xref: /freebsd/sys/kern/kern_lockf.c (revision 0957b409)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
5  * Authors: Doug Rabson <dfr@rabson.org>
6  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (c) 1982, 1986, 1989, 1993
31  *	The Regents of the University of California.  All rights reserved.
32  *
33  * This code is derived from software contributed to Berkeley by
34  * Scooter Morris at Genentech Inc.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)ufs_lockf.c	8.3 (Berkeley) 1/6/94
61  */
62 
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65 
66 #include "opt_debug_lockf.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/hash.h>
71 #include <sys/kernel.h>
72 #include <sys/limits.h>
73 #include <sys/lock.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/sx.h>
78 #include <sys/unistd.h>
79 #include <sys/vnode.h>
80 #include <sys/malloc.h>
81 #include <sys/fcntl.h>
82 #include <sys/lockf.h>
83 #include <sys/taskqueue.h>
84 
85 #ifdef LOCKF_DEBUG
86 #include <sys/sysctl.h>
87 
88 #include <ufs/ufs/extattr.h>
89 #include <ufs/ufs/quota.h>
90 #include <ufs/ufs/ufsmount.h>
91 #include <ufs/ufs/inode.h>
92 
93 static int	lockf_debug = 0; /* control debug output */
94 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
95 #endif
96 
97 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
98 
99 struct owner_edge;
100 struct owner_vertex;
101 struct owner_vertex_list;
102 struct owner_graph;
103 
104 #define NOLOCKF (struct lockf_entry *)0
105 #define SELF	0x1
106 #define OTHERS	0x2
107 static void	 lf_init(void *);
108 static int	 lf_hash_owner(caddr_t, struct vnode *, struct flock *, int);
109 static int	 lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
110     int);
111 static struct lockf_entry *
112 		 lf_alloc_lock(struct lock_owner *);
113 static int	 lf_free_lock(struct lockf_entry *);
114 static int	 lf_clearlock(struct lockf *, struct lockf_entry *);
115 static int	 lf_overlaps(struct lockf_entry *, struct lockf_entry *);
116 static int	 lf_blocks(struct lockf_entry *, struct lockf_entry *);
117 static void	 lf_free_edge(struct lockf_edge *);
118 static struct lockf_edge *
119 		 lf_alloc_edge(void);
120 static void	 lf_alloc_vertex(struct lockf_entry *);
121 static int	 lf_add_edge(struct lockf_entry *, struct lockf_entry *);
122 static void	 lf_remove_edge(struct lockf_edge *);
123 static void	 lf_remove_outgoing(struct lockf_entry *);
124 static void	 lf_remove_incoming(struct lockf_entry *);
125 static int	 lf_add_outgoing(struct lockf *, struct lockf_entry *);
126 static int	 lf_add_incoming(struct lockf *, struct lockf_entry *);
127 static int	 lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
128     int);
129 static struct lockf_entry *
130 		 lf_getblock(struct lockf *, struct lockf_entry *);
131 static int	 lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
132 static void	 lf_insert_lock(struct lockf *, struct lockf_entry *);
133 static void	 lf_wakeup_lock(struct lockf *, struct lockf_entry *);
134 static void	 lf_update_dependancies(struct lockf *, struct lockf_entry *,
135     int all, struct lockf_entry_list *);
136 static void	 lf_set_start(struct lockf *, struct lockf_entry *, off_t,
137 	struct lockf_entry_list*);
138 static void	 lf_set_end(struct lockf *, struct lockf_entry *, off_t,
139 	struct lockf_entry_list*);
140 static int	 lf_setlock(struct lockf *, struct lockf_entry *,
141     struct vnode *, void **cookiep);
142 static int	 lf_cancel(struct lockf *, struct lockf_entry *, void *);
143 static void	 lf_split(struct lockf *, struct lockf_entry *,
144     struct lockf_entry *, struct lockf_entry_list *);
145 #ifdef LOCKF_DEBUG
146 static int	 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
147     struct owner_vertex_list *path);
148 static void	 graph_check(struct owner_graph *g, int checkorder);
149 static void	 graph_print_vertices(struct owner_vertex_list *set);
150 #endif
151 static int	 graph_delta_forward(struct owner_graph *g,
152     struct owner_vertex *x, struct owner_vertex *y,
153     struct owner_vertex_list *delta);
154 static int	 graph_delta_backward(struct owner_graph *g,
155     struct owner_vertex *x, struct owner_vertex *y,
156     struct owner_vertex_list *delta);
157 static int	 graph_add_indices(int *indices, int n,
158     struct owner_vertex_list *set);
159 static int	 graph_assign_indices(struct owner_graph *g, int *indices,
160     int nextunused, struct owner_vertex_list *set);
161 static int	 graph_add_edge(struct owner_graph *g,
162     struct owner_vertex *x, struct owner_vertex *y);
163 static void	 graph_remove_edge(struct owner_graph *g,
164     struct owner_vertex *x, struct owner_vertex *y);
165 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
166     struct lock_owner *lo);
167 static void	 graph_free_vertex(struct owner_graph *g,
168     struct owner_vertex *v);
169 static struct owner_graph * graph_init(struct owner_graph *g);
170 #ifdef LOCKF_DEBUG
171 static void	 lf_print(char *, struct lockf_entry *);
172 static void	 lf_printlist(char *, struct lockf_entry *);
173 static void	 lf_print_owner(struct lock_owner *);
174 #endif
175 
176 /*
177  * This structure is used to keep track of both local and remote lock
178  * owners. The lf_owner field of the struct lockf_entry points back at
179  * the lock owner structure. Each possible lock owner (local proc for
180  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
181  * pair for remote locks) is represented by a unique instance of
182  * struct lock_owner.
183  *
184  * If a lock owner has a lock that blocks some other lock or a lock
185  * that is waiting for some other lock, it also has a vertex in the
186  * owner_graph below.
187  *
188  * Locks:
189  * (s)		locked by state->ls_lock
190  * (S)		locked by lf_lock_states_lock
191  * (g)		locked by lf_owner_graph_lock
192  * (c)		const until freeing
193  */
194 #define	LOCK_OWNER_HASH_SIZE	256
195 
196 struct lock_owner {
197 	LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
198 	int	lo_refs;	    /* (l) Number of locks referring to this */
199 	int	lo_flags;	    /* (c) Flags passwd to lf_advlock */
200 	caddr_t	lo_id;		    /* (c) Id value passed to lf_advlock */
201 	pid_t	lo_pid;		    /* (c) Process Id of the lock owner */
202 	int	lo_sysid;	    /* (c) System Id of the lock owner */
203 	int	lo_hash;	    /* (c) Used to lock the appropriate chain */
204 	struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
205 };
206 
207 LIST_HEAD(lock_owner_list, lock_owner);
208 
209 struct lock_owner_chain {
210 	struct sx		lock;
211 	struct lock_owner_list	list;
212 };
213 
214 static struct sx		lf_lock_states_lock;
215 static struct lockf_list	lf_lock_states; /* (S) */
216 static struct lock_owner_chain	lf_lock_owners[LOCK_OWNER_HASH_SIZE];
217 
218 /*
219  * Structures for deadlock detection.
220  *
221  * We have two types of directed graph, the first is the set of locks,
222  * both active and pending on a vnode. Within this graph, active locks
223  * are terminal nodes in the graph (i.e. have no out-going
224  * edges). Pending locks have out-going edges to each blocking active
225  * lock that prevents the lock from being granted and also to each
226  * older pending lock that would block them if it was active. The
227  * graph for each vnode is naturally acyclic; new edges are only ever
228  * added to or from new nodes (either new pending locks which only add
229  * out-going edges or new active locks which only add in-coming edges)
230  * therefore they cannot create loops in the lock graph.
231  *
232  * The second graph is a global graph of lock owners. Each lock owner
233  * is a vertex in that graph and an edge is added to the graph
234  * whenever an edge is added to a vnode graph, with end points
235  * corresponding to owner of the new pending lock and the owner of the
236  * lock upon which it waits. In order to prevent deadlock, we only add
237  * an edge to this graph if the new edge would not create a cycle.
238  *
239  * The lock owner graph is topologically sorted, i.e. if a node has
240  * any outgoing edges, then it has an order strictly less than any
241  * node to which it has an outgoing edge. We preserve this ordering
242  * (and detect cycles) on edge insertion using Algorithm PK from the
243  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
244  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
245  * No. 1.7)
246  */
247 struct owner_vertex;
248 
249 struct owner_edge {
250 	LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
251 	LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
252 	int		e_refs;		  /* (g) number of times added */
253 	struct owner_vertex *e_from;	  /* (c) out-going from here */
254 	struct owner_vertex *e_to;	  /* (c) in-coming to here */
255 };
256 LIST_HEAD(owner_edge_list, owner_edge);
257 
258 struct owner_vertex {
259 	TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
260 	uint32_t	v_gen;		  /* (g) workspace for edge insertion */
261 	int		v_order;	  /* (g) order of vertex in graph */
262 	struct owner_edge_list v_outedges;/* (g) list of out-edges */
263 	struct owner_edge_list v_inedges; /* (g) list of in-edges */
264 	struct lock_owner *v_owner;	  /* (c) corresponding lock owner */
265 };
266 TAILQ_HEAD(owner_vertex_list, owner_vertex);
267 
268 struct owner_graph {
269 	struct owner_vertex** g_vertices; /* (g) pointers to vertices */
270 	int		g_size;		  /* (g) number of vertices */
271 	int		g_space;	  /* (g) space allocated for vertices */
272 	int		*g_indexbuf;	  /* (g) workspace for loop detection */
273 	uint32_t	g_gen;		  /* (g) increment when re-ordering */
274 };
275 
276 static struct sx		lf_owner_graph_lock;
277 static struct owner_graph	lf_owner_graph;
278 
279 /*
280  * Initialise various structures and locks.
281  */
282 static void
283 lf_init(void *dummy)
284 {
285 	int i;
286 
287 	sx_init(&lf_lock_states_lock, "lock states lock");
288 	LIST_INIT(&lf_lock_states);
289 
290 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
291 		sx_init(&lf_lock_owners[i].lock, "lock owners lock");
292 		LIST_INIT(&lf_lock_owners[i].list);
293 	}
294 
295 	sx_init(&lf_owner_graph_lock, "owner graph lock");
296 	graph_init(&lf_owner_graph);
297 }
298 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
299 
300 /*
301  * Generate a hash value for a lock owner.
