xref: /freebsd/sys/kern/kern_intr.c (revision f56f82e0)
1 /*-
2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_ddb.h"
31 #include "opt_kstack_usage_prof.h"
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/conf.h>
36 #include <sys/cpuset.h>
37 #include <sys/rtprio.h>
38 #include <sys/systm.h>
39 #include <sys/interrupt.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/ktr.h>
43 #include <sys/limits.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mutex.h>
47 #include <sys/priv.h>
48 #include <sys/proc.h>
49 #include <sys/random.h>
50 #include <sys/resourcevar.h>
51 #include <sys/sched.h>
52 #include <sys/smp.h>
53 #include <sys/sysctl.h>
54 #include <sys/syslog.h>
55 #include <sys/unistd.h>
56 #include <sys/vmmeter.h>
57 #include <machine/atomic.h>
58 #include <machine/cpu.h>
59 #include <machine/md_var.h>
60 #include <machine/stdarg.h>
61 #ifdef DDB
62 #include <ddb/ddb.h>
63 #include <ddb/db_sym.h>
64 #endif
65 
66 /*
67  * Describe an interrupt thread.  There is one of these per interrupt event.
68  */
69 struct intr_thread {
70 	struct intr_event *it_event;
71 	struct thread *it_thread;	/* Kernel thread. */
72 	int	it_flags;		/* (j) IT_* flags. */
73 	int	it_need;		/* Needs service. */
74 };
75 
76 /* Interrupt thread flags kept in it_flags */
77 #define	IT_DEAD		0x000001	/* Thread is waiting to exit. */
78 #define	IT_WAIT		0x000002	/* Thread is waiting for completion. */
79 
80 struct	intr_entropy {
81 	struct	thread *td;
82 	uintptr_t event;
83 };
84 
85 struct	intr_event *clk_intr_event;
86 struct	intr_event *tty_intr_event;
87 void	*vm_ih;
88 struct proc *intrproc;
89 
90 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads");
91 
92 static int intr_storm_threshold = 1000;
93 SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RWTUN,
94     &intr_storm_threshold, 0,
95     "Number of consecutive interrupts before storm protection is enabled");
96 static TAILQ_HEAD(, intr_event) event_list =
97     TAILQ_HEAD_INITIALIZER(event_list);
98 static struct mtx event_lock;
99 MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF);
100 
101 static void	intr_event_update(struct intr_event *ie);
102 #ifdef INTR_FILTER
103 static int	intr_event_schedule_thread(struct intr_event *ie,
104 		    struct intr_thread *ithd);
105 static int	intr_filter_loop(struct intr_event *ie,
106 		    struct trapframe *frame, struct intr_thread **ithd);
107 static struct intr_thread *ithread_create(const char *name,
108 			      struct intr_handler *ih);
109 #else
110 static int	intr_event_schedule_thread(struct intr_event *ie);
111 static struct intr_thread *ithread_create(const char *name);
112 #endif
113 static void	ithread_destroy(struct intr_thread *ithread);
114 static void	ithread_execute_handlers(struct proc *p,
115 		    struct intr_event *ie);
116 #ifdef INTR_FILTER
117 static void	priv_ithread_execute_handler(struct proc *p,
118 		    struct intr_handler *ih);
119 #endif
120 static void	ithread_loop(void *);
121 static void	ithread_update(struct intr_thread *ithd);
122 static void	start_softintr(void *);
123 
124 /* Map an interrupt type to an ithread priority. */
125 u_char
126 intr_priority(enum intr_type flags)
127 {
128 	u_char pri;
129 
130 	flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET |
131 	    INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV);
132 	switch (flags) {
133 	case INTR_TYPE_TTY:
134 		pri = PI_TTY;
135 		break;
136 	case INTR_TYPE_BIO:
137 		pri = PI_DISK;
138 		break;
139 	case INTR_TYPE_NET:
140 		pri = PI_NET;
141 		break;
142 	case INTR_TYPE_CAM:
143 		pri = PI_DISK;
144 		break;
145 	case INTR_TYPE_AV:
146 		pri = PI_AV;
147 		break;
148 	case INTR_TYPE_CLK:
149 		pri = PI_REALTIME;
150 		break;
151 	case INTR_TYPE_MISC:
152 		pri = PI_DULL;          /* don't care */
153 		break;
154 	default:
155 		/* We didn't specify an interrupt level. */
156 		panic("intr_priority: no interrupt type in flags");
157 	}
158 
159 	return pri;
160 }
161 
162 /*
163  * Update an ithread based on the associated intr_event.
164  */
165 static void
166 ithread_update(struct intr_thread *ithd)
167 {
168 	struct intr_event *ie;
169 	struct thread *td;
170 	u_char pri;
171 
172 	ie = ithd->it_event;
173 	td = ithd->it_thread;
174 
175 	/* Determine the overall priority of this event. */
176 	if (TAILQ_EMPTY(&ie->ie_handlers))
177 		pri = PRI_MAX_ITHD;
178 	else
179 		pri = TAILQ_FIRST(&ie->ie_handlers)->ih_pri;
180 
181 	/* Update name and priority. */
182 	strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name));
183 #ifdef KTR
184 	sched_clear_tdname(td);
185 #endif
186 	thread_lock(td);
187 	sched_prio(td, pri);
188 	thread_unlock(td);
189 }
190 
191 /*
192  * Regenerate the full name of an interrupt event and update its priority.
193  */
194 static void
195 intr_event_update(struct intr_event *ie)
196 {
197 	struct intr_handler *ih;
198 	char *last;
199 	int missed, space;
200 
201 	/* Start off with no entropy and just the name of the event. */
202 	mtx_assert(&ie->ie_lock, MA_OWNED);
203 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
204 	ie->ie_flags &= ~IE_ENTROPY;
205 	missed = 0;
206 	space = 1;
207 
208 	/* Run through all the handlers updating values. */
209 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
210 		if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 <
211 		    sizeof(ie->ie_fullname)) {
212 			strcat(ie->ie_fullname, " ");
213 			strcat(ie->ie_fullname, ih->ih_name);
214 			space = 0;
215 		} else
216 			missed++;
217 		if (ih->ih_flags & IH_ENTROPY)
218 			ie->ie_flags |= IE_ENTROPY;
219 	}
220 
221 	/*
222 	 * If the handler names were too long, add +'s to indicate missing
223 	 * names. If we run out of room and still have +'s to add, change
224 	 * the last character from a + to a *.
225 	 */
226 	last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2];
227 	while (missed-- > 0) {
228 		if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) {
229 			if (*last == '+') {
230 				*last = '*';
231 				break;
232 			} else
233 				*last = '+';
234 		} else if (space) {
235 			strcat(ie->ie_fullname, " +");
236 			space = 0;
237 		} else
238 			strcat(ie->ie_fullname, "+");
239 	}
240 
241 	/*
242 	 * If this event has an ithread, update it's priority and
243 	 * name.
244 	 */
245 	if (ie->ie_thread != NULL)
246 		ithread_update(ie->ie_thread);
247 	CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname);
248 }
249 
250 int
251 intr_event_create(struct intr_event **event, void *source, int flags, int irq,
252     void (*pre_ithread)(void *), void (*post_ithread)(void *),
253     void (*post_filter)(void *), int (*assign_cpu)(void *, int),
254     const char *fmt, ...)
255 {
256 	struct intr_event *ie;
257 	va_list ap;
258 
259 	/* The only valid flag during creation is IE_SOFT. */
260 	if ((flags & ~IE_SOFT) != 0)
261 		return (EINVAL);
262 	ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO);
263 	ie->ie_source = source;
264 	ie->ie_pre_ithread = pre_ithread;
265 	ie->ie_post_ithread = post_ithread;
266 	ie->ie_post_filter = post_filter;
267 	ie->ie_assign_cpu = assign_cpu;
268 	ie->ie_flags = flags;
269 	ie->ie_irq = irq;
270 	ie->ie_cpu = NOCPU;
271 	TAILQ_INIT(&ie->ie_handlers);
272 	mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF);
273 
274 	va_start(ap, fmt);
275 	vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap);
276 	va_end(ap);
277 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
278 	mtx_lock(&event_lock);
279 	TAILQ_INSERT_TAIL(&event_list, ie, ie_list);
280 	mtx_unlock(&event_lock);
281 	if (event != NULL)
282 		*event = ie;
283 	CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name);
284 	return (0);
285 }
286 
287 /*
288  * Bind an interrupt event to the specified CPU.  Note that not all
289  * platforms support binding an interrupt to a CPU.  For those
290  * platforms this request will fail.  Using a cpu id of NOCPU unbinds
291  * the interrupt event.
