xref: /freebsd/sys/kern/kern_lockf.c (revision 81ad6265)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
5  * Authors: Doug Rabson <dfr@rabson.org>
6  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (c) 1982, 1986, 1989, 1993
31  *	The Regents of the University of California.  All rights reserved.
32  *
33  * This code is derived from software contributed to Berkeley by
34  * Scooter Morris at Genentech Inc.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)ufs_lockf.c	8.3 (Berkeley) 1/6/94
61  */
62 
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65 
66 #include "opt_debug_lockf.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/hash.h>
71 #include <sys/jail.h>
72 #include <sys/kernel.h>
73 #include <sys/limits.h>
74 #include <sys/lock.h>
75 #include <sys/mount.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/sbuf.h>
79 #include <sys/stat.h>
80 #include <sys/sx.h>
81 #include <sys/unistd.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/malloc.h>
85 #include <sys/fcntl.h>
86 #include <sys/lockf.h>
87 #include <sys/taskqueue.h>
88 
89 #ifdef LOCKF_DEBUG
90 #include <sys/sysctl.h>
91 
92 static int	lockf_debug = 0; /* control debug output */
93 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
94 #endif
95 
96 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
97 
98 struct owner_edge;
99 struct owner_vertex;
100 struct owner_vertex_list;
101 struct owner_graph;
102 
103 #define NOLOCKF (struct lockf_entry *)0
104 #define SELF	0x1
105 #define OTHERS	0x2
106 static void	 lf_init(void *);
107 static int	 lf_hash_owner(caddr_t, struct vnode *, struct flock *, int);
108 static int	 lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
109     int);
110 static struct lockf_entry *
111 		 lf_alloc_lock(struct lock_owner *);
112 static int	 lf_free_lock(struct lockf_entry *);
113 static int	 lf_clearlock(struct lockf *, struct lockf_entry *);
114 static int	 lf_overlaps(struct lockf_entry *, struct lockf_entry *);
115 static int	 lf_blocks(struct lockf_entry *, struct lockf_entry *);
116 static void	 lf_free_edge(struct lockf_edge *);
117 static struct lockf_edge *
118 		 lf_alloc_edge(void);
119 static void	 lf_alloc_vertex(struct lockf_entry *);
120 static int	 lf_add_edge(struct lockf_entry *, struct lockf_entry *);
121 static void	 lf_remove_edge(struct lockf_edge *);
122 static void	 lf_remove_outgoing(struct lockf_entry *);
123 static void	 lf_remove_incoming(struct lockf_entry *);
124 static int	 lf_add_outgoing(struct lockf *, struct lockf_entry *);
125 static int	 lf_add_incoming(struct lockf *, struct lockf_entry *);
126 static int	 lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
127     int);
128 static struct lockf_entry *
129 		 lf_getblock(struct lockf *, struct lockf_entry *);
130 static int	 lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
131 static void	 lf_insert_lock(struct lockf *, struct lockf_entry *);
132 static void	 lf_wakeup_lock(struct lockf *, struct lockf_entry *);
133 static void	 lf_update_dependancies(struct lockf *, struct lockf_entry *,
134     int all, struct lockf_entry_list *);
135 static void	 lf_set_start(struct lockf *, struct lockf_entry *, off_t,
136 	struct lockf_entry_list*);
137 static void	 lf_set_end(struct lockf *, struct lockf_entry *, off_t,
138 	struct lockf_entry_list*);
139 static int	 lf_setlock(struct lockf *, struct lockf_entry *,
140     struct vnode *, void **cookiep);
141 static int	 lf_cancel(struct lockf *, struct lockf_entry *, void *);
142 static void	 lf_split(struct lockf *, struct lockf_entry *,
143     struct lockf_entry *, struct lockf_entry_list *);
144 #ifdef LOCKF_DEBUG
145 static int	 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
146     struct owner_vertex_list *path);
147 static void	 graph_check(struct owner_graph *g, int checkorder);
148 static void	 graph_print_vertices(struct owner_vertex_list *set);
149 #endif
150 static int	 graph_delta_forward(struct owner_graph *g,
151     struct owner_vertex *x, struct owner_vertex *y,
152     struct owner_vertex_list *delta);
153 static int	 graph_delta_backward(struct owner_graph *g,
154     struct owner_vertex *x, struct owner_vertex *y,
155     struct owner_vertex_list *delta);
156 static int	 graph_add_indices(int *indices, int n,
157     struct owner_vertex_list *set);
158 static int	 graph_assign_indices(struct owner_graph *g, int *indices,
159     int nextunused, struct owner_vertex_list *set);
160 static int	 graph_add_edge(struct owner_graph *g,
161     struct owner_vertex *x, struct owner_vertex *y);
162 static void	 graph_remove_edge(struct owner_graph *g,
163     struct owner_vertex *x, struct owner_vertex *y);
164 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
165     struct lock_owner *lo);
166 static void	 graph_free_vertex(struct owner_graph *g,
167     struct owner_vertex *v);
168 static struct owner_graph * graph_init(struct owner_graph *g);
169 #ifdef LOCKF_DEBUG
170 static void	 lf_print(char *, struct lockf_entry *);
171 static void	 lf_printlist(char *, struct lockf_entry *);
172 static void	 lf_print_owner(struct lock_owner *);
173 #endif
174 
175 /*
176  * This structure is used to keep track of both local and remote lock
177  * owners. The lf_owner field of the struct lockf_entry points back at
178  * the lock owner structure. Each possible lock owner (local proc for
179  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
180  * pair for remote locks) is represented by a unique instance of
181  * struct lock_owner.
182  *
183  * If a lock owner has a lock that blocks some other lock or a lock
184  * that is waiting for some other lock, it also has a vertex in the
185  * owner_graph below.
186  *
187  * Locks:
188  * (s)		locked by state->ls_lock
189  * (S)		locked by lf_lock_states_lock
190  * (g)		locked by lf_owner_graph_lock
191  * (c)		const until freeing
192  */
193 #define	LOCK_OWNER_HASH_SIZE	256
194 
195 struct lock_owner {
196 	LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
197 	int	lo_refs;	    /* (l) Number of locks referring to this */
198 	int	lo_flags;	    /* (c) Flags passwd to lf_advlock */
199 	caddr_t	lo_id;		    /* (c) Id value passed to lf_advlock */
200 	pid_t	lo_pid;		    /* (c) Process Id of the lock owner */
201 	int	lo_sysid;	    /* (c) System Id of the lock owner */
202 	int	lo_hash;	    /* (c) Used to lock the appropriate chain */
203 	struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
204 };
205 
206 LIST_HEAD(lock_owner_list, lock_owner);
207 
208 struct lock_owner_chain {
209 	struct sx		lock;
210 	struct lock_owner_list	list;
211 };
212 
213 static struct sx		lf_lock_states_lock;
214 static struct lockf_list	lf_lock_states; /* (S) */
215 static struct lock_owner_chain	lf_lock_owners[LOCK_OWNER_HASH_SIZE];
216 
217 /*
218  * Structures for deadlock detection.
219  *
220  * We have two types of directed graph, the first is the set of locks,
221  * both active and pending on a vnode. Within this graph, active locks
222  * are terminal nodes in the graph (i.e. have no out-going
223  * edges). Pending locks have out-going edges to each blocking active
224  * lock that prevents the lock from being granted and also to each
225  * older pending lock that would block them if it was active. The
226  * graph for each vnode is naturally acyclic; new edges are only ever
227  * added to or from new nodes (either new pending locks which only add
228  * out-going edges or new active locks which only add in-coming edges)
229  * therefore they cannot create loops in the lock graph.
230  *
231  * The second graph is a global graph of lock owners. Each lock owner
232  * is a vertex in that graph and an edge is added to the graph
233  * whenever an edge is added to a vnode graph, with end points
234  * corresponding to owner of the new pending lock and the owner of the
235  * lock upon which it waits. In order to prevent deadlock, we only add
236  * an edge to this graph if the new edge would not create a cycle.
237  *
238  * The lock owner graph is topologically sorted, i.e. if a node has
239  * any outgoing edges, then it has an order strictly less than any
240  * node to which it has an outgoing edge. We preserve this ordering
241  * (and detect cycles) on edge insertion using Algorithm PK from the
242  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
243  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
244  * No. 1.7)
245  */
246 struct owner_vertex;
247 
248 struct owner_edge {
249 	LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
250 	LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
251 	int		e_refs;		  /* (g) number of times added */
252 	struct owner_vertex *e_from;	  /* (c) out-going from here */
253 	struct owner_vertex *e_to;	  /* (c) in-coming to here */
254 };
255 LIST_HEAD(owner_edge_list, owner_edge);
256 
257 struct owner_vertex {
258 	TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
259 	uint32_t	v_gen;		  /* (g) workspace for edge insertion */
260 	int		v_order;	  /* (g) order of vertex in graph */
261 	struct owner_edge_list v_outedges;/* (g) list of out-edges */
262 	struct owner_edge_list v_inedges; /* (g) list of in-edges */
263 	struct lock_owner *v_owner;	  /* (c) corresponding lock owner */
264 };
265 TAILQ_HEAD(owner_vertex_list, owner_vertex);
266 
267 struct owner_graph {
268 	struct owner_vertex** g_vertices; /* (g) pointers to vertices */
269 	int		g_size;		  /* (g) number of vertices */
270 	int		g_space;	  /* (g) space allocated for vertices */
271 	int		*g_indexbuf;	  /* (g) workspace for loop detection */
272 	uint32_t	g_gen;		  /* (g) increment when re-ordering */
273 };
274 
275 static struct sx		lf_owner_graph_lock;
276 static struct owner_graph	lf_owner_graph;
277 
278 /*
279  * Initialise various structures and locks.
280  */
281 static void
282 lf_init(void *dummy)
283 {
284 	int i;
285 
286 	sx_init(&lf_lock_states_lock, "lock states lock");
287 	LIST_INIT(&lf_lock_states);
288 
289 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
290 		sx_init(&lf_lock_owners[i].lock, "lock owners lock");
291 		LIST_INIT(&lf_lock_owners[i].list);
292 	}
293 
294 	sx_init(&lf_owner_graph_lock, "owner graph lock");
295 	graph_init(&lf_owner_graph);
296 }
297 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
298 
299 /*
300  * Generate a hash value for a lock owner.
301  */
302 static int
303 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags)
304 {
305 	uint32_t h;
306 
307 	if (flags & F_REMOTE) {
308 		h = HASHSTEP(0, fl->l_pid);
309 		h = HASHSTEP(h, fl->l_sysid);
310 	} else if (flags & F_FLOCK) {
311 		h = ((uintptr_t) id) >> 7;
312 	} else {
313 		h = ((uintptr_t) vp) >> 7;
314 	}
315 
316 	return (h % LOCK_OWNER_HASH_SIZE);
317 }
318 
319 /*
320  * Return true if a lock owner matches the details passed to
321  * lf_advlock.