302  */
303 static int
304 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags)
305 {
306 	uint32_t h;
307 
308 	if (flags & F_REMOTE) {
309 		h = HASHSTEP(0, fl->l_pid);
310 		h = HASHSTEP(h, fl->l_sysid);
311 	} else if (flags & F_FLOCK) {
312 		h = ((uintptr_t) id) >> 7;
313 	} else {
314 		h = ((uintptr_t) vp) >> 7;
315 	}
316 
317 	return (h % LOCK_OWNER_HASH_SIZE);
318 }
319 
320 /*
321  * Return true if a lock owner matches the details passed to
322  * lf_advlock.
323  */
324 static int
325 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
326     int flags)
327 {
328 	if (flags & F_REMOTE) {
329 		return lo->lo_pid == fl->l_pid
330 			&& lo->lo_sysid == fl->l_sysid;
331 	} else {
332 		return lo->lo_id == id;
333 	}
334 }
335 
336 static struct lockf_entry *
337 lf_alloc_lock(struct lock_owner *lo)
338 {
339 	struct lockf_entry *lf;
340 
341 	lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
342 
343 #ifdef LOCKF_DEBUG
344 	if (lockf_debug & 4)
345 		printf("Allocated lock %p\n", lf);
346 #endif
347 	if (lo) {
348 		sx_xlock(&lf_lock_owners[lo->lo_hash].lock);
349 		lo->lo_refs++;
350 		sx_xunlock(&lf_lock_owners[lo->lo_hash].lock);
351 		lf->lf_owner = lo;
352 	}
353 
354 	return (lf);
355 }
356 
357 static int
358 lf_free_lock(struct lockf_entry *lock)
359 {
360 	struct sx *chainlock;
361 
362 	KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
363 	if (--lock->lf_refs > 0)
364 		return (0);
365 	/*
366 	 * Adjust the lock_owner reference count and
367 	 * reclaim the entry if this is the last lock
368 	 * for that owner.
369 	 */
370 	struct lock_owner *lo = lock->lf_owner;
371 	if (lo) {
372 		KASSERT(LIST_EMPTY(&lock->lf_outedges),
373 		    ("freeing lock with dependencies"));
374 		KASSERT(LIST_EMPTY(&lock->lf_inedges),
375 		    ("freeing lock with dependants"));
376 		chainlock = &lf_lock_owners[lo->lo_hash].lock;
377 		sx_xlock(chainlock);
378 		KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
379 		lo->lo_refs--;
380 		if (lo->lo_refs == 0) {
381 #ifdef LOCKF_DEBUG
382 			if (lockf_debug & 1)
383 				printf("lf_free_lock: freeing lock owner %p\n",
384 				    lo);
385 #endif
386 			if (lo->lo_vertex) {
387 				sx_xlock(&lf_owner_graph_lock);
388 				graph_free_vertex(&lf_owner_graph,
389 				    lo->lo_vertex);
390 				sx_xunlock(&lf_owner_graph_lock);
391 			}
392 			LIST_REMOVE(lo, lo_link);
393 			free(lo, M_LOCKF);
394 #ifdef LOCKF_DEBUG
395 			if (lockf_debug & 4)
396 				printf("Freed lock owner %p\n", lo);
397 #endif
398 		}
399 		sx_unlock(chainlock);
400 	}
401 	if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
402 		vrele(lock->lf_vnode);
403 		lock->lf_vnode = NULL;
404 	}
405 #ifdef LOCKF_DEBUG
406 	if (lockf_debug & 4)
407 		printf("Freed lock %p\n", lock);
408 #endif
409 	free(lock, M_LOCKF);
410 	return (1);
411 }
412 
413 /*
414  * Advisory record locking support
415  */
416 int
417 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
418     u_quad_t size)
419 {
420 	struct lockf *state;
421 	struct flock *fl = ap->a_fl;
422 	struct lockf_entry *lock;
423 	struct vnode *vp = ap->a_vp;
424 	caddr_t id = ap->a_id;
425 	int flags = ap->a_flags;
426 	int hash;
427 	struct lock_owner *lo;
428 	off_t start, end, oadd;
429 	int error;
430 
431 	/*
432 	 * Handle the F_UNLKSYS case first - no need to mess about
433 	 * creating a lock owner for this one.
434 	 */
435 	if (ap->a_op == F_UNLCKSYS) {
436 		lf_clearremotesys(fl->l_sysid);
437 		return (0);
438 	}
439 
440 	/*
441 	 * Convert the flock structure into a start and end.
442 	 */
443 	switch (fl->l_whence) {
444 
445 	case SEEK_SET:
446 	case SEEK_CUR:
447 		/*
448 		 * Caller is responsible for adding any necessary offset
449 		 * when SEEK_CUR is used.
450 		 */
451 		start = fl->l_start;
452 		break;
453 
454 	case SEEK_END:
455 		if (size > OFF_MAX ||
456 		    (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
457 			return (EOVERFLOW);
458 		start = size + fl->l_start;
459 		break;
460 
461 	default:
462 		return (EINVAL);
463 	}
464 	if (start < 0)
465 		return (EINVAL);
466 	if (fl->l_len < 0) {
467 		if (start == 0)
468 			return (EINVAL);
469 		end = start - 1;
470 		start += fl->l_len;
471 		if (start < 0)
472 			return (EINVAL);
473 	} else if (fl->l_len == 0) {
474 		end = OFF_MAX;
475 	} else {
476 		oadd = fl->l_len - 1;
477 		if (oadd > OFF_MAX - start)
478 			return (EOVERFLOW);
479 		end = start + oadd;
480 	}
481 
482 retry_setlock:
483 
484 	/*
485 	 * Avoid the common case of unlocking when inode has no locks.
486 	 */
487 	if (ap->a_op != F_SETLK && (*statep) == NULL) {
488 		VI_LOCK(vp);
489 		if ((*statep) == NULL) {
490 			fl->l_type = F_UNLCK;
491 			VI_UNLOCK(vp);
492 			return (0);
493 		}
494 		VI_UNLOCK(vp);
495 	}
496 
497 	/*
498 	 * Map our arguments to an existing lock owner or create one
499 	 * if this is the first time we have seen this owner.
500 	 */
501 	hash = lf_hash_owner(id, vp, fl, flags);
502 	sx_xlock(&lf_lock_owners[hash].lock);
503 	LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link)
504 		if (lf_owner_matches(lo, id, fl, flags))
505 			break;
506 	if (!lo) {
507 		/*
508 		 * We initialise the lock with a reference
509 		 * count which matches the new lockf_entry
510 		 * structure created below.
511 		 */
512 		lo = malloc(sizeof(struct lock_owner), M_LOCKF,
513 		    M_WAITOK|M_ZERO);
514 #ifdef LOCKF_DEBUG
515 		if (lockf_debug & 4)
516 			printf("Allocated lock owner %p\n", lo);
517 #endif
518 
519 		lo->lo_refs = 1;
520 		lo->lo_flags = flags;
521 		lo->lo_id = id;
522 		lo->lo_hash = hash;
523 		if (flags & F_REMOTE) {
524 			lo->lo_pid = fl->l_pid;
525 			lo->lo_sysid = fl->l_sysid;
526 		} else if (flags & F_FLOCK) {
527 			lo->lo_pid = -1;
528 			lo->lo_sysid = 0;
529 		} else {
530 			struct proc *p = (struct proc *) id;
531 			lo->lo_pid = p->p_pid;
532 			lo->lo_sysid = 0;
533 		}
534 		lo->lo_vertex = NULL;
535 
536 #ifdef LOCKF_DEBUG
537 		if (lockf_debug & 1) {
538 			printf("lf_advlockasync: new lock owner %p ", lo);
539 			lf_print_owner(lo);
540 			printf("\n");
541 		}
542 #endif
543 
544 		LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link);
545 	} else {
546 		/*
547 		 * We have seen this lock owner before, increase its
548 		 * reference count to account for the new lockf_entry
549 		 * structure we create below.
550 		 */
551 		lo->lo_refs++;
552 	}
553 	sx_xunlock(&lf_lock_owners[hash].lock);
554 
555 	/*
556 	 * Create the lockf structure. We initialise the lf_owner
557 	 * field here instead of in lf_alloc_lock() to avoid paying
558 	 * the lf_lock_owners_lock tax twice.
559 	 */
560 	lock = lf_alloc_lock(NULL);
561 	lock->lf_refs = 1;
562 	lock->lf_start = start;
563 	lock->lf_end = end;
564 	lock->lf_owner = lo;
565 	lock->lf_vnode = vp;
566 	if (flags & F_REMOTE) {
567 		/*
568 		 * For remote locks, the caller may release its ref to
569 		 * the vnode at any time - we have to ref it here to
570 		 * prevent it from being recycled unexpectedly.
571 		 */
572 		vref(vp);
573 	}
574 
575 	/*
576 	 * XXX The problem is that VTOI is ufs specific, so it will
577 	 * break LOCKF_DEBUG for all other FS's other than UFS because
578 	 * it casts the vnode->data ptr to struct inode *.
579 	 */
580 /*	lock->lf_inode = VTOI(ap->a_vp); */
581 	lock->lf_inode = (struct inode *)0;
582 	lock->lf_type = fl->l_type;
583 	LIST_INIT(&lock->lf_outedges);
584 	LIST_INIT(&lock->lf_inedges);
585 	lock->lf_async_task = ap->a_task;
586 	lock->lf_flags = ap->a_flags;
587 
588 	/*
589 	 * Do the requested operation. First find our state structure
590 	 * and create a new one if necessary - the caller's *statep
591 	 * variable and the state's ls_threads count is protected by
592 	 * the vnode interlock.
593 	 */
594 	VI_LOCK(vp);
595 	if (vp->v_iflag & VI_DOOMED) {
596 		VI_UNLOCK(vp);
597 		lf_free_lock(lock);
598 		return (ENOENT);
599 	}
600 
601 	/*
602 	 * Allocate a state structure if necessary.
603 	 */
604 	state = *statep;
605 	if (state == NULL) {
606 		struct lockf *ls;
607 
608 		VI_UNLOCK(vp);
609 
610 		ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
611 		sx_init(&ls->ls_lock, "ls_lock");
612 		LIST_INIT(&ls->ls_active);
613 		LIST_INIT(&ls->ls_pending);
614 		ls->ls_threads = 1;
615 
616 		sx_xlock(&lf_lock_states_lock);
617 		LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
618 		sx_xunlock(&lf_lock_states_lock);
619 
620 		/*
621 		 * Cope if we lost a race with some other thread while
622 		 * trying to allocate memory.