292  */
293 static int
294 _intr_event_bind(struct intr_event *ie, int cpu, bool bindirq, bool bindithread)
295 {
296 	lwpid_t id;
297 	int error;
298 
299 	/* Need a CPU to bind to. */
300 	if (cpu != NOCPU && CPU_ABSENT(cpu))
301 		return (EINVAL);
302 
303 	if (ie->ie_assign_cpu == NULL)
304 		return (EOPNOTSUPP);
305 
306 	error = priv_check(curthread, PRIV_SCHED_CPUSET_INTR);
307 	if (error)
308 		return (error);
309 
310 	/*
311 	 * If we have any ithreads try to set their mask first to verify
312 	 * permissions, etc.
313 	 */
314 	if (bindithread) {
315 		mtx_lock(&ie->ie_lock);
316 		if (ie->ie_thread != NULL) {
317 			id = ie->ie_thread->it_thread->td_tid;
318 			mtx_unlock(&ie->ie_lock);
319 			error = cpuset_setithread(id, cpu);
320 			if (error)
321 				return (error);
322 		} else
323 			mtx_unlock(&ie->ie_lock);
324 	}
325 	if (bindirq)
326 		error = ie->ie_assign_cpu(ie->ie_source, cpu);
327 	if (error) {
328 		if (bindithread) {
329 			mtx_lock(&ie->ie_lock);
330 			if (ie->ie_thread != NULL) {
331 				cpu = ie->ie_cpu;
332 				id = ie->ie_thread->it_thread->td_tid;
333 				mtx_unlock(&ie->ie_lock);
334 				(void)cpuset_setithread(id, cpu);
335 			} else
336 				mtx_unlock(&ie->ie_lock);
337 		}
338 		return (error);
339 	}
340 
341 	if (bindirq) {
342 		mtx_lock(&ie->ie_lock);
343 		ie->ie_cpu = cpu;
344 		mtx_unlock(&ie->ie_lock);
345 	}
346 
347 	return (error);
348 }
349 
350 /*
351  * Bind an interrupt event to the specified CPU.  For supported platforms, any
352  * associated ithreads as well as the primary interrupt context will be bound
353  * to the specificed CPU.
354  */
355 int
356 intr_event_bind(struct intr_event *ie, int cpu)
357 {
358 
359 	return (_intr_event_bind(ie, cpu, true, true));
360 }
361 
362 /*
363  * Bind an interrupt event to the specified CPU, but do not bind associated
364  * ithreads.
365  */
366 int
367 intr_event_bind_irqonly(struct intr_event *ie, int cpu)
368 {
369 
370 	return (_intr_event_bind(ie, cpu, true, false));
371 }
372 
373 /*
374  * Bind an interrupt event's ithread to the specified CPU.
375  */
376 int
377 intr_event_bind_ithread(struct intr_event *ie, int cpu)
378 {
379 
380 	return (_intr_event_bind(ie, cpu, false, true));
381 }
382 
383 static struct intr_event *
384 intr_lookup(int irq)
385 {
386 	struct intr_event *ie;
387 
388 	mtx_lock(&event_lock);
389 	TAILQ_FOREACH(ie, &event_list, ie_list)
390 		if (ie->ie_irq == irq &&
391 		    (ie->ie_flags & IE_SOFT) == 0 &&
392 		    TAILQ_FIRST(&ie->ie_handlers) != NULL)
393 			break;
394 	mtx_unlock(&event_lock);
395 	return (ie);
396 }
397 
398 int
399 intr_setaffinity(int irq, int mode, void *m)
400 {
401 	struct intr_event *ie;
402 	cpuset_t *mask;
403 	int cpu, n;
404 
405 	mask = m;
406 	cpu = NOCPU;
407 	/*
408 	 * If we're setting all cpus we can unbind.  Otherwise make sure
409 	 * only one cpu is in the set.
410 	 */
411 	if (CPU_CMP(cpuset_root, mask)) {
412 		for (n = 0; n < CPU_SETSIZE; n++) {
413 			if (!CPU_ISSET(n, mask))
414 				continue;
415 			if (cpu != NOCPU)
416 				return (EINVAL);
417 			cpu = n;
418 		}
419 	}
420 	ie = intr_lookup(irq);
421 	if (ie == NULL)
422 		return (ESRCH);
423 	switch (mode) {
424 	case CPU_WHICH_IRQ:
425 		return (intr_event_bind(ie, cpu));
426 	case CPU_WHICH_INTRHANDLER:
427 		return (intr_event_bind_irqonly(ie, cpu));
428 	case CPU_WHICH_ITHREAD:
429 		return (intr_event_bind_ithread(ie, cpu));
430 	default:
431 		return (EINVAL);
432 	}
433 }
434 
435 int
436 intr_getaffinity(int irq, int mode, void *m)
437 {
438 	struct intr_event *ie;
439 	struct thread *td;
440 	struct proc *p;
441 	cpuset_t *mask;
442 	lwpid_t id;
443 	int error;
444 
445 	mask = m;
446 	ie = intr_lookup(irq);
447 	if (ie == NULL)
448 		return (ESRCH);
449 
450 	error = 0;
451 	CPU_ZERO(mask);
452 	switch (mode) {
453 	case CPU_WHICH_IRQ:
454 	case CPU_WHICH_INTRHANDLER:
455 		mtx_lock(&ie->ie_lock);
456 		if (ie->ie_cpu == NOCPU)
457 			CPU_COPY(cpuset_root, mask);
458 		else
459 			CPU_SET(ie->ie_cpu, mask);
460 		mtx_unlock(&ie->ie_lock);
461 		break;
462 	case CPU_WHICH_ITHREAD:
463 		mtx_lock(&ie->ie_lock);
464 		if (ie->ie_thread == NULL) {
465 			mtx_unlock(&ie->ie_lock);
466 			CPU_COPY(cpuset_root, mask);
467 		} else {
468 			id = ie->ie_thread->it_thread->td_tid;
469 			mtx_unlock(&ie->ie_lock);
470 			error = cpuset_which(CPU_WHICH_TID, id, &p, &td, NULL);
471 			if (error != 0)
472 				return (error);
473 			CPU_COPY(&td->td_cpuset->cs_mask, mask);
474 			PROC_UNLOCK(p);
475 		}
476 	default:
477 		return (EINVAL);
478 	}
479 	return (0);
480 }
481 
482 int
483 intr_event_destroy(struct intr_event *ie)
484 {
485 
486 	mtx_lock(&event_lock);
487 	mtx_lock(&ie->ie_lock);
488 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
489 		mtx_unlock(&ie->ie_lock);
490 		mtx_unlock(&event_lock);
491 		return (EBUSY);
492 	}
493 	TAILQ_REMOVE(&event_list, ie, ie_list);
494 #ifndef notyet
495 	if (ie->ie_thread != NULL) {
496 		ithread_destroy(ie->ie_thread);
497 		ie->ie_thread = NULL;
498 	}
499 #endif
500 	mtx_unlock(&ie->ie_lock);
501 	mtx_unlock(&event_lock);
502 	mtx_destroy(&ie->ie_lock);
503 	free(ie, M_ITHREAD);
504 	return (0);
505 }
506 
507 #ifndef INTR_FILTER
508 static struct intr_thread *
509 ithread_create(const char *name)
510 {
511 	struct intr_thread *ithd;
512 	struct thread *td;
513 	int error;
514 
515 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
516 
517 	error = kproc_kthread_add(ithread_loop, ithd, &intrproc,
518 		    &td, RFSTOPPED | RFHIGHPID,
519 	    	    0, "intr", "%s", name);
520 	if (error)
521 		panic("kproc_create() failed with %d", error);
522 	thread_lock(td);
523 	sched_class(td, PRI_ITHD);
524 	TD_SET_IWAIT(td);
525 	thread_unlock(td);
526 	td->td_pflags |= TDP_ITHREAD;
527 	ithd->it_thread = td;
528 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
529 	return (ithd);
530 }
531 #else
532 static struct intr_thread *
533 ithread_create(const char *name, struct intr_handler *ih)
534 {
535 	struct intr_thread *ithd;
536 	struct thread *td;
537 	int error;
538 
539 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
540 
541 	error = kproc_kthread_add(ithread_loop, ih, &intrproc,
542 		    &td, RFSTOPPED | RFHIGHPID,
543 	    	    0, "intr", "%s", name);
544 	if (error)
545 		panic("kproc_create() failed with %d", error);
546 	thread_lock(td);
547 	sched_class(td, PRI_ITHD);
548 	TD_SET_IWAIT(td);
549 	thread_unlock(td);
550 	td->td_pflags |= TDP_ITHREAD;
551 	ithd->it_thread = td;
552 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
553 	return (ithd);
554 }
555 #endif
556 
557 static void
558 ithread_destroy(struct intr_thread *ithread)
559 {
560 	struct thread *td;
561 
562 	CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name);
563 	td = ithread->it_thread;
564 	thread_lock(td);
565 	ithread->it_flags |= IT_DEAD;