322  */
323 static int
324 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
325     int flags)
326 {
327 	if (flags & F_REMOTE) {
328 		return lo->lo_pid == fl->l_pid
329 			&& lo->lo_sysid == fl->l_sysid;
330 	} else {
331 		return lo->lo_id == id;
332 	}
333 }
334 
335 static struct lockf_entry *
336 lf_alloc_lock(struct lock_owner *lo)
337 {
338 	struct lockf_entry *lf;
339 
340 	lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
341 
342 #ifdef LOCKF_DEBUG
343 	if (lockf_debug & 4)
344 		printf("Allocated lock %p\n", lf);
345 #endif
346 	if (lo) {
347 		sx_xlock(&lf_lock_owners[lo->lo_hash].lock);
348 		lo->lo_refs++;
349 		sx_xunlock(&lf_lock_owners[lo->lo_hash].lock);
350 		lf->lf_owner = lo;
351 	}
352 
353 	return (lf);
354 }
355 
356 static int
357 lf_free_lock(struct lockf_entry *lock)
358 {
359 	struct sx *chainlock;
360 
361 	KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
362 	if (--lock->lf_refs > 0)
363 		return (0);
364 	/*
365 	 * Adjust the lock_owner reference count and
366 	 * reclaim the entry if this is the last lock
367 	 * for that owner.
368 	 */
369 	struct lock_owner *lo = lock->lf_owner;
370 	if (lo) {
371 		KASSERT(LIST_EMPTY(&lock->lf_outedges),
372 		    ("freeing lock with dependencies"));
373 		KASSERT(LIST_EMPTY(&lock->lf_inedges),
374 		    ("freeing lock with dependants"));
375 		chainlock = &lf_lock_owners[lo->lo_hash].lock;
376 		sx_xlock(chainlock);
377 		KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
378 		lo->lo_refs--;
379 		if (lo->lo_refs == 0) {
380 #ifdef LOCKF_DEBUG
381 			if (lockf_debug & 1)
382 				printf("lf_free_lock: freeing lock owner %p\n",
383 				    lo);
384 #endif
385 			if (lo->lo_vertex) {
386 				sx_xlock(&lf_owner_graph_lock);
387 				graph_free_vertex(&lf_owner_graph,
388 				    lo->lo_vertex);
389 				sx_xunlock(&lf_owner_graph_lock);
390 			}
391 			LIST_REMOVE(lo, lo_link);
392 			free(lo, M_LOCKF);
393 #ifdef LOCKF_DEBUG
394 			if (lockf_debug & 4)
395 				printf("Freed lock owner %p\n", lo);
396 #endif
397 		}
398 		sx_unlock(chainlock);
399 	}
400 	if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
401 		vrele(lock->lf_vnode);
402 		lock->lf_vnode = NULL;
403 	}
404 #ifdef LOCKF_DEBUG
405 	if (lockf_debug & 4)
406 		printf("Freed lock %p\n", lock);
407 #endif
408 	free(lock, M_LOCKF);
409 	return (1);
410 }
411 
412 /*
413  * Advisory record locking support
414  */
415 int
416 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
417     u_quad_t size)
418 {
419 	struct lockf *state;
420 	struct flock *fl = ap->a_fl;
421 	struct lockf_entry *lock;
422 	struct vnode *vp = ap->a_vp;
423 	caddr_t id = ap->a_id;
424 	int flags = ap->a_flags;
425 	int hash;
426 	struct lock_owner *lo;
427 	off_t start, end, oadd;
428 	int error;
429 
430 	/*
431 	 * Handle the F_UNLKSYS case first - no need to mess about
432 	 * creating a lock owner for this one.
433 	 */
434 	if (ap->a_op == F_UNLCKSYS) {
435 		lf_clearremotesys(fl->l_sysid);
436 		return (0);
437 	}
438 
439 	/*
440 	 * Convert the flock structure into a start and end.
441 	 */
442 	switch (fl->l_whence) {
443 	case SEEK_SET:
444 	case SEEK_CUR:
445 		/*
446 		 * Caller is responsible for adding any necessary offset
447 		 * when SEEK_CUR is used.
448 		 */
449 		start = fl->l_start;
450 		break;
451 
452 	case SEEK_END:
453 		if (size > OFF_MAX ||
454 		    (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
455 			return (EOVERFLOW);
456 		start = size + fl->l_start;
457 		break;
458 
459 	default:
460 		return (EINVAL);
461 	}
462 	if (start < 0)
463 		return (EINVAL);
464 	if (fl->l_len < 0) {
465 		if (start == 0)
466 			return (EINVAL);
467 		end = start - 1;
468 		start += fl->l_len;
469 		if (start < 0)
470 			return (EINVAL);
471 	} else if (fl->l_len == 0) {
472 		end = OFF_MAX;
473 	} else {
474 		oadd = fl->l_len - 1;
475 		if (oadd > OFF_MAX - start)
476 			return (EOVERFLOW);
477 		end = start + oadd;
478 	}
479 
480 retry_setlock:
481 
482 	/*
483 	 * Avoid the common case of unlocking when inode has no locks.
484 	 */
485 	if (ap->a_op != F_SETLK && (*statep) == NULL) {
486 		VI_LOCK(vp);
487 		if ((*statep) == NULL) {
488 			fl->l_type = F_UNLCK;
489 			VI_UNLOCK(vp);
490 			return (0);
491 		}
492 		VI_UNLOCK(vp);
493 	}
494 
495 	/*
496 	 * Map our arguments to an existing lock owner or create one
497 	 * if this is the first time we have seen this owner.
498 	 */
499 	hash = lf_hash_owner(id, vp, fl, flags);
500 	sx_xlock(&lf_lock_owners[hash].lock);
501 	LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link)
502 		if (lf_owner_matches(lo, id, fl, flags))
503 			break;
504 	if (!lo) {
505 		/*
506 		 * We initialise the lock with a reference
507 		 * count which matches the new lockf_entry
508 		 * structure created below.
509 		 */
510 		lo = malloc(sizeof(struct lock_owner), M_LOCKF,
511 		    M_WAITOK|M_ZERO);
512 #ifdef LOCKF_DEBUG
513 		if (lockf_debug & 4)
514 			printf("Allocated lock owner %p\n", lo);
515 #endif
516 
517 		lo->lo_refs = 1;
518 		lo->lo_flags = flags;
519 		lo->lo_id = id;
520 		lo->lo_hash = hash;
521 		if (flags & F_REMOTE) {
522 			lo->lo_pid = fl->l_pid;
523 			lo->lo_sysid = fl->l_sysid;
524 		} else if (flags & F_FLOCK) {
525 			lo->lo_pid = -1;
526 			lo->lo_sysid = 0;
527 		} else {
528 			struct proc *p = (struct proc *) id;
529 			lo->lo_pid = p->p_pid;
530 			lo->lo_sysid = 0;
531 		}
532 		lo->lo_vertex = NULL;
533 
534 #ifdef LOCKF_DEBUG
535 		if (lockf_debug & 1) {
536 			printf("lf_advlockasync: new lock owner %p ", lo);
537 			lf_print_owner(lo);
538 			printf("\n");
539 		}
540 #endif
541 
542 		LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link);
543 	} else {
544 		/*
545 		 * We have seen this lock owner before, increase its
546 		 * reference count to account for the new lockf_entry
547 		 * structure we create below.
548 		 */
549 		lo->lo_refs++;
550 	}
551 	sx_xunlock(&lf_lock_owners[hash].lock);
552 
553 	/*
554 	 * Create the lockf structure. We initialise the lf_owner
555 	 * field here instead of in lf_alloc_lock() to avoid paying
556 	 * the lf_lock_owners_lock tax twice.
557 	 */
558 	lock = lf_alloc_lock(NULL);
559 	lock->lf_refs = 1;
560 	lock->lf_start = start;
561 	lock->lf_end = end;
562 	lock->lf_owner = lo;
563 	lock->lf_vnode = vp;
564 	if (flags & F_REMOTE) {
565 		/*
566 		 * For remote locks, the caller may release its ref to
567 		 * the vnode at any time - we have to ref it here to
568 		 * prevent it from being recycled unexpectedly.
569 		 */
570 		vref(vp);
571 	}
572 
573 	lock->lf_type = fl->l_type;
574 	LIST_INIT(&lock->lf_outedges);
575 	LIST_INIT(&lock->lf_inedges);
576 	lock->lf_async_task = ap->a_task;
577 	lock->lf_flags = ap->a_flags;
578 
579 	/*
580 	 * Do the requested operation. First find our state structure
581 	 * and create a new one if necessary - the caller's *statep
582 	 * variable and the state's ls_threads count is protected by
583 	 * the vnode interlock.
584 	 */
585 	VI_LOCK(vp);
586 	if (VN_IS_DOOMED(vp)) {
587 		VI_UNLOCK(vp);
588 		lf_free_lock(lock);
589 		return (ENOENT);
590 	}
591 
592 	/*
593 	 * Allocate a state structure if necessary.
594 	 */
595 	state = *statep;
596 	if (state == NULL) {
597 		struct lockf *ls;
598 
599 		VI_UNLOCK(vp);
600 
601 		ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
602 		sx_init(&ls->ls_lock, "ls_lock");
603 		LIST_INIT(&ls->ls_active);
604 		LIST_INIT(&ls->ls_pending);
605 		ls->ls_threads = 1;
606 
607 		sx_xlock(&lf_lock_states_lock);
608 		LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
609 		sx_xunlock(&lf_lock_states_lock);
610 
611 		/*
612 		 * Cope if we lost a race with some other thread while
613 		 * trying to allocate memory.
614 		 */
615 		VI_LOCK(vp);
616 		if (VN_IS_DOOMED(vp)) {
617 			VI_UNLOCK(vp);
618 			sx_xlock(&lf_lock_states_lock);
619 			LIST_REMOVE(ls, ls_link);
620 			sx_xunlock(&lf_lock_states_lock);
621 			sx_destroy(&ls->ls_lock);
622 			free(ls, M_LOCKF);
623 			lf_free_lock(lock);
624 			return (ENOENT);
625 		}
626 		if ((*statep) == NULL) {
627 			state = *statep = ls;
628 			VI_UNLOCK(vp);
629 		} else {
630 			state = *statep;
631 			MPASS(state->ls_threads >= 0);
632 			state->ls_threads++;
633 			VI_UNLOCK(vp);
634 
635 			sx_xlock(&lf_lock_states_lock);
636 			LIST_REMOVE(ls, ls_link);
637 			sx_xunlock(&lf_lock_states_lock);
638 			sx_destroy(&ls->ls_lock);
639 			free(ls, M_LOCKF);
640 		}
641 	} else {
642 		MPASS(state->ls_threads >= 0);
643 		state->ls_threads++;
644 		VI_UNLOCK(vp);
645 	}
646 
647 	sx_xlock(&state->ls_lock);
648 	/*
649 	 * Recheck the doomed vnode after state->ls_lock is
650 	 * locked. lf_purgelocks() requires that no new threads add
651 	 * pending locks when vnode is marked by VIRF_DOOMED flag.
