xref: /freebsd/sys/kern/kern_lockf.c (revision e17f5b1d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
5  * Authors: Doug Rabson <dfr@rabson.org>
6  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (c) 1982, 1986, 1989, 1993
31  *	The Regents of the University of California.  All rights reserved.
32  *
33  * This code is derived from software contributed to Berkeley by
34  * Scooter Morris at Genentech Inc.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)ufs_lockf.c	8.3 (Berkeley) 1/6/94
61  */
62 
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65 
66 #include "opt_debug_lockf.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/hash.h>
71 #include <sys/kernel.h>
72 #include <sys/limits.h>
73 #include <sys/lock.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/sx.h>
78 #include <sys/unistd.h>
79 #include <sys/vnode.h>
80 #include <sys/malloc.h>
81 #include <sys/fcntl.h>
82 #include <sys/lockf.h>
83 #include <sys/taskqueue.h>
84 
85 #ifdef LOCKF_DEBUG
86 #include <sys/sysctl.h>
87 
88 #include <ufs/ufs/extattr.h>
89 #include <ufs/ufs/quota.h>
90 #include <ufs/ufs/ufsmount.h>
91 #include <ufs/ufs/inode.h>
92 
93 static int	lockf_debug = 0; /* control debug output */
94 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
95 #endif
96 
97 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
98 
99 struct owner_edge;
100 struct owner_vertex;
101 struct owner_vertex_list;
102 struct owner_graph;
103 
104 #define NOLOCKF (struct lockf_entry *)0
105 #define SELF	0x1
106 #define OTHERS	0x2
107 static void	 lf_init(void *);
108 static int	 lf_hash_owner(caddr_t, struct vnode *, struct flock *, int);
109 static int	 lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
110     int);
111 static struct lockf_entry *
112 		 lf_alloc_lock(struct lock_owner *);
113 static int	 lf_free_lock(struct lockf_entry *);
114 static int	 lf_clearlock(struct lockf *, struct lockf_entry *);
115 static int	 lf_overlaps(struct lockf_entry *, struct lockf_entry *);
116 static int	 lf_blocks(struct lockf_entry *, struct lockf_entry *);
117 static void	 lf_free_edge(struct lockf_edge *);
118 static struct lockf_edge *
119 		 lf_alloc_edge(void);
120 static void	 lf_alloc_vertex(struct lockf_entry *);
121 static int	 lf_add_edge(struct lockf_entry *, struct lockf_entry *);
122 static void	 lf_remove_edge(struct lockf_edge *);
123 static void	 lf_remove_outgoing(struct lockf_entry *);
124 static void	 lf_remove_incoming(struct lockf_entry *);
125 static int	 lf_add_outgoing(struct lockf *, struct lockf_entry *);
126 static int	 lf_add_incoming(struct lockf *, struct lockf_entry *);
127 static int	 lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
128     int);
129 static struct lockf_entry *
130 		 lf_getblock(struct lockf *, struct lockf_entry *);
131 static int	 lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
132 static void	 lf_insert_lock(struct lockf *, struct lockf_entry *);
133 static void	 lf_wakeup_lock(struct lockf *, struct lockf_entry *);
134 static void	 lf_update_dependancies(struct lockf *, struct lockf_entry *,
135     int all, struct lockf_entry_list *);
136 static void	 lf_set_start(struct lockf *, struct lockf_entry *, off_t,
137 	struct lockf_entry_list*);
138 static void	 lf_set_end(struct lockf *, struct lockf_entry *, off_t,
139 	struct lockf_entry_list*);
140 static int	 lf_setlock(struct lockf *, struct lockf_entry *,
141     struct vnode *, void **cookiep);
142 static int	 lf_cancel(struct lockf *, struct lockf_entry *, void *);
143 static void	 lf_split(struct lockf *, struct lockf_entry *,
144     struct lockf_entry *, struct lockf_entry_list *);
145 #ifdef LOCKF_DEBUG
146 static int	 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
147     struct owner_vertex_list *path);
148 static void	 graph_check(struct owner_graph *g, int checkorder);
149 static void	 graph_print_vertices(struct owner_vertex_list *set);
150 #endif
151 static int	 graph_delta_forward(struct owner_graph *g,
152     struct owner_vertex *x, struct owner_vertex *y,
153     struct owner_vertex_list *delta);
154 static int	 graph_delta_backward(struct owner_graph *g,
155     struct owner_vertex *x, struct owner_vertex *y,
156     struct owner_vertex_list *delta);
157 static int	 graph_add_indices(int *indices, int n,
158     struct owner_vertex_list *set);
159 static int	 graph_assign_indices(struct owner_graph *g, int *indices,
160     int nextunused, struct owner_vertex_list *set);
161 static int	 graph_add_edge(struct owner_graph *g,
162     struct owner_vertex *x, struct owner_vertex *y);
163 static void	 graph_remove_edge(struct owner_graph *g,
164     struct owner_vertex *x, struct owner_vertex *y);
165 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
166     struct lock_owner *lo);
167 static void	 graph_free_vertex(struct owner_graph *g,
168     struct owner_vertex *v);
169 static struct owner_graph * graph_init(struct owner_graph *g);
170 #ifdef LOCKF_DEBUG
171 static void	 lf_print(char *, struct lockf_entry *);
172 static void	 lf_printlist(char *, struct lockf_entry *);
173 static void	 lf_print_owner(struct lock_owner *);
174 #endif
175 
176 /*
177  * This structure is used to keep track of both local and remote lock
178  * owners. The lf_owner field of the struct lockf_entry points back at
179  * the lock owner structure. Each possible lock owner (local proc for
180  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
181  * pair for remote locks) is represented by a unique instance of
182  * struct lock_owner.
183  *
184  * If a lock owner has a lock that blocks some other lock or a lock
185  * that is waiting for some other lock, it also has a vertex in the
186  * owner_graph below.
187  *
188  * Locks:
189  * (s)		locked by state->ls_lock
190  * (S)		locked by lf_lock_states_lock
191  * (g)		locked by lf_owner_graph_lock
192  * (c)		const until freeing
193  */
194 #define	LOCK_OWNER_HASH_SIZE	256
195 
196 struct lock_owner {
197 	LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
198 	int	lo_refs;	    /* (l) Number of locks referring to this */
199 	int	lo_flags;	    /* (c) Flags passwd to lf_advlock */
200 	caddr_t	lo_id;		    /* (c) Id value passed to lf_advlock */
201 	pid_t	lo_pid;		    /* (c) Process Id of the lock owner */
202 	int	lo_sysid;	    /* (c) System Id of the lock owner */
203 	int	lo_hash;	    /* (c) Used to lock the appropriate chain */
204 	struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
205 };
206 
207 LIST_HEAD(lock_owner_list, lock_owner);
208 
209 struct lock_owner_chain {
210 	struct sx		lock;
211 	struct lock_owner_list	list;
212 };
213 
214 static struct sx		lf_lock_states_lock;
215 static struct lockf_list	lf_lock_states; /* (S) */
216 static struct lock_owner_chain	lf_lock_owners[LOCK_OWNER_HASH_SIZE];
217 
218 /*
219  * Structures for deadlock detection.
220  *
221  * We have two types of directed graph, the first is the set of locks,
222  * both active and pending on a vnode. Within this graph, active locks
223  * are terminal nodes in the graph (i.e. have no out-going
224  * edges). Pending locks have out-going edges to each blocking active
225  * lock that prevents the lock from being granted and also to each
226  * older pending lock that would block them if it was active. The
227  * graph for each vnode is naturally acyclic; new edges are only ever
228  * added to or from new nodes (either new pending locks which only add
229  * out-going edges or new active locks which only add in-coming edges)
230  * therefore they cannot create loops in the lock graph.
231  *
232  * The second graph is a global graph of lock owners. Each lock owner
233  * is a vertex in that graph and an edge is added to the graph
234  * whenever an edge is added to a vnode graph, with end points
235  * corresponding to owner of the new pending lock and the owner of the
236  * lock upon which it waits. In order to prevent deadlock, we only add
237  * an edge to this graph if the new edge would not create a cycle.
238  *
239  * The lock owner graph is topologically sorted, i.e. if a node has
240  * any outgoing edges, then it has an order strictly less than any
241  * node to which it has an outgoing edge. We preserve this ordering
242  * (and detect cycles) on edge insertion using Algorithm PK from the
243  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
244  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
245  * No. 1.7)
246  */
247 struct owner_vertex;
248 
249 struct owner_edge {
250 	LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
251 	LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
252 	int		e_refs;		  /* (g) number of times added */
253 	struct owner_vertex *e_from;	  /* (c) out-going from here */
254 	struct owner_vertex *e_to;	  /* (c) in-coming to here */
255 };
256 LIST_HEAD(owner_edge_list, owner_edge);
257 
258 struct owner_vertex {
259 	TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
260 	uint32_t	v_gen;		  /* (g) workspace for edge insertion */
261 	int		v_order;	  /* (g) order of vertex in graph */
262 	struct owner_edge_list v_outedges;/* (g) list of out-edges */
263 	struct owner_edge_list v_inedges; /* (g) list of in-edges */
264 	struct lock_owner *v_owner;	  /* (c) corresponding lock owner */
265 };
266 TAILQ_HEAD(owner_vertex_list, owner_vertex);
267 
268 struct owner_graph {
269 	struct owner_vertex** g_vertices; /* (g) pointers to vertices */
270 	int		g_size;		  /* (g) number of vertices */
271 	int		g_space;	  /* (g) space allocated for vertices */
272 	int		*g_indexbuf;	  /* (g) workspace for loop detection */
273 	uint32_t	g_gen;		  /* (g) increment when re-ordering */
274 };
275 
276 static struct sx		lf_owner_graph_lock;
277 static struct owner_graph	lf_owner_graph;
278 
279 /*
280  * Initialise various structures and locks.
281  */
282 static void
283 lf_init(void *dummy)
284 {
285 	int i;
286 
287 	sx_init(&lf_lock_states_lock, "lock states lock");
288 	LIST_INIT(&lf_lock_states);
289 
290 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
291 		sx_init(&lf_lock_owners[i].lock, "lock owners lock");
292 		LIST_INIT(&lf_lock_owners[i].list);
293 	}
294 
295 	sx_init(&lf_owner_graph_lock, "owner graph lock");
296 	graph_init(&lf_owner_graph);
297 }
298 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
299 
300 /*
301  * Generate a hash value for a lock owner.
