xref: /freebsd/sys/kern/kern_ktrace.c (revision dad64f0e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2005 Robert N. M. Watson
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_ktrace.h"
40 
41 #include <sys/param.h>
42 #include <sys/capsicum.h>
43 #include <sys/systm.h>
44 #include <sys/fcntl.h>
45 #include <sys/kernel.h>
46 #include <sys/kthread.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/namei.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/resourcevar.h>
55 #include <sys/unistd.h>
56 #include <sys/vnode.h>
57 #include <sys/socket.h>
58 #include <sys/stat.h>
59 #include <sys/ktrace.h>
60 #include <sys/sx.h>
61 #include <sys/sysctl.h>
62 #include <sys/sysent.h>
63 #include <sys/syslog.h>
64 #include <sys/sysproto.h>
65 
66 #include <security/mac/mac_framework.h>
67 
68 /*
69  * The ktrace facility allows the tracing of certain key events in user space
70  * processes, such as system calls, signal delivery, context switches, and
71  * user generated events using utrace(2).  It works by streaming event
72  * records and data to a vnode associated with the process using the
73  * ktrace(2) system call.  In general, records can be written directly from
74  * the context that generates the event.  One important exception to this is
75  * during a context switch, where sleeping is not permitted.  To handle this
76  * case, trace events are generated using in-kernel ktr_request records, and
77  * then delivered to disk at a convenient moment -- either immediately, the
78  * next traceable event, at system call return, or at process exit.
79  *
80  * When dealing with multiple threads or processes writing to the same event
81  * log, ordering guarantees are weak: specifically, if an event has multiple
82  * records (i.e., system call enter and return), they may be interlaced with
83  * records from another event.  Process and thread ID information is provided
84  * in the record, and user applications can de-interlace events if required.
85  */
86 
87 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
88 
89 #ifdef KTRACE
90 
91 FEATURE(ktrace, "Kernel support for system-call tracing");
92 
93 #ifndef KTRACE_REQUEST_POOL
94 #define	KTRACE_REQUEST_POOL	100
95 #endif
96 
97 struct ktr_request {
98 	struct	ktr_header ktr_header;
99 	void	*ktr_buffer;
100 	union {
101 		struct	ktr_proc_ctor ktr_proc_ctor;
102 		struct	ktr_cap_fail ktr_cap_fail;
103 		struct	ktr_syscall ktr_syscall;
104 		struct	ktr_sysret ktr_sysret;
105 		struct	ktr_genio ktr_genio;
106 		struct	ktr_psig ktr_psig;
107 		struct	ktr_csw ktr_csw;
108 		struct	ktr_fault ktr_fault;
109 		struct	ktr_faultend ktr_faultend;
110 		struct  ktr_struct_array ktr_struct_array;
111 	} ktr_data;
112 	STAILQ_ENTRY(ktr_request) ktr_list;
113 };
114 
115 static int data_lengths[] = {
116 	[KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args),
117 	[KTR_SYSRET] = sizeof(struct ktr_sysret),
118 	[KTR_NAMEI] = 0,
119 	[KTR_GENIO] = sizeof(struct ktr_genio),
120 	[KTR_PSIG] = sizeof(struct ktr_psig),
121 	[KTR_CSW] = sizeof(struct ktr_csw),
122 	[KTR_USER] = 0,
123 	[KTR_STRUCT] = 0,
124 	[KTR_SYSCTL] = 0,
125 	[KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor),
126 	[KTR_PROCDTOR] = 0,
127 	[KTR_CAPFAIL] = sizeof(struct ktr_cap_fail),
128 	[KTR_FAULT] = sizeof(struct ktr_fault),
129 	[KTR_FAULTEND] = sizeof(struct ktr_faultend),
130 	[KTR_STRUCT_ARRAY] = sizeof(struct ktr_struct_array),
131 };
132 
133 static STAILQ_HEAD(, ktr_request) ktr_free;
134 
135 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
136     "KTRACE options");
137 
138 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
139 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
140 
141 u_int ktr_geniosize = PAGE_SIZE;
142 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize,
143     0, "Maximum size of genio event payload");
144 
145 /*
146  * Allow to not to send signal to traced process, in which context the
147  * ktr record is written.  The limit is applied from the process that
148  * set up ktrace, so killing the traced process is not completely fair.
149  */
150 int ktr_filesize_limit_signal = 0;
151 SYSCTL_INT(_kern_ktrace, OID_AUTO, filesize_limit_signal, CTLFLAG_RWTUN,
152     &ktr_filesize_limit_signal, 0,
153     "Send SIGXFSZ to the traced process when the log size limit is exceeded");
154 
155 static int print_message = 1;
156 static struct mtx ktrace_mtx;
157 static struct sx ktrace_sx;
158 
159 struct ktr_io_params {
160 	struct vnode	*vp;
161 	struct ucred	*cr;
162 	off_t		lim;
163 	u_int		refs;
164 };
165 
166 static void ktrace_init(void *dummy);
167 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
168 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
169 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
170 static struct ktr_request *ktr_getrequest(int type);
171 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
172 static struct ktr_io_params *ktr_freeproc(struct proc *p);
173 static void ktr_freerequest(struct ktr_request *req);
174 static void ktr_freerequest_locked(struct ktr_request *req);
175 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
176 static int ktrcanset(struct thread *,struct proc *);
177 static int ktrsetchildren(struct thread *, struct proc *, int, int,
178     struct ktr_io_params *);
179 static int ktrops(struct thread *, struct proc *, int, int,
180     struct ktr_io_params *);
181 static void ktrprocctor_entered(struct thread *, struct proc *);
182 
183 /*
184  * ktrace itself generates events, such as context switches, which we do not
185  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
186  * whether or not it is in a region where tracing of events should be
187  * suppressed.