623 		 */
624 		VI_LOCK(vp);
625 		if (vp->v_iflag & VI_DOOMED) {
626 			VI_UNLOCK(vp);
627 			sx_xlock(&lf_lock_states_lock);
628 			LIST_REMOVE(ls, ls_link);
629 			sx_xunlock(&lf_lock_states_lock);
630 			sx_destroy(&ls->ls_lock);
631 			free(ls, M_LOCKF);
632 			lf_free_lock(lock);
633 			return (ENOENT);
634 		}
635 		if ((*statep) == NULL) {
636 			state = *statep = ls;
637 			VI_UNLOCK(vp);
638 		} else {
639 			state = *statep;
640 			state->ls_threads++;
641 			VI_UNLOCK(vp);
642 
643 			sx_xlock(&lf_lock_states_lock);
644 			LIST_REMOVE(ls, ls_link);
645 			sx_xunlock(&lf_lock_states_lock);
646 			sx_destroy(&ls->ls_lock);
647 			free(ls, M_LOCKF);
648 		}
649 	} else {
650 		state->ls_threads++;
651 		VI_UNLOCK(vp);
652 	}
653 
654 	sx_xlock(&state->ls_lock);
655 	/*
656 	 * Recheck the doomed vnode after state->ls_lock is
657 	 * locked. lf_purgelocks() requires that no new threads add
658 	 * pending locks when vnode is marked by VI_DOOMED flag.
659 	 */
660 	VI_LOCK(vp);
661 	if (vp->v_iflag & VI_DOOMED) {
662 		state->ls_threads--;
663 		wakeup(state);
664 		VI_UNLOCK(vp);
665 		sx_xunlock(&state->ls_lock);
666 		lf_free_lock(lock);
667 		return (ENOENT);
668 	}
669 	VI_UNLOCK(vp);
670 
671 	switch (ap->a_op) {
672 	case F_SETLK:
673 		error = lf_setlock(state, lock, vp, ap->a_cookiep);
674 		break;
675 
676 	case F_UNLCK:
677 		error = lf_clearlock(state, lock);
678 		lf_free_lock(lock);
679 		break;
680 
681 	case F_GETLK:
682 		error = lf_getlock(state, lock, fl);
683 		lf_free_lock(lock);
684 		break;
685 
686 	case F_CANCEL:
687 		if (ap->a_cookiep)
688 			error = lf_cancel(state, lock, *ap->a_cookiep);
689 		else
690 			error = EINVAL;
691 		lf_free_lock(lock);
692 		break;
693 
694 	default:
695 		lf_free_lock(lock);
696 		error = EINVAL;
697 		break;
698 	}
699 
700 #ifdef DIAGNOSTIC
701 	/*
702 	 * Check for some can't happen stuff. In this case, the active
703 	 * lock list becoming disordered or containing mutually
704 	 * blocking locks. We also check the pending list for locks
705 	 * which should be active (i.e. have no out-going edges).
706 	 */
707 	LIST_FOREACH(lock, &state->ls_active, lf_link) {
708 		struct lockf_entry *lf;
709 		if (LIST_NEXT(lock, lf_link))
710 			KASSERT((lock->lf_start
711 				<= LIST_NEXT(lock, lf_link)->lf_start),
712 			    ("locks disordered"));
713 		LIST_FOREACH(lf, &state->ls_active, lf_link) {
714 			if (lock == lf)
715 				break;
716 			KASSERT(!lf_blocks(lock, lf),
717 			    ("two conflicting active locks"));
718 			if (lock->lf_owner == lf->lf_owner)
719 				KASSERT(!lf_overlaps(lock, lf),
720 				    ("two overlapping locks from same owner"));
721 		}
722 	}
723 	LIST_FOREACH(lock, &state->ls_pending, lf_link) {
724 		KASSERT(!LIST_EMPTY(&lock->lf_outedges),
725 		    ("pending lock which should be active"));
726 	}
727 #endif
728 	sx_xunlock(&state->ls_lock);
729 
730 	VI_LOCK(vp);
731 
732 	state->ls_threads--;
733 	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
734 		KASSERT(LIST_EMPTY(&state->ls_pending),
735 		    ("freeable state with pending locks"));
736 	} else {
737 		wakeup(state);
738 	}
739 
740 	VI_UNLOCK(vp);
741 
742 	if (error == EDOOFUS) {
743 		KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
744 		goto retry_setlock;
745 	}
746 	return (error);
747 }
748 
749 int
750 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
751 {
752 	struct vop_advlockasync_args a;
753 
754 	a.a_vp = ap->a_vp;
755 	a.a_id = ap->a_id;
756 	a.a_op = ap->a_op;
757 	a.a_fl = ap->a_fl;
758 	a.a_flags = ap->a_flags;
759 	a.a_task = NULL;
760 	a.a_cookiep = NULL;
761 
762 	return (lf_advlockasync(&a, statep, size));
763 }
764 
765 void
766 lf_purgelocks(struct vnode *vp, struct lockf **statep)
767 {
768 	struct lockf *state;
769 	struct lockf_entry *lock, *nlock;
770 
771 	/*
772 	 * For this to work correctly, the caller must ensure that no
773 	 * other threads enter the locking system for this vnode,
774 	 * e.g. by checking VI_DOOMED. We wake up any threads that are
775 	 * sleeping waiting for locks on this vnode and then free all
776 	 * the remaining locks.
777 	 */
778 	VI_LOCK(vp);
779 	KASSERT(vp->v_iflag & VI_DOOMED,
780 	    ("lf_purgelocks: vp %p has not vgone yet", vp));
781 	state = *statep;
782 	if (state == NULL) {
783 		VI_UNLOCK(vp);
784 		return;
785 	}
786 	*statep = NULL;
787 	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
788 		KASSERT(LIST_EMPTY(&state->ls_pending),
789 		    ("freeing state with pending locks"));
790 		VI_UNLOCK(vp);
791 		goto out_free;
792 	}
793 	state->ls_threads++;
794 	VI_UNLOCK(vp);
795 
796 	sx_xlock(&state->ls_lock);
797 	sx_xlock(&lf_owner_graph_lock);
798 	LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
799 		LIST_REMOVE(lock, lf_link);
800 		lf_remove_outgoing(lock);
801 		lf_remove_incoming(lock);
802 
803 		/*
804 		 * If its an async lock, we can just free it
805 		 * here, otherwise we let the sleeping thread
806 		 * free it.
807 		 */
808 		if (lock->lf_async_task) {
809 			lf_free_lock(lock);
810 		} else {
811 			lock->lf_flags |= F_INTR;
812 			wakeup(lock);
813 		}
814 	}
815 	sx_xunlock(&lf_owner_graph_lock);
816 	sx_xunlock(&state->ls_lock);
817 
818 	/*
819 	 * Wait for all other threads, sleeping and otherwise
820 	 * to leave.
821 	 */
822 	VI_LOCK(vp);
823 	while (state->ls_threads > 1)
824 		msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
825 	VI_UNLOCK(vp);
826 
827 	/*
828 	 * We can just free all the active locks since they
829 	 * will have no dependencies (we removed them all
830 	 * above). We don't need to bother locking since we
831 	 * are the last thread using this state structure.
832 	 */
833 	KASSERT(LIST_EMPTY(&state->ls_pending),
834 	    ("lock pending for %p", state));
835 	LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
836 		LIST_REMOVE(lock, lf_link);
837 		lf_free_lock(lock);
838 	}
839 out_free:
840 	sx_xlock(&lf_lock_states_lock);
841 	LIST_REMOVE(state, ls_link);
842 	sx_xunlock(&lf_lock_states_lock);
843 	sx_destroy(&state->ls_lock);
844 	free(state, M_LOCKF);
845 }
846 
847 /*
848  * Return non-zero if locks 'x' and 'y' overlap.
849  */
850 static int
851 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
852 {
853 
854 	return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
855 }
856 
857 /*
858  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
859  */
860 static int
861 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
862 {
863 
864 	return x->lf_owner != y->lf_owner
865 		&& (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
866 		&& lf_overlaps(x, y);
867 }
868 
869 /*
870  * Allocate a lock edge from the free list
871  */
872 static struct lockf_edge *
873 lf_alloc_edge(void)
874 {
875 
876 	return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
877 }
878 
879 /*
880  * Free a lock edge.
881  */
882 static void
883 lf_free_edge(struct lockf_edge *e)
884 {
885 
886 	free(e, M_LOCKF);
887 }
888 
889 
890 /*
891  * Ensure that the lock's owner has a corresponding vertex in the
892  * owner graph.
893  */
894 static void
895 lf_alloc_vertex(struct lockf_entry *lock)
896 {
897 	struct owner_graph *g = &lf_owner_graph;
898 
899 	if (!lock->lf_owner->lo_vertex)
900 		lock->lf_owner->lo_vertex =
901 			graph_alloc_vertex(g, lock->lf_owner);
902 }
903 
904 /*
905  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
906  * the new edge would cause a cycle in the owner graph.
907  */
908 static int
909 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
910 {
911 	struct owner_graph *g = &lf_owner_graph;
912 	struct lockf_edge *e;
913 	int error;
914 
915 #ifdef DIAGNOSTIC
916 	LIST_FOREACH(e, &x->lf_outedges, le_outlink)
917 		KASSERT(e->le_to != y, ("adding lock edge twice"));
918 #endif
919 
920 	/*
921 	 * Make sure the two owners have entries in the owner graph.
922 	 */
923 	lf_alloc_vertex(x);
924 	lf_alloc_vertex(y);
925 
926 	error = graph_add_edge(g, x->lf_owner->lo_vertex,
927 	    y->lf_owner->lo_vertex);
928 	if (error)
929 		return (error);
930 
931 	e = lf_alloc_edge();
932 	LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
933 	LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
934 	e->le_from = x;
935 	e->le_to = y;
936 
937 	return (0);
938 }
939 
940 /*
941  * Remove an edge from the lock graph.
942  */
943 static void
944 lf_remove_edge(struct lockf_edge *e)
945 {
946 	struct owner_graph *g = &lf_owner_graph;
947 	struct lockf_entry *x = e->le_from;
948 	struct lockf_entry *y = e->le_to;
949 
950 	graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
951 	LIST_REMOVE(e, le_outlink);
952 	LIST_REMOVE(e, le_inlink);
953 	e->le_from = NULL;
954 	e->le_to = NULL;
955 	lf_free_edge(e);
956 }
957 
958 /*
959  * Remove all out-going edges from lock x.
960  */
961 static void
962 lf_remove_outgoing(struct lockf_entry *x)
963 {
964 	struct lockf_edge *e;
965 
966 	while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
967 		lf_remove_edge(e);
968 	}
969 }
970 
971 /*
972  * Remove all in-coming edges from lock x.