302  */
303 static int
304 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags)
305 {
306 	uint32_t h;
307 
308 	if (flags & F_REMOTE) {
309 		h = HASHSTEP(0, fl->l_pid);
310 		h = HASHSTEP(h, fl->l_sysid);
311 	} else if (flags & F_FLOCK) {
312 		h = ((uintptr_t) id) >> 7;
313 	} else {
314 		h = ((uintptr_t) vp) >> 7;
315 	}
316 
317 	return (h % LOCK_OWNER_HASH_SIZE);
318 }
319 
320 /*
321  * Return true if a lock owner matches the details passed to
322  * lf_advlock.
323  */
324 static int
325 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
326     int flags)
327 {
328 	if (flags & F_REMOTE) {
329 		return lo->lo_pid == fl->l_pid
330 			&& lo->lo_sysid == fl->l_sysid;
331 	} else {
332 		return lo->lo_id == id;
333 	}
334 }
335 
336 static struct lockf_entry *
337 lf_alloc_lock(struct lock_owner *lo)
338 {
339 	struct lockf_entry *lf;
340 
341 	lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
342 
343 #ifdef LOCKF_DEBUG
344 	if (lockf_debug & 4)
345 		printf("Allocated lock %p\n", lf);
346 #endif
347 	if (lo) {
348 		sx_xlock(&lf_lock_owners[lo->lo_hash].lock);
349 		lo->lo_refs++;
350 		sx_xunlock(&lf_lock_owners[lo->lo_hash].lock);
351 		lf->lf_owner = lo;
352 	}
353 
354 	return (lf);
355 }
356 
357 static int
358 lf_free_lock(struct lockf_entry *lock)
359 {
360 	struct sx *chainlock;
361 
362 	KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
363 	if (--lock->lf_refs > 0)
364 		return (0);
365 	/*
366 	 * Adjust the lock_owner reference count and
367 	 * reclaim the entry if this is the last lock
368 	 * for that owner.
369 	 */
370 	struct lock_owner *lo = lock->lf_owner;
371 	if (lo) {
372 		KASSERT(LIST_EMPTY(&lock->lf_outedges),
373 		    ("freeing lock with dependencies"));
374 		KASSERT(LIST_EMPTY(&lock->lf_inedges),
375 		    ("freeing lock with dependants"));
376 		chainlock = &lf_lock_owners[lo->lo_hash].lock;
377 		sx_xlock(chainlock);
378 		KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
379 		lo->lo_refs--;
380 		if (lo->lo_refs == 0) {
381 #ifdef LOCKF_DEBUG
382 			if (lockf_debug & 1)
383 				printf("lf_free_lock: freeing lock owner %p\n",
384 				    lo);
385 #endif
386 			if (lo->lo_vertex) {
387 				sx_xlock(&lf_owner_graph_lock);
388 				graph_free_vertex(&lf_owner_graph,
389 				    lo->lo_vertex);
390 				sx_xunlock(&lf_owner_graph_lock);
391 			}
392 			LIST_REMOVE(lo, lo_link);
393 			free(lo, M_LOCKF);
394 #ifdef LOCKF_DEBUG
395 			if (lockf_debug & 4)
396 				printf("Freed lock owner %p\n", lo);
397 #endif
398 		}
399 		sx_unlock(chainlock);
400 	}
401 	if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
402 		vrele(lock->lf_vnode);
403 		lock->lf_vnode = NULL;
404 	}
405 #ifdef LOCKF_DEBUG
406 	if (lockf_debug & 4)
407 		printf("Freed lock %p\n", lock);
408 #endif
409 	free(lock, M_LOCKF);
410 	return (1);
411 }
412 
413 /*
414  * Advisory record locking support
415  */
416 int
417 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
418     u_quad_t size)
419 {
420 	struct lockf *state;
421 	struct flock *fl = ap->a_fl;
422 	struct lockf_entry *lock;
423 	struct vnode *vp = ap->a_vp;
424 	caddr_t id = ap->a_id;
425 	int flags = ap->a_flags;
426 	int hash;
427 	struct lock_owner *lo;
428 	off_t start, end, oadd;
429 	int error;
430 
431 	/*
432 	 * Handle the F_UNLKSYS case first - no need to mess about
433 	 * creating a lock owner for this one.
434 	 */
435 	if (ap->a_op == F_UNLCKSYS) {
436 		lf_clearremotesys(fl->l_sysid);
437 		return (0);
438 	}
439 
440 	/*
441 	 * Convert the flock structure into a start and end.
442 	 */
443 	switch (fl->l_whence) {
444 
445 	case SEEK_SET:
446 	case SEEK_CUR:
447 		/*
448 		 * Caller is responsible for adding any necessary offset
449 		 * when SEEK_CUR is used.
450 		 */
451 		start = fl->l_start;
452 		break;
453 
454 	case SEEK_END:
455 		if (size > OFF_MAX ||
456 		    (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
457 			return (EOVERFLOW);
458 		start = size + fl->l_start;
459 		break;
460 
461 	default:
462 		return (EINVAL);
463 	}
464 	if (start < 0)
465 		return (EINVAL);
466 	if (fl->l_len < 0) {
467 		if (start == 0)
468 			return (EINVAL);
469 		end = start - 1;
470 		start += fl->l_len;
471 		if (start < 0)
472 			return (EINVAL);
473 	} else if (fl->l_len == 0) {
474 		end = OFF_MAX;
475 	} else {
476 		oadd = fl->l_len - 1;
477 		if (oadd > OFF_MAX - start)
478 			return (EOVERFLOW);
479 		end = start + oadd;
480 	}
481 
482 retry_setlock:
483 
484 	/*
485 	 * Avoid the common case of unlocking when inode has no locks.
486 	 */
487 	if (ap->a_op != F_SETLK && (*statep) == NULL) {
488 		VI_LOCK(vp);
489 		if ((*statep) == NULL) {
490 			fl->l_type = F_UNLCK;
491 			VI_UNLOCK(vp);
492 			return (0);
493 		}
494 		VI_UNLOCK(vp);
495 	}
496 
497 	/*
498 	 * Map our arguments to an existing lock owner or create one
499 	 * if this is the first time we have seen this owner.
500 	 */
501 	hash = lf_hash_owner(id, vp, fl, flags);
502 	sx_xlock(&lf_lock_owners[hash].lock);
503 	LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link)
504 		if (lf_owner_matches(lo, id, fl, flags))
505 			break;
506 	if (!lo) {
507 		/*
508 		 * We initialise the lock with a reference
509 		 * count which matches the new lockf_entry
510 		 * structure created below.
511 		 */
512 		lo = malloc(sizeof(struct lock_owner), M_LOCKF,
513 		    M_WAITOK|M_ZERO);
514 #ifdef LOCKF_DEBUG
515 		if (lockf_debug & 4)
516 			printf("Allocated lock owner %p\n", lo);
517 #endif
518 
519 		lo->lo_refs = 1;
520 		lo->lo_flags = flags;
521 		lo->lo_id = id;
522 		lo->lo_hash = hash;
523 		if (flags & F_REMOTE) {
524 			lo->lo_pid = fl->l_pid;
525 			lo->lo_sysid = fl->l_sysid;
526 		} else if (flags & F_FLOCK) {
527 			lo->lo_pid = -1;
528 			lo->lo_sysid = 0;
529 		} else {
530 			struct proc *p = (struct proc *) id;
531 			lo->lo_pid = p->p_pid;
532 			lo->lo_sysid = 0;
533 		}
534 		lo->lo_vertex = NULL;
535 
536 #ifdef LOCKF_DEBUG
537 		if (lockf_debug & 1) {
538 			printf("lf_advlockasync: new lock owner %p ", lo);
539 			lf_print_owner(lo);
540 			printf("\n");
541 		}
542 #endif
543 
544 		LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link);
545 	} else {
546 		/*
547 		 * We have seen this lock owner before, increase its
548 		 * reference count to account for the new lockf_entry
549 		 * structure we create below.
550 		 */
551 		lo->lo_refs++;
552 	}
553 	sx_xunlock(&lf_lock_owners[hash].lock);
554 
555 	/*
556 	 * Create the lockf structure. We initialise the lf_owner
557 	 * field here instead of in lf_alloc_lock() to avoid paying
558 	 * the lf_lock_owners_lock tax twice.
559 	 */
560 	lock = lf_alloc_lock(NULL);
561 	lock->lf_refs = 1;
562 	lock->lf_start = start;
563 	lock->lf_end = end;
564 	lock->lf_owner = lo;
565 	lock->lf_vnode = vp;
566 	if (flags & F_REMOTE) {
567 		/*
568 		 * For remote locks, the caller may release its ref to
569 		 * the vnode at any time - we have to ref it here to
570 		 * prevent it from being recycled unexpectedly.
571 		 */
572 		vref(vp);
573 	}
574 
575 	/*
576 	 * XXX The problem is that VTOI is ufs specific, so it will
577 	 * break LOCKF_DEBUG for all other FS's other than UFS because
578 	 * it casts the vnode->data ptr to struct inode *.
579 	 */
580 /*	lock->lf_inode = VTOI(ap->a_vp); */
581 	lock->lf_inode = (struct inode *)0;
582 	lock->lf_type = fl->l_type;
583 	LIST_INIT(&lock->lf_outedges);
584 	LIST_INIT(&lock->lf_inedges);
585 	lock->lf_async_task = ap->a_task;
586 	lock->lf_flags = ap->a_flags;
587 
588 	/*
589 	 * Do the requested operation. First find our state structure
590 	 * and create a new one if necessary - the caller's *statep
591 	 * variable and the state's ls_threads count is protected by
592 	 * the vnode interlock.
593 	 */
594 	VI_LOCK(vp);
595 	if (VN_IS_DOOMED(vp)) {
596 		VI_UNLOCK(vp);
597 		lf_free_lock(lock);
598 		return (ENOENT);
599 	}
600 
601 	/*
602 	 * Allocate a state structure if necessary.
603 	 */
604 	state = *statep;
605 	if (state == NULL) {
606 		struct lockf *ls;
607 
608 		VI_UNLOCK(vp);
609 
610 		ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
611 		sx_init(&ls->ls_lock, "ls_lock");
612 		LIST_INIT(&ls->ls_active);
613 		LIST_INIT(&ls->ls_pending);
614 		ls->ls_threads = 1;
615 
616 		sx_xlock(&lf_lock_states_lock);
617 		LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
618 		sx_xunlock(&lf_lock_states_lock);
619 
620 		/*
621 		 * Cope if we lost a race with some other thread while
622 		 * trying to allocate memory.