188  */
189 static void
190 ktrace_enter(struct thread *td)
191 {
192 
193 	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
194 	td->td_pflags |= TDP_INKTRACE;
195 }
196 
197 static void
198 ktrace_exit(struct thread *td)
199 {
200 
201 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
202 	td->td_pflags &= ~TDP_INKTRACE;
203 }
204 
205 static void
206 ktrace_assert(struct thread *td)
207 {
208 
209 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
210 }
211 
212 static void
213 ast_ktrace(struct thread *td, int tda __unused)
214 {
215 	KTRUSERRET(td);
216 }
217 
218 static void
219 ktrace_init(void *dummy)
220 {
221 	struct ktr_request *req;
222 	int i;
223 
224 	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
225 	sx_init(&ktrace_sx, "ktrace_sx");
226 	STAILQ_INIT(&ktr_free);
227 	for (i = 0; i < ktr_requestpool; i++) {
228 		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK |
229 		    M_ZERO);
230 		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
231 	}
232 	ast_register(TDA_KTRACE, ASTR_ASTF_REQUIRED, 0, ast_ktrace);
233 }
234 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
235 
236 static int
237 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
238 {
239 	struct thread *td;
240 	u_int newsize, oldsize, wantsize;
241 	int error;
242 
243 	/* Handle easy read-only case first to avoid warnings from GCC. */
244 	if (!req->newptr) {
245 		oldsize = ktr_requestpool;
246 		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
247 	}
248 
249 	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
250 	if (error)
251 		return (error);
252 	td = curthread;
253 	ktrace_enter(td);
254 	oldsize = ktr_requestpool;
255 	newsize = ktrace_resize_pool(oldsize, wantsize);
256 	ktrace_exit(td);
257 	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
258 	if (error)
259 		return (error);
260 	if (wantsize > oldsize && newsize < wantsize)
261 		return (ENOSPC);
262 	return (0);
263 }
264 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool,
265     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ktr_requestpool, 0,
266     sysctl_kern_ktrace_request_pool, "IU",
267     "Pool buffer size for ktrace(1)");
268 
269 static u_int
270 ktrace_resize_pool(u_int oldsize, u_int newsize)
271 {
272 	STAILQ_HEAD(, ktr_request) ktr_new;
273 	struct ktr_request *req;
274 	int bound;
275 
276 	print_message = 1;
277 	bound = newsize - oldsize;
278 	if (bound == 0)
279 		return (ktr_requestpool);
280 	if (bound < 0) {
281 		mtx_lock(&ktrace_mtx);
282 		/* Shrink pool down to newsize if possible. */
283 		while (bound++ < 0) {
284 			req = STAILQ_FIRST(&ktr_free);
285 			if (req == NULL)
286 				break;
287 			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
288 			ktr_requestpool--;
289 			free(req, M_KTRACE);
290 		}
291 	} else {
292 		/* Grow pool up to newsize. */
293 		STAILQ_INIT(&ktr_new);
294 		while (bound-- > 0) {
295 			req = malloc(sizeof(struct ktr_request), M_KTRACE,
296 			    M_WAITOK | M_ZERO);
297 			STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
298 		}
299 		mtx_lock(&ktrace_mtx);
300 		STAILQ_CONCAT(&ktr_free, &ktr_new);
301 		ktr_requestpool += (newsize - oldsize);
302 	}
303 	mtx_unlock(&ktrace_mtx);
304 	return (ktr_requestpool);
305 }
306 
307 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
308 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
309     (sizeof((struct thread *)NULL)->td_name));
310 
311 static struct ktr_request *
312 ktr_getrequest_entered(struct thread *td, int type)
313 {
314 	struct ktr_request *req;
315 	struct proc *p = td->td_proc;
316 	int pm;
317 
318 	mtx_lock(&ktrace_mtx);
319 	if (!KTRCHECK(td, type)) {
320 		mtx_unlock(&ktrace_mtx);
321 		return (NULL);
322 	}
323 	req = STAILQ_FIRST(&ktr_free);
324 	if (req != NULL) {
325 		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
326 		req->ktr_header.ktr_type = type;
327 		if (p->p_traceflag & KTRFAC_DROP) {
328 			req->ktr_header.ktr_type |= KTR_DROP;
329 			p->p_traceflag &= ~KTRFAC_DROP;
330 		}
331 		mtx_unlock(&ktrace_mtx);
332 		nanotime(&req->ktr_header.ktr_time);
333 		req->ktr_header.ktr_type |= KTR_VERSIONED;
334 		req->ktr_header.ktr_pid = p->p_pid;
335 		req->ktr_header.ktr_tid = td->td_tid;
336 		req->ktr_header.ktr_cpu = PCPU_GET(cpuid);
337 		req->ktr_header.ktr_version = KTR_VERSION1;
338 		bcopy(td->td_name, req->ktr_header.ktr_comm,
339 		    sizeof(req->ktr_header.ktr_comm));
340 		req->ktr_buffer = NULL;
341 		req->ktr_header.ktr_len = 0;
342 	} else {
343 		p->p_traceflag |= KTRFAC_DROP;
344 		pm = print_message;
345 		print_message = 0;
346 		mtx_unlock(&ktrace_mtx);
347 		if (pm)
348 			printf("Out of ktrace request objects.\n");
349 	}
350 	return (req);
351 }
352 
353 static struct ktr_request *
354 ktr_getrequest(int type)
355 {
356 	struct thread *td = curthread;
357 	struct ktr_request *req;
358 
359 	ktrace_enter(td);
360 	req = ktr_getrequest_entered(td, type);
361 	if (req == NULL)
362 		ktrace_exit(td);
363 
364 	return (req);
365 }
366 
367 /*
368  * Some trace generation environments don't permit direct access to VFS,
369  * such as during a context switch where sleeping is not allowed.  Under these
370  * circumstances, queue a request to the thread to be written asynchronously
371  * later.