973  */
974 static void
975 lf_remove_incoming(struct lockf_entry *x)
976 {
977 	struct lockf_edge *e;
978 
979 	while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
980 		lf_remove_edge(e);
981 	}
982 }
983 
984 /*
985  * Walk the list of locks for the file and create an out-going edge
986  * from lock to each blocking lock.
987  */
988 static int
989 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
990 {
991 	struct lockf_entry *overlap;
992 	int error;
993 
994 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
995 		/*
996 		 * We may assume that the active list is sorted by
997 		 * lf_start.
998 		 */
999 		if (overlap->lf_start > lock->lf_end)
1000 			break;
1001 		if (!lf_blocks(lock, overlap))
1002 			continue;
1003 
1004 		/*
1005 		 * We've found a blocking lock. Add the corresponding
1006 		 * edge to the graphs and see if it would cause a
1007 		 * deadlock.
1008 		 */
1009 		error = lf_add_edge(lock, overlap);
1010 
1011 		/*
1012 		 * The only error that lf_add_edge returns is EDEADLK.
1013 		 * Remove any edges we added and return the error.
1014 		 */
1015 		if (error) {
1016 			lf_remove_outgoing(lock);
1017 			return (error);
1018 		}
1019 	}
1020 
1021 	/*
1022 	 * We also need to add edges to sleeping locks that block
1023 	 * us. This ensures that lf_wakeup_lock cannot grant two
1024 	 * mutually blocking locks simultaneously and also enforces a
1025 	 * 'first come, first served' fairness model. Note that this
1026 	 * only happens if we are blocked by at least one active lock
1027 	 * due to the call to lf_getblock in lf_setlock below.
1028 	 */
1029 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1030 		if (!lf_blocks(lock, overlap))
1031 			continue;
1032 		/*
1033 		 * We've found a blocking lock. Add the corresponding
1034 		 * edge to the graphs and see if it would cause a
1035 		 * deadlock.
1036 		 */
1037 		error = lf_add_edge(lock, overlap);
1038 
1039 		/*
1040 		 * The only error that lf_add_edge returns is EDEADLK.
1041 		 * Remove any edges we added and return the error.
1042 		 */
1043 		if (error) {
1044 			lf_remove_outgoing(lock);
1045 			return (error);
1046 		}
1047 	}
1048 
1049 	return (0);
1050 }
1051 
1052 /*
1053  * Walk the list of pending locks for the file and create an in-coming
1054  * edge from lock to each blocking lock.
1055  */
1056 static int
1057 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1058 {
1059 	struct lockf_entry *overlap;
1060 	int error;
1061 
1062 	sx_assert(&state->ls_lock, SX_XLOCKED);
1063 	if (LIST_EMPTY(&state->ls_pending))
1064 		return (0);
1065 
1066 	error = 0;
1067 	sx_xlock(&lf_owner_graph_lock);
1068 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1069 		if (!lf_blocks(lock, overlap))
1070 			continue;
1071 
1072 		/*
1073 		 * We've found a blocking lock. Add the corresponding
1074 		 * edge to the graphs and see if it would cause a
1075 		 * deadlock.
1076 		 */
1077 		error = lf_add_edge(overlap, lock);
1078 
1079 		/*
1080 		 * The only error that lf_add_edge returns is EDEADLK.
1081 		 * Remove any edges we added and return the error.
1082 		 */
1083 		if (error) {
1084 			lf_remove_incoming(lock);
1085 			break;
1086 		}
1087 	}
1088 	sx_xunlock(&lf_owner_graph_lock);
1089 	return (error);
1090 }
1091 
1092 /*
1093  * Insert lock into the active list, keeping list entries ordered by
1094  * increasing values of lf_start.
1095  */
1096 static void
1097 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1098 {
1099 	struct lockf_entry *lf, *lfprev;
1100 
1101 	if (LIST_EMPTY(&state->ls_active)) {
1102 		LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1103 		return;
1104 	}
1105 
1106 	lfprev = NULL;
1107 	LIST_FOREACH(lf, &state->ls_active, lf_link) {
1108 		if (lf->lf_start > lock->lf_start) {
1109 			LIST_INSERT_BEFORE(lf, lock, lf_link);
1110 			return;
1111 		}
1112 		lfprev = lf;
1113 	}
1114 	LIST_INSERT_AFTER(lfprev, lock, lf_link);
1115 }
1116 
1117 /*
1118  * Wake up a sleeping lock and remove it from the pending list now
1119  * that all its dependencies have been resolved. The caller should
1120  * arrange for the lock to be added to the active list, adjusting any
1121  * existing locks for the same owner as needed.
1122  */
1123 static void
1124 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1125 {
1126 
1127 	/*
1128 	 * Remove from ls_pending list and wake up the caller
1129 	 * or start the async notification, as appropriate.
1130 	 */
1131 	LIST_REMOVE(wakelock, lf_link);
1132 #ifdef LOCKF_DEBUG
1133 	if (lockf_debug & 1)
1134 		lf_print("lf_wakeup_lock: awakening", wakelock);
1135 #endif /* LOCKF_DEBUG */
1136 	if (wakelock->lf_async_task) {
1137 		taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1138 	} else {
1139 		wakeup(wakelock);
1140 	}
1141 }
1142 
1143 /*
1144  * Re-check all dependent locks and remove edges to locks that we no
1145  * longer block. If 'all' is non-zero, the lock has been removed and
1146  * we must remove all the dependencies, otherwise it has simply been
1147  * reduced but remains active. Any pending locks which have been been
1148  * unblocked are added to 'granted'
1149  */
1150 static void
1151 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1152 	struct lockf_entry_list *granted)
1153 {
1154 	struct lockf_edge *e, *ne;
1155 	struct lockf_entry *deplock;
1156 
1157 	LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1158 		deplock = e->le_from;
1159 		if (all || !lf_blocks(lock, deplock)) {
1160 			sx_xlock(&lf_owner_graph_lock);
1161 			lf_remove_edge(e);
1162 			sx_xunlock(&lf_owner_graph_lock);
1163 			if (LIST_EMPTY(&deplock->lf_outedges)) {
1164 				lf_wakeup_lock(state, deplock);
1165 				LIST_INSERT_HEAD(granted, deplock, lf_link);
1166 			}
1167 		}
1168 	}
1169 }
1170 
1171 /*
1172  * Set the start of an existing active lock, updating dependencies and
1173  * adding any newly woken locks to 'granted'.
1174  */
1175 static void
1176 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1177 	struct lockf_entry_list *granted)
1178 {
1179 
1180 	KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1181 	lock->lf_start = new_start;
1182 	LIST_REMOVE(lock, lf_link);
1183 	lf_insert_lock(state, lock);
1184 	lf_update_dependancies(state, lock, FALSE, granted);
1185 }
1186 
1187 /*
1188  * Set the end of an existing active lock, updating dependencies and
1189  * adding any newly woken locks to 'granted'.
1190  */
1191 static void
1192 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1193 	struct lockf_entry_list *granted)
1194 {
1195 
1196 	KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1197 	lock->lf_end = new_end;
1198 	lf_update_dependancies(state, lock, FALSE, granted);
1199 }
1200 
1201 /*
1202  * Add a lock to the active list, updating or removing any current
1203  * locks owned by the same owner and processing any pending locks that
1204  * become unblocked as a result. This code is also used for unlock
1205  * since the logic for updating existing locks is identical.
1206  *
1207  * As a result of processing the new lock, we may unblock existing
1208  * pending locks as a result of downgrading/unlocking. We simply
1209  * activate the newly granted locks by looping.
1210  *
1211  * Since the new lock already has its dependencies set up, we always
1212  * add it to the list (unless its an unlock request). This may
1213  * fragment the lock list in some pathological cases but its probably
1214  * not a real problem.
1215  */
1216 static void
1217 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1218 {
1219 	struct lockf_entry *overlap, *lf;
1220 	struct lockf_entry_list granted;
1221 	int ovcase;
1222 
1223 	LIST_INIT(&granted);
1224 	LIST_INSERT_HEAD(&granted, lock, lf_link);
1225 
1226 	while (!LIST_EMPTY(&granted)) {
1227 		lock = LIST_FIRST(&granted);
1228 		LIST_REMOVE(lock, lf_link);
1229 
1230 		/*
1231 		 * Skip over locks owned by other processes.  Handle
1232 		 * any locks that overlap and are owned by ourselves.
1233 		 */
1234 		overlap = LIST_FIRST(&state->ls_active);
1235 		for (;;) {
1236 			ovcase = lf_findoverlap(&overlap, lock, SELF);
1237 
1238 #ifdef LOCKF_DEBUG
1239 			if (ovcase && (lockf_debug & 2)) {
1240 				printf("lf_setlock: overlap %d", ovcase);
1241 				lf_print("", overlap);
1242 			}
1243 #endif
1244 			/*
1245 			 * Six cases:
1246 			 *	0) no overlap
1247 			 *	1) overlap == lock
1248 			 *	2) overlap contains lock
1249 			 *	3) lock contains overlap
1250 			 *	4) overlap starts before lock
1251 			 *	5) overlap ends after lock
1252 			 */
1253 			switch (ovcase) {
1254 			case 0: /* no overlap */
1255 				break;
1256 
1257 			case 1: /* overlap == lock */
1258 				/*
1259 				 * We have already setup the
1260 				 * dependants for the new lock, taking
1261 				 * into account a possible downgrade
1262 				 * or unlock. Remove the old lock.
1263 				 */
1264 				LIST_REMOVE(overlap, lf_link);
1265 				lf_update_dependancies(state, overlap, TRUE,
1266 					&granted);
1267 				lf_free_lock(overlap);
1268 				break;
1269 
1270 			case 2: /* overlap contains lock */
1271 				/*
1272 				 * Just split the existing lock.
1273 				 */
1274 				lf_split(state, overlap, lock, &granted);
1275 				break;
1276 
1277 			case 3: /* lock contains overlap */
1278 				/*
1279 				 * Delete the overlap and advance to
1280 				 * the next entry in the list.
1281 				 */
1282 				lf = LIST_NEXT(overlap, lf_link);
1283 				LIST_REMOVE(overlap, lf_link);
1284 				lf_update_dependancies(state, overlap, TRUE,
1285 					&granted);
1286 				lf_free_lock(overlap);
1287 				overlap = lf;
1288 				continue;
1289 
1290 			case 4: /* overlap starts before lock */
1291 				/*
1292 				 * Just update the overlap end and
1293 				 * move on.
1294 				 */
1295 				lf_set_end(state, overlap, lock->lf_start - 1,
1296 				    &granted);
1297 				overlap = LIST_NEXT(overlap, lf_link);
1298 				continue;
1299 
1300 			case 5: /* overlap ends after lock */
1301 				/*
1302 				 * Change the start of overlap and
1303 				 * re-insert.