623 		 */
624 		VI_LOCK(vp);
625 		if (VN_IS_DOOMED(vp)) {
626 			VI_UNLOCK(vp);
627 			sx_xlock(&lf_lock_states_lock);
628 			LIST_REMOVE(ls, ls_link);
629 			sx_xunlock(&lf_lock_states_lock);
630 			sx_destroy(&ls->ls_lock);
631 			free(ls, M_LOCKF);
632 			lf_free_lock(lock);
633 			return (ENOENT);
634 		}
635 		if ((*statep) == NULL) {
636 			state = *statep = ls;
637 			VI_UNLOCK(vp);
638 		} else {
639 			state = *statep;
640 			MPASS(state->ls_threads >= 0);
641 			state->ls_threads++;
642 			VI_UNLOCK(vp);
643 
644 			sx_xlock(&lf_lock_states_lock);
645 			LIST_REMOVE(ls, ls_link);
646 			sx_xunlock(&lf_lock_states_lock);
647 			sx_destroy(&ls->ls_lock);
648 			free(ls, M_LOCKF);
649 		}
650 	} else {
651 		MPASS(state->ls_threads >= 0);
652 		state->ls_threads++;
653 		VI_UNLOCK(vp);
654 	}
655 
656 	sx_xlock(&state->ls_lock);
657 	/*
658 	 * Recheck the doomed vnode after state->ls_lock is
659 	 * locked. lf_purgelocks() requires that no new threads add
660 	 * pending locks when vnode is marked by VIRF_DOOMED flag.
661 	 */
662 	if (VN_IS_DOOMED(vp)) {
663 		VI_LOCK(vp);
664 		MPASS(state->ls_threads > 0);
665 		state->ls_threads--;
666 		wakeup(state);
667 		VI_UNLOCK(vp);
668 		sx_xunlock(&state->ls_lock);
669 		lf_free_lock(lock);
670 		return (ENOENT);
671 	}
672 
673 	switch (ap->a_op) {
674 	case F_SETLK:
675 		error = lf_setlock(state, lock, vp, ap->a_cookiep);
676 		break;
677 
678 	case F_UNLCK:
679 		error = lf_clearlock(state, lock);
680 		lf_free_lock(lock);
681 		break;
682 
683 	case F_GETLK:
684 		error = lf_getlock(state, lock, fl);
685 		lf_free_lock(lock);
686 		break;
687 
688 	case F_CANCEL:
689 		if (ap->a_cookiep)
690 			error = lf_cancel(state, lock, *ap->a_cookiep);
691 		else
692 			error = EINVAL;
693 		lf_free_lock(lock);
694 		break;
695 
696 	default:
697 		lf_free_lock(lock);
698 		error = EINVAL;
699 		break;
700 	}
701 
702 #ifdef DIAGNOSTIC
703 	/*
704 	 * Check for some can't happen stuff. In this case, the active
705 	 * lock list becoming disordered or containing mutually
706 	 * blocking locks. We also check the pending list for locks
707 	 * which should be active (i.e. have no out-going edges).
708 	 */
709 	LIST_FOREACH(lock, &state->ls_active, lf_link) {
710 		struct lockf_entry *lf;
711 		if (LIST_NEXT(lock, lf_link))
712 			KASSERT((lock->lf_start
713 				<= LIST_NEXT(lock, lf_link)->lf_start),
714 			    ("locks disordered"));
715 		LIST_FOREACH(lf, &state->ls_active, lf_link) {
716 			if (lock == lf)
717 				break;
718 			KASSERT(!lf_blocks(lock, lf),
719 			    ("two conflicting active locks"));
720 			if (lock->lf_owner == lf->lf_owner)
721 				KASSERT(!lf_overlaps(lock, lf),
722 				    ("two overlapping locks from same owner"));
723 		}
724 	}
725 	LIST_FOREACH(lock, &state->ls_pending, lf_link) {
726 		KASSERT(!LIST_EMPTY(&lock->lf_outedges),
727 		    ("pending lock which should be active"));
728 	}
729 #endif
730 	sx_xunlock(&state->ls_lock);
731 
732 	VI_LOCK(vp);
733 	MPASS(state->ls_threads > 0);
734 	state->ls_threads--;
735 	if (state->ls_threads != 0) {
736 		wakeup(state);
737 	}
738 	VI_UNLOCK(vp);
739 
740 	if (error == EDOOFUS) {
741 		KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
742 		goto retry_setlock;
743 	}
744 	return (error);
745 }
746 
747 int
748 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
749 {
750 	struct vop_advlockasync_args a;
751 
752 	a.a_vp = ap->a_vp;
753 	a.a_id = ap->a_id;
754 	a.a_op = ap->a_op;
755 	a.a_fl = ap->a_fl;
756 	a.a_flags = ap->a_flags;
757 	a.a_task = NULL;
758 	a.a_cookiep = NULL;
759 
760 	return (lf_advlockasync(&a, statep, size));
761 }
762 
763 void
764 lf_purgelocks(struct vnode *vp, struct lockf **statep)
765 {
766 	struct lockf *state;
767 	struct lockf_entry *lock, *nlock;
768 
769 	/*
770 	 * For this to work correctly, the caller must ensure that no
771 	 * other threads enter the locking system for this vnode,
772 	 * e.g. by checking VIRF_DOOMED. We wake up any threads that are
773 	 * sleeping waiting for locks on this vnode and then free all
774 	 * the remaining locks.
775 	 */
776 	VI_LOCK(vp);
777 	KASSERT(VN_IS_DOOMED(vp),
778 	    ("lf_purgelocks: vp %p has not vgone yet", vp));
779 	state = *statep;
780 	if (state == NULL) {
781 		VI_UNLOCK(vp);
782 		return;
783 	}
784 	*statep = NULL;
785 	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
786 		KASSERT(LIST_EMPTY(&state->ls_pending),
787 		    ("freeing state with pending locks"));
788 		VI_UNLOCK(vp);
789 		goto out_free;
790 	}
791 	MPASS(state->ls_threads >= 0);
792 	state->ls_threads++;
793 	VI_UNLOCK(vp);
794 
795 	sx_xlock(&state->ls_lock);
796 	sx_xlock(&lf_owner_graph_lock);
797 	LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
798 		LIST_REMOVE(lock, lf_link);
799 		lf_remove_outgoing(lock);
800 		lf_remove_incoming(lock);
801 
802 		/*
803 		 * If its an async lock, we can just free it
804 		 * here, otherwise we let the sleeping thread
805 		 * free it.
806 		 */
807 		if (lock->lf_async_task) {
808 			lf_free_lock(lock);
809 		} else {
810 			lock->lf_flags |= F_INTR;
811 			wakeup(lock);
812 		}
813 	}
814 	sx_xunlock(&lf_owner_graph_lock);
815 	sx_xunlock(&state->ls_lock);
816 
817 	/*
818 	 * Wait for all other threads, sleeping and otherwise
819 	 * to leave.
820 	 */
821 	VI_LOCK(vp);
822 	while (state->ls_threads > 1)
823 		msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
824 	VI_UNLOCK(vp);
825 
826 	/*
827 	 * We can just free all the active locks since they
828 	 * will have no dependencies (we removed them all
829 	 * above). We don't need to bother locking since we
830 	 * are the last thread using this state structure.
831 	 */
832 	KASSERT(LIST_EMPTY(&state->ls_pending),
833 	    ("lock pending for %p", state));
834 	LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
835 		LIST_REMOVE(lock, lf_link);
836 		lf_free_lock(lock);
837 	}
838 out_free:
839 	sx_xlock(&lf_lock_states_lock);
840 	LIST_REMOVE(state, ls_link);
841 	sx_xunlock(&lf_lock_states_lock);
842 	sx_destroy(&state->ls_lock);
843 	free(state, M_LOCKF);
844 }
845 
846 /*
847  * Return non-zero if locks 'x' and 'y' overlap.
848  */
849 static int
850 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
851 {
852 
853 	return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
854 }
855 
856 /*
857  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
858  */
859 static int
860 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
861 {
862 
863 	return x->lf_owner != y->lf_owner
864 		&& (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
865 		&& lf_overlaps(x, y);
866 }
867 
868 /*
869  * Allocate a lock edge from the free list
870  */
871 static struct lockf_edge *
872 lf_alloc_edge(void)
873 {
874 
875 	return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
876 }
877 
878 /*
879  * Free a lock edge.
880  */
881 static void
882 lf_free_edge(struct lockf_edge *e)
883 {
884 
885 	free(e, M_LOCKF);
886 }
887 
888 /*
889  * Ensure that the lock's owner has a corresponding vertex in the
890  * owner graph.
891  */
892 static void
893 lf_alloc_vertex(struct lockf_entry *lock)
894 {
895 	struct owner_graph *g = &lf_owner_graph;
896 
897 	if (!lock->lf_owner->lo_vertex)
898 		lock->lf_owner->lo_vertex =
899 			graph_alloc_vertex(g, lock->lf_owner);
900 }
901 
902 /*
903  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
904  * the new edge would cause a cycle in the owner graph.
905  */
906 static int
907 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
908 {
909 	struct owner_graph *g = &lf_owner_graph;
910 	struct lockf_edge *e;
911 	int error;
912 
913 #ifdef DIAGNOSTIC
914 	LIST_FOREACH(e, &x->lf_outedges, le_outlink)
915 		KASSERT(e->le_to != y, ("adding lock edge twice"));
916 #endif
917 
918 	/*
919 	 * Make sure the two owners have entries in the owner graph.
920 	 */
921 	lf_alloc_vertex(x);
922 	lf_alloc_vertex(y);
923 
924 	error = graph_add_edge(g, x->lf_owner->lo_vertex,
925 	    y->lf_owner->lo_vertex);
926 	if (error)
927 		return (error);
928 
929 	e = lf_alloc_edge();
930 	LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
931 	LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
932 	e->le_from = x;
933 	e->le_to = y;
934 
935 	return (0);
936 }
937 
938 /*
939  * Remove an edge from the lock graph.
940  */
941 static void
942 lf_remove_edge(struct lockf_edge *e)
943 {
944 	struct owner_graph *g = &lf_owner_graph;
945 	struct lockf_entry *x = e->le_from;
946 	struct lockf_entry *y = e->le_to;
947 
948 	graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
949 	LIST_REMOVE(e, le_outlink);
950 	LIST_REMOVE(e, le_inlink);
951 	e->le_from = NULL;
952 	e->le_to = NULL;
953 	lf_free_edge(e);
954 }
955 
956 /*
957  * Remove all out-going edges from lock x.
958  */
959 static void
960 lf_remove_outgoing(struct lockf_entry *x)
961 {
962 	struct lockf_edge *e;
963 
964 	while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
965 		lf_remove_edge(e);
966 	}
967 }
968 
969 /*
970  * Remove all in-coming edges from lock x.