372  */
373 static void
374 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
375 {
376 
377 	mtx_lock(&ktrace_mtx);
378 	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
379 	mtx_unlock(&ktrace_mtx);
380 	ast_sched(td, TDA_KTRACE);
381 }
382 
383 /*
384  * Drain any pending ktrace records from the per-thread queue to disk.  This
385  * is used both internally before committing other records, and also on
386  * system call return.  We drain all the ones we can find at the time when
387  * drain is requested, but don't keep draining after that as those events
388  * may be approximately "after" the current event.
389  */
390 static void
391 ktr_drain(struct thread *td)
392 {
393 	struct ktr_request *queued_req;
394 	STAILQ_HEAD(, ktr_request) local_queue;
395 
396 	ktrace_assert(td);
397 	sx_assert(&ktrace_sx, SX_XLOCKED);
398 
399 	STAILQ_INIT(&local_queue);
400 
401 	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
402 		mtx_lock(&ktrace_mtx);
403 		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
404 		mtx_unlock(&ktrace_mtx);
405 
406 		while ((queued_req = STAILQ_FIRST(&local_queue))) {
407 			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
408 			ktr_writerequest(td, queued_req);
409 			ktr_freerequest(queued_req);
410 		}
411 	}
412 }
413 
414 /*
415  * Submit a trace record for immediate commit to disk -- to be used only
416  * where entering VFS is OK.  First drain any pending records that may have
417  * been cached in the thread.
418  */
419 static void
420 ktr_submitrequest(struct thread *td, struct ktr_request *req)
421 {
422 
423 	ktrace_assert(td);
424 
425 	sx_xlock(&ktrace_sx);
426 	ktr_drain(td);
427 	ktr_writerequest(td, req);
428 	ktr_freerequest(req);
429 	sx_xunlock(&ktrace_sx);
430 	ktrace_exit(td);
431 }
432 
433 static void
434 ktr_freerequest(struct ktr_request *req)
435 {
436 
437 	mtx_lock(&ktrace_mtx);
438 	ktr_freerequest_locked(req);
439 	mtx_unlock(&ktrace_mtx);
440 }
441 
442 static void
443 ktr_freerequest_locked(struct ktr_request *req)
444 {
445 
446 	mtx_assert(&ktrace_mtx, MA_OWNED);
447 	if (req->ktr_buffer != NULL)
448 		free(req->ktr_buffer, M_KTRACE);
449 	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
450 }
451 
452 static void
453 ktr_io_params_ref(struct ktr_io_params *kiop)
454 {
455 	mtx_assert(&ktrace_mtx, MA_OWNED);
456 	kiop->refs++;
457 }
458 
459 static struct ktr_io_params *
460 ktr_io_params_rele(struct ktr_io_params *kiop)
461 {
462 	mtx_assert(&ktrace_mtx, MA_OWNED);
463 	if (kiop == NULL)
464 		return (NULL);
465 	KASSERT(kiop->refs > 0, ("kiop ref == 0 %p", kiop));
466 	return (--(kiop->refs) == 0 ? kiop : NULL);
467 }
468 
469 void
470 ktr_io_params_free(struct ktr_io_params *kiop)
471 {
472 	if (kiop == NULL)
473 		return;
474 
475 	MPASS(kiop->refs == 0);
476 	vn_close(kiop->vp, FWRITE, kiop->cr, curthread);
477 	crfree(kiop->cr);
478 	free(kiop, M_KTRACE);
479 }
480 
481 static struct ktr_io_params *
482 ktr_io_params_alloc(struct thread *td, struct vnode *vp)
483 {
484 	struct ktr_io_params *res;
485 
486 	res = malloc(sizeof(struct ktr_io_params), M_KTRACE, M_WAITOK);
487 	res->vp = vp;
488 	res->cr = crhold(td->td_ucred);
489 	res->lim = lim_cur(td, RLIMIT_FSIZE);
490 	res->refs = 1;
491 	return (res);
492 }
493 
494 /*
495  * Disable tracing for a process and release all associated resources.
496  * The caller is responsible for releasing a reference on the returned
497  * vnode and credentials.
498  */
499 static struct ktr_io_params *
500 ktr_freeproc(struct proc *p)
501 {
502 	struct ktr_io_params *kiop;
503 	struct ktr_request *req;
504 
505 	PROC_LOCK_ASSERT(p, MA_OWNED);
506 	mtx_assert(&ktrace_mtx, MA_OWNED);
507 	kiop = ktr_io_params_rele(p->p_ktrioparms);
508 	p->p_ktrioparms = NULL;
509 	p->p_traceflag = 0;
510 	while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
511 		STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
512 		ktr_freerequest_locked(req);
513 	}
514 	return (kiop);
515 }
516 
517 struct vnode *
518 ktr_get_tracevp(struct proc *p, bool ref)
519 {
520 	struct vnode *vp;
521 
522 	PROC_LOCK_ASSERT(p, MA_OWNED);
523 
524 	if (p->p_ktrioparms != NULL) {
525 		vp = p->p_ktrioparms->vp;
526 		if (ref)
527 			vrefact(vp);
528 	} else {
529 		vp = NULL;
530 	}
531 	return (vp);
532 }
533 
534 void
535 ktrsyscall(int code, int narg, syscallarg_t args[])
536 {
537 	struct ktr_request *req;
538 	struct ktr_syscall *ktp;
539 	size_t buflen;
540 	char *buf = NULL;
541 
542 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
543 		return;
544 
545 	buflen = sizeof(register_t) * narg;
546 	if (buflen > 0) {
547 		buf = malloc(buflen, M_KTRACE, M_WAITOK);
548 		bcopy(args, buf, buflen);
549 	}
550 	req = ktr_getrequest(KTR_SYSCALL);
551 	if (req == NULL) {
552 		if (buf != NULL)
553 			free(buf, M_KTRACE);
554 		return;
555 	}
556 	ktp = &req->ktr_data.ktr_syscall;
557 	ktp->ktr_code = code;
558 	ktp->ktr_narg = narg;
559 	if (buflen > 0) {
560 		req->ktr_header.ktr_len = buflen;
561 		req->ktr_buffer = buf;
562 	}
563 	ktr_submitrequest(curthread, req);
564 }
565 
566 void
567 ktrsysret(int code, int error, register_t retval)
568 {
569 	struct ktr_request *req;
570 	struct ktr_sysret *ktp;
571 
572 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
573 		return;
574 
575 	req = ktr_getrequest(KTR_SYSRET);
576 	if (req == NULL)
577 		return;
578 	ktp = &req->ktr_data.ktr_sysret;
579 	ktp->ktr_code = code;
580 	ktp->ktr_error = error;
581 	ktp->ktr_retval = ((error == 0) ? retval: 0);		/* what about val2 ? */
582 	ktr_submitrequest(curthread, req);
583 }
584 
585 /*
586  * When a setuid process execs, disable tracing.