1304 				 */
1305 				lf_set_start(state, overlap, lock->lf_end + 1,
1306 				    &granted);
1307 				break;
1308 			}
1309 			break;
1310 		}
1311 #ifdef LOCKF_DEBUG
1312 		if (lockf_debug & 1) {
1313 			if (lock->lf_type != F_UNLCK)
1314 				lf_print("lf_activate_lock: activated", lock);
1315 			else
1316 				lf_print("lf_activate_lock: unlocked", lock);
1317 			lf_printlist("lf_activate_lock", lock);
1318 		}
1319 #endif /* LOCKF_DEBUG */
1320 		if (lock->lf_type != F_UNLCK)
1321 			lf_insert_lock(state, lock);
1322 	}
1323 }
1324 
1325 /*
1326  * Cancel a pending lock request, either as a result of a signal or a
1327  * cancel request for an async lock.
1328  */
1329 static void
1330 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1331 {
1332 	struct lockf_entry_list granted;
1333 
1334 	/*
1335 	 * Note it is theoretically possible that cancelling this lock
1336 	 * may allow some other pending lock to become
1337 	 * active. Consider this case:
1338 	 *
1339 	 * Owner	Action		Result		Dependencies
1340 	 *
1341 	 * A:		lock [0..0]	succeeds
1342 	 * B:		lock [2..2]	succeeds
1343 	 * C:		lock [1..2]	blocked		C->B
1344 	 * D:		lock [0..1]	blocked		C->B,D->A,D->C
1345 	 * A:		unlock [0..0]			C->B,D->C
1346 	 * C:		cancel [1..2]
1347 	 */
1348 
1349 	LIST_REMOVE(lock, lf_link);
1350 
1351 	/*
1352 	 * Removing out-going edges is simple.
1353 	 */
1354 	sx_xlock(&lf_owner_graph_lock);
1355 	lf_remove_outgoing(lock);
1356 	sx_xunlock(&lf_owner_graph_lock);
1357 
1358 	/*
1359 	 * Removing in-coming edges may allow some other lock to
1360 	 * become active - we use lf_update_dependancies to figure
1361 	 * this out.
1362 	 */
1363 	LIST_INIT(&granted);
1364 	lf_update_dependancies(state, lock, TRUE, &granted);
1365 	lf_free_lock(lock);
1366 
1367 	/*
1368 	 * Feed any newly active locks to lf_activate_lock.
1369 	 */
1370 	while (!LIST_EMPTY(&granted)) {
1371 		lock = LIST_FIRST(&granted);
1372 		LIST_REMOVE(lock, lf_link);
1373 		lf_activate_lock(state, lock);
1374 	}
1375 }
1376 
1377 /*
1378  * Set a byte-range lock.
1379  */
1380 static int
1381 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1382     void **cookiep)
1383 {
1384 	static char lockstr[] = "lockf";
1385 	int error, priority, stops_deferred;
1386 
1387 #ifdef LOCKF_DEBUG
1388 	if (lockf_debug & 1)
1389 		lf_print("lf_setlock", lock);
1390 #endif /* LOCKF_DEBUG */
1391 
1392 	/*
1393 	 * Set the priority
1394 	 */
1395 	priority = PLOCK;
1396 	if (lock->lf_type == F_WRLCK)
1397 		priority += 4;
1398 	if (!(lock->lf_flags & F_NOINTR))
1399 		priority |= PCATCH;
1400 	/*
1401 	 * Scan lock list for this file looking for locks that would block us.
1402 	 */
1403 	if (lf_getblock(state, lock)) {
1404 		/*
1405 		 * Free the structure and return if nonblocking.
1406 		 */
1407 		if ((lock->lf_flags & F_WAIT) == 0
1408 		    && lock->lf_async_task == NULL) {
1409 			lf_free_lock(lock);
1410 			error = EAGAIN;
1411 			goto out;
1412 		}
1413 
1414 		/*
1415 		 * For flock type locks, we must first remove
1416 		 * any shared locks that we hold before we sleep
1417 		 * waiting for an exclusive lock.
1418 		 */
1419 		if ((lock->lf_flags & F_FLOCK) &&
1420 		    lock->lf_type == F_WRLCK) {
1421 			lock->lf_type = F_UNLCK;
1422 			lf_activate_lock(state, lock);
1423 			lock->lf_type = F_WRLCK;
1424 		}
1425 
1426 		/*
1427 		 * We are blocked. Create edges to each blocking lock,
1428 		 * checking for deadlock using the owner graph. For
1429 		 * simplicity, we run deadlock detection for all
1430 		 * locks, posix and otherwise.
1431 		 */
1432 		sx_xlock(&lf_owner_graph_lock);
1433 		error = lf_add_outgoing(state, lock);
1434 		sx_xunlock(&lf_owner_graph_lock);
1435 
1436 		if (error) {
1437 #ifdef LOCKF_DEBUG
1438 			if (lockf_debug & 1)
1439 				lf_print("lf_setlock: deadlock", lock);
1440 #endif
1441 			lf_free_lock(lock);
1442 			goto out;
1443 		}
1444 
1445 		/*
1446 		 * We have added edges to everything that blocks
1447 		 * us. Sleep until they all go away.
1448 		 */
1449 		LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1450 #ifdef LOCKF_DEBUG
1451 		if (lockf_debug & 1) {
1452 			struct lockf_edge *e;
1453 			LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1454 				lf_print("lf_setlock: blocking on", e->le_to);
1455 				lf_printlist("lf_setlock", e->le_to);
1456 			}
1457 		}
1458 #endif /* LOCKF_DEBUG */
1459 
1460 		if ((lock->lf_flags & F_WAIT) == 0) {
1461 			/*
1462 			 * The caller requested async notification -
1463 			 * this callback happens when the blocking
1464 			 * lock is released, allowing the caller to
1465 			 * make another attempt to take the lock.
1466 			 */
1467 			*cookiep = (void *) lock;
1468 			error = EINPROGRESS;
1469 			goto out;
1470 		}
1471 
1472 		lock->lf_refs++;
1473 		stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
1474 		error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1475 		sigallowstop(stops_deferred);
1476 		if (lf_free_lock(lock)) {
1477 			error = EDOOFUS;
1478 			goto out;
1479 		}
1480 
1481 		/*
1482 		 * We may have been awakened by a signal and/or by a
1483 		 * debugger continuing us (in which cases we must
1484 		 * remove our lock graph edges) and/or by another
1485 		 * process releasing a lock (in which case our edges
1486 		 * have already been removed and we have been moved to
1487 		 * the active list). We may also have been woken by
1488 		 * lf_purgelocks which we report to the caller as
1489 		 * EINTR. In that case, lf_purgelocks will have
1490 		 * removed our lock graph edges.
1491 		 *
1492 		 * Note that it is possible to receive a signal after
1493 		 * we were successfully woken (and moved to the active
1494 		 * list) but before we resumed execution. In this
1495 		 * case, our lf_outedges list will be clear. We
1496 		 * pretend there was no error.
1497 		 *
1498 		 * Note also, if we have been sleeping long enough, we
1499 		 * may now have incoming edges from some newer lock
1500 		 * which is waiting behind us in the queue.
1501 		 */
1502 		if (lock->lf_flags & F_INTR) {
1503 			error = EINTR;
1504 			lf_free_lock(lock);
1505 			goto out;
1506 		}
1507 		if (LIST_EMPTY(&lock->lf_outedges)) {
1508 			error = 0;
1509 		} else {
1510 			lf_cancel_lock(state, lock);
1511 			goto out;
1512 		}
1513 #ifdef LOCKF_DEBUG
1514 		if (lockf_debug & 1) {
1515 			lf_print("lf_setlock: granted", lock);
1516 		}
1517 #endif
1518 		goto out;
1519 	}
1520 	/*
1521 	 * It looks like we are going to grant the lock. First add
1522 	 * edges from any currently pending lock that the new lock
1523 	 * would block.
1524 	 */
1525 	error = lf_add_incoming(state, lock);
1526 	if (error) {
1527 #ifdef LOCKF_DEBUG
1528 		if (lockf_debug & 1)
1529 			lf_print("lf_setlock: deadlock", lock);
1530 #endif
1531 		lf_free_lock(lock);
1532 		goto out;
1533 	}
1534 
1535 	/*
1536 	 * No blocks!!  Add the lock.  Note that we will
1537 	 * downgrade or upgrade any overlapping locks this
1538 	 * process already owns.
1539 	 */
1540 	lf_activate_lock(state, lock);
1541 	error = 0;
1542 out:
1543 	return (error);
1544 }
1545 
1546 /*
1547  * Remove a byte-range lock on an inode.
1548  *
1549  * Generally, find the lock (or an overlap to that lock)
1550  * and remove it (or shrink it), then wakeup anyone we can.
1551  */
1552 static int
1553 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1554 {
1555 	struct lockf_entry *overlap;
1556 
1557 	overlap = LIST_FIRST(&state->ls_active);
1558 
1559 	if (overlap == NOLOCKF)
1560 		return (0);
1561 #ifdef LOCKF_DEBUG
1562 	if (unlock->lf_type != F_UNLCK)
1563 		panic("lf_clearlock: bad type");
1564 	if (lockf_debug & 1)
1565 		lf_print("lf_clearlock", unlock);
1566 #endif /* LOCKF_DEBUG */
1567 
1568 	lf_activate_lock(state, unlock);
1569 
1570 	return (0);
1571 }
1572 
1573 /*
1574  * Check whether there is a blocking lock, and if so return its
1575  * details in '*fl'.
1576  */
1577 static int
1578 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1579 {
1580 	struct lockf_entry *block;
1581 
1582 #ifdef LOCKF_DEBUG
1583 	if (lockf_debug & 1)
1584 		lf_print("lf_getlock", lock);
1585 #endif /* LOCKF_DEBUG */
1586 
1587 	if ((block = lf_getblock(state, lock))) {
1588 		fl->l_type = block->lf_type;
1589 		fl->l_whence = SEEK_SET;
1590 		fl->l_start = block->lf_start;
1591 		if (block->lf_end == OFF_MAX)
1592 			fl->l_len = 0;
1593 		else
1594 			fl->l_len = block->lf_end - block->lf_start + 1;
1595 		fl->l_pid = block->lf_owner->lo_pid;
1596 		fl->l_sysid = block->lf_owner->lo_sysid;
1597 	} else {
1598 		fl->l_type = F_UNLCK;
1599 	}
1600 	return (0);
1601 }
1602 
1603 /*
1604  * Cancel an async lock request.