971  */
972 static void
973 lf_remove_incoming(struct lockf_entry *x)
974 {
975 	struct lockf_edge *e;
976 
977 	while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
978 		lf_remove_edge(e);
979 	}
980 }
981 
982 /*
983  * Walk the list of locks for the file and create an out-going edge
984  * from lock to each blocking lock.
985  */
986 static int
987 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
988 {
989 	struct lockf_entry *overlap;
990 	int error;
991 
992 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
993 		/*
994 		 * We may assume that the active list is sorted by
995 		 * lf_start.
996 		 */
997 		if (overlap->lf_start > lock->lf_end)
998 			break;
999 		if (!lf_blocks(lock, overlap))
1000 			continue;
1001 
1002 		/*
1003 		 * We've found a blocking lock. Add the corresponding
1004 		 * edge to the graphs and see if it would cause a
1005 		 * deadlock.
1006 		 */
1007 		error = lf_add_edge(lock, overlap);
1008 
1009 		/*
1010 		 * The only error that lf_add_edge returns is EDEADLK.
1011 		 * Remove any edges we added and return the error.
1012 		 */
1013 		if (error) {
1014 			lf_remove_outgoing(lock);
1015 			return (error);
1016 		}
1017 	}
1018 
1019 	/*
1020 	 * We also need to add edges to sleeping locks that block
1021 	 * us. This ensures that lf_wakeup_lock cannot grant two
1022 	 * mutually blocking locks simultaneously and also enforces a
1023 	 * 'first come, first served' fairness model. Note that this
1024 	 * only happens if we are blocked by at least one active lock
1025 	 * due to the call to lf_getblock in lf_setlock below.
1026 	 */
1027 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1028 		if (!lf_blocks(lock, overlap))
1029 			continue;
1030 		/*
1031 		 * We've found a blocking lock. Add the corresponding
1032 		 * edge to the graphs and see if it would cause a
1033 		 * deadlock.
1034 		 */
1035 		error = lf_add_edge(lock, overlap);
1036 
1037 		/*
1038 		 * The only error that lf_add_edge returns is EDEADLK.
1039 		 * Remove any edges we added and return the error.
1040 		 */
1041 		if (error) {
1042 			lf_remove_outgoing(lock);
1043 			return (error);
1044 		}
1045 	}
1046 
1047 	return (0);
1048 }
1049 
1050 /*
1051  * Walk the list of pending locks for the file and create an in-coming
1052  * edge from lock to each blocking lock.
1053  */
1054 static int
1055 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1056 {
1057 	struct lockf_entry *overlap;
1058 	int error;
1059 
1060 	sx_assert(&state->ls_lock, SX_XLOCKED);
1061 	if (LIST_EMPTY(&state->ls_pending))
1062 		return (0);
1063 
1064 	error = 0;
1065 	sx_xlock(&lf_owner_graph_lock);
1066 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1067 		if (!lf_blocks(lock, overlap))
1068 			continue;
1069 
1070 		/*
1071 		 * We've found a blocking lock. Add the corresponding
1072 		 * edge to the graphs and see if it would cause a
1073 		 * deadlock.
1074 		 */
1075 		error = lf_add_edge(overlap, lock);
1076 
1077 		/*
1078 		 * The only error that lf_add_edge returns is EDEADLK.
1079 		 * Remove any edges we added and return the error.
1080 		 */
1081 		if (error) {
1082 			lf_remove_incoming(lock);
1083 			break;
1084 		}
1085 	}
1086 	sx_xunlock(&lf_owner_graph_lock);
1087 	return (error);
1088 }
1089 
1090 /*
1091  * Insert lock into the active list, keeping list entries ordered by
1092  * increasing values of lf_start.
1093  */
1094 static void
1095 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1096 {
1097 	struct lockf_entry *lf, *lfprev;
1098 
1099 	if (LIST_EMPTY(&state->ls_active)) {
1100 		LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1101 		return;
1102 	}
1103 
1104 	lfprev = NULL;
1105 	LIST_FOREACH(lf, &state->ls_active, lf_link) {
1106 		if (lf->lf_start > lock->lf_start) {
1107 			LIST_INSERT_BEFORE(lf, lock, lf_link);
1108 			return;
1109 		}
1110 		lfprev = lf;
1111 	}
1112 	LIST_INSERT_AFTER(lfprev, lock, lf_link);
1113 }
1114 
1115 /*
1116  * Wake up a sleeping lock and remove it from the pending list now
1117  * that all its dependencies have been resolved. The caller should
1118  * arrange for the lock to be added to the active list, adjusting any
1119  * existing locks for the same owner as needed.
1120  */
1121 static void
1122 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1123 {
1124 
1125 	/*
1126 	 * Remove from ls_pending list and wake up the caller
1127 	 * or start the async notification, as appropriate.
1128 	 */
1129 	LIST_REMOVE(wakelock, lf_link);
1130 #ifdef LOCKF_DEBUG
1131 	if (lockf_debug & 1)
1132 		lf_print("lf_wakeup_lock: awakening", wakelock);
1133 #endif /* LOCKF_DEBUG */
1134 	if (wakelock->lf_async_task) {
1135 		taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1136 	} else {
1137 		wakeup(wakelock);
1138 	}
1139 }
1140 
1141 /*
1142  * Re-check all dependent locks and remove edges to locks that we no
1143  * longer block. If 'all' is non-zero, the lock has been removed and
1144  * we must remove all the dependencies, otherwise it has simply been
1145  * reduced but remains active. Any pending locks which have been been
1146  * unblocked are added to 'granted'
1147  */
1148 static void
1149 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1150 	struct lockf_entry_list *granted)
1151 {
1152 	struct lockf_edge *e, *ne;
1153 	struct lockf_entry *deplock;
1154 
1155 	LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1156 		deplock = e->le_from;
1157 		if (all || !lf_blocks(lock, deplock)) {
1158 			sx_xlock(&lf_owner_graph_lock);
1159 			lf_remove_edge(e);
1160 			sx_xunlock(&lf_owner_graph_lock);
1161 			if (LIST_EMPTY(&deplock->lf_outedges)) {
1162 				lf_wakeup_lock(state, deplock);
1163 				LIST_INSERT_HEAD(granted, deplock, lf_link);
1164 			}
1165 		}
1166 	}
1167 }
1168 
1169 /*
1170  * Set the start of an existing active lock, updating dependencies and
1171  * adding any newly woken locks to 'granted'.
1172  */
1173 static void
1174 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1175 	struct lockf_entry_list *granted)
1176 {
1177 
1178 	KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1179 	lock->lf_start = new_start;
1180 	LIST_REMOVE(lock, lf_link);
1181 	lf_insert_lock(state, lock);
1182 	lf_update_dependancies(state, lock, FALSE, granted);
1183 }
1184 
1185 /*
1186  * Set the end of an existing active lock, updating dependencies and
1187  * adding any newly woken locks to 'granted'.
1188  */
1189 static void
1190 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1191 	struct lockf_entry_list *granted)
1192 {
1193 
1194 	KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1195 	lock->lf_end = new_end;
1196 	lf_update_dependancies(state, lock, FALSE, granted);
1197 }
1198 
1199 /*
1200  * Add a lock to the active list, updating or removing any current
1201  * locks owned by the same owner and processing any pending locks that
1202  * become unblocked as a result. This code is also used for unlock
1203  * since the logic for updating existing locks is identical.
1204  *
1205  * As a result of processing the new lock, we may unblock existing
1206  * pending locks as a result of downgrading/unlocking. We simply
1207  * activate the newly granted locks by looping.
1208  *
1209  * Since the new lock already has its dependencies set up, we always
1210  * add it to the list (unless its an unlock request). This may
1211  * fragment the lock list in some pathological cases but its probably
1212  * not a real problem.
1213  */
1214 static void
1215 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1216 {
1217 	struct lockf_entry *overlap, *lf;
1218 	struct lockf_entry_list granted;
1219 	int ovcase;
1220 
1221 	LIST_INIT(&granted);
1222 	LIST_INSERT_HEAD(&granted, lock, lf_link);
1223 
1224 	while (!LIST_EMPTY(&granted)) {
1225 		lock = LIST_FIRST(&granted);
1226 		LIST_REMOVE(lock, lf_link);
1227 
1228 		/*
1229 		 * Skip over locks owned by other processes.  Handle
1230 		 * any locks that overlap and are owned by ourselves.
1231 		 */
1232 		overlap = LIST_FIRST(&state->ls_active);
1233 		for (;;) {
1234 			ovcase = lf_findoverlap(&overlap, lock, SELF);
1235 
1236 #ifdef LOCKF_DEBUG
1237 			if (ovcase && (lockf_debug & 2)) {
1238 				printf("lf_setlock: overlap %d", ovcase);
1239 				lf_print("", overlap);
1240 			}
1241 #endif
1242 			/*
1243 			 * Six cases:
1244 			 *	0) no overlap
1245 			 *	1) overlap == lock
1246 			 *	2) overlap contains lock
1247 			 *	3) lock contains overlap
1248 			 *	4) overlap starts before lock
1249 			 *	5) overlap ends after lock
1250 			 */
1251 			switch (ovcase) {
1252 			case 0: /* no overlap */
1253 				break;
1254 
1255 			case 1: /* overlap == lock */
1256 				/*
1257 				 * We have already setup the
1258 				 * dependants for the new lock, taking
1259 				 * into account a possible downgrade
1260 				 * or unlock. Remove the old lock.
1261 				 */
1262 				LIST_REMOVE(overlap, lf_link);
1263 				lf_update_dependancies(state, overlap, TRUE,
1264 					&granted);
1265 				lf_free_lock(overlap);
1266 				break;
1267 
1268 			case 2: /* overlap contains lock */
1269 				/*
1270 				 * Just split the existing lock.
1271 				 */
1272 				lf_split(state, overlap, lock, &granted);
1273 				break;
1274 
1275 			case 3: /* lock contains overlap */
1276 				/*
1277 				 * Delete the overlap and advance to
1278 				 * the next entry in the list.
1279 				 */
1280 				lf = LIST_NEXT(overlap, lf_link);
1281 				LIST_REMOVE(overlap, lf_link);
1282 				lf_update_dependancies(state, overlap, TRUE,
1283 					&granted);
1284 				lf_free_lock(overlap);
1285 				overlap = lf;
1286 				continue;
1287 
1288 			case 4: /* overlap starts before lock */
1289 				/*
1290 				 * Just update the overlap end and
1291 				 * move on.
1292 				 */
1293 				lf_set_end(state, overlap, lock->lf_start - 1,
1294 				    &granted);
1295 				overlap = LIST_NEXT(overlap, lf_link);
1296 				continue;
1297 
1298 			case 5: /* overlap ends after lock */
1299 				/*
1300 				 * Change the start of overlap and
1301 				 * re-insert.