566 	if (TD_AWAITING_INTR(td)) {
567 		TD_CLR_IWAIT(td);
568 		sched_add(td, SRQ_INTR);
569 	}
570 	thread_unlock(td);
571 }
572 
573 #ifndef INTR_FILTER
574 int
575 intr_event_add_handler(struct intr_event *ie, const char *name,
576     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
577     enum intr_type flags, void **cookiep)
578 {
579 	struct intr_handler *ih, *temp_ih;
580 	struct intr_thread *it;
581 
582 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
583 		return (EINVAL);
584 
585 	/* Allocate and populate an interrupt handler structure. */
586 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
587 	ih->ih_filter = filter;
588 	ih->ih_handler = handler;
589 	ih->ih_argument = arg;
590 	strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
591 	ih->ih_event = ie;
592 	ih->ih_pri = pri;
593 	if (flags & INTR_EXCL)
594 		ih->ih_flags = IH_EXCLUSIVE;
595 	if (flags & INTR_MPSAFE)
596 		ih->ih_flags |= IH_MPSAFE;
597 	if (flags & INTR_ENTROPY)
598 		ih->ih_flags |= IH_ENTROPY;
599 
600 	/* We can only have one exclusive handler in a event. */
601 	mtx_lock(&ie->ie_lock);
602 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
603 		if ((flags & INTR_EXCL) ||
604 		    (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
605 			mtx_unlock(&ie->ie_lock);
606 			free(ih, M_ITHREAD);
607 			return (EINVAL);
608 		}
609 	}
610 
611 	/* Create a thread if we need one. */
612 	while (ie->ie_thread == NULL && handler != NULL) {
613 		if (ie->ie_flags & IE_ADDING_THREAD)
614 			msleep(ie, &ie->ie_lock, 0, "ithread", 0);
615 		else {
616 			ie->ie_flags |= IE_ADDING_THREAD;
617 			mtx_unlock(&ie->ie_lock);
618 			it = ithread_create("intr: newborn");
619 			mtx_lock(&ie->ie_lock);
620 			ie->ie_flags &= ~IE_ADDING_THREAD;
621 			ie->ie_thread = it;
622 			it->it_event = ie;
623 			ithread_update(it);
624 			wakeup(ie);
625 		}
626 	}
627 
628 	/* Add the new handler to the event in priority order. */
629 	TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
630 		if (temp_ih->ih_pri > ih->ih_pri)
631 			break;
632 	}
633 	if (temp_ih == NULL)
634 		TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
635 	else
636 		TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
637 	intr_event_update(ie);
638 
639 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
640 	    ie->ie_name);
641 	mtx_unlock(&ie->ie_lock);
642 
643 	if (cookiep != NULL)
644 		*cookiep = ih;
645 	return (0);
646 }
647 #else
648 int
649 intr_event_add_handler(struct intr_event *ie, const char *name,
650     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
651     enum intr_type flags, void **cookiep)
652 {
653 	struct intr_handler *ih, *temp_ih;
654 	struct intr_thread *it;
655 
656 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
657 		return (EINVAL);
658 
659 	/* Allocate and populate an interrupt handler structure. */
660 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
661 	ih->ih_filter = filter;
662 	ih->ih_handler = handler;
663 	ih->ih_argument = arg;
664 	strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
665 	ih->ih_event = ie;
666 	ih->ih_pri = pri;
667 	if (flags & INTR_EXCL)
668 		ih->ih_flags = IH_EXCLUSIVE;
669 	if (flags & INTR_MPSAFE)
670 		ih->ih_flags |= IH_MPSAFE;
671 	if (flags & INTR_ENTROPY)
672 		ih->ih_flags |= IH_ENTROPY;
673 
674 	/* We can only have one exclusive handler in a event. */
675 	mtx_lock(&ie->ie_lock);
676 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
677 		if ((flags & INTR_EXCL) ||
678 		    (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
679 			mtx_unlock(&ie->ie_lock);
680 			free(ih, M_ITHREAD);
681 			return (EINVAL);
682 		}
683 	}
684 
685 	/* For filtered handlers, create a private ithread to run on. */
686 	if (filter != NULL && handler != NULL) {
687 		mtx_unlock(&ie->ie_lock);
688 		it = ithread_create("intr: newborn", ih);
689 		mtx_lock(&ie->ie_lock);
690 		it->it_event = ie;
691 		ih->ih_thread = it;
692 		ithread_update(it); /* XXX - do we really need this?!?!? */
693 	} else { /* Create the global per-event thread if we need one. */
694 		while (ie->ie_thread == NULL && handler != NULL) {
695 			if (ie->ie_flags & IE_ADDING_THREAD)
696 				msleep(ie, &ie->ie_lock, 0, "ithread", 0);
697 			else {
698 				ie->ie_flags |= IE_ADDING_THREAD;
699 				mtx_unlock(&ie->ie_lock);
700 				it = ithread_create("intr: newborn", ih);
701 				mtx_lock(&ie->ie_lock);
702 				ie->ie_flags &= ~IE_ADDING_THREAD;
703 				ie->ie_thread = it;
704 				it->it_event = ie;
705 				ithread_update(it);
706 				wakeup(ie);
707 			}
708 		}
709 	}
710 
711 	/* Add the new handler to the event in priority order. */
712 	TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
713 		if (temp_ih->ih_pri > ih->ih_pri)
714 			break;
715 	}
716 	if (temp_ih == NULL)
717 		TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
718 	else
719 		TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
720 	intr_event_update(ie);
721 
722 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
723 	    ie->ie_name);
724 	mtx_unlock(&ie->ie_lock);
725 
726 	if (cookiep != NULL)
727 		*cookiep = ih;
728 	return (0);
729 }
730 #endif
731 
732 /*
733  * Append a description preceded by a ':' to the name of the specified
734  * interrupt handler.
735  */
736 int
737 intr_event_describe_handler(struct intr_event *ie, void *cookie,
738     const char *descr)
739 {
740 	struct intr_handler *ih;
741 	size_t space;
742 	char *start;
743 
744 	mtx_lock(&ie->ie_lock);
745 #ifdef INVARIANTS
746 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
747 		if (ih == cookie)
748 			break;
749 	}
750 	if (ih == NULL) {
751 		mtx_unlock(&ie->ie_lock);
752 		panic("handler %p not found in interrupt event %p", cookie, ie);
753 	}
754 #endif
755 	ih = cookie;
756 
757 	/*
758 	 * Look for an existing description by checking for an
759 	 * existing ":".  This assumes device names do not include
760 	 * colons.  If one is found, prepare to insert the new
761 	 * description at that point.  If one is not found, find the
762 	 * end of the name to use as the insertion point.
763 	 */
764 	start = strchr(ih->ih_name, ':');
765 	if (start == NULL)
766 		start = strchr(ih->ih_name, 0);
767 
768 	/*
769 	 * See if there is enough remaining room in the string for the
770 	 * description + ":".  The "- 1" leaves room for the trailing
771 	 * '\0'.  The "+ 1" accounts for the colon.
772 	 */
773 	space = sizeof(ih->ih_name) - (start - ih->ih_name) - 1;
774 	if (strlen(descr) + 1 > space) {
775 		mtx_unlock(&ie->ie_lock);
776 		return (ENOSPC);
777 	}
778 
779 	/* Append a colon followed by the description. */
780 	*start = ':';
781 	strcpy(start + 1, descr);
782 	intr_event_update(ie);
783 	mtx_unlock(&ie->ie_lock);
784 	return (0);
785 }
786 
787 /*
788  * Return the ie_source field from the intr_event an intr_handler is
789  * associated with.