652 	 */
653 	if (VN_IS_DOOMED(vp)) {
654 		VI_LOCK(vp);
655 		MPASS(state->ls_threads > 0);
656 		state->ls_threads--;
657 		wakeup(state);
658 		VI_UNLOCK(vp);
659 		sx_xunlock(&state->ls_lock);
660 		lf_free_lock(lock);
661 		return (ENOENT);
662 	}
663 
664 	switch (ap->a_op) {
665 	case F_SETLK:
666 		error = lf_setlock(state, lock, vp, ap->a_cookiep);
667 		break;
668 
669 	case F_UNLCK:
670 		error = lf_clearlock(state, lock);
671 		lf_free_lock(lock);
672 		break;
673 
674 	case F_GETLK:
675 		error = lf_getlock(state, lock, fl);
676 		lf_free_lock(lock);
677 		break;
678 
679 	case F_CANCEL:
680 		if (ap->a_cookiep)
681 			error = lf_cancel(state, lock, *ap->a_cookiep);
682 		else
683 			error = EINVAL;
684 		lf_free_lock(lock);
685 		break;
686 
687 	default:
688 		lf_free_lock(lock);
689 		error = EINVAL;
690 		break;
691 	}
692 
693 #ifdef DIAGNOSTIC
694 	/*
695 	 * Check for some can't happen stuff. In this case, the active
696 	 * lock list becoming disordered or containing mutually
697 	 * blocking locks. We also check the pending list for locks
698 	 * which should be active (i.e. have no out-going edges).
699 	 */
700 	LIST_FOREACH(lock, &state->ls_active, lf_link) {
701 		struct lockf_entry *lf;
702 		if (LIST_NEXT(lock, lf_link))
703 			KASSERT((lock->lf_start
704 				<= LIST_NEXT(lock, lf_link)->lf_start),
705 			    ("locks disordered"));
706 		LIST_FOREACH(lf, &state->ls_active, lf_link) {
707 			if (lock == lf)
708 				break;
709 			KASSERT(!lf_blocks(lock, lf),
710 			    ("two conflicting active locks"));
711 			if (lock->lf_owner == lf->lf_owner)
712 				KASSERT(!lf_overlaps(lock, lf),
713 				    ("two overlapping locks from same owner"));
714 		}
715 	}
716 	LIST_FOREACH(lock, &state->ls_pending, lf_link) {
717 		KASSERT(!LIST_EMPTY(&lock->lf_outedges),
718 		    ("pending lock which should be active"));
719 	}
720 #endif
721 	sx_xunlock(&state->ls_lock);
722 
723 	VI_LOCK(vp);
724 	MPASS(state->ls_threads > 0);
725 	state->ls_threads--;
726 	if (state->ls_threads != 0) {
727 		wakeup(state);
728 	}
729 	VI_UNLOCK(vp);
730 
731 	if (error == EDOOFUS) {
732 		KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
733 		goto retry_setlock;
734 	}
735 	return (error);
736 }
737 
738 int
739 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
740 {
741 	struct vop_advlockasync_args a;
742 
743 	a.a_vp = ap->a_vp;
744 	a.a_id = ap->a_id;
745 	a.a_op = ap->a_op;
746 	a.a_fl = ap->a_fl;
747 	a.a_flags = ap->a_flags;
748 	a.a_task = NULL;
749 	a.a_cookiep = NULL;
750 
751 	return (lf_advlockasync(&a, statep, size));
752 }
753 
754 void
755 lf_purgelocks(struct vnode *vp, struct lockf **statep)
756 {
757 	struct lockf *state;
758 	struct lockf_entry *lock, *nlock;
759 
760 	/*
761 	 * For this to work correctly, the caller must ensure that no
762 	 * other threads enter the locking system for this vnode,
763 	 * e.g. by checking VIRF_DOOMED. We wake up any threads that are
764 	 * sleeping waiting for locks on this vnode and then free all
765 	 * the remaining locks.
766 	 */
767 	KASSERT(VN_IS_DOOMED(vp),
768 	    ("lf_purgelocks: vp %p has not vgone yet", vp));
769 	state = *statep;
770 	if (state == NULL) {
771 		return;
772 	}
773 	VI_LOCK(vp);
774 	*statep = NULL;
775 	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
776 		KASSERT(LIST_EMPTY(&state->ls_pending),
777 		    ("freeing state with pending locks"));
778 		VI_UNLOCK(vp);
779 		goto out_free;
780 	}
781 	MPASS(state->ls_threads >= 0);
782 	state->ls_threads++;
783 	VI_UNLOCK(vp);
784 
785 	sx_xlock(&state->ls_lock);
786 	sx_xlock(&lf_owner_graph_lock);
787 	LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
788 		LIST_REMOVE(lock, lf_link);
789 		lf_remove_outgoing(lock);
790 		lf_remove_incoming(lock);
791 
792 		/*
793 		 * If its an async lock, we can just free it
794 		 * here, otherwise we let the sleeping thread
795 		 * free it.
796 		 */
797 		if (lock->lf_async_task) {
798 			lf_free_lock(lock);
799 		} else {
800 			lock->lf_flags |= F_INTR;
801 			wakeup(lock);
802 		}
803 	}
804 	sx_xunlock(&lf_owner_graph_lock);
805 	sx_xunlock(&state->ls_lock);
806 
807 	/*
808 	 * Wait for all other threads, sleeping and otherwise
809 	 * to leave.
810 	 */
811 	VI_LOCK(vp);
812 	while (state->ls_threads > 1)
813 		msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
814 	VI_UNLOCK(vp);
815 
816 	/*
817 	 * We can just free all the active locks since they
818 	 * will have no dependencies (we removed them all
819 	 * above). We don't need to bother locking since we
820 	 * are the last thread using this state structure.
821 	 */
822 	KASSERT(LIST_EMPTY(&state->ls_pending),
823 	    ("lock pending for %p", state));
824 	LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
825 		LIST_REMOVE(lock, lf_link);
826 		lf_free_lock(lock);
827 	}
828 out_free:
829 	sx_xlock(&lf_lock_states_lock);
830 	LIST_REMOVE(state, ls_link);
831 	sx_xunlock(&lf_lock_states_lock);
832 	sx_destroy(&state->ls_lock);
833 	free(state, M_LOCKF);
834 }
835 
836 /*
837  * Return non-zero if locks 'x' and 'y' overlap.
838  */
839 static int
840 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
841 {
842 
843 	return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
844 }
845 
846 /*
847  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
848  */
849 static int
850 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
851 {
852 
853 	return x->lf_owner != y->lf_owner
854 		&& (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
855 		&& lf_overlaps(x, y);
856 }
857 
858 /*
859  * Allocate a lock edge from the free list
860  */
861 static struct lockf_edge *
862 lf_alloc_edge(void)
863 {
864 
865 	return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
866 }
867 
868 /*
869  * Free a lock edge.
870  */
871 static void
872 lf_free_edge(struct lockf_edge *e)
873 {
874 
875 	free(e, M_LOCKF);
876 }
877 
878 /*
879  * Ensure that the lock's owner has a corresponding vertex in the
880  * owner graph.
881  */
882 static void
883 lf_alloc_vertex(struct lockf_entry *lock)
884 {
885 	struct owner_graph *g = &lf_owner_graph;
886 
887 	if (!lock->lf_owner->lo_vertex)
888 		lock->lf_owner->lo_vertex =
889 			graph_alloc_vertex(g, lock->lf_owner);
890 }
891 
892 /*
893  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
894  * the new edge would cause a cycle in the owner graph.
895  */
896 static int
897 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
898 {
899 	struct owner_graph *g = &lf_owner_graph;
900 	struct lockf_edge *e;
901 	int error;
902 
903 #ifdef DIAGNOSTIC
904 	LIST_FOREACH(e, &x->lf_outedges, le_outlink)
905 		KASSERT(e->le_to != y, ("adding lock edge twice"));
906 #endif
907 
908 	/*
909 	 * Make sure the two owners have entries in the owner graph.
910 	 */
911 	lf_alloc_vertex(x);
912 	lf_alloc_vertex(y);
913 
914 	error = graph_add_edge(g, x->lf_owner->lo_vertex,
915 	    y->lf_owner->lo_vertex);
916 	if (error)
917 		return (error);
918 
919 	e = lf_alloc_edge();
920 	LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
921 	LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
922 	e->le_from = x;
923 	e->le_to = y;
924 
925 	return (0);
926 }
927 
928 /*
929  * Remove an edge from the lock graph.
930  */
931 static void
932 lf_remove_edge(struct lockf_edge *e)
933 {
934 	struct owner_graph *g = &lf_owner_graph;
935 	struct lockf_entry *x = e->le_from;
936 	struct lockf_entry *y = e->le_to;
937 
938 	graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
939 	LIST_REMOVE(e, le_outlink);
940 	LIST_REMOVE(e, le_inlink);
941 	e->le_from = NULL;
942 	e->le_to = NULL;
943 	lf_free_edge(e);
944 }
945 
946 /*
947  * Remove all out-going edges from lock x.
948  */
949 static void
950 lf_remove_outgoing(struct lockf_entry *x)
951 {
952 	struct lockf_edge *e;
953 
954 	while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
955 		lf_remove_edge(e);
956 	}
957 }
958 
959 /*
960  * Remove all in-coming edges from lock x.
961  */
962 static void
963 lf_remove_incoming(struct lockf_entry *x)
964 {
965 	struct lockf_edge *e;
966 
967 	while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
968 		lf_remove_edge(e);
969 	}
970 }
971 
972 /*
973  * Walk the list of locks for the file and create an out-going edge
974  * from lock to each blocking lock.
975  */
976 static int
977 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
978 {
979 	struct lockf_entry *overlap;
980 	int error;
981 
982 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
983 		/*
984 		 * We may assume that the active list is sorted by
985 		 * lf_start.
986 		 */
987 		if (overlap->lf_start > lock->lf_end)
988 			break;
989 		if (!lf_blocks(lock, overlap))
990 			continue;
991 
992 		/*
993 		 * We've found a blocking lock. Add the corresponding
994 		 * edge to the graphs and see if it would cause a
995 		 * deadlock.
996 		 */
997 		error = lf_add_edge(lock, overlap);
998 
999 		/*
1000 		 * The only error that lf_add_edge returns is EDEADLK.
1001 		 * Remove any edges we added and return the error.
1002 		 */
1003 		if (error) {
1004 			lf_remove_outgoing(lock);
1005 			return (error);
1006 		}
1007 	}
1008 
1009 	/*
1010 	 * We also need to add edges to sleeping locks that block
1011 	 * us. This ensures that lf_wakeup_lock cannot grant two
1012 	 * mutually blocking locks simultaneously and also enforces a
1013 	 * 'first come, first served' fairness model. Note that this
1014 	 * only happens if we are blocked by at least one active lock
1015 	 * due to the call to lf_getblock in lf_setlock below.
1016 	 */
1017 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1018 		if (!lf_blocks(lock, overlap))
1019 			continue;
1020 		/*
1021 		 * We've found a blocking lock. Add the corresponding
1022 		 * edge to the graphs and see if it would cause a
1023 		 * deadlock.
1024 		 */
1025 		error = lf_add_edge(lock, overlap);
1026 
1027 		/*
1028 		 * The only error that lf_add_edge returns is EDEADLK.
1029 		 * Remove any edges we added and return the error.
1030 		 */
1031 		if (error) {
1032 			lf_remove_outgoing(lock);
1033 			return (error);
1034 		}
1035 	}
1036 
1037 	return (0);
1038 }
1039 
1040 /*
1041  * Walk the list of pending locks for the file and create an in-coming
1042  * edge from lock to each blocking lock.