587  *
588  * XXX: We toss any pending asynchronous records.
589  */
590 struct ktr_io_params *
591 ktrprocexec(struct proc *p)
592 {
593 	struct ktr_io_params *kiop;
594 
595 	PROC_LOCK_ASSERT(p, MA_OWNED);
596 
597 	kiop = p->p_ktrioparms;
598 	if (kiop == NULL || priv_check_cred(kiop->cr, PRIV_DEBUG_DIFFCRED))
599 		return (NULL);
600 
601 	mtx_lock(&ktrace_mtx);
602 	kiop = ktr_freeproc(p);
603 	mtx_unlock(&ktrace_mtx);
604 	return (kiop);
605 }
606 
607 /*
608  * When a process exits, drain per-process asynchronous trace records
609  * and disable tracing.
610  */
611 void
612 ktrprocexit(struct thread *td)
613 {
614 	struct ktr_request *req;
615 	struct proc *p;
616 	struct ktr_io_params *kiop;
617 
618 	p = td->td_proc;
619 	if (p->p_traceflag == 0)
620 		return;
621 
622 	ktrace_enter(td);
623 	req = ktr_getrequest_entered(td, KTR_PROCDTOR);
624 	if (req != NULL)
625 		ktr_enqueuerequest(td, req);
626 	sx_xlock(&ktrace_sx);
627 	ktr_drain(td);
628 	sx_xunlock(&ktrace_sx);
629 	PROC_LOCK(p);
630 	mtx_lock(&ktrace_mtx);
631 	kiop = ktr_freeproc(p);
632 	mtx_unlock(&ktrace_mtx);
633 	PROC_UNLOCK(p);
634 	ktr_io_params_free(kiop);
635 	ktrace_exit(td);
636 }
637 
638 static void
639 ktrprocctor_entered(struct thread *td, struct proc *p)
640 {
641 	struct ktr_proc_ctor *ktp;
642 	struct ktr_request *req;
643 	struct thread *td2;
644 
645 	ktrace_assert(td);
646 	td2 = FIRST_THREAD_IN_PROC(p);
647 	req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
648 	if (req == NULL)
649 		return;
650 	ktp = &req->ktr_data.ktr_proc_ctor;
651 	ktp->sv_flags = p->p_sysent->sv_flags;
652 	ktr_enqueuerequest(td2, req);
653 }
654 
655 void
656 ktrprocctor(struct proc *p)
657 {
658 	struct thread *td = curthread;
659 
660 	if ((p->p_traceflag & KTRFAC_MASK) == 0)
661 		return;
662 
663 	ktrace_enter(td);
664 	ktrprocctor_entered(td, p);
665 	ktrace_exit(td);
666 }
667 
668 /*
669  * When a process forks, enable tracing in the new process if needed.
670  */
671 void
672 ktrprocfork(struct proc *p1, struct proc *p2)
673 {
674 
675 	MPASS(p2->p_ktrioparms == NULL);
676 	MPASS(p2->p_traceflag == 0);
677 
678 	if (p1->p_traceflag == 0)
679 		return;
680 
681 	PROC_LOCK(p1);
682 	mtx_lock(&ktrace_mtx);
683 	if (p1->p_traceflag & KTRFAC_INHERIT) {
684 		p2->p_traceflag = p1->p_traceflag;
685 		if ((p2->p_ktrioparms = p1->p_ktrioparms) != NULL)
686 			p1->p_ktrioparms->refs++;
687 	}
688 	mtx_unlock(&ktrace_mtx);
689 	PROC_UNLOCK(p1);
690 
691 	ktrprocctor(p2);
692 }
693 
694 /*
695  * When a thread returns, drain any asynchronous records generated by the
696  * system call.