1302 				 */
1303 				lf_set_start(state, overlap, lock->lf_end + 1,
1304 				    &granted);
1305 				break;
1306 			}
1307 			break;
1308 		}
1309 #ifdef LOCKF_DEBUG
1310 		if (lockf_debug & 1) {
1311 			if (lock->lf_type != F_UNLCK)
1312 				lf_print("lf_activate_lock: activated", lock);
1313 			else
1314 				lf_print("lf_activate_lock: unlocked", lock);
1315 			lf_printlist("lf_activate_lock", lock);
1316 		}
1317 #endif /* LOCKF_DEBUG */
1318 		if (lock->lf_type != F_UNLCK)
1319 			lf_insert_lock(state, lock);
1320 	}
1321 }
1322 
1323 /*
1324  * Cancel a pending lock request, either as a result of a signal or a
1325  * cancel request for an async lock.
1326  */
1327 static void
1328 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1329 {
1330 	struct lockf_entry_list granted;
1331 
1332 	/*
1333 	 * Note it is theoretically possible that cancelling this lock
1334 	 * may allow some other pending lock to become
1335 	 * active. Consider this case:
1336 	 *
1337 	 * Owner	Action		Result		Dependencies
1338 	 *
1339 	 * A:		lock [0..0]	succeeds
1340 	 * B:		lock [2..2]	succeeds
1341 	 * C:		lock [1..2]	blocked		C->B
1342 	 * D:		lock [0..1]	blocked		C->B,D->A,D->C
1343 	 * A:		unlock [0..0]			C->B,D->C
1344 	 * C:		cancel [1..2]
1345 	 */
1346 
1347 	LIST_REMOVE(lock, lf_link);
1348 
1349 	/*
1350 	 * Removing out-going edges is simple.
1351 	 */
1352 	sx_xlock(&lf_owner_graph_lock);
1353 	lf_remove_outgoing(lock);
1354 	sx_xunlock(&lf_owner_graph_lock);
1355 
1356 	/*
1357 	 * Removing in-coming edges may allow some other lock to
1358 	 * become active - we use lf_update_dependancies to figure
1359 	 * this out.
1360 	 */
1361 	LIST_INIT(&granted);
1362 	lf_update_dependancies(state, lock, TRUE, &granted);
1363 	lf_free_lock(lock);
1364 
1365 	/*
1366 	 * Feed any newly active locks to lf_activate_lock.
1367 	 */
1368 	while (!LIST_EMPTY(&granted)) {
1369 		lock = LIST_FIRST(&granted);
1370 		LIST_REMOVE(lock, lf_link);
1371 		lf_activate_lock(state, lock);
1372 	}
1373 }
1374 
1375 /*
1376  * Set a byte-range lock.
1377  */
1378 static int
1379 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1380     void **cookiep)
1381 {
1382 	static char lockstr[] = "lockf";
1383 	int error, priority, stops_deferred;
1384 
1385 #ifdef LOCKF_DEBUG
1386 	if (lockf_debug & 1)
1387 		lf_print("lf_setlock", lock);
1388 #endif /* LOCKF_DEBUG */
1389 
1390 	/*
1391 	 * Set the priority
1392 	 */
1393 	priority = PLOCK;
1394 	if (lock->lf_type == F_WRLCK)
1395 		priority += 4;
1396 	if (!(lock->lf_flags & F_NOINTR))
1397 		priority |= PCATCH;
1398 	/*
1399 	 * Scan lock list for this file looking for locks that would block us.
1400 	 */
1401 	if (lf_getblock(state, lock)) {
1402 		/*
1403 		 * Free the structure and return if nonblocking.
1404 		 */
1405 		if ((lock->lf_flags & F_WAIT) == 0
1406 		    && lock->lf_async_task == NULL) {
1407 			lf_free_lock(lock);
1408 			error = EAGAIN;
1409 			goto out;
1410 		}
1411 
1412 		/*
1413 		 * For flock type locks, we must first remove
1414 		 * any shared locks that we hold before we sleep
1415 		 * waiting for an exclusive lock.
1416 		 */
1417 		if ((lock->lf_flags & F_FLOCK) &&
1418 		    lock->lf_type == F_WRLCK) {
1419 			lock->lf_type = F_UNLCK;
1420 			lf_activate_lock(state, lock);
1421 			lock->lf_type = F_WRLCK;
1422 		}
1423 
1424 		/*
1425 		 * We are blocked. Create edges to each blocking lock,
1426 		 * checking for deadlock using the owner graph. For
1427 		 * simplicity, we run deadlock detection for all
1428 		 * locks, posix and otherwise.
1429 		 */
1430 		sx_xlock(&lf_owner_graph_lock);
1431 		error = lf_add_outgoing(state, lock);
1432 		sx_xunlock(&lf_owner_graph_lock);
1433 
1434 		if (error) {
1435 #ifdef LOCKF_DEBUG
1436 			if (lockf_debug & 1)
1437 				lf_print("lf_setlock: deadlock", lock);
1438 #endif
1439 			lf_free_lock(lock);
1440 			goto out;
1441 		}
1442 
1443 		/*
1444 		 * We have added edges to everything that blocks
1445 		 * us. Sleep until they all go away.
1446 		 */
1447 		LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1448 #ifdef LOCKF_DEBUG
1449 		if (lockf_debug & 1) {
1450 			struct lockf_edge *e;
1451 			LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1452 				lf_print("lf_setlock: blocking on", e->le_to);
1453 				lf_printlist("lf_setlock", e->le_to);
1454 			}
1455 		}
1456 #endif /* LOCKF_DEBUG */
1457 
1458 		if ((lock->lf_flags & F_WAIT) == 0) {
1459 			/*
1460 			 * The caller requested async notification -
1461 			 * this callback happens when the blocking
1462 			 * lock is released, allowing the caller to
1463 			 * make another attempt to take the lock.
1464 			 */
1465 			*cookiep = (void *) lock;
1466 			error = EINPROGRESS;
1467 			goto out;
1468 		}
1469 
1470 		lock->lf_refs++;
1471 		stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
1472 		error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1473 		sigallowstop(stops_deferred);
1474 		if (lf_free_lock(lock)) {
1475 			error = EDOOFUS;
1476 			goto out;
1477 		}
1478 
1479 		/*
1480 		 * We may have been awakened by a signal and/or by a
1481 		 * debugger continuing us (in which cases we must
1482 		 * remove our lock graph edges) and/or by another
1483 		 * process releasing a lock (in which case our edges
1484 		 * have already been removed and we have been moved to
1485 		 * the active list). We may also have been woken by
1486 		 * lf_purgelocks which we report to the caller as
1487 		 * EINTR. In that case, lf_purgelocks will have
1488 		 * removed our lock graph edges.
1489 		 *
1490 		 * Note that it is possible to receive a signal after
1491 		 * we were successfully woken (and moved to the active
1492 		 * list) but before we resumed execution. In this
1493 		 * case, our lf_outedges list will be clear. We
1494 		 * pretend there was no error.
1495 		 *
1496 		 * Note also, if we have been sleeping long enough, we
1497 		 * may now have incoming edges from some newer lock
1498 		 * which is waiting behind us in the queue.
1499 		 */
1500 		if (lock->lf_flags & F_INTR) {
1501 			error = EINTR;
1502 			lf_free_lock(lock);
1503 			goto out;
1504 		}
1505 		if (LIST_EMPTY(&lock->lf_outedges)) {
1506 			error = 0;
1507 		} else {
1508 			lf_cancel_lock(state, lock);
1509 			goto out;
1510 		}
1511 #ifdef LOCKF_DEBUG
1512 		if (lockf_debug & 1) {
1513 			lf_print("lf_setlock: granted", lock);
1514 		}
1515 #endif
1516 		goto out;
1517 	}
1518 	/*
1519 	 * It looks like we are going to grant the lock. First add
1520 	 * edges from any currently pending lock that the new lock
1521 	 * would block.
1522 	 */
1523 	error = lf_add_incoming(state, lock);
1524 	if (error) {
1525 #ifdef LOCKF_DEBUG
1526 		if (lockf_debug & 1)
1527 			lf_print("lf_setlock: deadlock", lock);
1528 #endif
1529 		lf_free_lock(lock);
1530 		goto out;
1531 	}
1532 
1533 	/*
1534 	 * No blocks!!  Add the lock.  Note that we will
1535 	 * downgrade or upgrade any overlapping locks this
1536 	 * process already owns.
1537 	 */
1538 	lf_activate_lock(state, lock);
1539 	error = 0;
1540 out:
1541 	return (error);
1542 }
1543 
1544 /*
1545  * Remove a byte-range lock on an inode.
1546  *
1547  * Generally, find the lock (or an overlap to that lock)
1548  * and remove it (or shrink it), then wakeup anyone we can.
1549  */
1550 static int
1551 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1552 {
1553 	struct lockf_entry *overlap;
1554 
1555 	overlap = LIST_FIRST(&state->ls_active);
1556 
1557 	if (overlap == NOLOCKF)
1558 		return (0);
1559 #ifdef LOCKF_DEBUG
1560 	if (unlock->lf_type != F_UNLCK)
1561 		panic("lf_clearlock: bad type");
1562 	if (lockf_debug & 1)
1563 		lf_print("lf_clearlock", unlock);
1564 #endif /* LOCKF_DEBUG */
1565 
1566 	lf_activate_lock(state, unlock);
1567 
1568 	return (0);
1569 }
1570 
1571 /*
1572  * Check whether there is a blocking lock, and if so return its
1573  * details in '*fl'.
1574  */
1575 static int
1576 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1577 {
1578 	struct lockf_entry *block;
1579 
1580 #ifdef LOCKF_DEBUG
1581 	if (lockf_debug & 1)
1582 		lf_print("lf_getlock", lock);
1583 #endif /* LOCKF_DEBUG */
1584 
1585 	if ((block = lf_getblock(state, lock))) {
1586 		fl->l_type = block->lf_type;
1587 		fl->l_whence = SEEK_SET;
1588 		fl->l_start = block->lf_start;
1589 		if (block->lf_end == OFF_MAX)
1590 			fl->l_len = 0;
1591 		else
1592 			fl->l_len = block->lf_end - block->lf_start + 1;
1593 		fl->l_pid = block->lf_owner->lo_pid;
1594 		fl->l_sysid = block->lf_owner->lo_sysid;
1595 	} else {
1596 		fl->l_type = F_UNLCK;
1597 	}
1598 	return (0);
1599 }
1600 
1601 /*
1602  * Cancel an async lock request.