1043  */
1044 static int
1045 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1046 {
1047 	struct lockf_entry *overlap;
1048 	int error;
1049 
1050 	sx_assert(&state->ls_lock, SX_XLOCKED);
1051 	if (LIST_EMPTY(&state->ls_pending))
1052 		return (0);
1053 
1054 	error = 0;
1055 	sx_xlock(&lf_owner_graph_lock);
1056 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1057 		if (!lf_blocks(lock, overlap))
1058 			continue;
1059 
1060 		/*
1061 		 * We've found a blocking lock. Add the corresponding
1062 		 * edge to the graphs and see if it would cause a
1063 		 * deadlock.
1064 		 */
1065 		error = lf_add_edge(overlap, lock);
1066 
1067 		/*
1068 		 * The only error that lf_add_edge returns is EDEADLK.
1069 		 * Remove any edges we added and return the error.
1070 		 */
1071 		if (error) {
1072 			lf_remove_incoming(lock);
1073 			break;
1074 		}
1075 	}
1076 	sx_xunlock(&lf_owner_graph_lock);
1077 	return (error);
1078 }
1079 
1080 /*
1081  * Insert lock into the active list, keeping list entries ordered by
1082  * increasing values of lf_start.
1083  */
1084 static void
1085 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1086 {
1087 	struct lockf_entry *lf, *lfprev;
1088 
1089 	if (LIST_EMPTY(&state->ls_active)) {
1090 		LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1091 		return;
1092 	}
1093 
1094 	lfprev = NULL;
1095 	LIST_FOREACH(lf, &state->ls_active, lf_link) {
1096 		if (lf->lf_start > lock->lf_start) {
1097 			LIST_INSERT_BEFORE(lf, lock, lf_link);
1098 			return;
1099 		}
1100 		lfprev = lf;
1101 	}
1102 	LIST_INSERT_AFTER(lfprev, lock, lf_link);
1103 }
1104 
1105 /*
1106  * Wake up a sleeping lock and remove it from the pending list now
1107  * that all its dependencies have been resolved. The caller should
1108  * arrange for the lock to be added to the active list, adjusting any
1109  * existing locks for the same owner as needed.
1110  */
1111 static void
1112 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1113 {
1114 
1115 	/*
1116 	 * Remove from ls_pending list and wake up the caller
1117 	 * or start the async notification, as appropriate.
1118 	 */
1119 	LIST_REMOVE(wakelock, lf_link);
1120 #ifdef LOCKF_DEBUG
1121 	if (lockf_debug & 1)
1122 		lf_print("lf_wakeup_lock: awakening", wakelock);
1123 #endif /* LOCKF_DEBUG */
1124 	if (wakelock->lf_async_task) {
1125 		taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1126 	} else {
1127 		wakeup(wakelock);
1128 	}
1129 }
1130 
1131 /*
1132  * Re-check all dependent locks and remove edges to locks that we no
1133  * longer block. If 'all' is non-zero, the lock has been removed and
1134  * we must remove all the dependencies, otherwise it has simply been
1135  * reduced but remains active. Any pending locks which have been been
1136  * unblocked are added to 'granted'
1137  */
1138 static void
1139 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1140 	struct lockf_entry_list *granted)
1141 {
1142 	struct lockf_edge *e, *ne;
1143 	struct lockf_entry *deplock;
1144 
1145 	LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1146 		deplock = e->le_from;
1147 		if (all || !lf_blocks(lock, deplock)) {
1148 			sx_xlock(&lf_owner_graph_lock);
1149 			lf_remove_edge(e);
1150 			sx_xunlock(&lf_owner_graph_lock);
1151 			if (LIST_EMPTY(&deplock->lf_outedges)) {
1152 				lf_wakeup_lock(state, deplock);
1153 				LIST_INSERT_HEAD(granted, deplock, lf_link);
1154 			}
1155 		}
1156 	}
1157 }
1158 
1159 /*
1160  * Set the start of an existing active lock, updating dependencies and
1161  * adding any newly woken locks to 'granted'.
1162  */
1163 static void
1164 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1165 	struct lockf_entry_list *granted)
1166 {
1167 
1168 	KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1169 	lock->lf_start = new_start;
1170 	LIST_REMOVE(lock, lf_link);
1171 	lf_insert_lock(state, lock);
1172 	lf_update_dependancies(state, lock, FALSE, granted);
1173 }
1174 
1175 /*
1176  * Set the end of an existing active lock, updating dependencies and
1177  * adding any newly woken locks to 'granted'.
1178  */
1179 static void
1180 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1181 	struct lockf_entry_list *granted)
1182 {
1183 
1184 	KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1185 	lock->lf_end = new_end;
1186 	lf_update_dependancies(state, lock, FALSE, granted);
1187 }
1188 
1189 /*
1190  * Add a lock to the active list, updating or removing any current
1191  * locks owned by the same owner and processing any pending locks that
1192  * become unblocked as a result. This code is also used for unlock
1193  * since the logic for updating existing locks is identical.
1194  *
1195  * As a result of processing the new lock, we may unblock existing
1196  * pending locks as a result of downgrading/unlocking. We simply
1197  * activate the newly granted locks by looping.
1198  *
1199  * Since the new lock already has its dependencies set up, we always
1200  * add it to the list (unless its an unlock request). This may
1201  * fragment the lock list in some pathological cases but its probably
1202  * not a real problem.
1203  */
1204 static void
1205 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1206 {
1207 	struct lockf_entry *overlap, *lf;
1208 	struct lockf_entry_list granted;
1209 	int ovcase;
1210 
1211 	LIST_INIT(&granted);
1212 	LIST_INSERT_HEAD(&granted, lock, lf_link);
1213 
1214 	while (!LIST_EMPTY(&granted)) {
1215 		lock = LIST_FIRST(&granted);
1216 		LIST_REMOVE(lock, lf_link);
1217 
1218 		/*
1219 		 * Skip over locks owned by other processes.  Handle
1220 		 * any locks that overlap and are owned by ourselves.
1221 		 */
1222 		overlap = LIST_FIRST(&state->ls_active);
1223 		for (;;) {
1224 			ovcase = lf_findoverlap(&overlap, lock, SELF);
1225 
1226 #ifdef LOCKF_DEBUG
1227 			if (ovcase && (lockf_debug & 2)) {
1228 				printf("lf_setlock: overlap %d", ovcase);
1229 				lf_print("", overlap);
1230 			}
1231 #endif
1232 			/*
1233 			 * Six cases:
1234 			 *	0) no overlap
1235 			 *	1) overlap == lock
1236 			 *	2) overlap contains lock
1237 			 *	3) lock contains overlap
1238 			 *	4) overlap starts before lock
1239 			 *	5) overlap ends after lock
1240 			 */
1241 			switch (ovcase) {
1242 			case 0: /* no overlap */
1243 				break;
1244 
1245 			case 1: /* overlap == lock */
1246 				/*
1247 				 * We have already setup the
1248 				 * dependants for the new lock, taking
1249 				 * into account a possible downgrade
1250 				 * or unlock. Remove the old lock.
1251 				 */
1252 				LIST_REMOVE(overlap, lf_link);
1253 				lf_update_dependancies(state, overlap, TRUE,
1254 					&granted);
1255 				lf_free_lock(overlap);
1256 				break;
1257 
1258 			case 2: /* overlap contains lock */
1259 				/*
1260 				 * Just split the existing lock.
1261 				 */
1262 				lf_split(state, overlap, lock, &granted);
1263 				break;
1264 
1265 			case 3: /* lock contains overlap */
1266 				/*
1267 				 * Delete the overlap and advance to
1268 				 * the next entry in the list.
1269 				 */
1270 				lf = LIST_NEXT(overlap, lf_link);
1271 				LIST_REMOVE(overlap, lf_link);
1272 				lf_update_dependancies(state, overlap, TRUE,
1273 					&granted);
1274 				lf_free_lock(overlap);
1275 				overlap = lf;
1276 				continue;
1277 
1278 			case 4: /* overlap starts before lock */
1279 				/*
1280 				 * Just update the overlap end and
1281 				 * move on.
1282 				 */
1283 				lf_set_end(state, overlap, lock->lf_start - 1,
1284 				    &granted);
1285 				overlap = LIST_NEXT(overlap, lf_link);
1286 				continue;
1287 
1288 			case 5: /* overlap ends after lock */
1289 				/*
1290 				 * Change the start of overlap and
1291 				 * re-insert.
1292 				 */
1293 				lf_set_start(state, overlap, lock->lf_end + 1,
1294 				    &granted);
1295 				break;
1296 			}
1297 			break;
1298 		}
1299 #ifdef LOCKF_DEBUG
1300 		if (lockf_debug & 1) {
1301 			if (lock->lf_type != F_UNLCK)
1302 				lf_print("lf_activate_lock: activated", lock);
1303 			else
1304 				lf_print("lf_activate_lock: unlocked", lock);
1305 			lf_printlist("lf_activate_lock", lock);
1306 		}
1307 #endif /* LOCKF_DEBUG */
1308 		if (lock->lf_type != F_UNLCK)
1309 			lf_insert_lock(state, lock);
1310 	}
1311 }
1312 
1313 /*
1314  * Cancel a pending lock request, either as a result of a signal or a
1315  * cancel request for an async lock.
1316  */
1317 static void
1318 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1319 {
1320 	struct lockf_entry_list granted;
1321 
1322 	/*
1323 	 * Note it is theoretically possible that cancelling this lock
1324 	 * may allow some other pending lock to become
1325 	 * active. Consider this case:
1326 	 *
1327 	 * Owner	Action		Result		Dependencies
1328 	 *
1329 	 * A:		lock [0..0]	succeeds
1330 	 * B:		lock [2..2]	succeeds
1331 	 * C:		lock [1..2]	blocked		C->B
1332 	 * D:		lock [0..1]	blocked		C->B,D->A,D->C
1333 	 * A:		unlock [0..0]			C->B,D->C
1334 	 * C:		cancel [1..2]
1335 	 */
1336 
1337 	LIST_REMOVE(lock, lf_link);
1338 
1339 	/*
1340 	 * Removing out-going edges is simple.
1341 	 */
1342 	sx_xlock(&lf_owner_graph_lock);
1343 	lf_remove_outgoing(lock);
1344 	sx_xunlock(&lf_owner_graph_lock);
1345 
1346 	/*
1347 	 * Removing in-coming edges may allow some other lock to
1348 	 * become active - we use lf_update_dependancies to figure
1349 	 * this out.
1350 	 */
1351 	LIST_INIT(&granted);
1352 	lf_update_dependancies(state, lock, TRUE, &granted);
1353 	lf_free_lock(lock);
1354 
1355 	/*
1356 	 * Feed any newly active locks to lf_activate_lock.
1357 	 */
1358 	while (!LIST_EMPTY(&granted)) {
1359 		lock = LIST_FIRST(&granted);
1360 		LIST_REMOVE(lock, lf_link);
1361 		lf_activate_lock(state, lock);
1362 	}
1363 }
1364 
1365 /*
1366  * Set a byte-range lock.