697  */
698 void
699 ktruserret(struct thread *td)
700 {
701 
702 	ktrace_enter(td);
703 	sx_xlock(&ktrace_sx);
704 	ktr_drain(td);
705 	sx_xunlock(&ktrace_sx);
706 	ktrace_exit(td);
707 }
708 
709 void
710 ktrnamei(const char *path)
711 {
712 	struct ktr_request *req;
713 	int namelen;
714 	char *buf = NULL;
715 
716 	namelen = strlen(path);
717 	if (namelen > 0) {
718 		buf = malloc(namelen, M_KTRACE, M_WAITOK);
719 		bcopy(path, buf, namelen);
720 	}
721 	req = ktr_getrequest(KTR_NAMEI);
722 	if (req == NULL) {
723 		if (buf != NULL)
724 			free(buf, M_KTRACE);
725 		return;
726 	}
727 	if (namelen > 0) {
728 		req->ktr_header.ktr_len = namelen;
729 		req->ktr_buffer = buf;
730 	}
731 	ktr_submitrequest(curthread, req);
732 }
733 
734 void
735 ktrsysctl(int *name, u_int namelen)
736 {
737 	struct ktr_request *req;
738 	u_int mib[CTL_MAXNAME + 2];
739 	char *mibname;
740 	size_t mibnamelen;
741 	int error;
742 
743 	/* Lookup name of mib. */
744 	KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
745 	mib[0] = 0;
746 	mib[1] = 1;
747 	bcopy(name, mib + 2, namelen * sizeof(*name));
748 	mibnamelen = 128;
749 	mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
750 	error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
751 	    NULL, 0, &mibnamelen, 0);
752 	if (error) {
753 		free(mibname, M_KTRACE);
754 		return;
755 	}
756 	req = ktr_getrequest(KTR_SYSCTL);
757 	if (req == NULL) {
758 		free(mibname, M_KTRACE);
759 		return;
760 	}
761 	req->ktr_header.ktr_len = mibnamelen;
762 	req->ktr_buffer = mibname;
763 	ktr_submitrequest(curthread, req);
764 }
765 
766 void
767 ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error)
768 {
769 	struct ktr_request *req;
770 	struct ktr_genio *ktg;
771 	int datalen;
772 	char *buf;
773 
774 	if (error) {
775 		free(uio, M_IOV);
776 		return;
777 	}
778 	uio->uio_offset = 0;
779 	uio->uio_rw = UIO_WRITE;
780 	datalen = MIN(uio->uio_resid, ktr_geniosize);
781 	buf = malloc(datalen, M_KTRACE, M_WAITOK);
782 	error = uiomove(buf, datalen, uio);
783 	free(uio, M_IOV);
784 	if (error) {
785 		free(buf, M_KTRACE);
786 		return;
787 	}
788 	req = ktr_getrequest(KTR_GENIO);
789 	if (req == NULL) {
790 		free(buf, M_KTRACE);
791 		return;
792 	}
793 	ktg = &req->ktr_data.ktr_genio;
794 	ktg->ktr_fd = fd;
795 	ktg->ktr_rw = rw;
796 	req->ktr_header.ktr_len = datalen;
797 	req->ktr_buffer = buf;
798 	ktr_submitrequest(curthread, req);
799 }
800 
801 void
802 ktrpsig(int sig, sig_t action, sigset_t *mask, int code)
803 {
804 	struct thread *td = curthread;
805 	struct ktr_request *req;
806 	struct ktr_psig	*kp;
807 
808 	req = ktr_getrequest(KTR_PSIG);
809 	if (req == NULL)
810 		return;
811 	kp = &req->ktr_data.ktr_psig;
812 	kp->signo = (char)sig;
813 	kp->action = action;
814 	kp->mask = *mask;
815 	kp->code = code;
816 	ktr_enqueuerequest(td, req);
817 	ktrace_exit(td);
818 }
819 
820 void
821 ktrcsw(int out, int user, const char *wmesg)
822 {
823 	struct thread *td = curthread;
824 	struct ktr_request *req;
825 	struct ktr_csw *kc;
826 
827 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
828 		return;
829 
830 	req = ktr_getrequest(KTR_CSW);
831 	if (req == NULL)
832 		return;
833 	kc = &req->ktr_data.ktr_csw;
834 	kc->out = out;
835 	kc->user = user;
836 	if (wmesg != NULL)
837 		strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
838 	else
839 		bzero(kc->wmesg, sizeof(kc->wmesg));
840 	ktr_enqueuerequest(td, req);
841 	ktrace_exit(td);
842 }
843 
844 void
845 ktrstruct(const char *name, const void *data, size_t datalen)
846 {
847 	struct ktr_request *req;
848 	char *buf;
849 	size_t buflen, namelen;
850 
851 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
852 		return;
853 
854 	if (data == NULL)
855 		datalen = 0;
856 	namelen = strlen(name) + 1;
857 	buflen = namelen + datalen;
858 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
859 	strcpy(buf, name);
860 	bcopy(data, buf + namelen, datalen);
861 	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
862 		free(buf, M_KTRACE);
863 		return;
864 	}
865 	req->ktr_buffer = buf;
866 	req->ktr_header.ktr_len = buflen;
867 	ktr_submitrequest(curthread, req);
868 }
869 
870 void
871 ktrstruct_error(const char *name, const void *data, size_t datalen, int error)
872 {
873 
874 	if (error == 0)
875 		ktrstruct(name, data, datalen);
876 }
877 
878 void
879 ktrstructarray(const char *name, enum uio_seg seg, const void *data,
880     int num_items, size_t struct_size)
881 {
882 	struct ktr_request *req;
883 	struct ktr_struct_array *ksa;
884 	char *buf;
885 	size_t buflen, datalen, namelen;
886 	int max_items;
887 
888 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
889 		return;
890 	if (num_items < 0)
891 		return;
892 
893 	/* Trim array length to genio size. */
894 	max_items = ktr_geniosize / struct_size;
895 	if (num_items > max_items) {
896 		if (max_items == 0)
897 			num_items = 1;
898 		else