790  */
791 void *
792 intr_handler_source(void *cookie)
793 {
794 	struct intr_handler *ih;
795 	struct intr_event *ie;
796 
797 	ih = (struct intr_handler *)cookie;
798 	if (ih == NULL)
799 		return (NULL);
800 	ie = ih->ih_event;
801 	KASSERT(ie != NULL,
802 	    ("interrupt handler \"%s\" has a NULL interrupt event",
803 	    ih->ih_name));
804 	return (ie->ie_source);
805 }
806 
807 /*
808  * Sleep until an ithread finishes executing an interrupt handler.
809  *
810  * XXX Doesn't currently handle interrupt filters or fast interrupt
811  * handlers.  This is intended for compatibility with linux drivers
812  * only.  Do not use in BSD code.
813  */
814 void
815 _intr_drain(int irq)
816 {
817 	struct intr_event *ie;
818 	struct intr_thread *ithd;
819 	struct thread *td;
820 
821 	ie = intr_lookup(irq);
822 	if (ie == NULL)
823 		return;
824 	if (ie->ie_thread == NULL)
825 		return;
826 	ithd = ie->ie_thread;
827 	td = ithd->it_thread;
828 	/*
829 	 * We set the flag and wait for it to be cleared to avoid
830 	 * long delays with potentially busy interrupt handlers
831 	 * were we to only sample TD_AWAITING_INTR() every tick.
832 	 */
833 	thread_lock(td);
834 	if (!TD_AWAITING_INTR(td)) {
835 		ithd->it_flags |= IT_WAIT;
836 		while (ithd->it_flags & IT_WAIT) {
837 			thread_unlock(td);
838 			pause("idrain", 1);
839 			thread_lock(td);
840 		}
841 	}
842 	thread_unlock(td);
843 	return;
844 }
845 
846 
847 #ifndef INTR_FILTER
848 int
849 intr_event_remove_handler(void *cookie)
850 {
851 	struct intr_handler *handler = (struct intr_handler *)cookie;
852 	struct intr_event *ie;
853 #ifdef INVARIANTS
854 	struct intr_handler *ih;
855 #endif
856 #ifdef notyet
857 	int dead;
858 #endif
859 
860 	if (handler == NULL)
861 		return (EINVAL);
862 	ie = handler->ih_event;
863 	KASSERT(ie != NULL,
864 	    ("interrupt handler \"%s\" has a NULL interrupt event",
865 	    handler->ih_name));
866 	mtx_lock(&ie->ie_lock);
867 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
868 	    ie->ie_name);
869 #ifdef INVARIANTS
870 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
871 		if (ih == handler)
872 			goto ok;
873 	mtx_unlock(&ie->ie_lock);
874 	panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
875 	    ih->ih_name, ie->ie_name);
876 ok:
877 #endif
878 	/*
879 	 * If there is no ithread, then just remove the handler and return.
880 	 * XXX: Note that an INTR_FAST handler might be running on another
881 	 * CPU!
882 	 */
883 	if (ie->ie_thread == NULL) {
884 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
885 		mtx_unlock(&ie->ie_lock);
886 		free(handler, M_ITHREAD);
887 		return (0);
888 	}
889 
890 	/*
891 	 * If the interrupt thread is already running, then just mark this
892 	 * handler as being dead and let the ithread do the actual removal.
893 	 *
894 	 * During a cold boot while cold is set, msleep() does not sleep,
895 	 * so we have to remove the handler here rather than letting the
896 	 * thread do it.
897 	 */
898 	thread_lock(ie->ie_thread->it_thread);
899 	if (!TD_AWAITING_INTR(ie->ie_thread->it_thread) && !cold) {
900 		handler->ih_flags |= IH_DEAD;
901 
902 		/*
903 		 * Ensure that the thread will process the handler list
904 		 * again and remove this handler if it has already passed
905 		 * it on the list.
906 		 *
907 		 * The release part of the following store ensures
908 		 * that the update of ih_flags is ordered before the
909 		 * it_need setting.  See the comment before
910 		 * atomic_cmpset_acq(&ithd->it_need, ...) operation in
911 		 * the ithread_execute_handlers().
912 		 */
913 		atomic_store_rel_int(&ie->ie_thread->it_need, 1);
914 	} else
915 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
916 	thread_unlock(ie->ie_thread->it_thread);
917 	while (handler->ih_flags & IH_DEAD)
918 		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
919 	intr_event_update(ie);
920 #ifdef notyet
921 	/*
922 	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
923 	 * this could lead to races of stale data when servicing an
924 	 * interrupt.
925 	 */
926 	dead = 1;
927 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
928 		if (!(ih->ih_flags & IH_FAST)) {
929 			dead = 0;
930 			break;
931 		}
932 	}
933 	if (dead) {
934 		ithread_destroy(ie->ie_thread);
935 		ie->ie_thread = NULL;
936 	}
937 #endif
938 	mtx_unlock(&ie->ie_lock);
939 	free(handler, M_ITHREAD);
940 	return (0);
941 }
942 
943 static int
944 intr_event_schedule_thread(struct intr_event *ie)
945 {
946 	struct intr_entropy entropy;
947 	struct intr_thread *it;
948 	struct thread *td;
949 	struct thread *ctd;
950 	struct proc *p;
951 
952 	/*
953 	 * If no ithread or no handlers, then we have a stray interrupt.
954 	 */
955 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) ||
956 	    ie->ie_thread == NULL)
957 		return (EINVAL);
958 
959 	ctd = curthread;
960 	it = ie->ie_thread;
961 	td = it->it_thread;
962 	p = td->td_proc;
963 
964 	/*
965 	 * If any of the handlers for this ithread claim to be good
966 	 * sources of entropy, then gather some.
967 	 */
968 	if (ie->ie_flags & IE_ENTROPY) {
969 		entropy.event = (uintptr_t)ie;
970 		entropy.td = ctd;
971 		random_harvest_queue(&entropy, sizeof(entropy), 2, RANDOM_INTERRUPT);
972 	}
973 
974 	KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
975 
976 	/*
977 	 * Set it_need to tell the thread to keep running if it is already
978 	 * running.  Then, lock the thread and see if we actually need to
979 	 * put it on the runqueue.
980 	 *
981 	 * Use store_rel to arrange that the store to ih_need in
982 	 * swi_sched() is before the store to it_need and prepare for
983 	 * transfer of this order to loads in the ithread.
984 	 */
985 	atomic_store_rel_int(&it->it_need, 1);
986 	thread_lock(td);
987 	if (TD_AWAITING_INTR(td)) {
988 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
989 		    td->td_name);
990 		TD_CLR_IWAIT(td);
991 		sched_add(td, SRQ_INTR);
992 	} else {
993 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
994 		    __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
995 	}
996 	thread_unlock(td);
997 
998 	return (0);
999 }
1000 #else
1001 int
1002 intr_event_remove_handler(void *cookie)
1003 {
1004 	struct intr_handler *handler = (struct intr_handler *)cookie;
1005 	struct intr_event *ie;
1006 	struct intr_thread *it;
1007 #ifdef INVARIANTS
1008 	struct intr_handler *ih;
1009 #endif
1010 #ifdef notyet
1011 	int dead;
1012 #endif
1013 
1014 	if (handler == NULL)
1015 		return (EINVAL);
1016 	ie = handler->ih_event;
1017 	KASSERT(ie != NULL,
1018 	    ("interrupt handler \"%s\" has a NULL interrupt event",
1019 	    handler->ih_name));
1020 	mtx_lock(&ie->ie_lock);
1021 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
1022 	    ie->ie_name);
1023 #ifdef INVARIANTS
1024 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
1025 		if (ih == handler)
1026 			goto ok;
1027 	mtx_unlock(&ie->ie_lock);
1028 	panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
1029 	    ih->ih_name, ie->ie_name);
1030 ok:
1031 #endif
1032 	/*
1033 	 * If there are no ithreads (per event and per handler), then
1034 	 * just remove the handler and return.
1035 	 * XXX: Note that an INTR_FAST handler might be running on another CPU!
1036 	 */
1037 	if (ie->ie_thread == NULL && handler->ih_thread == NULL) {
1038 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
1039 		mtx_unlock(&ie->ie_lock);
1040 		free(handler, M_ITHREAD);
1041 		return (0);
1042 	}
1043 
1044 	/* Private or global ithread? */
1045 	it = (handler->ih_thread) ? handler->ih_thread : ie->ie_thread;
1046 	/*
1047 	 * If the interrupt thread is already running, then just mark this
1048 	 * handler as being dead and let the ithread do the actual removal.