1603  */
1604 static int
1605 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1606 {
1607 	struct lockf_entry *reallock;
1608 
1609 	/*
1610 	 * We need to match this request with an existing lock
1611 	 * request.
1612 	 */
1613 	LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1614 		if ((void *) reallock == cookie) {
1615 			/*
1616 			 * Double-check that this lock looks right
1617 			 * (maybe use a rolling ID for the cancel
1618 			 * cookie instead?)
1619 			 */
1620 			if (!(reallock->lf_vnode == lock->lf_vnode
1621 				&& reallock->lf_start == lock->lf_start
1622 				&& reallock->lf_end == lock->lf_end)) {
1623 				return (ENOENT);
1624 			}
1625 
1626 			/*
1627 			 * Make sure this lock was async and then just
1628 			 * remove it from its wait lists.
1629 			 */
1630 			if (!reallock->lf_async_task) {
1631 				return (ENOENT);
1632 			}
1633 
1634 			/*
1635 			 * Note that since any other thread must take
1636 			 * state->ls_lock before it can possibly
1637 			 * trigger the async callback, we are safe
1638 			 * from a race with lf_wakeup_lock, i.e. we
1639 			 * can free the lock (actually our caller does
1640 			 * this).
1641 			 */
1642 			lf_cancel_lock(state, reallock);
1643 			return (0);
1644 		}
1645 	}
1646 
1647 	/*
1648 	 * We didn't find a matching lock - not much we can do here.
1649 	 */
1650 	return (ENOENT);
1651 }
1652 
1653 /*
1654  * Walk the list of locks for an inode and
1655  * return the first blocking lock.
1656  */
1657 static struct lockf_entry *
1658 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1659 {
1660 	struct lockf_entry *overlap;
1661 
1662 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1663 		/*
1664 		 * We may assume that the active list is sorted by
1665 		 * lf_start.
1666 		 */
1667 		if (overlap->lf_start > lock->lf_end)
1668 			break;
1669 		if (!lf_blocks(lock, overlap))
1670 			continue;
1671 		return (overlap);
1672 	}
1673 	return (NOLOCKF);
1674 }
1675 
1676 /*
1677  * Walk the list of locks for an inode to find an overlapping lock (if
1678  * any) and return a classification of that overlap.
1679  *
1680  * Arguments:
1681  *	*overlap	The place in the lock list to start looking
1682  *	lock		The lock which is being tested
1683  *	type		Pass 'SELF' to test only locks with the same
1684  *			owner as lock, or 'OTHER' to test only locks
1685  *			with a different owner
1686  *
1687  * Returns one of six values:
1688  *	0) no overlap
1689  *	1) overlap == lock
1690  *	2) overlap contains lock
1691  *	3) lock contains overlap
1692  *	4) overlap starts before lock
1693  *	5) overlap ends after lock
1694  *
1695  * If there is an overlapping lock, '*overlap' is set to point at the
1696  * overlapping lock.
1697  *
1698  * NOTE: this returns only the FIRST overlapping lock.  There
1699  *	 may be more than one.
1700  */
1701 static int
1702 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1703 {
1704 	struct lockf_entry *lf;
1705 	off_t start, end;
1706 	int res;
1707 
1708 	if ((*overlap) == NOLOCKF) {
1709 		return (0);
1710 	}
1711 #ifdef LOCKF_DEBUG
1712 	if (lockf_debug & 2)
1713 		lf_print("lf_findoverlap: looking for overlap in", lock);
1714 #endif /* LOCKF_DEBUG */
1715 	start = lock->lf_start;
1716 	end = lock->lf_end;
1717 	res = 0;
1718 	while (*overlap) {
1719 		lf = *overlap;
1720 		if (lf->lf_start > end)
1721 			break;
1722 		if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1723 		    ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1724 			*overlap = LIST_NEXT(lf, lf_link);
1725 			continue;
1726 		}
1727 #ifdef LOCKF_DEBUG
1728 		if (lockf_debug & 2)
1729 			lf_print("\tchecking", lf);
1730 #endif /* LOCKF_DEBUG */
1731 		/*
1732 		 * OK, check for overlap
1733 		 *
1734 		 * Six cases:
1735 		 *	0) no overlap
1736 		 *	1) overlap == lock
1737 		 *	2) overlap contains lock
1738 		 *	3) lock contains overlap
1739 		 *	4) overlap starts before lock
1740 		 *	5) overlap ends after lock
1741 		 */
1742 		if (start > lf->lf_end) {
1743 			/* Case 0 */
1744 #ifdef LOCKF_DEBUG
1745 			if (lockf_debug & 2)
1746 				printf("no overlap\n");
1747 #endif /* LOCKF_DEBUG */
1748 			*overlap = LIST_NEXT(lf, lf_link);
1749 			continue;
1750 		}
1751 		if (lf->lf_start == start && lf->lf_end == end) {
1752 			/* Case 1 */
1753 #ifdef LOCKF_DEBUG
1754 			if (lockf_debug & 2)
1755 				printf("overlap == lock\n");
1756 #endif /* LOCKF_DEBUG */
1757 			res = 1;
1758 			break;
1759 		}
1760 		if (lf->lf_start <= start && lf->lf_end >= end) {
1761 			/* Case 2 */
1762 #ifdef LOCKF_DEBUG
1763 			if (lockf_debug & 2)
1764 				printf("overlap contains lock\n");
1765 #endif /* LOCKF_DEBUG */
1766 			res = 2;
1767 			break;
1768 		}
1769 		if (start <= lf->lf_start && end >= lf->lf_end) {
1770 			/* Case 3 */
1771 #ifdef LOCKF_DEBUG
1772 			if (lockf_debug & 2)
1773 				printf("lock contains overlap\n");
1774 #endif /* LOCKF_DEBUG */
1775 			res = 3;
1776 			break;
1777 		}
1778 		if (lf->lf_start < start && lf->lf_end >= start) {
1779 			/* Case 4 */
1780 #ifdef LOCKF_DEBUG
1781 			if (lockf_debug & 2)
1782 				printf("overlap starts before lock\n");
1783 #endif /* LOCKF_DEBUG */
1784 			res = 4;
1785 			break;
1786 		}
1787 		if (lf->lf_start > start && lf->lf_end > end) {
1788 			/* Case 5 */
1789 #ifdef LOCKF_DEBUG
1790 			if (lockf_debug & 2)
1791 				printf("overlap ends after lock\n");
1792 #endif /* LOCKF_DEBUG */
1793 			res = 5;
1794 			break;
1795 		}
1796 		panic("lf_findoverlap: default");
1797 	}
1798 	return (res);
1799 }
1800 
1801 /*
1802  * Split an the existing 'lock1', based on the extent of the lock
1803  * described by 'lock2'. The existing lock should cover 'lock2'
1804  * entirely.
1805  *
1806  * Any pending locks which have been been unblocked are added to
1807  * 'granted'
1808  */
1809 static void
1810 lf_split(struct lockf *state, struct lockf_entry *lock1,
1811     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1812 {
1813 	struct lockf_entry *splitlock;
1814 
1815 #ifdef LOCKF_DEBUG
1816 	if (lockf_debug & 2) {
1817 		lf_print("lf_split", lock1);
1818 		lf_print("splitting from", lock2);
1819 	}
1820 #endif /* LOCKF_DEBUG */
1821 	/*
1822 	 * Check to see if we don't need to split at all.
1823 	 */
1824 	if (lock1->lf_start == lock2->lf_start) {
1825 		lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1826 		return;
1827 	}
1828 	if (lock1->lf_end == lock2->lf_end) {
1829 		lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1830 		return;
1831 	}
1832 	/*
1833 	 * Make a new lock consisting of the last part of
1834 	 * the encompassing lock.
1835 	 */
1836 	splitlock = lf_alloc_lock(lock1->lf_owner);
1837 	memcpy(splitlock, lock1, sizeof *splitlock);
1838 	splitlock->lf_refs = 1;
1839 	if (splitlock->lf_flags & F_REMOTE)
1840 		vref(splitlock->lf_vnode);
1841 
1842 	/*
1843 	 * This cannot cause a deadlock since any edges we would add
1844 	 * to splitlock already exist in lock1. We must be sure to add
1845 	 * necessary dependencies to splitlock before we reduce lock1
1846 	 * otherwise we may accidentally grant a pending lock that
1847 	 * was blocked by the tail end of lock1.
1848 	 */
1849 	splitlock->lf_start = lock2->lf_end + 1;
1850 	LIST_INIT(&splitlock->lf_outedges);
1851 	LIST_INIT(&splitlock->lf_inedges);
1852 	lf_add_incoming(state, splitlock);
1853 
1854 	lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1855 
1856 	/*
1857 	 * OK, now link it in
1858 	 */
1859 	lf_insert_lock(state, splitlock);
1860 }
1861 
1862 struct lockdesc {
1863 	STAILQ_ENTRY(lockdesc) link;
1864 	struct vnode *vp;
1865 	struct flock fl;
1866 };
1867 STAILQ_HEAD(lockdesclist, lockdesc);
1868 
1869 int
1870 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1871 {
1872 	struct lockf *ls;
1873 	struct lockf_entry *lf;
1874 	struct lockdesc *ldesc;
1875 	struct lockdesclist locks;
1876 	int error;
1877 
1878 	/*
1879 	 * In order to keep the locking simple, we iterate over the
1880 	 * active lock lists to build a list of locks that need
1881 	 * releasing. We then call the iterator for each one in turn.
1882 	 *
1883 	 * We take an extra reference to the vnode for the duration to
1884 	 * make sure it doesn't go away before we are finished.
1885 	 */
1886 	STAILQ_INIT(&locks);
1887 	sx_xlock(&lf_lock_states_lock);
1888 	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1889 		sx_xlock(&ls->ls_lock);
1890 		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1891 			if (lf->lf_owner->lo_sysid != sysid)
1892 				continue;
1893 
1894 			ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1895 			    M_WAITOK);
1896 			ldesc->vp = lf->lf_vnode;
1897 			vref(ldesc->vp);
1898 			ldesc->fl.l_start = lf->lf_start;
1899 			if (lf->lf_end == OFF_MAX)
1900 				ldesc->fl.l_len = 0;
1901 			else
1902 				ldesc->fl.l_len =
1903 					lf->lf_end - lf->lf_start + 1;
1904 			ldesc->fl.l_whence = SEEK_SET;
1905 			ldesc->fl.l_type = F_UNLCK;
1906 			ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1907 			ldesc->fl.l_sysid = sysid;
1908 			STAILQ_INSERT_TAIL(&locks, ldesc, link);
1909 		}
1910 		sx_xunlock(&ls->ls_lock);
1911 	}
1912 	sx_xunlock(&lf_lock_states_lock);
1913 
1914 	/*
1915 	 * Call the iterator function for each lock in turn. If the
1916 	 * iterator returns an error code, just free the rest of the
1917 	 * lockdesc structures.