899 			num_items = max_items;
900 	}
901 	datalen = num_items * struct_size;
902 
903 	if (data == NULL)
904 		datalen = 0;
905 
906 	namelen = strlen(name) + 1;
907 	buflen = namelen + datalen;
908 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
909 	strcpy(buf, name);
910 	if (seg == UIO_SYSSPACE)
911 		bcopy(data, buf + namelen, datalen);
912 	else {
913 		if (copyin(data, buf + namelen, datalen) != 0) {
914 			free(buf, M_KTRACE);
915 			return;
916 		}
917 	}
918 	if ((req = ktr_getrequest(KTR_STRUCT_ARRAY)) == NULL) {
919 		free(buf, M_KTRACE);
920 		return;
921 	}
922 	ksa = &req->ktr_data.ktr_struct_array;
923 	ksa->struct_size = struct_size;
924 	req->ktr_buffer = buf;
925 	req->ktr_header.ktr_len = buflen;
926 	ktr_submitrequest(curthread, req);
927 }
928 
929 void
930 ktrcapfail(enum ktr_cap_fail_type type, const cap_rights_t *needed,
931     const cap_rights_t *held)
932 {
933 	struct thread *td = curthread;
934 	struct ktr_request *req;
935 	struct ktr_cap_fail *kcf;
936 
937 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
938 		return;
939 
940 	req = ktr_getrequest(KTR_CAPFAIL);
941 	if (req == NULL)
942 		return;
943 	kcf = &req->ktr_data.ktr_cap_fail;
944 	kcf->cap_type = type;
945 	if (needed != NULL)
946 		kcf->cap_needed = *needed;
947 	else
948 		cap_rights_init(&kcf->cap_needed);
949 	if (held != NULL)
950 		kcf->cap_held = *held;
951 	else
952 		cap_rights_init(&kcf->cap_held);
953 	ktr_enqueuerequest(td, req);
954 	ktrace_exit(td);
955 }
956 
957 void
958 ktrfault(vm_offset_t vaddr, int type)
959 {
960 	struct thread *td = curthread;
961 	struct ktr_request *req;
962 	struct ktr_fault *kf;
963 
964 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
965 		return;
966 
967 	req = ktr_getrequest(KTR_FAULT);
968 	if (req == NULL)
969 		return;
970 	kf = &req->ktr_data.ktr_fault;
971 	kf->vaddr = vaddr;
972 	kf->type = type;
973 	ktr_enqueuerequest(td, req);
974 	ktrace_exit(td);
975 }
976 
977 void
978 ktrfaultend(int result)
979 {
980 	struct thread *td = curthread;
981 	struct ktr_request *req;
982 	struct ktr_faultend *kf;
983 
984 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
985 		return;
986 
987 	req = ktr_getrequest(KTR_FAULTEND);
988 	if (req == NULL)
989 		return;
990 	kf = &req->ktr_data.ktr_faultend;
991 	kf->result = result;
992 	ktr_enqueuerequest(td, req);
993 	ktrace_exit(td);
994 }
995 #endif /* KTRACE */
996 
997 /* Interface and common routines */
998 
999 #ifndef _SYS_SYSPROTO_H_
1000 struct ktrace_args {
1001 	char	*fname;
1002 	int	ops;
1003 	int	facs;
1004 	int	pid;
1005 };
1006 #endif
1007 /* ARGSUSED */
1008 int
1009 sys_ktrace(struct thread *td, struct ktrace_args *uap)
1010 {
1011 #ifdef KTRACE
1012 	struct vnode *vp = NULL;
1013 	struct proc *p;
1014 	struct pgrp *pg;
1015 	int facs = uap->facs & ~KTRFAC_ROOT;
1016 	int ops = KTROP(uap->ops);
1017 	int descend = uap->ops & KTRFLAG_DESCEND;
1018 	int ret = 0;
1019 	int flags, error = 0;
1020 	struct nameidata nd;
1021 	struct ktr_io_params *kiop, *old_kiop;
1022 
1023 	/*
1024 	 * Need something to (un)trace.
1025 	 */
1026 	if (ops != KTROP_CLEARFILE && facs == 0)
1027 		return (EINVAL);
1028 
1029 	kiop = NULL;
1030 	if (ops != KTROP_CLEAR) {
1031 		/*
1032 		 * an operation which requires a file argument.
1033 		 */
1034 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname);
1035 		flags = FREAD | FWRITE | O_NOFOLLOW;
1036 		error = vn_open(&nd, &flags, 0, NULL);
1037 		if (error)
1038 			return (error);
1039 		NDFREE_PNBUF(&nd);
1040 		vp = nd.ni_vp;
1041 		VOP_UNLOCK(vp);
1042 		if (vp->v_type != VREG) {
1043 			(void)vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
1044 			return (EACCES);
1045 		}
1046 		kiop = ktr_io_params_alloc(td, vp);
1047 	}
1048 
1049 	/*
1050 	 * Clear all uses of the tracefile.
1051 	 */
1052 	ktrace_enter(td);
1053 	if (ops == KTROP_CLEARFILE) {
1054 restart:
1055 		sx_slock(&allproc_lock);
1056 		FOREACH_PROC_IN_SYSTEM(p) {
1057 			old_kiop = NULL;
1058 			PROC_LOCK(p);
1059 			if (p->p_ktrioparms != NULL &&
1060 			    p->p_ktrioparms->vp == vp) {
1061 				if (ktrcanset(td, p)) {
1062 					mtx_lock(&ktrace_mtx);
1063 					old_kiop = ktr_freeproc(p);
1064 					mtx_unlock(&ktrace_mtx);
1065 				} else
1066 					error = EPERM;
1067 			}
1068 			PROC_UNLOCK(p);
1069 			if (old_kiop != NULL) {
1070 				sx_sunlock(&allproc_lock);
1071 				ktr_io_params_free(old_kiop);
1072 				goto restart;
1073 			}
1074 		}
1075 		sx_sunlock(&allproc_lock);
1076 		goto done;
1077 	}
1078 	/*
1079 	 * do it
1080 	 */
1081 	sx_slock(&proctree_lock);
1082 	if (uap->pid < 0) {
1083 		/*
1084 		 * by process group
1085 		 */
1086 		pg = pgfind(-uap->pid);
1087 		if (pg == NULL) {
1088 			sx_sunlock(&proctree_lock);
1089 			error = ESRCH;
1090 			goto done;
1091 		}
1092 
1093 		/*
1094 		 * ktrops() may call vrele(). Lock pg_members
1095 		 * by the proctree_lock rather than pg_mtx.