1367  */
1368 static int
1369 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1370     void **cookiep)
1371 {
1372 	static char lockstr[] = "lockf";
1373 	int error, priority, stops_deferred;
1374 
1375 #ifdef LOCKF_DEBUG
1376 	if (lockf_debug & 1)
1377 		lf_print("lf_setlock", lock);
1378 #endif /* LOCKF_DEBUG */
1379 
1380 	/*
1381 	 * Set the priority
1382 	 */
1383 	priority = PLOCK;
1384 	if (lock->lf_type == F_WRLCK)
1385 		priority += 4;
1386 	if (!(lock->lf_flags & F_NOINTR))
1387 		priority |= PCATCH;
1388 	/*
1389 	 * Scan lock list for this file looking for locks that would block us.
1390 	 */
1391 	if (lf_getblock(state, lock)) {
1392 		/*
1393 		 * Free the structure and return if nonblocking.
1394 		 */
1395 		if ((lock->lf_flags & F_WAIT) == 0
1396 		    && lock->lf_async_task == NULL) {
1397 			lf_free_lock(lock);
1398 			error = EAGAIN;
1399 			goto out;
1400 		}
1401 
1402 		/*
1403 		 * For flock type locks, we must first remove
1404 		 * any shared locks that we hold before we sleep
1405 		 * waiting for an exclusive lock.
1406 		 */
1407 		if ((lock->lf_flags & F_FLOCK) &&
1408 		    lock->lf_type == F_WRLCK) {
1409 			lock->lf_type = F_UNLCK;
1410 			lf_activate_lock(state, lock);
1411 			lock->lf_type = F_WRLCK;
1412 		}
1413 
1414 		/*
1415 		 * We are blocked. Create edges to each blocking lock,
1416 		 * checking for deadlock using the owner graph. For
1417 		 * simplicity, we run deadlock detection for all
1418 		 * locks, posix and otherwise.
1419 		 */
1420 		sx_xlock(&lf_owner_graph_lock);
1421 		error = lf_add_outgoing(state, lock);
1422 		sx_xunlock(&lf_owner_graph_lock);
1423 
1424 		if (error) {
1425 #ifdef LOCKF_DEBUG
1426 			if (lockf_debug & 1)
1427 				lf_print("lf_setlock: deadlock", lock);
1428 #endif
1429 			lf_free_lock(lock);
1430 			goto out;
1431 		}
1432 
1433 		/*
1434 		 * We have added edges to everything that blocks
1435 		 * us. Sleep until they all go away.
1436 		 */
1437 		LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1438 #ifdef LOCKF_DEBUG
1439 		if (lockf_debug & 1) {
1440 			struct lockf_edge *e;
1441 			LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1442 				lf_print("lf_setlock: blocking on", e->le_to);
1443 				lf_printlist("lf_setlock", e->le_to);
1444 			}
1445 		}
1446 #endif /* LOCKF_DEBUG */
1447 
1448 		if ((lock->lf_flags & F_WAIT) == 0) {
1449 			/*
1450 			 * The caller requested async notification -
1451 			 * this callback happens when the blocking
1452 			 * lock is released, allowing the caller to
1453 			 * make another attempt to take the lock.
1454 			 */
1455 			*cookiep = (void *) lock;
1456 			error = EINPROGRESS;
1457 			goto out;
1458 		}
1459 
1460 		lock->lf_refs++;
1461 		stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
1462 		error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1463 		sigallowstop(stops_deferred);
1464 		if (lf_free_lock(lock)) {
1465 			error = EDOOFUS;
1466 			goto out;
1467 		}
1468 
1469 		/*
1470 		 * We may have been awakened by a signal and/or by a
1471 		 * debugger continuing us (in which cases we must
1472 		 * remove our lock graph edges) and/or by another
1473 		 * process releasing a lock (in which case our edges
1474 		 * have already been removed and we have been moved to
1475 		 * the active list). We may also have been woken by
1476 		 * lf_purgelocks which we report to the caller as
1477 		 * EINTR. In that case, lf_purgelocks will have
1478 		 * removed our lock graph edges.
1479 		 *
1480 		 * Note that it is possible to receive a signal after
1481 		 * we were successfully woken (and moved to the active
1482 		 * list) but before we resumed execution. In this
1483 		 * case, our lf_outedges list will be clear. We
1484 		 * pretend there was no error.
1485 		 *
1486 		 * Note also, if we have been sleeping long enough, we
1487 		 * may now have incoming edges from some newer lock
1488 		 * which is waiting behind us in the queue.
1489 		 */
1490 		if (lock->lf_flags & F_INTR) {
1491 			error = EINTR;
1492 			lf_free_lock(lock);
1493 			goto out;
1494 		}
1495 		if (LIST_EMPTY(&lock->lf_outedges)) {
1496 			error = 0;
1497 		} else {
1498 			lf_cancel_lock(state, lock);
1499 			goto out;
1500 		}
1501 #ifdef LOCKF_DEBUG
1502 		if (lockf_debug & 1) {
1503 			lf_print("lf_setlock: granted", lock);
1504 		}
1505 #endif
1506 		goto out;
1507 	}
1508 	/*
1509 	 * It looks like we are going to grant the lock. First add
1510 	 * edges from any currently pending lock that the new lock
1511 	 * would block.
1512 	 */
1513 	error = lf_add_incoming(state, lock);
1514 	if (error) {
1515 #ifdef LOCKF_DEBUG
1516 		if (lockf_debug & 1)
1517 			lf_print("lf_setlock: deadlock", lock);
1518 #endif
1519 		lf_free_lock(lock);
1520 		goto out;
1521 	}
1522 
1523 	/*
1524 	 * No blocks!!  Add the lock.  Note that we will
1525 	 * downgrade or upgrade any overlapping locks this
1526 	 * process already owns.
1527 	 */
1528 	lf_activate_lock(state, lock);
1529 	error = 0;
1530 out:
1531 	return (error);
1532 }
1533 
1534 /*
1535  * Remove a byte-range lock on an inode.
1536  *
1537  * Generally, find the lock (or an overlap to that lock)
1538  * and remove it (or shrink it), then wakeup anyone we can.
1539  */
1540 static int
1541 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1542 {
1543 	struct lockf_entry *overlap;
1544 
1545 	overlap = LIST_FIRST(&state->ls_active);
1546 
1547 	if (overlap == NOLOCKF)
1548 		return (0);
1549 #ifdef LOCKF_DEBUG
1550 	if (unlock->lf_type != F_UNLCK)
1551 		panic("lf_clearlock: bad type");
1552 	if (lockf_debug & 1)
1553 		lf_print("lf_clearlock", unlock);
1554 #endif /* LOCKF_DEBUG */
1555 
1556 	lf_activate_lock(state, unlock);
1557 
1558 	return (0);
1559 }
1560 
1561 /*
1562  * Check whether there is a blocking lock, and if so return its
1563  * details in '*fl'.
1564  */
1565 static int
1566 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1567 {
1568 	struct lockf_entry *block;
1569 
1570 #ifdef LOCKF_DEBUG
1571 	if (lockf_debug & 1)
1572 		lf_print("lf_getlock", lock);
1573 #endif /* LOCKF_DEBUG */
1574 
1575 	if ((block = lf_getblock(state, lock))) {
1576 		fl->l_type = block->lf_type;
1577 		fl->l_whence = SEEK_SET;
1578 		fl->l_start = block->lf_start;
1579 		if (block->lf_end == OFF_MAX)
1580 			fl->l_len = 0;
1581 		else
1582 			fl->l_len = block->lf_end - block->lf_start + 1;
1583 		fl->l_pid = block->lf_owner->lo_pid;
1584 		fl->l_sysid = block->lf_owner->lo_sysid;
1585 	} else {
1586 		fl->l_type = F_UNLCK;
1587 	}
1588 	return (0);
1589 }
1590 
1591 /*
1592  * Cancel an async lock request.
1593  */
1594 static int
1595 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1596 {
1597 	struct lockf_entry *reallock;
1598 
1599 	/*
1600 	 * We need to match this request with an existing lock
1601 	 * request.
1602 	 */
1603 	LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1604 		if ((void *) reallock == cookie) {
1605 			/*
1606 			 * Double-check that this lock looks right
1607 			 * (maybe use a rolling ID for the cancel
1608 			 * cookie instead?)
1609 			 */
1610 			if (!(reallock->lf_vnode == lock->lf_vnode
1611 				&& reallock->lf_start == lock->lf_start
1612 				&& reallock->lf_end == lock->lf_end)) {
1613 				return (ENOENT);
1614 			}
1615 
1616 			/*
1617 			 * Make sure this lock was async and then just
1618 			 * remove it from its wait lists.
1619 			 */
1620 			if (!reallock->lf_async_task) {
1621 				return (ENOENT);
1622 			}
1623 
1624 			/*
1625 			 * Note that since any other thread must take
1626 			 * state->ls_lock before it can possibly
1627 			 * trigger the async callback, we are safe
1628 			 * from a race with lf_wakeup_lock, i.e. we
1629 			 * can free the lock (actually our caller does
1630 			 * this).
1631 			 */
1632 			lf_cancel_lock(state, reallock);
1633 			return (0);
1634 		}
1635 	}
1636 
1637 	/*
1638 	 * We didn't find a matching lock - not much we can do here.
1639 	 */
1640 	return (ENOENT);
1641 }
1642 
1643 /*
1644  * Walk the list of locks for an inode and
1645  * return the first blocking lock.
1646  */
1647 static struct lockf_entry *
1648 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1649 {
1650 	struct lockf_entry *overlap;
1651 
1652 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1653 		/*
1654 		 * We may assume that the active list is sorted by
1655 		 * lf_start.
1656 		 */
1657 		if (overlap->lf_start > lock->lf_end)
1658 			break;
1659 		if (!lf_blocks(lock, overlap))
1660 			continue;
1661 		return (overlap);
1662 	}
1663 	return (NOLOCKF);
1664 }
1665 
1666 /*
1667  * Walk the list of locks for an inode to find an overlapping lock (if
1668  * any) and return a classification of that overlap.
1669  *
1670  * Arguments:
1671  *	*overlap	The place in the lock list to start looking
1672  *	lock		The lock which is being tested
1673  *	type		Pass 'SELF' to test only locks with the same
1674  *			owner as lock, or 'OTHER' to test only locks
1675  *			with a different owner
1676  *
1677  * Returns one of six values:
1678  *	0) no overlap
1679  *	1) overlap == lock
1680  *	2) overlap contains lock
1681  *	3) lock contains overlap
1682  *	4) overlap starts before lock
1683  *	5) overlap ends after lock
1684  *
1685  * If there is an overlapping lock, '*overlap' is set to point at the
1686  * overlapping lock.
1687  *
1688  * NOTE: this returns only the FIRST overlapping lock.  There
1689  *	 may be more than one.