1049 	 *
1050 	 * During a cold boot while cold is set, msleep() does not sleep,
1051 	 * so we have to remove the handler here rather than letting the
1052 	 * thread do it.
1053 	 */
1054 	thread_lock(it->it_thread);
1055 	if (!TD_AWAITING_INTR(it->it_thread) && !cold) {
1056 		handler->ih_flags |= IH_DEAD;
1057 
1058 		/*
1059 		 * Ensure that the thread will process the handler list
1060 		 * again and remove this handler if it has already passed
1061 		 * it on the list.
1062 		 *
1063 		 * The release part of the following store ensures
1064 		 * that the update of ih_flags is ordered before the
1065 		 * it_need setting.  See the comment before
1066 		 * atomic_cmpset_acq(&ithd->it_need, ...) operation in
1067 		 * the ithread_execute_handlers().
1068 		 */
1069 		atomic_store_rel_int(&it->it_need, 1);
1070 	} else
1071 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
1072 	thread_unlock(it->it_thread);
1073 	while (handler->ih_flags & IH_DEAD)
1074 		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
1075 	/*
1076 	 * At this point, the handler has been disconnected from the event,
1077 	 * so we can kill the private ithread if any.
1078 	 */
1079 	if (handler->ih_thread) {
1080 		ithread_destroy(handler->ih_thread);
1081 		handler->ih_thread = NULL;
1082 	}
1083 	intr_event_update(ie);
1084 #ifdef notyet
1085 	/*
1086 	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
1087 	 * this could lead to races of stale data when servicing an
1088 	 * interrupt.
1089 	 */
1090 	dead = 1;
1091 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1092 		if (handler != NULL) {
1093 			dead = 0;
1094 			break;
1095 		}
1096 	}
1097 	if (dead) {
1098 		ithread_destroy(ie->ie_thread);
1099 		ie->ie_thread = NULL;
1100 	}
1101 #endif
1102 	mtx_unlock(&ie->ie_lock);
1103 	free(handler, M_ITHREAD);
1104 	return (0);
1105 }
1106 
1107 static int
1108 intr_event_schedule_thread(struct intr_event *ie, struct intr_thread *it)
1109 {
1110 	struct intr_entropy entropy;
1111 	struct thread *td;
1112 	struct thread *ctd;
1113 	struct proc *p;
1114 
1115 	/*
1116 	 * If no ithread or no handlers, then we have a stray interrupt.
1117 	 */
1118 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) || it == NULL)
1119 		return (EINVAL);
1120 
1121 	ctd = curthread;
1122 	td = it->it_thread;
1123 	p = td->td_proc;
1124 
1125 	/*
1126 	 * If any of the handlers for this ithread claim to be good
1127 	 * sources of entropy, then gather some.
1128 	 */
1129 	if (ie->ie_flags & IE_ENTROPY) {
1130 		entropy.event = (uintptr_t)ie;
1131 		entropy.td = ctd;
1132 		random_harvest_queue(&entropy, sizeof(entropy), 2, RANDOM_INTERRUPT);
1133 	}
1134 
1135 	KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
1136 
1137 	/*
1138 	 * Set it_need to tell the thread to keep running if it is already
1139 	 * running.  Then, lock the thread and see if we actually need to
1140 	 * put it on the runqueue.
1141 	 *
1142 	 * Use store_rel to arrange that the store to ih_need in
1143 	 * swi_sched() is before the store to it_need and prepare for
1144 	 * transfer of this order to loads in the ithread.
1145 	 */
1146 	atomic_store_rel_int(&it->it_need, 1);
1147 	thread_lock(td);
1148 	if (TD_AWAITING_INTR(td)) {
1149 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
1150 		    td->td_name);
1151 		TD_CLR_IWAIT(td);
1152 		sched_add(td, SRQ_INTR);
1153 	} else {
1154 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
1155 		    __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
1156 	}
1157 	thread_unlock(td);
1158 
1159 	return (0);
1160 }
1161 #endif
1162 
1163 /*
1164  * Allow interrupt event binding for software interrupt handlers -- a no-op,
1165  * since interrupts are generated in software rather than being directed by
1166  * a PIC.
1167  */
1168 static int
1169 swi_assign_cpu(void *arg, int cpu)
1170 {
1171 
1172 	return (0);
1173 }
1174 
1175 /*
1176  * Add a software interrupt handler to a specified event.  If a given event
1177  * is not specified, then a new event is created.
1178  */
1179 int
1180 swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler,
1181 	    void *arg, int pri, enum intr_type flags, void **cookiep)
1182 {
1183 	struct intr_event *ie;
1184 	int error;
1185 
1186 	if (flags & INTR_ENTROPY)
1187 		return (EINVAL);
1188 
1189 	ie = (eventp != NULL) ? *eventp : NULL;
1190 
1191 	if (ie != NULL) {
1192 		if (!(ie->ie_flags & IE_SOFT))
1193 			return (EINVAL);
1194 	} else {
1195 		error = intr_event_create(&ie, NULL, IE_SOFT, 0,
1196 		    NULL, NULL, NULL, swi_assign_cpu, "swi%d:", pri);
1197 		if (error)
1198 			return (error);
1199 		if (eventp != NULL)
1200 			*eventp = ie;
1201 	}
1202 	error = intr_event_add_handler(ie, name, NULL, handler, arg,
1203 	    PI_SWI(pri), flags, cookiep);
1204 	return (error);
1205 }
1206 
1207 /*
1208  * Schedule a software interrupt thread.
1209  */
1210 void
1211 swi_sched(void *cookie, int flags)
1212 {
1213 	struct intr_handler *ih = (struct intr_handler *)cookie;
1214 	struct intr_event *ie = ih->ih_event;
1215 	struct intr_entropy entropy;
1216 	int error;
1217 
1218 	CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name,
1219 	    ih->ih_need);
1220 
1221 	entropy.event = (uintptr_t)ih;
1222 	entropy.td = curthread;
1223 	random_harvest_queue(&entropy, sizeof(entropy), 1, RANDOM_SWI);
1224 
1225 	/*
1226 	 * Set ih_need for this handler so that if the ithread is already
1227 	 * running it will execute this handler on the next pass.  Otherwise,
1228 	 * it will execute it the next time it runs.
1229 	 */
1230 	ih->ih_need = 1;
1231 
1232 	if (!(flags & SWI_DELAY)) {
1233 		VM_CNT_INC(v_soft);
1234 #ifdef INTR_FILTER
1235 		error = intr_event_schedule_thread(ie, ie->ie_thread);
1236 #else
1237 		error = intr_event_schedule_thread(ie);
1238 #endif
1239 		KASSERT(error == 0, ("stray software interrupt"));
1240 	}
1241 }
1242 
1243 /*
1244  * Remove a software interrupt handler.  Currently this code does not
1245  * remove the associated interrupt event if it becomes empty.  Calling code
1246  * may do so manually via intr_event_destroy(), but that's not really
1247  * an optimal interface.
1248  */
1249 int
1250 swi_remove(void *cookie)
1251 {
1252 
1253 	return (intr_event_remove_handler(cookie));
1254 }
1255 
1256 #ifdef INTR_FILTER
1257 static void
1258 priv_ithread_execute_handler(struct proc *p, struct intr_handler *ih)
1259 {
1260 	struct intr_event *ie;
1261 
1262 	ie = ih->ih_event;
1263 	/*
1264 	 * If this handler is marked for death, remove it from
1265 	 * the list of handlers and wake up the sleeper.
1266 	 */
1267 	if (ih->ih_flags & IH_DEAD) {
1268 		mtx_lock(&ie->ie_lock);
1269 		TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
1270 		ih->ih_flags &= ~IH_DEAD;
1271 		wakeup(ih);
1272 		mtx_unlock(&ie->ie_lock);
1273 		return;
1274 	}
1275 
1276 	/* Execute this handler. */
1277 	CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1278 	     __func__, p->p_pid, (void *)ih->ih_handler, ih->ih_argument,
1279 	     ih->ih_name, ih->ih_flags);
1280 
1281 	if (!(ih->ih_flags & IH_MPSAFE))
1282 		mtx_lock(&Giant);
1283 	ih->ih_handler(ih->ih_argument);
1284 	if (!(ih->ih_flags & IH_MPSAFE))
1285 		mtx_unlock(&Giant);
1286 }
1287 #endif
1288 
1289 /*
1290  * This is a public function for use by drivers that mux interrupt
1291  * handlers for child devices from their interrupt handler.