1918 	 */
1919 	error = 0;
1920 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1921 		STAILQ_REMOVE_HEAD(&locks, link);
1922 		if (!error)
1923 			error = fn(ldesc->vp, &ldesc->fl, arg);
1924 		vrele(ldesc->vp);
1925 		free(ldesc, M_LOCKF);
1926 	}
1927 
1928 	return (error);
1929 }
1930 
1931 int
1932 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1933 {
1934 	struct lockf *ls;
1935 	struct lockf_entry *lf;
1936 	struct lockdesc *ldesc;
1937 	struct lockdesclist locks;
1938 	int error;
1939 
1940 	/*
1941 	 * In order to keep the locking simple, we iterate over the
1942 	 * active lock lists to build a list of locks that need
1943 	 * releasing. We then call the iterator for each one in turn.
1944 	 *
1945 	 * We take an extra reference to the vnode for the duration to
1946 	 * make sure it doesn't go away before we are finished.
1947 	 */
1948 	STAILQ_INIT(&locks);
1949 	VI_LOCK(vp);
1950 	ls = vp->v_lockf;
1951 	if (!ls) {
1952 		VI_UNLOCK(vp);
1953 		return (0);
1954 	}
1955 	MPASS(ls->ls_threads >= 0);
1956 	ls->ls_threads++;
1957 	VI_UNLOCK(vp);
1958 
1959 	sx_xlock(&ls->ls_lock);
1960 	LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1961 		ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1962 		    M_WAITOK);
1963 		ldesc->vp = lf->lf_vnode;
1964 		vref(ldesc->vp);
1965 		ldesc->fl.l_start = lf->lf_start;
1966 		if (lf->lf_end == OFF_MAX)
1967 			ldesc->fl.l_len = 0;
1968 		else
1969 			ldesc->fl.l_len =
1970 				lf->lf_end - lf->lf_start + 1;
1971 		ldesc->fl.l_whence = SEEK_SET;
1972 		ldesc->fl.l_type = F_UNLCK;
1973 		ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1974 		ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1975 		STAILQ_INSERT_TAIL(&locks, ldesc, link);
1976 	}
1977 	sx_xunlock(&ls->ls_lock);
1978 	VI_LOCK(vp);
1979 	MPASS(ls->ls_threads > 0);
1980 	ls->ls_threads--;
1981 	wakeup(ls);
1982 	VI_UNLOCK(vp);
1983 
1984 	/*
1985 	 * Call the iterator function for each lock in turn. If the
1986 	 * iterator returns an error code, just free the rest of the
1987 	 * lockdesc structures.
1988 	 */
1989 	error = 0;
1990 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1991 		STAILQ_REMOVE_HEAD(&locks, link);
1992 		if (!error)
1993 			error = fn(ldesc->vp, &ldesc->fl, arg);
1994 		vrele(ldesc->vp);
1995 		free(ldesc, M_LOCKF);
1996 	}
1997 
1998 	return (error);
1999 }
2000 
2001 static int
2002 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
2003 {
2004 
2005 	VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
2006 	return (0);
2007 }
2008 
2009 void
2010 lf_clearremotesys(int sysid)
2011 {
2012 
2013 	KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2014 	lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2015 }
2016 
2017 int
2018 lf_countlocks(int sysid)
2019 {
2020 	int i;
2021 	struct lock_owner *lo;
2022 	int count;
2023 
2024 	count = 0;
2025 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
2026 		sx_xlock(&lf_lock_owners[i].lock);
2027 		LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link)
2028 			if (lo->lo_sysid == sysid)
2029 				count += lo->lo_refs;
2030 		sx_xunlock(&lf_lock_owners[i].lock);
2031 	}
2032 
2033 	return (count);
2034 }
2035 
2036 #ifdef LOCKF_DEBUG
2037 
2038 /*
2039  * Return non-zero if y is reachable from x using a brute force
2040  * search. If reachable and path is non-null, return the route taken
2041  * in path.
2042  */
2043 static int
2044 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2045     struct owner_vertex_list *path)
2046 {
2047 	struct owner_edge *e;
2048 
2049 	if (x == y) {
2050 		if (path)
2051 			TAILQ_INSERT_HEAD(path, x, v_link);
2052 		return 1;
2053 	}
2054 
2055 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2056 		if (graph_reaches(e->e_to, y, path)) {
2057 			if (path)
2058 				TAILQ_INSERT_HEAD(path, x, v_link);
2059 			return 1;
2060 		}
2061 	}
2062 	return 0;
2063 }
2064 
2065 /*
2066  * Perform consistency checks on the graph. Make sure the values of
2067  * v_order are correct. If checkorder is non-zero, check no vertex can
2068  * reach any other vertex with a smaller order.
2069  */
2070 static void
2071 graph_check(struct owner_graph *g, int checkorder)
2072 {
2073 	int i, j;
2074 
2075 	for (i = 0; i < g->g_size; i++) {
2076 		if (!g->g_vertices[i]->v_owner)
2077 			continue;
2078 		KASSERT(g->g_vertices[i]->v_order == i,
2079 		    ("lock graph vertices disordered"));
2080 		if (checkorder) {
2081 			for (j = 0; j < i; j++) {
2082 				if (!g->g_vertices[j]->v_owner)
2083 					continue;
2084 				KASSERT(!graph_reaches(g->g_vertices[i],
2085 					g->g_vertices[j], NULL),
2086 				    ("lock graph vertices disordered"));
2087 			}
2088 		}
2089 	}
2090 }
2091 
2092 static void
2093 graph_print_vertices(struct owner_vertex_list *set)
2094 {
2095 	struct owner_vertex *v;
2096 
2097 	printf("{ ");
2098 	TAILQ_FOREACH(v, set, v_link) {
2099 		printf("%d:", v->v_order);
2100 		lf_print_owner(v->v_owner);
2101 		if (TAILQ_NEXT(v, v_link))
2102 			printf(", ");
2103 	}
2104 	printf(" }\n");
2105 }
2106 
2107 #endif
2108 
2109 /*
2110  * Calculate the sub-set of vertices v from the affected region [y..x]
2111  * where v is reachable from y. Return -1 if a loop was detected
2112  * (i.e. x is reachable from y, otherwise the number of vertices in
2113  * this subset.
2114  */
2115 static int
2116 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2117     struct owner_vertex *y, struct owner_vertex_list *delta)
2118 {
2119 	uint32_t gen;
2120 	struct owner_vertex *v;
2121 	struct owner_edge *e;
2122 	int n;
2123 
2124 	/*
2125 	 * We start with a set containing just y. Then for each vertex
2126 	 * v in the set so far unprocessed, we add each vertex that v
2127 	 * has an out-edge to and that is within the affected region
2128 	 * [y..x]. If we see the vertex x on our travels, stop
2129 	 * immediately.
2130 	 */
2131 	TAILQ_INIT(delta);
2132 	TAILQ_INSERT_TAIL(delta, y, v_link);
2133 	v = y;
2134 	n = 1;
2135 	gen = g->g_gen;
2136 	while (v) {
2137 		LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2138 			if (e->e_to == x)
2139 				return -1;
2140 			if (e->e_to->v_order < x->v_order
2141 			    && e->e_to->v_gen != gen) {
2142 				e->e_to->v_gen = gen;
2143 				TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2144 				n++;
2145 			}
2146 		}
2147 		v = TAILQ_NEXT(v, v_link);
2148 	}
2149 
2150 	return (n);
2151 }
2152 
2153 /*
2154  * Calculate the sub-set of vertices v from the affected region [y..x]
2155  * where v reaches x. Return the number of vertices in this subset.
2156  */
2157 static int
2158 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2159     struct owner_vertex *y, struct owner_vertex_list *delta)
2160 {
2161 	uint32_t gen;
2162 	struct owner_vertex *v;
2163 	struct owner_edge *e;
2164 	int n;
2165 
2166 	/*
2167 	 * We start with a set containing just x. Then for each vertex
2168 	 * v in the set so far unprocessed, we add each vertex that v
2169 	 * has an in-edge from and that is within the affected region
2170 	 * [y..x].
2171 	 */
2172 	TAILQ_INIT(delta);
2173 	TAILQ_INSERT_TAIL(delta, x, v_link);
2174 	v = x;
2175 	n = 1;
2176 	gen = g->g_gen;
2177 	while (v) {
2178 		LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2179 			if (e->e_from->v_order > y->v_order
2180 			    && e->e_from->v_gen != gen) {
2181 				e->e_from->v_gen = gen;
2182 				TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2183 				n++;
2184 			}
2185 		}
2186 		v = TAILQ_PREV(v, owner_vertex_list, v_link);
2187 	}
2188 
2189 	return (n);
2190 }
2191 
2192 static int
2193 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2194 {
2195 	struct owner_vertex *v;
2196 	int i, j;
2197 
2198 	TAILQ_FOREACH(v, set, v_link) {
2199 		for (i = n;
2200 		     i > 0 && indices[i - 1] > v->v_order; i--)
2201 			;
2202 		for (j = n - 1; j >= i; j--)
2203 			indices[j + 1] = indices[j];
2204 		indices[i] = v->v_order;
2205 		n++;
2206 	}
2207 
2208 	return (n);
2209 }
2210 
2211 static int
2212 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2213     struct owner_vertex_list *set)
2214 {
2215 	struct owner_vertex *v, *vlowest;
2216 
2217 	while (!TAILQ_EMPTY(set)) {
2218 		vlowest = NULL;
2219 		TAILQ_FOREACH(v, set, v_link) {
2220 			if (!vlowest || v->v_order < vlowest->v_order)
2221 				vlowest = v;
2222 		}
2223 		TAILQ_REMOVE(set, vlowest, v_link);
2224 		vlowest->v_order = indices[nextunused];
2225 		g->g_vertices[vlowest->v_order] = vlowest;
2226 		nextunused++;
2227 	}
2228 
2229 	return (nextunused);
2230 }
2231 
2232 static int
2233 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2234     struct owner_vertex *y)
2235 {
2236 	struct owner_edge *e;
2237 	struct owner_vertex_list deltaF, deltaB;
2238 	int nF, n, vi, i;
2239 	int *indices;
2240 	int nB __unused;
2241 
2242 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2243 
2244 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2245 		if (e->e_to == y) {
2246 			e->e_refs++;
2247 			return (0);
2248 		}
2249 	}
2250 
2251 #ifdef LOCKF_DEBUG
2252 	if (lockf_debug & 8) {
2253 		printf("adding edge %d:", x->v_order);
2254 		lf_print_owner(x->v_owner);
2255 		printf(" -> %d:", y->v_order);
2256 		lf_print_owner(y->v_owner);
2257 		printf("\n");
2258 	}
2259 #endif
2260 	if (y->v_order < x->v_order) {
2261 		/*
2262 		 * The new edge violates the order. First find the set
2263 		 * of affected vertices reachable from y (deltaF) and
2264 		 * the set of affect vertices affected that reach x
2265 		 * (deltaB), using the graph generation number to
2266 		 * detect whether we have visited a given vertex
2267 		 * already. We re-order the graph so that each vertex
2268 		 * in deltaB appears before each vertex in deltaF.