1690  */
1691 static int
1692 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1693 {
1694 	struct lockf_entry *lf;
1695 	off_t start, end;
1696 	int res;
1697 
1698 	if ((*overlap) == NOLOCKF) {
1699 		return (0);
1700 	}
1701 #ifdef LOCKF_DEBUG
1702 	if (lockf_debug & 2)
1703 		lf_print("lf_findoverlap: looking for overlap in", lock);
1704 #endif /* LOCKF_DEBUG */
1705 	start = lock->lf_start;
1706 	end = lock->lf_end;
1707 	res = 0;
1708 	while (*overlap) {
1709 		lf = *overlap;
1710 		if (lf->lf_start > end)
1711 			break;
1712 		if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1713 		    ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1714 			*overlap = LIST_NEXT(lf, lf_link);
1715 			continue;
1716 		}
1717 #ifdef LOCKF_DEBUG
1718 		if (lockf_debug & 2)
1719 			lf_print("\tchecking", lf);
1720 #endif /* LOCKF_DEBUG */
1721 		/*
1722 		 * OK, check for overlap
1723 		 *
1724 		 * Six cases:
1725 		 *	0) no overlap
1726 		 *	1) overlap == lock
1727 		 *	2) overlap contains lock
1728 		 *	3) lock contains overlap
1729 		 *	4) overlap starts before lock
1730 		 *	5) overlap ends after lock
1731 		 */
1732 		if (start > lf->lf_end) {
1733 			/* Case 0 */
1734 #ifdef LOCKF_DEBUG
1735 			if (lockf_debug & 2)
1736 				printf("no overlap\n");
1737 #endif /* LOCKF_DEBUG */
1738 			*overlap = LIST_NEXT(lf, lf_link);
1739 			continue;
1740 		}
1741 		if (lf->lf_start == start && lf->lf_end == end) {
1742 			/* Case 1 */
1743 #ifdef LOCKF_DEBUG
1744 			if (lockf_debug & 2)
1745 				printf("overlap == lock\n");
1746 #endif /* LOCKF_DEBUG */
1747 			res = 1;
1748 			break;
1749 		}
1750 		if (lf->lf_start <= start && lf->lf_end >= end) {
1751 			/* Case 2 */
1752 #ifdef LOCKF_DEBUG
1753 			if (lockf_debug & 2)
1754 				printf("overlap contains lock\n");
1755 #endif /* LOCKF_DEBUG */
1756 			res = 2;
1757 			break;
1758 		}
1759 		if (start <= lf->lf_start && end >= lf->lf_end) {
1760 			/* Case 3 */
1761 #ifdef LOCKF_DEBUG
1762 			if (lockf_debug & 2)
1763 				printf("lock contains overlap\n");
1764 #endif /* LOCKF_DEBUG */
1765 			res = 3;
1766 			break;
1767 		}
1768 		if (lf->lf_start < start && lf->lf_end >= start) {
1769 			/* Case 4 */
1770 #ifdef LOCKF_DEBUG
1771 			if (lockf_debug & 2)
1772 				printf("overlap starts before lock\n");
1773 #endif /* LOCKF_DEBUG */
1774 			res = 4;
1775 			break;
1776 		}
1777 		if (lf->lf_start > start && lf->lf_end > end) {
1778 			/* Case 5 */
1779 #ifdef LOCKF_DEBUG
1780 			if (lockf_debug & 2)
1781 				printf("overlap ends after lock\n");
1782 #endif /* LOCKF_DEBUG */
1783 			res = 5;
1784 			break;
1785 		}
1786 		panic("lf_findoverlap: default");
1787 	}
1788 	return (res);
1789 }
1790 
1791 /*
1792  * Split an the existing 'lock1', based on the extent of the lock
1793  * described by 'lock2'. The existing lock should cover 'lock2'
1794  * entirely.
1795  *
1796  * Any pending locks which have been been unblocked are added to
1797  * 'granted'
1798  */
1799 static void
1800 lf_split(struct lockf *state, struct lockf_entry *lock1,
1801     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1802 {
1803 	struct lockf_entry *splitlock;
1804 
1805 #ifdef LOCKF_DEBUG
1806 	if (lockf_debug & 2) {
1807 		lf_print("lf_split", lock1);
1808 		lf_print("splitting from", lock2);
1809 	}
1810 #endif /* LOCKF_DEBUG */
1811 	/*
1812 	 * Check to see if we don't need to split at all.
1813 	 */
1814 	if (lock1->lf_start == lock2->lf_start) {
1815 		lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1816 		return;
1817 	}
1818 	if (lock1->lf_end == lock2->lf_end) {
1819 		lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1820 		return;
1821 	}
1822 	/*
1823 	 * Make a new lock consisting of the last part of
1824 	 * the encompassing lock.
1825 	 */
1826 	splitlock = lf_alloc_lock(lock1->lf_owner);
1827 	memcpy(splitlock, lock1, sizeof *splitlock);
1828 	splitlock->lf_refs = 1;
1829 	if (splitlock->lf_flags & F_REMOTE)
1830 		vref(splitlock->lf_vnode);
1831 
1832 	/*
1833 	 * This cannot cause a deadlock since any edges we would add
1834 	 * to splitlock already exist in lock1. We must be sure to add
1835 	 * necessary dependencies to splitlock before we reduce lock1
1836 	 * otherwise we may accidentally grant a pending lock that
1837 	 * was blocked by the tail end of lock1.
1838 	 */
1839 	splitlock->lf_start = lock2->lf_end + 1;
1840 	LIST_INIT(&splitlock->lf_outedges);
1841 	LIST_INIT(&splitlock->lf_inedges);
1842 	lf_add_incoming(state, splitlock);
1843 
1844 	lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1845 
1846 	/*
1847 	 * OK, now link it in
1848 	 */
1849 	lf_insert_lock(state, splitlock);
1850 }
1851 
1852 struct lockdesc {
1853 	STAILQ_ENTRY(lockdesc) link;
1854 	struct vnode *vp;
1855 	struct flock fl;
1856 };
1857 STAILQ_HEAD(lockdesclist, lockdesc);
1858 
1859 int
1860 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1861 {
1862 	struct lockf *ls;
1863 	struct lockf_entry *lf;
1864 	struct lockdesc *ldesc;
1865 	struct lockdesclist locks;
1866 	int error;
1867 
1868 	/*
1869 	 * In order to keep the locking simple, we iterate over the
1870 	 * active lock lists to build a list of locks that need
1871 	 * releasing. We then call the iterator for each one in turn.
1872 	 *
1873 	 * We take an extra reference to the vnode for the duration to
1874 	 * make sure it doesn't go away before we are finished.
1875 	 */
1876 	STAILQ_INIT(&locks);
1877 	sx_xlock(&lf_lock_states_lock);
1878 	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1879 		sx_xlock(&ls->ls_lock);
1880 		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1881 			if (lf->lf_owner->lo_sysid != sysid)
1882 				continue;
1883 
1884 			ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1885 			    M_WAITOK);
1886 			ldesc->vp = lf->lf_vnode;
1887 			vref(ldesc->vp);
1888 			ldesc->fl.l_start = lf->lf_start;
1889 			if (lf->lf_end == OFF_MAX)
1890 				ldesc->fl.l_len = 0;
1891 			else
1892 				ldesc->fl.l_len =
1893 					lf->lf_end - lf->lf_start + 1;
1894 			ldesc->fl.l_whence = SEEK_SET;
1895 			ldesc->fl.l_type = F_UNLCK;
1896 			ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1897 			ldesc->fl.l_sysid = sysid;
1898 			STAILQ_INSERT_TAIL(&locks, ldesc, link);
1899 		}
1900 		sx_xunlock(&ls->ls_lock);
1901 	}
1902 	sx_xunlock(&lf_lock_states_lock);
1903 
1904 	/*
1905 	 * Call the iterator function for each lock in turn. If the
1906 	 * iterator returns an error code, just free the rest of the
1907 	 * lockdesc structures.
1908 	 */
1909 	error = 0;
1910 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1911 		STAILQ_REMOVE_HEAD(&locks, link);
1912 		if (!error)
1913 			error = fn(ldesc->vp, &ldesc->fl, arg);
1914 		vrele(ldesc->vp);
1915 		free(ldesc, M_LOCKF);
1916 	}
1917 
1918 	return (error);
1919 }
1920 
1921 int
1922 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1923 {
1924 	struct lockf *ls;
1925 	struct lockf_entry *lf;
1926 	struct lockdesc *ldesc;
1927 	struct lockdesclist locks;
1928 	int error;
1929 
1930 	/*
1931 	 * In order to keep the locking simple, we iterate over the
1932 	 * active lock lists to build a list of locks that need
1933 	 * releasing. We then call the iterator for each one in turn.
1934 	 *
1935 	 * We take an extra reference to the vnode for the duration to
1936 	 * make sure it doesn't go away before we are finished.
1937 	 */
1938 	STAILQ_INIT(&locks);
1939 	VI_LOCK(vp);
1940 	ls = vp->v_lockf;
1941 	if (!ls) {
1942 		VI_UNLOCK(vp);
1943 		return (0);
1944 	}
1945 	MPASS(ls->ls_threads >= 0);
1946 	ls->ls_threads++;
1947 	VI_UNLOCK(vp);
1948 
1949 	sx_xlock(&ls->ls_lock);
1950 	LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1951 		ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1952 		    M_WAITOK);
1953 		ldesc->vp = lf->lf_vnode;
1954 		vref(ldesc->vp);
1955 		ldesc->fl.l_start = lf->lf_start;
1956 		if (lf->lf_end == OFF_MAX)
1957 			ldesc->fl.l_len = 0;
1958 		else
1959 			ldesc->fl.l_len =
1960 				lf->lf_end - lf->lf_start + 1;
1961 		ldesc->fl.l_whence = SEEK_SET;
1962 		ldesc->fl.l_type = F_UNLCK;
1963 		ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1964 		ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1965 		STAILQ_INSERT_TAIL(&locks, ldesc, link);
1966 	}
1967 	sx_xunlock(&ls->ls_lock);
1968 	VI_LOCK(vp);
1969 	MPASS(ls->ls_threads > 0);
1970 	ls->ls_threads--;
1971 	wakeup(ls);
1972 	VI_UNLOCK(vp);
1973 
1974 	/*
1975 	 * Call the iterator function for each lock in turn. If the
1976 	 * iterator returns an error code, just free the rest of the
1977 	 * lockdesc structures.
1978 	 */
1979 	error = 0;
1980 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1981 		STAILQ_REMOVE_HEAD(&locks, link);
1982 		if (!error)
1983 			error = fn(ldesc->vp, &ldesc->fl, arg);
1984 		vrele(ldesc->vp);
1985 		free(ldesc, M_LOCKF);
1986 	}
1987 
1988 	return (error);
1989 }
1990 
1991 static int
1992 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
1993 {
1994 
1995 	VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
1996 	return (0);
1997 }
1998 
1999 void
2000 lf_clearremotesys(int sysid)
2001 {
2002 
2003 	KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2004 	lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2005 }
2006 
2007 int
2008 lf_countlocks(int sysid)
2009 {
2010 	int i;
2011 	struct lock_owner *lo;
2012 	int count;
2013 
2014 	count = 0;
2015 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
2016 		sx_xlock(&lf_lock_owners[i].lock);
2017 		LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link)
2018 			if (lo->lo_sysid == sysid)
2019 				count += lo->lo_refs;
2020 		sx_xunlock(&lf_lock_owners[i].lock);
2021 	}
2022 
2023 	return (count);
2024 }
2025 
2026 #ifdef LOCKF_DEBUG
2027 
2028 /*
2029  * Return non-zero if y is reachable from x using a brute force
2030  * search. If reachable and path is non-null, return the route taken
2031  * in path.