1292  */
1293 void
1294 intr_event_execute_handlers(struct proc *p, struct intr_event *ie)
1295 {
1296 	struct intr_handler *ih, *ihn;
1297 
1298 	TAILQ_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) {
1299 		/*
1300 		 * If this handler is marked for death, remove it from
1301 		 * the list of handlers and wake up the sleeper.
1302 		 */
1303 		if (ih->ih_flags & IH_DEAD) {
1304 			mtx_lock(&ie->ie_lock);
1305 			TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
1306 			ih->ih_flags &= ~IH_DEAD;
1307 			wakeup(ih);
1308 			mtx_unlock(&ie->ie_lock);
1309 			continue;
1310 		}
1311 
1312 		/* Skip filter only handlers */
1313 		if (ih->ih_handler == NULL)
1314 			continue;
1315 
1316 		/*
1317 		 * For software interrupt threads, we only execute
1318 		 * handlers that have their need flag set.  Hardware
1319 		 * interrupt threads always invoke all of their handlers.
1320 		 *
1321 		 * ih_need can only be 0 or 1.  Failed cmpset below
1322 		 * means that there is no request to execute handlers,
1323 		 * so a retry of the cmpset is not needed.
1324 		 */
1325 		if ((ie->ie_flags & IE_SOFT) != 0 &&
1326 		    atomic_cmpset_int(&ih->ih_need, 1, 0) == 0)
1327 			continue;
1328 
1329 		/* Execute this handler. */
1330 		CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1331 		    __func__, p->p_pid, (void *)ih->ih_handler,
1332 		    ih->ih_argument, ih->ih_name, ih->ih_flags);
1333 
1334 		if (!(ih->ih_flags & IH_MPSAFE))
1335 			mtx_lock(&Giant);
1336 		ih->ih_handler(ih->ih_argument);
1337 		if (!(ih->ih_flags & IH_MPSAFE))
1338 			mtx_unlock(&Giant);
1339 	}
1340 }
1341 
1342 static void
1343 ithread_execute_handlers(struct proc *p, struct intr_event *ie)
1344 {
1345 
1346 	/* Interrupt handlers should not sleep. */
1347 	if (!(ie->ie_flags & IE_SOFT))
1348 		THREAD_NO_SLEEPING();
1349 	intr_event_execute_handlers(p, ie);
1350 	if (!(ie->ie_flags & IE_SOFT))
1351 		THREAD_SLEEPING_OK();
1352 
1353 	/*
1354 	 * Interrupt storm handling:
1355 	 *
1356 	 * If this interrupt source is currently storming, then throttle
1357 	 * it to only fire the handler once  per clock tick.
1358 	 *
1359 	 * If this interrupt source is not currently storming, but the
1360 	 * number of back to back interrupts exceeds the storm threshold,
1361 	 * then enter storming mode.
1362 	 */
1363 	if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold &&
1364 	    !(ie->ie_flags & IE_SOFT)) {
1365 		/* Report the message only once every second. */
1366 		if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) {
1367 			printf(
1368 	"interrupt storm detected on \"%s\"; throttling interrupt source\n",
1369 			    ie->ie_name);
1370 		}
1371 		pause("istorm", 1);
1372 	} else
1373 		ie->ie_count++;
1374 
1375 	/*
1376 	 * Now that all the handlers have had a chance to run, reenable
1377 	 * the interrupt source.
1378 	 */
1379 	if (ie->ie_post_ithread != NULL)
1380 		ie->ie_post_ithread(ie->ie_source);
1381 }
1382 
1383 #ifndef INTR_FILTER
1384 /*
1385  * This is the main code for interrupt threads.
1386  */
1387 static void
1388 ithread_loop(void *arg)
1389 {
1390 	struct intr_thread *ithd;
1391 	struct intr_event *ie;
1392 	struct thread *td;
1393 	struct proc *p;
1394 	int wake;
1395 
1396 	td = curthread;
1397 	p = td->td_proc;
1398 	ithd = (struct intr_thread *)arg;
1399 	KASSERT(ithd->it_thread == td,
1400 	    ("%s: ithread and proc linkage out of sync", __func__));
1401 	ie = ithd->it_event;
1402 	ie->ie_count = 0;
1403 	wake = 0;
1404 
1405 	/*
1406 	 * As long as we have interrupts outstanding, go through the
1407 	 * list of handlers, giving each one a go at it.
1408 	 */
1409 	for (;;) {
1410 		/*
1411 		 * If we are an orphaned thread, then just die.
1412 		 */
1413 		if (ithd->it_flags & IT_DEAD) {
1414 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1415 			    p->p_pid, td->td_name);
1416 			free(ithd, M_ITHREAD);
1417 			kthread_exit();
1418 		}
1419 
1420 		/*
1421 		 * Service interrupts.  If another interrupt arrives while
1422 		 * we are running, it will set it_need to note that we
1423 		 * should make another pass.
1424 		 *
1425 		 * The load_acq part of the following cmpset ensures
1426 		 * that the load of ih_need in ithread_execute_handlers()
1427 		 * is ordered after the load of it_need here.
1428 		 */
1429 		while (atomic_cmpset_acq_int(&ithd->it_need, 1, 0) != 0)
1430 			ithread_execute_handlers(p, ie);
1431 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1432 		mtx_assert(&Giant, MA_NOTOWNED);
1433 
1434 		/*
1435 		 * Processed all our interrupts.  Now get the sched
1436 		 * lock.  This may take a while and it_need may get
1437 		 * set again, so we have to check it again.
1438 		 */
1439 		thread_lock(td);
1440 		if (atomic_load_acq_int(&ithd->it_need) == 0 &&
1441 		    (ithd->it_flags & (IT_DEAD | IT_WAIT)) == 0) {
1442 			TD_SET_IWAIT(td);
1443 			ie->ie_count = 0;
1444 			mi_switch(SW_VOL | SWT_IWAIT, NULL);
1445 		}
1446 		if (ithd->it_flags & IT_WAIT) {
1447 			wake = 1;
1448 			ithd->it_flags &= ~IT_WAIT;
1449 		}
1450 		thread_unlock(td);
1451 		if (wake) {
1452 			wakeup(ithd);
1453 			wake = 0;
1454 		}
1455 	}
1456 }
1457 
1458 /*
1459  * Main interrupt handling body.
1460  *
1461  * Input:
1462  * o ie:                        the event connected to this interrupt.
1463  * o frame:                     some archs (i.e. i386) pass a frame to some.
1464  *                              handlers as their main argument.
1465  * Return value:
1466  * o 0:                         everything ok.
1467  * o EINVAL:                    stray interrupt.
1468  */
1469 int
1470 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1471 {
1472 	struct intr_handler *ih;
1473 	struct trapframe *oldframe;
1474 	struct thread *td;
1475 	int error, ret, thread;
1476 
1477 	td = curthread;
1478 
1479 #ifdef KSTACK_USAGE_PROF
1480 	intr_prof_stack_use(td, frame);
1481 #endif
1482 
1483 	/* An interrupt with no event or handlers is a stray interrupt. */
1484 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
1485 		return (EINVAL);
1486 
1487 	/*
1488 	 * Execute fast interrupt handlers directly.
1489 	 * To support clock handlers, if a handler registers
1490 	 * with a NULL argument, then we pass it a pointer to
1491 	 * a trapframe as its argument.
1492 	 */
1493 	td->td_intr_nesting_level++;
1494 	thread = 0;
1495 	ret = 0;
1496 	critical_enter();
1497 	oldframe = td->td_intr_frame;
1498 	td->td_intr_frame = frame;
1499 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1500 		if (ih->ih_filter == NULL) {
1501 			thread = 1;
1502 			continue;
1503 		}
1504 		CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__,
1505 		    ih->ih_filter, ih->ih_argument == NULL ? frame :
1506 		    ih->ih_argument, ih->ih_name);
1507 		if (ih->ih_argument == NULL)
1508 			ret = ih->ih_filter(frame);
1509 		else
1510 			ret = ih->ih_filter(ih->ih_argument);
1511 		KASSERT(ret == FILTER_STRAY ||
1512 		    ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
1513 		    (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
1514 		    ("%s: incorrect return value %#x from %s", __func__, ret,
1515 		    ih->ih_name));
1516 
1517 		/*
1518 		 * Wrapper handler special handling:
1519 		 *
1520 		 * in some particular cases (like pccard and pccbb),
1521 		 * the _real_ device handler is wrapped in a couple of
1522 		 * functions - a filter wrapper and an ithread wrapper.