1605  */
1606 static int
1607 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1608 {
1609 	struct lockf_entry *reallock;
1610 
1611 	/*
1612 	 * We need to match this request with an existing lock
1613 	 * request.
1614 	 */
1615 	LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1616 		if ((void *) reallock == cookie) {
1617 			/*
1618 			 * Double-check that this lock looks right
1619 			 * (maybe use a rolling ID for the cancel
1620 			 * cookie instead?)
1621 			 */
1622 			if (!(reallock->lf_vnode == lock->lf_vnode
1623 				&& reallock->lf_start == lock->lf_start
1624 				&& reallock->lf_end == lock->lf_end)) {
1625 				return (ENOENT);
1626 			}
1627 
1628 			/*
1629 			 * Make sure this lock was async and then just
1630 			 * remove it from its wait lists.
1631 			 */
1632 			if (!reallock->lf_async_task) {
1633 				return (ENOENT);
1634 			}
1635 
1636 			/*
1637 			 * Note that since any other thread must take
1638 			 * state->ls_lock before it can possibly
1639 			 * trigger the async callback, we are safe
1640 			 * from a race with lf_wakeup_lock, i.e. we
1641 			 * can free the lock (actually our caller does
1642 			 * this).
1643 			 */
1644 			lf_cancel_lock(state, reallock);
1645 			return (0);
1646 		}
1647 	}
1648 
1649 	/*
1650 	 * We didn't find a matching lock - not much we can do here.
1651 	 */
1652 	return (ENOENT);
1653 }
1654 
1655 /*
1656  * Walk the list of locks for an inode and
1657  * return the first blocking lock.
1658  */
1659 static struct lockf_entry *
1660 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1661 {
1662 	struct lockf_entry *overlap;
1663 
1664 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1665 		/*
1666 		 * We may assume that the active list is sorted by
1667 		 * lf_start.
1668 		 */
1669 		if (overlap->lf_start > lock->lf_end)
1670 			break;
1671 		if (!lf_blocks(lock, overlap))
1672 			continue;
1673 		return (overlap);
1674 	}
1675 	return (NOLOCKF);
1676 }
1677 
1678 /*
1679  * Walk the list of locks for an inode to find an overlapping lock (if
1680  * any) and return a classification of that overlap.
1681  *
1682  * Arguments:
1683  *	*overlap	The place in the lock list to start looking
1684  *	lock		The lock which is being tested
1685  *	type		Pass 'SELF' to test only locks with the same
1686  *			owner as lock, or 'OTHER' to test only locks
1687  *			with a different owner
1688  *
1689  * Returns one of six values:
1690  *	0) no overlap
1691  *	1) overlap == lock
1692  *	2) overlap contains lock
1693  *	3) lock contains overlap
1694  *	4) overlap starts before lock
1695  *	5) overlap ends after lock
1696  *
1697  * If there is an overlapping lock, '*overlap' is set to point at the
1698  * overlapping lock.
1699  *
1700  * NOTE: this returns only the FIRST overlapping lock.  There
1701  *	 may be more than one.
1702  */
1703 static int
1704 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1705 {
1706 	struct lockf_entry *lf;
1707 	off_t start, end;
1708 	int res;
1709 
1710 	if ((*overlap) == NOLOCKF) {
1711 		return (0);
1712 	}
1713 #ifdef LOCKF_DEBUG
1714 	if (lockf_debug & 2)
1715 		lf_print("lf_findoverlap: looking for overlap in", lock);
1716 #endif /* LOCKF_DEBUG */
1717 	start = lock->lf_start;
1718 	end = lock->lf_end;
1719 	res = 0;
1720 	while (*overlap) {
1721 		lf = *overlap;
1722 		if (lf->lf_start > end)
1723 			break;
1724 		if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1725 		    ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1726 			*overlap = LIST_NEXT(lf, lf_link);
1727 			continue;
1728 		}
1729 #ifdef LOCKF_DEBUG
1730 		if (lockf_debug & 2)
1731 			lf_print("\tchecking", lf);
1732 #endif /* LOCKF_DEBUG */
1733 		/*
1734 		 * OK, check for overlap
1735 		 *
1736 		 * Six cases:
1737 		 *	0) no overlap
1738 		 *	1) overlap == lock
1739 		 *	2) overlap contains lock
1740 		 *	3) lock contains overlap
1741 		 *	4) overlap starts before lock
1742 		 *	5) overlap ends after lock
1743 		 */
1744 		if (start > lf->lf_end) {
1745 			/* Case 0 */
1746 #ifdef LOCKF_DEBUG
1747 			if (lockf_debug & 2)
1748 				printf("no overlap\n");
1749 #endif /* LOCKF_DEBUG */
1750 			*overlap = LIST_NEXT(lf, lf_link);
1751 			continue;
1752 		}
1753 		if (lf->lf_start == start && lf->lf_end == end) {
1754 			/* Case 1 */
1755 #ifdef LOCKF_DEBUG
1756 			if (lockf_debug & 2)
1757 				printf("overlap == lock\n");
1758 #endif /* LOCKF_DEBUG */
1759 			res = 1;
1760 			break;
1761 		}
1762 		if (lf->lf_start <= start && lf->lf_end >= end) {
1763 			/* Case 2 */
1764 #ifdef LOCKF_DEBUG
1765 			if (lockf_debug & 2)
1766 				printf("overlap contains lock\n");
1767 #endif /* LOCKF_DEBUG */
1768 			res = 2;
1769 			break;
1770 		}
1771 		if (start <= lf->lf_start && end >= lf->lf_end) {
1772 			/* Case 3 */
1773 #ifdef LOCKF_DEBUG
1774 			if (lockf_debug & 2)
1775 				printf("lock contains overlap\n");
1776 #endif /* LOCKF_DEBUG */
1777 			res = 3;
1778 			break;
1779 		}
1780 		if (lf->lf_start < start && lf->lf_end >= start) {
1781 			/* Case 4 */
1782 #ifdef LOCKF_DEBUG
1783 			if (lockf_debug & 2)
1784 				printf("overlap starts before lock\n");
1785 #endif /* LOCKF_DEBUG */
1786 			res = 4;
1787 			break;
1788 		}
1789 		if (lf->lf_start > start && lf->lf_end > end) {
1790 			/* Case 5 */
1791 #ifdef LOCKF_DEBUG
1792 			if (lockf_debug & 2)
1793 				printf("overlap ends after lock\n");
1794 #endif /* LOCKF_DEBUG */
1795 			res = 5;
1796 			break;
1797 		}
1798 		panic("lf_findoverlap: default");
1799 	}
1800 	return (res);
1801 }
1802 
1803 /*
1804  * Split an the existing 'lock1', based on the extent of the lock
1805  * described by 'lock2'. The existing lock should cover 'lock2'
1806  * entirely.
1807  *
1808  * Any pending locks which have been been unblocked are added to
1809  * 'granted'
1810  */
1811 static void
1812 lf_split(struct lockf *state, struct lockf_entry *lock1,
1813     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1814 {
1815 	struct lockf_entry *splitlock;
1816 
1817 #ifdef LOCKF_DEBUG
1818 	if (lockf_debug & 2) {
1819 		lf_print("lf_split", lock1);
1820 		lf_print("splitting from", lock2);
1821 	}
1822 #endif /* LOCKF_DEBUG */
1823 	/*
1824 	 * Check to see if we don't need to split at all.
1825 	 */
1826 	if (lock1->lf_start == lock2->lf_start) {
1827 		lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1828 		return;
1829 	}
1830 	if (lock1->lf_end == lock2->lf_end) {
1831 		lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1832 		return;
1833 	}
1834 	/*
1835 	 * Make a new lock consisting of the last part of
1836 	 * the encompassing lock.
1837 	 */
1838 	splitlock = lf_alloc_lock(lock1->lf_owner);
1839 	memcpy(splitlock, lock1, sizeof *splitlock);
1840 	splitlock->lf_refs = 1;
1841 	if (splitlock->lf_flags & F_REMOTE)
1842 		vref(splitlock->lf_vnode);
1843 
1844 	/*
1845 	 * This cannot cause a deadlock since any edges we would add
1846 	 * to splitlock already exist in lock1. We must be sure to add
1847 	 * necessary dependencies to splitlock before we reduce lock1
1848 	 * otherwise we may accidentally grant a pending lock that
1849 	 * was blocked by the tail end of lock1.
1850 	 */
1851 	splitlock->lf_start = lock2->lf_end + 1;
1852 	LIST_INIT(&splitlock->lf_outedges);
1853 	LIST_INIT(&splitlock->lf_inedges);
1854 	lf_add_incoming(state, splitlock);
1855 
1856 	lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1857 
1858 	/*
1859 	 * OK, now link it in
1860 	 */
1861 	lf_insert_lock(state, splitlock);
1862 }
1863 
1864 struct lockdesc {
1865 	STAILQ_ENTRY(lockdesc) link;
1866 	struct vnode *vp;
1867 	struct flock fl;
1868 };
1869 STAILQ_HEAD(lockdesclist, lockdesc);
1870 
1871 int
1872 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1873 {
1874 	struct lockf *ls;
1875 	struct lockf_entry *lf;
1876 	struct lockdesc *ldesc;
1877 	struct lockdesclist locks;
1878 	int error;
1879 
1880 	/*
1881 	 * In order to keep the locking simple, we iterate over the
1882 	 * active lock lists to build a list of locks that need
1883 	 * releasing. We then call the iterator for each one in turn.
1884 	 *
1885 	 * We take an extra reference to the vnode for the duration to
1886 	 * make sure it doesn't go away before we are finished.
1887 	 */
1888 	STAILQ_INIT(&locks);
1889 	sx_xlock(&lf_lock_states_lock);
1890 	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1891 		sx_xlock(&ls->ls_lock);
1892 		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1893 			if (lf->lf_owner->lo_sysid != sysid)
1894 				continue;
1895 
1896 			ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1897 			    M_WAITOK);
1898 			ldesc->vp = lf->lf_vnode;
1899 			vref(ldesc->vp);
1900 			ldesc->fl.l_start = lf->lf_start;
1901 			if (lf->lf_end == OFF_MAX)
1902 				ldesc->fl.l_len = 0;
1903 			else
1904 				ldesc->fl.l_len =
1905 					lf->lf_end - lf->lf_start + 1;
1906 			ldesc->fl.l_whence = SEEK_SET;
1907 			ldesc->fl.l_type = F_UNLCK;
1908 			ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1909 			ldesc->fl.l_sysid = sysid;
1910 			STAILQ_INSERT_TAIL(&locks, ldesc, link);
1911 		}
1912 		sx_xunlock(&ls->ls_lock);
1913 	}
1914 	sx_xunlock(&lf_lock_states_lock);
1915 
1916 	/*
1917 	 * Call the iterator function for each lock in turn. If the
1918 	 * iterator returns an error code, just free the rest of the
1919 	 * lockdesc structures.