2032  */
2033 static int
2034 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2035     struct owner_vertex_list *path)
2036 {
2037 	struct owner_edge *e;
2038 
2039 	if (x == y) {
2040 		if (path)
2041 			TAILQ_INSERT_HEAD(path, x, v_link);
2042 		return 1;
2043 	}
2044 
2045 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2046 		if (graph_reaches(e->e_to, y, path)) {
2047 			if (path)
2048 				TAILQ_INSERT_HEAD(path, x, v_link);
2049 			return 1;
2050 		}
2051 	}
2052 	return 0;
2053 }
2054 
2055 /*
2056  * Perform consistency checks on the graph. Make sure the values of
2057  * v_order are correct. If checkorder is non-zero, check no vertex can
2058  * reach any other vertex with a smaller order.
2059  */
2060 static void
2061 graph_check(struct owner_graph *g, int checkorder)
2062 {
2063 	int i, j;
2064 
2065 	for (i = 0; i < g->g_size; i++) {
2066 		if (!g->g_vertices[i]->v_owner)
2067 			continue;
2068 		KASSERT(g->g_vertices[i]->v_order == i,
2069 		    ("lock graph vertices disordered"));
2070 		if (checkorder) {
2071 			for (j = 0; j < i; j++) {
2072 				if (!g->g_vertices[j]->v_owner)
2073 					continue;
2074 				KASSERT(!graph_reaches(g->g_vertices[i],
2075 					g->g_vertices[j], NULL),
2076 				    ("lock graph vertices disordered"));
2077 			}
2078 		}
2079 	}
2080 }
2081 
2082 static void
2083 graph_print_vertices(struct owner_vertex_list *set)
2084 {
2085 	struct owner_vertex *v;
2086 
2087 	printf("{ ");
2088 	TAILQ_FOREACH(v, set, v_link) {
2089 		printf("%d:", v->v_order);
2090 		lf_print_owner(v->v_owner);
2091 		if (TAILQ_NEXT(v, v_link))
2092 			printf(", ");
2093 	}
2094 	printf(" }\n");
2095 }
2096 
2097 #endif
2098 
2099 /*
2100  * Calculate the sub-set of vertices v from the affected region [y..x]
2101  * where v is reachable from y. Return -1 if a loop was detected
2102  * (i.e. x is reachable from y, otherwise the number of vertices in
2103  * this subset.
2104  */
2105 static int
2106 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2107     struct owner_vertex *y, struct owner_vertex_list *delta)
2108 {
2109 	uint32_t gen;
2110 	struct owner_vertex *v;
2111 	struct owner_edge *e;
2112 	int n;
2113 
2114 	/*
2115 	 * We start with a set containing just y. Then for each vertex
2116 	 * v in the set so far unprocessed, we add each vertex that v
2117 	 * has an out-edge to and that is within the affected region
2118 	 * [y..x]. If we see the vertex x on our travels, stop
2119 	 * immediately.
2120 	 */
2121 	TAILQ_INIT(delta);
2122 	TAILQ_INSERT_TAIL(delta, y, v_link);
2123 	v = y;
2124 	n = 1;
2125 	gen = g->g_gen;
2126 	while (v) {
2127 		LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2128 			if (e->e_to == x)
2129 				return -1;
2130 			if (e->e_to->v_order < x->v_order
2131 			    && e->e_to->v_gen != gen) {
2132 				e->e_to->v_gen = gen;
2133 				TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2134 				n++;
2135 			}
2136 		}
2137 		v = TAILQ_NEXT(v, v_link);
2138 	}
2139 
2140 	return (n);
2141 }
2142 
2143 /*
2144  * Calculate the sub-set of vertices v from the affected region [y..x]
2145  * where v reaches x. Return the number of vertices in this subset.
2146  */
2147 static int
2148 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2149     struct owner_vertex *y, struct owner_vertex_list *delta)
2150 {
2151 	uint32_t gen;
2152 	struct owner_vertex *v;
2153 	struct owner_edge *e;
2154 	int n;
2155 
2156 	/*
2157 	 * We start with a set containing just x. Then for each vertex
2158 	 * v in the set so far unprocessed, we add each vertex that v
2159 	 * has an in-edge from and that is within the affected region
2160 	 * [y..x].
2161 	 */
2162 	TAILQ_INIT(delta);
2163 	TAILQ_INSERT_TAIL(delta, x, v_link);
2164 	v = x;
2165 	n = 1;
2166 	gen = g->g_gen;
2167 	while (v) {
2168 		LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2169 			if (e->e_from->v_order > y->v_order
2170 			    && e->e_from->v_gen != gen) {
2171 				e->e_from->v_gen = gen;
2172 				TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2173 				n++;
2174 			}
2175 		}
2176 		v = TAILQ_PREV(v, owner_vertex_list, v_link);
2177 	}
2178 
2179 	return (n);
2180 }
2181 
2182 static int
2183 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2184 {
2185 	struct owner_vertex *v;
2186 	int i, j;
2187 
2188 	TAILQ_FOREACH(v, set, v_link) {
2189 		for (i = n;
2190 		     i > 0 && indices[i - 1] > v->v_order; i--)
2191 			;
2192 		for (j = n - 1; j >= i; j--)
2193 			indices[j + 1] = indices[j];
2194 		indices[i] = v->v_order;
2195 		n++;
2196 	}
2197 
2198 	return (n);
2199 }
2200 
2201 static int
2202 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2203     struct owner_vertex_list *set)
2204 {
2205 	struct owner_vertex *v, *vlowest;
2206 
2207 	while (!TAILQ_EMPTY(set)) {
2208 		vlowest = NULL;
2209 		TAILQ_FOREACH(v, set, v_link) {
2210 			if (!vlowest || v->v_order < vlowest->v_order)
2211 				vlowest = v;
2212 		}
2213 		TAILQ_REMOVE(set, vlowest, v_link);
2214 		vlowest->v_order = indices[nextunused];
2215 		g->g_vertices[vlowest->v_order] = vlowest;
2216 		nextunused++;
2217 	}
2218 
2219 	return (nextunused);
2220 }
2221 
2222 static int
2223 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2224     struct owner_vertex *y)
2225 {
2226 	struct owner_edge *e;
2227 	struct owner_vertex_list deltaF, deltaB;
2228 	int nF, n, vi, i;
2229 	int *indices;
2230 	int nB __unused;
2231 
2232 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2233 
2234 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2235 		if (e->e_to == y) {
2236 			e->e_refs++;
2237 			return (0);
2238 		}
2239 	}
2240 
2241 #ifdef LOCKF_DEBUG
2242 	if (lockf_debug & 8) {
2243 		printf("adding edge %d:", x->v_order);
2244 		lf_print_owner(x->v_owner);
2245 		printf(" -> %d:", y->v_order);
2246 		lf_print_owner(y->v_owner);
2247 		printf("\n");
2248 	}
2249 #endif
2250 	if (y->v_order < x->v_order) {
2251 		/*
2252 		 * The new edge violates the order. First find the set
2253 		 * of affected vertices reachable from y (deltaF) and
2254 		 * the set of affect vertices affected that reach x
2255 		 * (deltaB), using the graph generation number to
2256 		 * detect whether we have visited a given vertex
2257 		 * already. We re-order the graph so that each vertex
2258 		 * in deltaB appears before each vertex in deltaF.
2259 		 *
2260 		 * If x is a member of deltaF, then the new edge would
2261 		 * create a cycle. Otherwise, we may assume that
2262 		 * deltaF and deltaB are disjoint.
2263 		 */
2264 		g->g_gen++;
2265 		if (g->g_gen == 0) {
2266 			/*
2267 			 * Generation wrap.
2268 			 */
2269 			for (vi = 0; vi < g->g_size; vi++) {
2270 				g->g_vertices[vi]->v_gen = 0;
2271 			}
2272 			g->g_gen++;
2273 		}
2274 		nF = graph_delta_forward(g, x, y, &deltaF);
2275 		if (nF < 0) {
2276 #ifdef LOCKF_DEBUG
2277 			if (lockf_debug & 8) {
2278 				struct owner_vertex_list path;
2279 				printf("deadlock: ");
2280 				TAILQ_INIT(&path);
2281 				graph_reaches(y, x, &path);
2282 				graph_print_vertices(&path);
2283 			}
2284 #endif
2285 			return (EDEADLK);
2286 		}
2287 
2288 #ifdef LOCKF_DEBUG
2289 		if (lockf_debug & 8) {
2290 			printf("re-ordering graph vertices\n");
2291 			printf("deltaF = ");
2292 			graph_print_vertices(&deltaF);
2293 		}
2294 #endif
2295 
2296 		nB = graph_delta_backward(g, x, y, &deltaB);
2297 
2298 #ifdef LOCKF_DEBUG
2299 		if (lockf_debug & 8) {
2300 			printf("deltaB = ");
2301 			graph_print_vertices(&deltaB);
2302 		}
2303 #endif
2304 
2305 		/*
2306 		 * We first build a set of vertex indices (vertex
2307 		 * order values) that we may use, then we re-assign
2308 		 * orders first to those vertices in deltaB, then to
2309 		 * deltaF. Note that the contents of deltaF and deltaB
2310 		 * may be partially disordered - we perform an
2311 		 * insertion sort while building our index set.
2312 		 */
2313 		indices = g->g_indexbuf;
2314 		n = graph_add_indices(indices, 0, &deltaF);
2315 		graph_add_indices(indices, n, &deltaB);
2316 
2317 		/*
2318 		 * We must also be sure to maintain the relative
2319 		 * ordering of deltaF and deltaB when re-assigning
2320 		 * vertices. We do this by iteratively removing the
2321 		 * lowest ordered element from the set and assigning
2322 		 * it the next value from our new ordering.
2323 		 */
2324 		i = graph_assign_indices(g, indices, 0, &deltaB);
2325 		graph_assign_indices(g, indices, i, &deltaF);
2326 
2327 #ifdef LOCKF_DEBUG
2328 		if (lockf_debug & 8) {
2329 			struct owner_vertex_list set;
2330 			TAILQ_INIT(&set);
2331 			for (i = 0; i < nB + nF; i++)
2332 				TAILQ_INSERT_TAIL(&set,
2333 				    g->g_vertices[indices[i]], v_link);
2334 			printf("new ordering = ");
2335 			graph_print_vertices(&set);
2336 		}
2337 #endif
2338 	}
2339 
2340 	KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2341 
2342 #ifdef LOCKF_DEBUG
2343 	if (lockf_debug & 8) {
2344 		graph_check(g, TRUE);
2345 	}
2346 #endif
2347 
2348 	e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2349 
2350 	LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2351 	LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2352 	e->e_refs = 1;
2353 	e->e_from = x;
2354 	e->e_to = y;
2355 
2356 	return (0);
2357 }
2358 
2359 /*
2360  * Remove an edge x->y from the graph.