1096 		 */
1097 		PGRP_UNLOCK(pg);
1098 		if (LIST_EMPTY(&pg->pg_members)) {
1099 			sx_sunlock(&proctree_lock);
1100 			error = ESRCH;
1101 			goto done;
1102 		}
1103 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1104 			PROC_LOCK(p);
1105 			if (descend)
1106 				ret |= ktrsetchildren(td, p, ops, facs, kiop);
1107 			else
1108 				ret |= ktrops(td, p, ops, facs, kiop);
1109 		}
1110 	} else {
1111 		/*
1112 		 * by pid
1113 		 */
1114 		p = pfind(uap->pid);
1115 		if (p == NULL) {
1116 			error = ESRCH;
1117 			sx_sunlock(&proctree_lock);
1118 			goto done;
1119 		}
1120 		if (descend)
1121 			ret |= ktrsetchildren(td, p, ops, facs, kiop);
1122 		else
1123 			ret |= ktrops(td, p, ops, facs, kiop);
1124 	}
1125 	sx_sunlock(&proctree_lock);
1126 	if (!ret)
1127 		error = EPERM;
1128 done:
1129 	if (kiop != NULL) {
1130 		mtx_lock(&ktrace_mtx);
1131 		kiop = ktr_io_params_rele(kiop);
1132 		mtx_unlock(&ktrace_mtx);
1133 		ktr_io_params_free(kiop);
1134 	}
1135 	ktrace_exit(td);
1136 	return (error);
1137 #else /* !KTRACE */
1138 	return (ENOSYS);
1139 #endif /* KTRACE */
1140 }
1141 
1142 /* ARGSUSED */
1143 int
1144 sys_utrace(struct thread *td, struct utrace_args *uap)
1145 {
1146 
1147 #ifdef KTRACE
1148 	struct ktr_request *req;
1149 	void *cp;
1150 	int error;
1151 
1152 	if (!KTRPOINT(td, KTR_USER))
1153 		return (0);
1154 	if (uap->len > KTR_USER_MAXLEN)
1155 		return (EINVAL);
1156 	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
1157 	error = copyin(uap->addr, cp, uap->len);
1158 	if (error) {
1159 		free(cp, M_KTRACE);
1160 		return (error);
1161 	}
1162 	req = ktr_getrequest(KTR_USER);
1163 	if (req == NULL) {
1164 		free(cp, M_KTRACE);
1165 		return (ENOMEM);
1166 	}
1167 	req->ktr_buffer = cp;
1168 	req->ktr_header.ktr_len = uap->len;
1169 	ktr_submitrequest(td, req);
1170 	return (0);
1171 #else /* !KTRACE */
1172 	return (ENOSYS);
1173 #endif /* KTRACE */
1174 }
1175 
1176 #ifdef KTRACE
1177 static int
1178 ktrops(struct thread *td, struct proc *p, int ops, int facs,
1179     struct ktr_io_params *new_kiop)
1180 {
1181 	struct ktr_io_params *old_kiop;
1182 
1183 	PROC_LOCK_ASSERT(p, MA_OWNED);
1184 	if (!ktrcanset(td, p)) {
1185 		PROC_UNLOCK(p);
1186 		return (0);
1187 	}
1188 	if ((ops == KTROP_SET && p->p_state == PRS_NEW) ||
1189 	    p_cansee(td, p) != 0) {
1190 		/*
1191 		 * Disallow setting trace points if the process is being born.
1192 		 * This avoids races with trace point inheritance in
1193 		 * ktrprocfork().
1194 		 */
1195 		PROC_UNLOCK(p);
1196 		return (0);
1197 	}
1198 	if ((p->p_flag & P_WEXIT) != 0) {
1199 		/*
1200 		 * There's nothing to do if the process is exiting, but avoid
1201 		 * signaling an error.
1202 		 */
1203 		PROC_UNLOCK(p);
1204 		return (1);
1205 	}
1206 	old_kiop = NULL;
1207 	mtx_lock(&ktrace_mtx);
1208 	if (ops == KTROP_SET) {
1209 		if (p->p_ktrioparms != NULL &&
1210 		    p->p_ktrioparms->vp != new_kiop->vp) {
1211 			/* if trace file already in use, relinquish below */
1212 			old_kiop = ktr_io_params_rele(p->p_ktrioparms);
1213 			p->p_ktrioparms = NULL;
1214 		}
1215 		if (p->p_ktrioparms == NULL) {
1216 			p->p_ktrioparms = new_kiop;
1217 			ktr_io_params_ref(new_kiop);
1218 		}
1219 		p->p_traceflag |= facs;
1220 		if (priv_check(td, PRIV_KTRACE) == 0)
1221 			p->p_traceflag |= KTRFAC_ROOT;
1222 	} else {
1223 		/* KTROP_CLEAR */
1224 		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
1225 			/* no more tracing */
1226 			old_kiop = ktr_freeproc(p);
1227 	}
1228 	mtx_unlock(&ktrace_mtx);
1229 	if ((p->p_traceflag & KTRFAC_MASK) != 0)
1230 		ktrprocctor_entered(td, p);
1231 	PROC_UNLOCK(p);
1232 	ktr_io_params_free(old_kiop);
1233 
1234 	return (1);
1235 }
1236 
1237 static int
1238 ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs,
1239     struct ktr_io_params *new_kiop)
1240 {
1241 	struct proc *p;
1242 	int ret = 0;
1243 
1244 	p = top;
1245 	PROC_LOCK_ASSERT(p, MA_OWNED);
1246 	sx_assert(&proctree_lock, SX_LOCKED);
1247 	for (;;) {
1248 		ret |= ktrops(td, p, ops, facs, new_kiop);
1249 		/*
1250 		 * If this process has children, descend to them next,
1251 		 * otherwise do any siblings, and if done with this level,
1252 		 * follow back up the tree (but not past top).