1523 		 * In this case (and just in this case), the filter wrapper
1524 		 * could ask the system to schedule the ithread and mask
1525 		 * the interrupt source if the wrapped handler is composed
1526 		 * of just an ithread handler.
1527 		 *
1528 		 * TODO: write a generic wrapper to avoid people rolling
1529 		 * their own
1530 		 */
1531 		if (!thread) {
1532 			if (ret == FILTER_SCHEDULE_THREAD)
1533 				thread = 1;
1534 		}
1535 	}
1536 	td->td_intr_frame = oldframe;
1537 
1538 	if (thread) {
1539 		if (ie->ie_pre_ithread != NULL)
1540 			ie->ie_pre_ithread(ie->ie_source);
1541 	} else {
1542 		if (ie->ie_post_filter != NULL)
1543 			ie->ie_post_filter(ie->ie_source);
1544 	}
1545 
1546 	/* Schedule the ithread if needed. */
1547 	if (thread) {
1548 		error = intr_event_schedule_thread(ie);
1549 		KASSERT(error == 0, ("bad stray interrupt"));
1550 	}
1551 	critical_exit();
1552 	td->td_intr_nesting_level--;
1553 	return (0);
1554 }
1555 #else
1556 /*
1557  * This is the main code for interrupt threads.
1558  */
1559 static void
1560 ithread_loop(void *arg)
1561 {
1562 	struct intr_thread *ithd;
1563 	struct intr_handler *ih;
1564 	struct intr_event *ie;
1565 	struct thread *td;
1566 	struct proc *p;
1567 	int priv;
1568 	int wake;
1569 
1570 	td = curthread;
1571 	p = td->td_proc;
1572 	ih = (struct intr_handler *)arg;
1573 	priv = (ih->ih_thread != NULL) ? 1 : 0;
1574 	ithd = (priv) ? ih->ih_thread : ih->ih_event->ie_thread;
1575 	KASSERT(ithd->it_thread == td,
1576 	    ("%s: ithread and proc linkage out of sync", __func__));
1577 	ie = ithd->it_event;
1578 	ie->ie_count = 0;
1579 	wake = 0;
1580 
1581 	/*
1582 	 * As long as we have interrupts outstanding, go through the
1583 	 * list of handlers, giving each one a go at it.
1584 	 */
1585 	for (;;) {
1586 		/*
1587 		 * If we are an orphaned thread, then just die.
1588 		 */
1589 		if (ithd->it_flags & IT_DEAD) {
1590 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1591 			    p->p_pid, td->td_name);
1592 			free(ithd, M_ITHREAD);
1593 			kthread_exit();
1594 		}
1595 
1596 		/*
1597 		 * Service interrupts.  If another interrupt arrives while
1598 		 * we are running, it will set it_need to note that we
1599 		 * should make another pass.
1600 		 *
1601 		 * The load_acq part of the following cmpset ensures
1602 		 * that the load of ih_need in ithread_execute_handlers()
1603 		 * is ordered after the load of it_need here.
1604 		 */
1605 		while (atomic_cmpset_acq_int(&ithd->it_need, 1, 0) != 0) {
1606 			if (priv)
1607 				priv_ithread_execute_handler(p, ih);
1608 			else
1609 				ithread_execute_handlers(p, ie);
1610 		}
1611 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1612 		mtx_assert(&Giant, MA_NOTOWNED);
1613 
1614 		/*
1615 		 * Processed all our interrupts.  Now get the sched
1616 		 * lock.  This may take a while and it_need may get
1617 		 * set again, so we have to check it again.
1618 		 */
1619 		thread_lock(td);
1620 		if (atomic_load_acq_int(&ithd->it_need) == 0 &&
1621 		    (ithd->it_flags & (IT_DEAD | IT_WAIT)) == 0) {
1622 			TD_SET_IWAIT(td);
1623 			ie->ie_count = 0;
1624 			mi_switch(SW_VOL | SWT_IWAIT, NULL);
1625 		}
1626 		if (ithd->it_flags & IT_WAIT) {
1627 			wake = 1;
1628 			ithd->it_flags &= ~IT_WAIT;
1629 		}
1630 		thread_unlock(td);
1631 		if (wake) {
1632 			wakeup(ithd);
1633 			wake = 0;
1634 		}
1635 	}
1636 }
1637 
1638 /*
1639  * Main loop for interrupt filter.
1640  *
1641  * Some architectures (i386, amd64 and arm) require the optional frame
1642  * parameter, and use it as the main argument for fast handler execution
1643  * when ih_argument == NULL.
1644  *
1645  * Return value:
1646  * o FILTER_STRAY:              No filter recognized the event, and no
1647  *                              filter-less handler is registered on this
1648  *                              line.
1649  * o FILTER_HANDLED:            A filter claimed the event and served it.
1650  * o FILTER_SCHEDULE_THREAD:    No filter claimed the event, but there's at
1651  *                              least one filter-less handler on this line.
1652  * o FILTER_HANDLED |
1653  *   FILTER_SCHEDULE_THREAD:    A filter claimed the event, and asked for
1654  *                              scheduling the per-handler ithread.
1655  *
1656  * In case an ithread has to be scheduled, in *ithd there will be a
1657  * pointer to a struct intr_thread containing the thread to be
1658  * scheduled.
1659  */
1660 
1661 static int
1662 intr_filter_loop(struct intr_event *ie, struct trapframe *frame,
1663 		 struct intr_thread **ithd)
1664 {
1665 	struct intr_handler *ih;
1666 	void *arg;
1667 	int ret, thread_only;
1668 
1669 	ret = 0;
1670 	thread_only = 0;
1671 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1672 		/*
1673 		 * Execute fast interrupt handlers directly.
1674 		 * To support clock handlers, if a handler registers
1675 		 * with a NULL argument, then we pass it a pointer to
1676 		 * a trapframe as its argument.
1677 		 */
1678 		arg = ((ih->ih_argument == NULL) ? frame : ih->ih_argument);
1679 
1680 		CTR5(KTR_INTR, "%s: exec %p/%p(%p) for %s", __func__,
1681 		     ih->ih_filter, ih->ih_handler, arg, ih->ih_name);
1682 
1683 		if (ih->ih_filter != NULL)
1684 			ret = ih->ih_filter(arg);
1685 		else {
1686 			thread_only = 1;
1687 			continue;
1688 		}
1689 		KASSERT(ret == FILTER_STRAY ||
1690 		    ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
1691 		    (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
1692 		    ("%s: incorrect return value %#x from %s", __func__, ret,
1693 		    ih->ih_name));
1694 		if (ret & FILTER_STRAY)
1695 			continue;
1696 		else {
1697 			*ithd = ih->ih_thread;
1698 			return (ret);
1699 		}
1700 	}
1701 
1702 	/*
1703 	 * No filters handled the interrupt and we have at least
1704 	 * one handler without a filter.  In this case, we schedule
1705 	 * all of the filter-less handlers to run in the ithread.
1706 	 */
1707 	if (thread_only) {
1708 		*ithd = ie->ie_thread;
1709 		return (FILTER_SCHEDULE_THREAD);
1710 	}
1711 	return (FILTER_STRAY);
1712 }
1713 
1714 /*
1715  * Main interrupt handling body.
1716  *
1717  * Input:
1718  * o ie:                        the event connected to this interrupt.
1719  * o frame:                     some archs (i.e. i386) pass a frame to some.
1720  *                              handlers as their main argument.
1721  * Return value:
1722  * o 0:                         everything ok.
1723  * o EINVAL:                    stray interrupt.
