef DDB
1923 /*
1924  * DDB command to dump the interrupt statistics.
1925  */
1926 DB_SHOW_COMMAND(intrcnt, db_show_intrcnt)
1927 {
1928 	u_long *i;
1929 	char *cp;
1930 	u_int j;
1931 
1932 	cp = intrnames;
1933 	j = 0;
1934 	for (i = intrcnt; j < (sintrcnt / sizeof(u_long)) && !db_pager_quit;
1935 	    i++, j++) {
1936 		if (*cp == '\0')
1937 			break;
1938 		if (*i != 0)
1939 			db_printf("%s\t%lu\n", cp, *i);
1940 		cp += strlen(cp) + 1;
1941 	}
1942 }
1943 #endif
1944