2361  */
2362 static void
2363 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2364     struct owner_vertex *y)
2365 {
2366 	struct owner_edge *e;
2367 
2368 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2369 
2370 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2371 		if (e->e_to == y)
2372 			break;
2373 	}
2374 	KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2375 
2376 	e->e_refs--;
2377 	if (e->e_refs == 0) {
2378 #ifdef LOCKF_DEBUG
2379 		if (lockf_debug & 8) {
2380 			printf("removing edge %d:", x->v_order);
2381 			lf_print_owner(x->v_owner);
2382 			printf(" -> %d:", y->v_order);
2383 			lf_print_owner(y->v_owner);
2384 			printf("\n");
2385 		}
2386 #endif
2387 		LIST_REMOVE(e, e_outlink);
2388 		LIST_REMOVE(e, e_inlink);
2389 		free(e, M_LOCKF);
2390 	}
2391 }
2392 
2393 /*
2394  * Allocate a vertex from the free list. Return ENOMEM if there are
2395  * none.
2396  */
2397 static struct owner_vertex *
2398 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2399 {
2400 	struct owner_vertex *v;
2401 
2402 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2403 
2404 	v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2405 	if (g->g_size == g->g_space) {
2406 		g->g_vertices = realloc(g->g_vertices,
2407 		    2 * g->g_space * sizeof(struct owner_vertex *),
2408 		    M_LOCKF, M_WAITOK);
2409 		free(g->g_indexbuf, M_LOCKF);
2410 		g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2411 		    M_LOCKF, M_WAITOK);
2412 		g->g_space = 2 * g->g_space;
2413 	}
2414 	v->v_order = g->g_size;
2415 	v->v_gen = g->g_gen;
2416 	g->g_vertices[g->g_size] = v;
2417 	g->g_size++;
2418 
2419 	LIST_INIT(&v->v_outedges);
2420 	LIST_INIT(&v->v_inedges);
2421 	v->v_owner = lo;
2422 
2423 	return (v);
2424 }
2425 
2426 static void
2427 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2428 {
2429 	struct owner_vertex *w;
2430 	int i;
2431 
2432 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2433 
2434 	KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2435 	KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2436 
2437 	/*
2438 	 * Remove from the graph's array and close up the gap,
2439 	 * renumbering the other vertices.
2440 	 */
2441 	for (i = v->v_order + 1; i < g->g_size; i++) {
2442 		w = g->g_vertices[i];
2443 		w->v_order--;
2444 		g->g_vertices[i - 1] = w;
2445 	}
2446 	g->g_size--;
2447 
2448 	free(v, M_LOCKF);
2449 }
2450 
2451 static struct owner_graph *
2452 graph_init(struct owner_graph *g)
2453 {
2454 
2455 	g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2456 	    M_LOCKF, M_WAITOK);
2457 	g->g_size = 0;
2458 	g->g_space = 10;
2459 	g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2460 	g->g_gen = 0;
2461 
2462 	return (g);
2463 }
2464 
2465 struct kinfo_lockf_linked {
2466 	struct kinfo_lockf kl;
2467 	struct vnode *vp;
2468 	STAILQ_ENTRY(kinfo_lockf_linked) link;
2469 };
2470 
2471 int
2472 vfs_report_lockf(struct mount *mp, struct sbuf *sb)
2473 {
2474 	struct lockf *ls;
2475 	struct lockf_entry *lf;
2476 	struct kinfo_lockf_linked *klf;
2477 	struct vnode *vp;
2478 	struct ucred *ucred;
2479 	char *fullpath, *freepath;
2480 	struct stat stt;
2481 	STAILQ_HEAD(, kinfo_lockf_linked) locks;
2482 	int error, gerror;
2483 
2484 	STAILQ_INIT(&locks);
2485 	sx_slock(&lf_lock_states_lock);
2486 	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
2487 		sx_slock(&ls->ls_lock);
2488 		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
2489 			vp = lf->lf_vnode;
2490 			if (VN_IS_DOOMED(vp) || vp->v_mount != mp)
2491 				continue;
2492 			vhold(vp);
2493 			klf = malloc(sizeof(struct kinfo_lockf_linked),
2494 			    M_LOCKF, M_WAITOK | M_ZERO);
2495 			klf->vp = vp;
2496 			klf->kl.kl_structsize = sizeof(struct kinfo_lockf);
2497 			klf->kl.kl_start = lf->lf_start;
2498 			klf->kl.kl_len = lf->lf_end == OFF_MAX ? 0 :
2499 			    lf->lf_end - lf->lf_start + 1;
2500 			klf->kl.kl_rw = lf->lf_type == F_RDLCK ?
2501 			    KLOCKF_RW_READ : KLOCKF_RW_WRITE;
2502 			if (lf->lf_owner->lo_sysid != 0) {
2503 				klf->kl.kl_pid = lf->lf_owner->lo_pid;
2504 				klf->kl.kl_sysid = lf->lf_owner->lo_sysid;
2505 				klf->kl.kl_type = KLOCKF_TYPE_REMOTE;
2506 			} else if (lf->lf_owner->lo_pid == -1) {
2507 				klf->kl.kl_pid = -1;
2508 				klf->kl.kl_sysid = 0;
2509 				klf->kl.kl_type = KLOCKF_TYPE_FLOCK;
2510 			} else {
2511 				klf->kl.kl_pid = lf->lf_owner->lo_pid;
2512 				klf->kl.kl_sysid = 0;
2513 				klf->kl.kl_type = KLOCKF_TYPE_PID;
2514 			}
2515 			STAILQ_INSERT_TAIL(&locks, klf, link);
2516 		}
2517 		sx_sunlock(&ls->ls_lock);
2518 	}
2519 	sx_sunlock(&lf_lock_states_lock);
2520 
2521 	gerror = 0;
2522 	ucred = curthread->td_ucred;
2523 	while ((klf = STAILQ_FIRST(&locks)) != NULL) {
2524 		STAILQ_REMOVE_HEAD(&locks, link);
2525 		vp = klf->vp;
2526 		if (gerror == 0 && vn_lock(vp, LK_SHARED) == 0) {
2527 			error = prison_canseemount(ucred, vp->v_mount);
2528 			if (error == 0)
2529 				error = VOP_STAT(vp, &stt, ucred, NOCRED);
2530 			VOP_UNLOCK(vp);
2531 			if (error == 0) {
2532 				klf->kl.kl_file_fsid = stt.st_dev;
2533 				klf->kl.kl_file_rdev = stt.st_rdev;
2534 				klf->kl.kl_file_fileid = stt.st_ino;
2535 				freepath = NULL;
2536 				fullpath = "-";
2537 				error = vn_fullpath(vp, &fullpath, &freepath);
2538 				if (error == 0)
2539 					strlcpy(klf->kl.kl_path, fullpath,
2540 					    sizeof(klf->kl.kl_path));
2541 				free(freepath, M_TEMP);
2542 				if (sbuf_bcat(sb, &klf->kl,
2543 				    klf->kl.kl_structsize) != 0) {
2544 					gerror = sbuf_error(sb);
2545 				}
2546 			}
2547 		}
2548 		vdrop(vp);
2549 		free(klf, M_LOCKF);
2550 	}
2551 
2552 	return (gerror);
2553 }
2554 
2555 static int
2556 sysctl_kern_lockf_run(struct sbuf *sb)
2557 {
2558 	struct mount *mp;
2559 	int error;
2560 
2561 	error = 0;
2562 	mtx_lock(&mountlist_mtx);
2563 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2564 		error = vfs_busy(mp, MBF_MNTLSTLOCK);
2565 		if (error != 0)
2566 			continue;
2567 		error = mp->mnt_op->vfs_report_lockf(mp, sb);
2568 		mtx_lock(&mountlist_mtx);
2569 		vfs_unbusy(mp);
2570 		if (error != 0)
2571 			break;
2572 	}
2573 	mtx_unlock(&mountlist_mtx);
2574 	return (error);
2575 }
2576 
2577 static int
2578 sysctl_kern_lockf(SYSCTL_HANDLER_ARGS)
2579 {
2580 	struct sbuf sb;
2581 	int error, error2;
2582 
2583 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_lockf) * 5, req);
2584 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2585 	error = sysctl_kern_lockf_run(&sb);
2586 	error2 = sbuf_finish(&sb);
2587 	sbuf_delete(&sb);
2588 	return (error != 0 ? error : error2);
2589 }
2590 SYSCTL_PROC(_kern, KERN_LOCKF, lockf,
2591     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2592     0, 0, sysctl_kern_lockf, "S,lockf",
2593     "Advisory locks table");
2594 
2595 #ifdef LOCKF_DEBUG
2596 /*
2597  * Print description of a lock owner
2598  */
2599 static void
2600 lf_print_owner(struct lock_owner *lo)
2601 {
2602 
2603 	if (lo->lo_flags & F_REMOTE) {
2604 		printf("remote pid %d, system %d",
2605 		    lo->lo_pid, lo->lo_sysid);
2606 	} else if (lo->lo_flags & F_FLOCK) {
2607 		printf("file %p", lo->lo_id);
2608 	} else {
2609 		printf("local pid %d", lo->lo_pid);
2610 	}
2611 }
2612 
2613 /*
2614  * Print out a lock.
2615  */
2616 static void
2617 lf_print(char *tag, struct lockf_entry *lock)
2618 {
2619 
2620 	printf("%s: lock %p for ", tag, (void *)lock);
2621 	lf_print_owner(lock->lf_owner);
2622 	printf("\nvnode %p", lock->lf_vnode);
2623 	VOP_PRINT(lock->lf_vnode);
2624 	printf(" %s, start %jd, end ",
2625 	    lock->lf_type == F_RDLCK ? "shared" :
2626 	    lock->lf_type == F_WRLCK ? "exclusive" :
2627 	    lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2628 	    (intmax_t)lock->lf_start);
2629 	if (lock->lf_end == OFF_MAX)
2630 		printf("EOF");
2631 	else
2632 		printf("%jd", (intmax_t)lock->lf_end);
2633 	if (!LIST_EMPTY(&lock->lf_outedges))
2634 		printf(" block %p\n",
2635 		    (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2636 	else
2637 		printf("\n");
2638 }
2639 
2640 static void
2641 lf_printlist(char *tag, struct lockf_entry *lock)
2642 {
2643 	struct lockf_entry *lf, *blk;
2644 	struct lockf_edge *e;
2645 
2646 	printf("%s: Lock list for vnode %p:\n", tag, lock->lf_vnode);
2647 	LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2648 		printf("\tlock %p for ",(void *)lf);
2649 		lf_print_owner(lock->lf_owner);
2650 		printf(", %s, start %jd, end %jd",
2651 		    lf->lf_type == F_RDLCK ? "shared" :
2652 		    lf->lf_type == F_WRLCK ? "exclusive" :
2653 		    lf->lf_type == F_UNLCK ? "unlock" :
2654 		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2655 		LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2656 			blk = e->le_to;
2657 			printf("\n\t\tlock request %p for ", (void *)blk);
2658 			lf_print_owner(blk->lf_owner);
2659 			printf(", %s, start %jd, end %jd",
2660 			    blk->lf_type == F_RDLCK ? "shared" :
2661 			    blk->lf_type == F_WRLCK ? "exclusive" :
2662 			    blk->lf_type == F_UNLCK ? "unlock" :
2663 			    "unknown", (intmax_t)blk->lf_start,
2664 			    (intmax_t)blk->lf_end);
2665 			if (!LIST_EMPTY(&blk->lf_inedges))
2666 				panic("lf_printlist: bad list");
2667 		}
2668 		printf("\n");
2669 	}
2670 }
2671 #endif /* LOCKF_DEBUG */
2672