1253 		 */
1254 		if (!LIST_EMPTY(&p->p_children))
1255 			p = LIST_FIRST(&p->p_children);
1256 		else for (;;) {
1257 			if (p == top)
1258 				return (ret);
1259 			if (LIST_NEXT(p, p_sibling)) {
1260 				p = LIST_NEXT(p, p_sibling);
1261 				break;
1262 			}
1263 			p = p->p_pptr;
1264 		}
1265 		PROC_LOCK(p);
1266 	}
1267 	/*NOTREACHED*/
1268 }
1269 
1270 static void
1271 ktr_writerequest(struct thread *td, struct ktr_request *req)
1272 {
1273 	struct ktr_io_params *kiop, *kiop1;
1274 	struct ktr_header *kth;
1275 	struct vnode *vp;
1276 	struct proc *p;
1277 	struct ucred *cred;
1278 	struct uio auio;
1279 	struct iovec aiov[3];
1280 	struct mount *mp;
1281 	off_t lim;
1282 	int datalen, buflen;
1283 	int error;
1284 
1285 	p = td->td_proc;
1286 
1287 	/*
1288 	 * We reference the kiop for use in I/O in case ktrace is
1289 	 * disabled on the process as we write out the request.
1290 	 */
1291 	mtx_lock(&ktrace_mtx);
1292 	kiop = p->p_ktrioparms;
1293 
1294 	/*
1295 	 * If kiop is NULL, it has been cleared out from under this
1296 	 * request, so just drop it.
1297 	 */
1298 	if (kiop == NULL) {
1299 		mtx_unlock(&ktrace_mtx);
1300 		return;
1301 	}
1302 
1303 	ktr_io_params_ref(kiop);
1304 	vp = kiop->vp;
1305 	cred = kiop->cr;
1306 	lim = kiop->lim;
1307 
1308 	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
1309 	mtx_unlock(&ktrace_mtx);
1310 
1311 	kth = &req->ktr_header;
1312 	KASSERT(((u_short)kth->ktr_type & ~KTR_TYPE) < nitems(data_lengths),
1313 	    ("data_lengths array overflow"));
1314 	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_TYPE];
1315 	buflen = kth->ktr_len;
1316 	auio.uio_iov = &aiov[0];
1317 	auio.uio_offset = 0;
1318 	auio.uio_segflg = UIO_SYSSPACE;
1319 	auio.uio_rw = UIO_WRITE;
1320 	aiov[0].iov_base = (caddr_t)kth;
1321 	aiov[0].iov_len = sizeof(struct ktr_header);
1322 	auio.uio_resid = sizeof(struct ktr_header);
1323 	auio.uio_iovcnt = 1;
1324 	auio.uio_td = td;
1325 	if (datalen != 0) {
1326 		aiov[1].iov_base = (caddr_t)&req->ktr_data;
1327 		aiov[1].iov_len = datalen;
1328 		auio.uio_resid += datalen;
1329 		auio.uio_iovcnt++;
1330 		kth->ktr_len += datalen;
1331 	}
1332 	if (buflen != 0) {
1333 		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
1334 		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
1335 		aiov[auio.uio_iovcnt].iov_len = buflen;
1336 		auio.uio_resid += buflen;
1337 		auio.uio_iovcnt++;
1338 	}
1339 
1340 	vn_start_write(vp, &mp, V_WAIT);
1341 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1342 	td->td_ktr_io_lim = lim;
1343 #ifdef MAC
1344 	error = mac_vnode_check_write(cred, NOCRED, vp);
1345 	if (error == 0)
1346 #endif
1347 		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
1348 	VOP_UNLOCK(vp);
1349 	vn_finished_write(mp);
1350 	if (error == 0) {
1351 		mtx_lock(&ktrace_mtx);
1352 		kiop = ktr_io_params_rele(kiop);
1353 		mtx_unlock(&ktrace_mtx);
1354 		ktr_io_params_free(kiop);
1355 		return;
1356 	}
1357 
1358 	/*
1359 	 * If error encountered, give up tracing on this vnode on this
1360 	 * process.  Other processes might still be suitable for
1361 	 * writes to this vnode.
1362 	 */
1363 	log(LOG_NOTICE,
1364 	    "ktrace write failed, errno %d, tracing stopped for pid %d\n",
1365 	    error, p->p_pid);
1366 
1367 	kiop1 = NULL;
1368 	PROC_LOCK(p);
1369 	mtx_lock(&ktrace_mtx);
1370 	if (p->p_ktrioparms != NULL && p->p_ktrioparms->vp == vp)
1371 		kiop1 = ktr_freeproc(p);
1372 	kiop = ktr_io_params_rele(kiop);
1373 	mtx_unlock(&ktrace_mtx);
1374 	PROC_UNLOCK(p);
1375 	ktr_io_params_free(kiop1);
1376 	ktr_io_params_free(kiop);
1377 }
1378 
1379 /*
1380  * Return true if caller has permission to set the ktracing state
1381  * of target.  Essentially, the target can't possess any
1382  * more permissions than the caller.  KTRFAC_ROOT signifies that
1383  * root previously set the tracing status on the target process, and
1384  * so, only root may further change it.
1385  */
1386 static int
1387 ktrcanset(struct thread *td, struct proc *targetp)
1388 {
1389 
1390 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1391 	if (targetp->p_traceflag & KTRFAC_ROOT &&
1392 	    priv_check(td, PRIV_KTRACE))
1393 		return (0);
1394 
1395 	if (p_candebug(td, targetp) != 0)
1396 		return (0);
1397 
1398 	return (1);
1399 }
1400 
1401 #endif /* KTRACE */
1402