1724  */
1725 int
1726 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1727 {
1728 	struct intr_thread *ithd;
1729 	struct trapframe *oldframe;
1730 	struct thread *td;
1731 	int thread;
1732 
1733 	ithd = NULL;
1734 	td = curthread;
1735 
1736 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
1737 		return (EINVAL);
1738 
1739 	td->td_intr_nesting_level++;
1740 	thread = 0;
1741 	critical_enter();
1742 	oldframe = td->td_intr_frame;
1743 	td->td_intr_frame = frame;
1744 	thread = intr_filter_loop(ie, frame, &ithd);
1745 	if (thread & FILTER_HANDLED) {
1746 		if (ie->ie_post_filter != NULL)
1747 			ie->ie_post_filter(ie->ie_source);
1748 	} else {
1749 		if (ie->ie_pre_ithread != NULL)
1750 			ie->ie_pre_ithread(ie->ie_source);
1751 	}
1752 	td->td_intr_frame = oldframe;
1753 	critical_exit();
1754 
1755 	/* Interrupt storm logic */
1756 	if (thread & FILTER_STRAY) {
1757 		ie->ie_count++;
1758 		if (ie->ie_count < intr_storm_threshold)
1759 			printf("Interrupt stray detection not present\n");
1760 	}
1761 
1762 	/* Schedule an ithread if needed. */
1763 	if (thread & FILTER_SCHEDULE_THREAD) {
1764 		if (intr_event_schedule_thread(ie, ithd) != 0)
1765 			panic("%s: impossible stray interrupt", __func__);
1766 	}
1767 	td->td_intr_nesting_level--;
1768 	return (0);
1769 }
1770 #endif
1771 
1772 #ifdef DDB
1773 /*
1774  * Dump details about an interrupt handler
1775  */
1776 static void
1777 db_dump_intrhand(struct intr_handler *ih)
1778 {
1779 	int comma;
1780 
1781 	db_printf("\t%-10s ", ih->ih_name);
1782 	switch (ih->ih_pri) {
1783 	case PI_REALTIME:
1784 		db_printf("CLK ");
1785 		break;
1786 	case PI_AV:
1787 		db_printf("AV  ");
1788 		break;
1789 	case PI_TTY:
1790 		db_printf("TTY ");
1791 		break;
1792 	case PI_NET:
1793 		db_printf("NET ");
1794 		break;
1795 	case PI_DISK:
1796 		db_printf("DISK");
1797 		break;
1798 	case PI_DULL:
1799 		db_printf("DULL");
1800 		break;
1801 	default:
1802 		if (ih->ih_pri >= PI_SOFT)
1803 			db_printf("SWI ");
1804 		else
1805 			db_printf("%4u", ih->ih_pri);
1806 		break;
1807 	}
1808 	db_printf(" ");
1809 	if (ih->ih_filter != NULL) {
1810 		db_printf("[F]");
1811 		db_printsym((uintptr_t)ih->ih_filter, DB_STGY_PROC);
1812 	}
1813 	if (ih->ih_handler != NULL) {
1814 		if (ih->ih_filter != NULL)
1815 			db_printf(",");
1816 		db_printf("[H]");
1817 		db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC);
1818 	}
1819 	db_printf("(%p)", ih->ih_argument);
1820 	if (ih->ih_need ||
1821 	    (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD |
1822 	    IH_MPSAFE)) != 0) {
1823 		db_printf(" {");
1824 		comma = 0;
1825 		if (ih->ih_flags & IH_EXCLUSIVE) {
1826 			if (comma)
1827 				db_printf(", ");
1828 			db_printf("EXCL");
1829 			comma = 1;
1830 		}
1831 		if (ih->ih_flags & IH_ENTROPY) {
1832 			if (comma)
1833 				db_printf(", ");
1834 			db_printf("ENTROPY");
1835 			comma = 1;
1836 		}
1837 		if (ih->ih_flags & IH_DEAD) {
1838 			if (comma)
1839 				db_printf(", ");
1840 			db_printf("DEAD");
1841 			comma = 1;
1842 		}
1843 		if (ih->ih_flags & IH_MPSAFE) {
1844 			if (comma)
1845 				db_printf(", ");
1846 			db_printf("MPSAFE");
1847 			comma = 1;
1848 		}
1849 		if (ih->ih_need) {
1850 			if (comma)
1851 				db_printf(", ");
1852 			db_printf("NEED");
1853 		}
1854 		db_printf("}");
1855 	}
1856 	db_printf("\n");
1857 }
1858 
1859 /*
1860  * Dump details about a event.
1861  */
1862 void
1863 db_dump_intr_event(struct intr_event *ie, int handlers)
1864 {
1865 	struct intr_handler *ih;
1866 	struct intr_thread *it;
1867 	int comma;
1868 
1869 	db_printf("%s ", ie->ie_fullname);
1870 	it = ie->ie_thread;
1871 	if (it != NULL)
1872 		db_printf("(pid %d)", it->it_thread->td_proc->p_pid);
1873 	else
1874 		db_printf("(no thread)");
1875 	if ((ie->ie_flags & (IE_SOFT | IE_ENTROPY | IE_ADDING_THREAD)) != 0 ||
1876 	    (it != NULL && it->it_need)) {
1877 		db_printf(" {");
1878 		comma = 0;
1879 		if (ie->ie_flags & IE_SOFT) {
1880 			db_printf("SOFT");
1881 			comma = 1;
1882 		}
1883 		if (ie->ie_flags & IE_ENTROPY) {
1884 			if (comma)
1885 				db_printf(", ");
1886 			db_printf("ENTROPY");
1887 			comma = 1;
1888 		}
1889 		if (ie->ie_flags & IE_ADDING_THREAD) {
1890 			if (comma)
1891 				db_printf(", ");
1892 			db_printf("ADDING_THREAD");
1893 			comma = 1;
1894 		}
1895 		if (it != NULL && it->it_need) {
1896 			if (comma)
1897 				db_printf(", ");
1898 			db_printf("NEED");
1899 		}
1900 		db_printf("}");
1901 	}
1902 	db_printf("\n");
1903 
1904 	if (handlers)
1905 		TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
1906 		    db_dump_intrhand(ih);
1907 }
1908 
1909 /*
1910  * Dump data about interrupt handlers
1911  */
1912 DB_SHOW_COMMAND(intr, db_show_intr)
1913 {
1914 	struct intr_event *ie;
1915 	int all, verbose;
1916 
1917 	verbose = strchr(modif, 'v') != NULL;
1918 	all = strchr(modif, 'a') != NULL;
1919 	TAILQ_FOREACH(ie, &event_list, ie_list) {
1920 		if (!all && TAILQ_EMPTY(&ie->ie_handlers))
1921 			continue;
1922 		db_dump_intr_event(ie, verbose);
1923 		if (db_pager_quit)
1924 			break;
1925 	}
1926 }
1927 #endif /* DDB */
1928 
1929 /*
1930  * Start standard software interrupt threads
1931  */
1932 static void
1933 start_softintr(void *dummy)
1934 {
1935 
1936 	if (swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih))
1937 		panic("died while creating vm swi ithread");
1938 }
1939 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr,
1940     NULL);
1941 
1942 /*
1943  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1944  * The data for this machine dependent, and the declarations are in machine
1945  * dependent code.  The layout of intrnames and intrcnt however is machine
1946  * independent.
1947  *
1948  * We do not know the length of intrcnt and intrnames at compile time, so
1949  * calculate things at run time.
1950  */
1951 static int
1952 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1953 {
1954 	return (sysctl_handle_opaque(oidp, intrnames, sintrnames, req));
1955 }
1956 
1957 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1958     NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1959 
1960 static int
1961 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1962 {
1963 #ifdef SCTL_MASK32
1964 	uint32_t *intrcnt32;
1965 	unsigned i;
1966 	int error;
1967 
1968 	if (req->flags & SCTL_MASK32) {
1969 		if (!req->oldptr)
1970 			return (sysctl_handle_opaque(oidp, NULL, sintrcnt / 2, req));
1971 		intrcnt32 = malloc(sintrcnt / 2, M_TEMP, M_NOWAIT);
1972 		if (intrcnt32 == NULL)
1973 			return (ENOMEM);
1974 		for (i = 0; i < sintrcnt / sizeof (u_long); i++)
1975 			intrcnt32[i] = intrcnt[i];
1976 		error = sysctl_handle_opaque(oidp, intrcnt32, sintrcnt / 2, req);
1977 		free(intrcnt32, M_TEMP);
1978 		return (error);
1979 	}
1980 #endif
1981 	return (sysctl_handle_opaque(oidp, intrcnt, sintrcnt, req));
1982 }
1983 
1984 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1985     NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1986 
1987 #ifdef DDB
1988 /*
1989  * DDB command to dump the interrupt statistics.
1990  */
1991 DB_SHOW_COMMAND(intrcnt, db_show_intrcnt)
1992 {
1993 	u_long *i;
1994 	char *cp;
1995 	u_int j;
1996 
1997 	cp = intrnames;
1998 	j = 0;
1999 	for (i = intrcnt; j < (sintrcnt / sizeof(u_long)) && !db_pager_quit;
2000 	    i++, j++) {
2001 		if (*cp == '\0')
2002 			break;
2003 		if (*i != 0)
2004 			db_printf("%s\t%lu\n", cp, *i);
2005 		cp += strlen(cp) + 1;
2006 	}
2007 }
2008 #endif
2009