1920 	 */
1921 	error = 0;
1922 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1923 		STAILQ_REMOVE_HEAD(&locks, link);
1924 		if (!error)
1925 			error = fn(ldesc->vp, &ldesc->fl, arg);
1926 		vrele(ldesc->vp);
1927 		free(ldesc, M_LOCKF);
1928 	}
1929 
1930 	return (error);
1931 }
1932 
1933 int
1934 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1935 {
1936 	struct lockf *ls;
1937 	struct lockf_entry *lf;
1938 	struct lockdesc *ldesc;
1939 	struct lockdesclist locks;
1940 	int error;
1941 
1942 	/*
1943 	 * In order to keep the locking simple, we iterate over the
1944 	 * active lock lists to build a list of locks that need
1945 	 * releasing. We then call the iterator for each one in turn.
1946 	 *
1947 	 * We take an extra reference to the vnode for the duration to
1948 	 * make sure it doesn't go away before we are finished.
1949 	 */
1950 	STAILQ_INIT(&locks);
1951 	VI_LOCK(vp);
1952 	ls = vp->v_lockf;
1953 	if (!ls) {
1954 		VI_UNLOCK(vp);
1955 		return (0);
1956 	}
1957 	ls->ls_threads++;
1958 	VI_UNLOCK(vp);
1959 
1960 	sx_xlock(&ls->ls_lock);
1961 	LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1962 		ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1963 		    M_WAITOK);
1964 		ldesc->vp = lf->lf_vnode;
1965 		vref(ldesc->vp);
1966 		ldesc->fl.l_start = lf->lf_start;
1967 		if (lf->lf_end == OFF_MAX)
1968 			ldesc->fl.l_len = 0;
1969 		else
1970 			ldesc->fl.l_len =
1971 				lf->lf_end - lf->lf_start + 1;
1972 		ldesc->fl.l_whence = SEEK_SET;
1973 		ldesc->fl.l_type = F_UNLCK;
1974 		ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1975 		ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1976 		STAILQ_INSERT_TAIL(&locks, ldesc, link);
1977 	}
1978 	sx_xunlock(&ls->ls_lock);
1979 	VI_LOCK(vp);
1980 	ls->ls_threads--;
1981 	wakeup(ls);
1982 	VI_UNLOCK(vp);
1983 
1984 	/*
1985 	 * Call the iterator function for each lock in turn. If the
1986 	 * iterator returns an error code, just free the rest of the
1987 	 * lockdesc structures.
1988 	 */
1989 	error = 0;
1990 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1991 		STAILQ_REMOVE_HEAD(&locks, link);
1992 		if (!error)
1993 			error = fn(ldesc->vp, &ldesc->fl, arg);
1994 		vrele(ldesc->vp);
1995 		free(ldesc, M_LOCKF);
1996 	}
1997 
1998 	return (error);
1999 }
2000 
2001 static int
2002 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
2003 {
2004 
2005 	VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
2006 	return (0);
2007 }
2008 
2009 void
2010 lf_clearremotesys(int sysid)
2011 {
2012 
2013 	KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2014 	lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2015 }
2016 
2017 int
2018 lf_countlocks(int sysid)
2019 {
2020 	int i;
2021 	struct lock_owner *lo;
2022 	int count;
2023 
2024 	count = 0;
2025 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
2026 		sx_xlock(&lf_lock_owners[i].lock);
2027 		LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link)
2028 			if (lo->lo_sysid == sysid)
2029 				count += lo->lo_refs;
2030 		sx_xunlock(&lf_lock_owners[i].lock);
2031 	}
2032 
2033 	return (count);
2034 }
2035 
2036 #ifdef LOCKF_DEBUG
2037 
2038 /*
2039  * Return non-zero if y is reachable from x using a brute force
2040  * search. If reachable and path is non-null, return the route taken
2041  * in path.
2042  */
2043 static int
2044 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2045     struct owner_vertex_list *path)
2046 {
2047 	struct owner_edge *e;
2048 
2049 	if (x == y) {
2050 		if (path)
2051 			TAILQ_INSERT_HEAD(path, x, v_link);
2052 		return 1;
2053 	}
2054 
2055 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2056 		if (graph_reaches(e->e_to, y, path)) {
2057 			if (path)
2058 				TAILQ_INSERT_HEAD(path, x, v_link);
2059 			return 1;
2060 		}
2061 	}
2062 	return 0;
2063 }
2064 
2065 /*
2066  * Perform consistency checks on the graph. Make sure the values of
2067  * v_order are correct. If checkorder is non-zero, check no vertex can
2068  * reach any other vertex with a smaller order.
2069  */
2070 static void
2071 graph_check(struct owner_graph *g, int checkorder)
2072 {
2073 	int i, j;
2074 
2075 	for (i = 0; i < g->g_size; i++) {
2076 		if (!g->g_vertices[i]->v_owner)
2077 			continue;
2078 		KASSERT(g->g_vertices[i]->v_order == i,
2079 		    ("lock graph vertices disordered"));
2080 		if (checkorder) {
2081 			for (j = 0; j < i; j++) {
2082 				if (!g->g_vertices[j]->v_owner)
2083 					continue;
2084 				KASSERT(!graph_reaches(g->g_vertices[i],
2085 					g->g_vertices[j], NULL),
2086 				    ("lock graph vertices disordered"));
2087 			}
2088 		}
2089 	}
2090 }
2091 
2092 static void
2093 graph_print_vertices(struct owner_vertex_list *set)
2094 {
2095 	struct owner_vertex *v;
2096 
2097 	printf("{ ");
2098 	TAILQ_FOREACH(v, set, v_link) {
2099 		printf("%d:", v->v_order);
2100 		lf_print_owner(v->v_owner);
2101 		if (TAILQ_NEXT(v, v_link))
2102 			printf(", ");
2103 	}
2104 	printf(" }\n");
2105 }
2106 
2107 #endif
2108 
2109 /*
2110  * Calculate the sub-set of vertices v from the affected region [y..x]
2111  * where v is reachable from y. Return -1 if a loop was detected
2112  * (i.e. x is reachable from y, otherwise the number of vertices in
2113  * this subset.
2114  */
2115 static int
2116 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2117     struct owner_vertex *y, struct owner_vertex_list *delta)
2118 {
2119 	uint32_t gen;
2120 	struct owner_vertex *v;
2121 	struct owner_edge *e;
2122 	int n;
2123 
2124 	/*
2125 	 * We start with a set containing just y. Then for each vertex
2126 	 * v in the set so far unprocessed, we add each vertex that v
2127 	 * has an out-edge to and that is within the affected region
2128 	 * [y..x]. If we see the vertex x on our travels, stop
2129 	 * immediately.
2130 	 */
2131 	TAILQ_INIT(delta);
2132 	TAILQ_INSERT_TAIL(delta, y, v_link);
2133 	v = y;
2134 	n = 1;
2135 	gen = g->g_gen;
2136 	while (v) {
2137 		LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2138 			if (e->e_to == x)
2139 				return -1;
2140 			if (e->e_to->v_order < x->v_order
2141 			    && e->e_to->v_gen != gen) {
2142 				e->e_to->v_gen = gen;
2143 				TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2144 				n++;
2145 			}
2146 		}
2147 		v = TAILQ_NEXT(v, v_link);
2148 	}
2149 
2150 	return (n);
2151 }
2152 
2153 /*
2154  * Calculate the sub-set of vertices v from the affected region [y..x]
2155  * where v reaches x. Return the number of vertices in this subset.
2156  */
2157 static int
2158 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2159     struct owner_vertex *y, struct owner_vertex_list *delta)
2160 {
2161 	uint32_t gen;
2162 	struct owner_vertex *v;
2163 	struct owner_edge *e;
2164 	int n;
2165 
2166 	/*
2167 	 * We start with a set containing just x. Then for each vertex
2168 	 * v in the set so far unprocessed, we add each vertex that v
2169 	 * has an in-edge from and that is within the affected region
2170 	 * [y..x].
2171 	 */
2172 	TAILQ_INIT(delta);
2173 	TAILQ_INSERT_TAIL(delta, x, v_link);
2174 	v = x;
2175 	n = 1;
2176 	gen = g->g_gen;
2177 	while (v) {
2178 		LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2179 			if (e->e_from->v_order > y->v_order
2180 			    && e->e_from->v_gen != gen) {
2181 				e->e_from->v_gen = gen;
2182 				TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2183 				n++;
2184 			}
2185 		}
2186 		v = TAILQ_PREV(v, owner_vertex_list, v_link);
2187 	}
2188 
2189 	return (n);
2190 }
2191 
2192 static int
2193 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2194 {
2195 	struct owner_vertex *v;
2196 	int i, j;
2197 
2198 	TAILQ_FOREACH(v, set, v_link) {
2199 		for (i = n;
2200 		     i > 0 && indices[i - 1] > v->v_order; i--)
2201 			;
2202 		for (j = n - 1; j >= i; j--)
2203 			indices[j + 1] = indices[j];
2204 		indices[i] = v->v_order;
2205 		n++;
2206 	}
2207 
2208 	return (n);
2209 }
2210 
2211 static int
2212 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2213     struct owner_vertex_list *set)
2214 {
2215 	struct owner_vertex *v, *vlowest;
2216 
2217 	while (!TAILQ_EMPTY(set)) {
2218 		vlowest = NULL;
2219 		TAILQ_FOREACH(v, set, v_link) {
2220 			if (!vlowest || v->v_order < vlowest->v_order)
2221 				vlowest = v;
2222 		}
2223 		TAILQ_REMOVE(set, vlowest, v_link);
2224 		vlowest->v_order = indices[nextunused];
2225 		g->g_vertices[vlowest->v_order] = vlowest;
2226 		nextunused++;
2227 	}
2228 
2229 	return (nextunused);
2230 }
2231 
2232 static int
2233 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2234     struct owner_vertex *y)
2235 {
2236 	struct owner_edge *e;
2237 	struct owner_vertex_list deltaF, deltaB;
2238 	int nF, n, vi, i;
2239 	int *indices;
2240 	int nB __unused;
2241 
2242 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2243 
2244 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2245 		if (e->e_to == y) {
2246 			e->e_refs++;
2247 			return (0);
2248 		}
2249 	}
2250 
2251 #ifdef LOCKF_DEBUG
2252 	if (lockf_debug & 8) {
2253 		printf("adding edge %d:", x->v_order);
2254 		lf_print_owner(x->v_owner);
2255 		printf(" -> %d:", y->v_order);
2256 		lf_print_owner(y->v_owner);
2257 		printf("\n");
2258 	}
2259 #endif
2260 	if (y->v_order < x->v_order) {
2261 		/*
2262 		 * The new edge violates the order. First find the set
2263 		 * of affected vertices reachable from y (deltaF) and
2264 		 * the set of affect vertices affected that reach x
2265 		 * (deltaB), using the graph generation number to
2266 		 * detect whether we have visited a given vertex
2267 		 * already. We re-order the graph so that each vertex
2268 		 * in deltaB appears before each vertex in deltaF.