2269 		 *
2270 		 * If x is a member of deltaF, then the new edge would
2271 		 * create a cycle. Otherwise, we may assume that
2272 		 * deltaF and deltaB are disjoint.
2273 		 */
2274 		g->g_gen++;
2275 		if (g->g_gen == 0) {
2276 			/*
2277 			 * Generation wrap.
2278 			 */
2279 			for (vi = 0; vi < g->g_size; vi++) {
2280 				g->g_vertices[vi]->v_gen = 0;
2281 			}
2282 			g->g_gen++;
2283 		}
2284 		nF = graph_delta_forward(g, x, y, &deltaF);
2285 		if (nF < 0) {
2286 #ifdef LOCKF_DEBUG
2287 			if (lockf_debug & 8) {
2288 				struct owner_vertex_list path;
2289 				printf("deadlock: ");
2290 				TAILQ_INIT(&path);
2291 				graph_reaches(y, x, &path);
2292 				graph_print_vertices(&path);
2293 			}
2294 #endif
2295 			return (EDEADLK);
2296 		}
2297 
2298 #ifdef LOCKF_DEBUG
2299 		if (lockf_debug & 8) {
2300 			printf("re-ordering graph vertices\n");
2301 			printf("deltaF = ");
2302 			graph_print_vertices(&deltaF);
2303 		}
2304 #endif
2305 
2306 		nB = graph_delta_backward(g, x, y, &deltaB);
2307 
2308 #ifdef LOCKF_DEBUG
2309 		if (lockf_debug & 8) {
2310 			printf("deltaB = ");
2311 			graph_print_vertices(&deltaB);
2312 		}
2313 #endif
2314 
2315 		/*
2316 		 * We first build a set of vertex indices (vertex
2317 		 * order values) that we may use, then we re-assign
2318 		 * orders first to those vertices in deltaB, then to
2319 		 * deltaF. Note that the contents of deltaF and deltaB
2320 		 * may be partially disordered - we perform an
2321 		 * insertion sort while building our index set.
2322 		 */
2323 		indices = g->g_indexbuf;
2324 		n = graph_add_indices(indices, 0, &deltaF);
2325 		graph_add_indices(indices, n, &deltaB);
2326 
2327 		/*
2328 		 * We must also be sure to maintain the relative
2329 		 * ordering of deltaF and deltaB when re-assigning
2330 		 * vertices. We do this by iteratively removing the
2331 		 * lowest ordered element from the set and assigning
2332 		 * it the next value from our new ordering.
2333 		 */
2334 		i = graph_assign_indices(g, indices, 0, &deltaB);
2335 		graph_assign_indices(g, indices, i, &deltaF);
2336 
2337 #ifdef LOCKF_DEBUG
2338 		if (lockf_debug & 8) {
2339 			struct owner_vertex_list set;
2340 			TAILQ_INIT(&set);
2341 			for (i = 0; i < nB + nF; i++)
2342 				TAILQ_INSERT_TAIL(&set,
2343 				    g->g_vertices[indices[i]], v_link);
2344 			printf("new ordering = ");
2345 			graph_print_vertices(&set);
2346 		}
2347 #endif
2348 	}
2349 
2350 	KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2351 
2352 #ifdef LOCKF_DEBUG
2353 	if (lockf_debug & 8) {
2354 		graph_check(g, TRUE);
2355 	}
2356 #endif
2357 
2358 	e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2359 
2360 	LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2361 	LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2362 	e->e_refs = 1;
2363 	e->e_from = x;
2364 	e->e_to = y;
2365 
2366 	return (0);
2367 }
2368 
2369 /*
2370  * Remove an edge x->y from the graph.
2371  */
2372 static void
2373 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2374     struct owner_vertex *y)
2375 {
2376 	struct owner_edge *e;
2377 
2378 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2379 
2380 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2381 		if (e->e_to == y)
2382 			break;
2383 	}
2384 	KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2385 
2386 	e->e_refs--;
2387 	if (e->e_refs == 0) {
2388 #ifdef LOCKF_DEBUG
2389 		if (lockf_debug & 8) {
2390 			printf("removing edge %d:", x->v_order);
2391 			lf_print_owner(x->v_owner);
2392 			printf(" -> %d:", y->v_order);
2393 			lf_print_owner(y->v_owner);
2394 			printf("\n");
2395 		}
2396 #endif
2397 		LIST_REMOVE(e, e_outlink);
2398 		LIST_REMOVE(e, e_inlink);
2399 		free(e, M_LOCKF);
2400 	}
2401 }
2402 
2403 /*
2404  * Allocate a vertex from the free list. Return ENOMEM if there are
2405  * none.
2406  */
2407 static struct owner_vertex *
2408 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2409 {
2410 	struct owner_vertex *v;
2411 
2412 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2413 
2414 	v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2415 	if (g->g_size == g->g_space) {
2416 		g->g_vertices = realloc(g->g_vertices,
2417 		    2 * g->g_space * sizeof(struct owner_vertex *),
2418 		    M_LOCKF, M_WAITOK);
2419 		free(g->g_indexbuf, M_LOCKF);
2420 		g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2421 		    M_LOCKF, M_WAITOK);
2422 		g->g_space = 2 * g->g_space;
2423 	}
2424 	v->v_order = g->g_size;
2425 	v->v_gen = g->g_gen;
2426 	g->g_vertices[g->g_size] = v;
2427 	g->g_size++;
2428 
2429 	LIST_INIT(&v->v_outedges);
2430 	LIST_INIT(&v->v_inedges);
2431 	v->v_owner = lo;
2432 
2433 	return (v);
2434 }
2435 
2436 static void
2437 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2438 {
2439 	struct owner_vertex *w;
2440 	int i;
2441 
2442 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2443 
2444 	KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2445 	KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2446 
2447 	/*
2448 	 * Remove from the graph's array and close up the gap,
2449 	 * renumbering the other vertices.
2450 	 */
2451 	for (i = v->v_order + 1; i < g->g_size; i++) {
2452 		w = g->g_vertices[i];
2453 		w->v_order--;
2454 		g->g_vertices[i - 1] = w;
2455 	}
2456 	g->g_size--;
2457 
2458 	free(v, M_LOCKF);
2459 }
2460 
2461 static struct owner_graph *
2462 graph_init(struct owner_graph *g)
2463 {
2464 
2465 	g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2466 	    M_LOCKF, M_WAITOK);
2467 	g->g_size = 0;
2468 	g->g_space = 10;
2469 	g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2470 	g->g_gen = 0;
2471 
2472 	return (g);
2473 }
2474 
2475 #ifdef LOCKF_DEBUG
2476 /*
2477  * Print description of a lock owner
2478  */
2479 static void
2480 lf_print_owner(struct lock_owner *lo)
2481 {
2482 
2483 	if (lo->lo_flags & F_REMOTE) {
2484 		printf("remote pid %d, system %d",
2485 		    lo->lo_pid, lo->lo_sysid);
2486 	} else if (lo->lo_flags & F_FLOCK) {
2487 		printf("file %p", lo->lo_id);
2488 	} else {
2489 		printf("local pid %d", lo->lo_pid);
2490 	}
2491 }
2492 
2493 /*
2494  * Print out a lock.
2495  */
2496 static void
2497 lf_print(char *tag, struct lockf_entry *lock)
2498 {
2499 
2500 	printf("%s: lock %p for ", tag, (void *)lock);
2501 	lf_print_owner(lock->lf_owner);
2502 	if (lock->lf_inode != (struct inode *)0)
2503 		printf(" in ino %ju on dev <%s>,",
2504 		    (uintmax_t)lock->lf_inode->i_number,
2505 		    devtoname(ITODEV(lock->lf_inode)));
2506 	printf(" %s, start %jd, end ",
2507 	    lock->lf_type == F_RDLCK ? "shared" :
2508 	    lock->lf_type == F_WRLCK ? "exclusive" :
2509 	    lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2510 	    (intmax_t)lock->lf_start);
2511 	if (lock->lf_end == OFF_MAX)
2512 		printf("EOF");
2513 	else
2514 		printf("%jd", (intmax_t)lock->lf_end);
2515 	if (!LIST_EMPTY(&lock->lf_outedges))
2516 		printf(" block %p\n",
2517 		    (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2518 	else
2519 		printf("\n");
2520 }
2521 
2522 static void
2523 lf_printlist(char *tag, struct lockf_entry *lock)
2524 {
2525 	struct lockf_entry *lf, *blk;
2526 	struct lockf_edge *e;
2527 
2528 	if (lock->lf_inode == (struct inode *)0)
2529 		return;
2530 
2531 	printf("%s: Lock list for ino %ju on dev <%s>:\n",
2532 	    tag, (uintmax_t)lock->lf_inode->i_number,
2533 	    devtoname(ITODEV(lock->lf_inode)));
2534 	LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2535 		printf("\tlock %p for ",(void *)lf);
2536 		lf_print_owner(lock->lf_owner);
2537 		printf(", %s, start %jd, end %jd",
2538 		    lf->lf_type == F_RDLCK ? "shared" :
2539 		    lf->lf_type == F_WRLCK ? "exclusive" :
2540 		    lf->lf_type == F_UNLCK ? "unlock" :
2541 		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2542 		LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2543 			blk = e->le_to;
2544 			printf("\n\t\tlock request %p for ", (void *)blk);
2545 			lf_print_owner(blk->lf_owner);
2546 			printf(", %s, start %jd, end %jd",
2547 			    blk->lf_type == F_RDLCK ? "shared" :
2548 			    blk->lf_type == F_WRLCK ? "exclusive" :
2549 			    blk->lf_type == F_UNLCK ? "unlock" :
2550 			    "unknown", (intmax_t)blk->lf_start,
2551 			    (intmax_t)blk->lf_end);
2552 			if (!LIST_EMPTY(&blk->lf_inedges))
2553 				panic("lf_printlist: bad list");
2554 		}
2555 		printf("\n");
2556 	}
2557 }
2558 #endif /* LOCKF_DEBUG */
2559