2269 		 *
2270 		 * If x is a member of deltaF, then the new edge would
2271 		 * create a cycle. Otherwise, we may assume that
2272 		 * deltaF and deltaB are disjoint.
2273 		 */
2274 		g->g_gen++;
2275 		if (g->g_gen == 0) {
2276 			/*
2277 			 * Generation wrap.
2278 			 */
2279 			for (vi = 0; vi < g->g_size; vi++) {
2280 				g->g_vertices[vi]->v_gen = 0;
2281 			}
2282 			g->g_gen++;
2283 		}
2284 		nF = graph_delta_forward(g, x, y, &deltaF);
2285 		if (nF < 0) {
2286 #ifdef LOCKF_DEBUG
2287 			if (lockf_debug & 8) {
2288 				struct owner_vertex_list path;
2289 				printf("deadlock: ");
2290 				TAILQ_INIT(&path);
2291 				graph_reaches(y, x, &path);
2292 				graph_print_vertices(&path);
2293 			}
2294 #endif
2295 			return (EDEADLK);
2296 		}
2297 
2298 #ifdef LOCKF_DEBUG
2299 		if (lockf_debug & 8) {
2300 			printf("re-ordering graph vertices\n");
2301 			printf("deltaF = ");
2302 			graph_print_vertices(&deltaF);
2303 		}
2304 #endif
2305 
2306 		nB = graph_delta_backward(g, x, y, &deltaB);
2307 
2308 #ifdef LOCKF_DEBUG
2309 		if (lockf_debug & 8) {
2310 			printf("deltaB = ");
2311 			graph_print_vertices(&deltaB);
2312 		}
2313 #endif
2314 
2315 		/*
2316 		 * We first build a set of vertex indices (vertex
2317 		 * order values) that we may use, then we re-assign
2318 		 * orders first to those vertices in deltaB, then to
2319 		 * deltaF. Note that the contents of deltaF and deltaB
2320 		 * may be partially disordered - we perform an
2321 		 * insertion sort while building our index set.
2322 		 */
2323 		indices = g->g_indexbuf;
2324 		n = graph_add_indices(indices, 0, &deltaF);
2325 		graph_add_indices(indices, n, &deltaB);
2326 
2327 		/*
2328 		 * We must also be sure to maintain the relative
2329 		 * ordering of deltaF and deltaB when re-assigning
2330 		 * vertices. We do this by iteratively removing the
2331 		 * lowest ordered element from the set and assigning
2332 		 * it the next value from our new ordering.
2333 		 */
2334 		i = graph_assign_indices(g, indices, 0, &deltaB);
2335 		graph_assign_indices(g, indices, i, &deltaF);
2336 
2337 #ifdef LOCKF_DEBUG
2338 		if (lockf_debug & 8) {
2339 			struct owner_vertex_list set;
2340 			TAILQ_INIT(&set);
2341 			for (i = 0; i < nB + nF; i++)
2342 				TAILQ_INSERT_TAIL(&set,
2343 				    g->g_vertices[indices[i]], v_link);
2344 			printf("new ordering = ");
2345 			graph_print_vertices(&set);
2346 		}
2347 #endif
2348 	}
2349 
2350 	KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2351 
2352 #ifdef LOCKF_DEBUG
2353 	if (lockf_debug & 8) {
2354 		graph_check(g, TRUE);
2355 	}
2356 #endif
2357 
2358 	e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2359 
2360 	LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2361 	LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2362 	e->e_refs = 1;
2363 	e->e_from = x;
2364 	e->e_to = y;
2365 
2366 	return (0);
2367 }
2368 
2369 /*
2370  * Remove an edge x->y from the graph.
2371  */
2372 static void
2373 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2374     struct owner_vertex *y)
2375 {
2376 	struct owner_edge *e;
2377 
2378 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2379 
2380 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2381 		if (e->e_to == y)
2382 			break;
2383 	}
2384 	KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2385 
2386 	e->e_refs--;
2387 	if (e->e_refs == 0) {
2388 #ifdef LOCKF_DEBUG
2389 		if (lockf_debug & 8) {
2390 			printf("removing edge %d:", x->v_order);
2391 			lf_print_owner(x->v_owner);
2392 			printf(" -> %d:", y->v_order);
2393 			lf_print_owner(y->v_owner);
2394 			printf("\n");
2395 		}
2396 #endif
2397 		LIST_REMOVE(e, e_outlink);
2398 		LIST_REMOVE(e, e_inlink);
2399 		free(e, M_LOCKF);
2400 	}
2401 }
2402 
2403 /*
2404  * Allocate a vertex from the free list. Return ENOMEM if there are
2405  * none.
2406  */
2407 static struct owner_vertex *
2408 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2409 {
2410 	struct owner_vertex *v;
2411 
2412 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2413 
2414 	v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2415 	if (g->g_size == g->g_space) {
2416 		g->g_vertices = realloc(g->g_vertices,
2417 		    2 * g->g_space * sizeof(struct owner_vertex *),
2418 		    M_LOCKF, M_WAITOK);
2419 		free(g->g_indexbuf, M_LOCKF);
2420 		g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2421 		    M_LOCKF, M_WAITOK);
2422 		g->g_space = 2 * g->g_space;
2423 	}
2424 	v->v_order = g->g_size;
2425 	v->v_gen = g->g_gen;
2426 	g->g_vertices[g->g_size] = v;
2427 	g->g_size++;
2428 
2429 	LIST_INIT(&v->v_outedges);
2430 	LIST_INIT(&v->v_inedges);
2431 	v->v_owner = lo;
2432 
2433 	return (v);
2434 }
2435 
2436 static void
2437 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2438 {
2439 	struct owner_vertex *w;
2440 	int i;
2441 
2442 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2443 
2444 	KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2445 	KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2446 
2447 	/*
2448 	 * Remove from the graph's array and close up the gap,
2449 	 * renumbering the other vertices.
2450 	 */
2451 	for (i = v->v_order + 1; i < g->g_size; i++) {
2452 		w = g->g_vertices[i];
2453 		w->v_order--;
2454 		g->g_vertices[i - 1] = w;
2455 	}
2456 	g->g_size--;
2457 
2458 	free(v, M_LOCKF);
2459 }
2460 
2461 static struct owner_graph *
2462 graph_init(struct owner_graph *g)
2463 {
2464 
2465 	g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2466 	    M_LOCKF, M_WAITOK);
2467 	g->g_size = 0;
2468 	g->g_space = 10;
2469 	g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2470 	g->g_gen = 0;
2471 
2472 	return (g);
2473 }
2474 
2475 #ifdef LOCKF_DEBUG
2476 /*
2477  * Print description of a lock owner
2478  */
2479 static void
2480 lf_print_owner(struct lock_owner *lo)
2481 {
2482 
2483 	if (lo->lo_flags & F_REMOTE) {
2484 		printf("remote pid %d, system %d",
2485 		    lo->lo_pid, lo->lo_sysid);
2486 	} else if (lo->lo_flags & F_FLOCK) {
2487 		printf("file %p", lo->lo_id);
2488 	} else {
2489 		printf("local pid %d", lo->lo_pid);
2490 	}
2491 }
2492 
2493 /*
2494  * Print out a lock.
2495  */
2496 static void
2497 lf_print(char *tag, struct lockf_entry *lock)
2498 {
2499 
2500 	printf("%s: lock %p for ", tag, (void *)lock);
2501 	lf_print_owner(lock->lf_owner);
2502 	if (lock->lf_inode != (struct inode *)0)
2503 		printf(" in ino %ju on dev <%s>,",
2504 		    (uintmax_t)lock->lf_inode->i_number,
2505 		    devtoname(ITODEV(lock->lf_inode)));
2506 	printf(" %s, start %jd, end ",
2507 	    lock->lf_type == F_RDLCK ? "shared" :
2508 	    lock->lf_type == F_WRLCK ? "exclusive" :
2509 	    lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2510 	    (intmax_t)lock->lf_start);
2511 	if (lock->lf_end == OFF_MAX)
2512 		printf("EOF");
2513 	else
2514 		printf("%jd", (intmax_t)lock->lf_end);
2515 	if (!LIST_EMPTY(&lock->lf_outedges))
2516 		printf(" block %p\n",
2517 		    (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2518 	else
2519 		printf("\n");
2520 }
2521 
2522 static void
2523 lf_printlist(char *tag, struct lockf_entry *lock)
2524 {
2525 	struct lockf_entry *lf, *blk;
2526 	struct lockf_edge *e;
2527 
2528 	if (lock->lf_inode == (struct inode *)0)
2529 		return;
2530 
2531 	printf("%s: Lock list for ino %ju on dev <%s>:\n",
2532 	    tag, (uintmax_t)lock->lf_inode->i_number,
2533 	    devtoname(ITODEV(lock->lf_inode)));
2534 	LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2535 		printf("\tlock %p for ",(void *)lf);
2536 		lf_print_owner(lock->lf_owner);
2537 		printf(", %s, start %jd, end %jd",
2538 		    lf->lf_type == F_RDLCK ? "shared" :
2539 		    lf->lf_type == F_WRLCK ? "exclusive" :
2540 		    lf->lf_type == F_UNLCK ? "unlock" :
2541 		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2542 		LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2543 			blk = e->le_to;
2544 			printf("\n\t\tlock request %p for ", (void *)blk);
2545 			lf_print_owner(blk->lf_owner);
2546 			printf(", %s, start %jd, end %jd",
2547 			    blk->lf_type == F_RDLCK ? "shared" :
2548 			    blk->lf_type == F_WRLCK ? "exclusive" :
2549 			    blk->lf_type == F_UNLCK ? "unlock" :
2550 			    "unknown", (intmax_t)blk->lf_start,
2551 			    (intmax_t)blk->lf_end);
2552 			if (!LIST_EMPTY(&blk->lf_inedges))
2553 				panic("lf_printlist: bad list");
2554 		}
2555 		printf("\n");
2556 	}
2557 }
2558 #endif /* LOCKF_DEBUG */
2559