xref: /freebsd/sys/kern/kern_malloc.c (revision d6b92ffa)
1 /*-
2  * Copyright (c) 1987, 1991, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2005-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
36  * based on memory types.  Back end is implemented using the UMA(9) zone
37  * allocator.  A set of fixed-size buckets are used for smaller allocations,
38  * and a special UMA allocation interface is used for larger allocations.
39  * Callers declare memory types, and statistics are maintained independently
40  * for each memory type.  Statistics are maintained per-CPU for performance
41  * reasons.  See malloc(9) and comments in malloc.h for a detailed
42  * description.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_ddb.h"
49 #include "opt_vm.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/kdb.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/vmmeter.h>
59 #include <sys/proc.h>
60 #include <sys/sbuf.h>
61 #include <sys/sysctl.h>
62 #include <sys/time.h>
63 #include <sys/vmem.h>
64 
65 #include <vm/vm.h>
66 #include <vm/pmap.h>
67 #include <vm/vm_pageout.h>
68 #include <vm/vm_param.h>
69 #include <vm/vm_kern.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_page.h>
73 #include <vm/uma.h>
74 #include <vm/uma_int.h>
75 #include <vm/uma_dbg.h>
76 
77 #ifdef DEBUG_MEMGUARD
78 #include <vm/memguard.h>
79 #endif
80 #ifdef DEBUG_REDZONE
81 #include <vm/redzone.h>
82 #endif
83 
84 #if defined(INVARIANTS) && defined(__i386__)
85 #include <machine/cpu.h>
86 #endif
87 
88 #include <ddb/ddb.h>
89 
90 #ifdef KDTRACE_HOOKS
91 #include <sys/dtrace_bsd.h>
92 
93 dtrace_malloc_probe_func_t	dtrace_malloc_probe;
94 #endif
95 
96 /*
97  * When realloc() is called, if the new size is sufficiently smaller than
98  * the old size, realloc() will allocate a new, smaller block to avoid
99  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
100  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
101  */
102 #ifndef REALLOC_FRACTION
103 #define	REALLOC_FRACTION	1	/* new block if <= half the size */
104 #endif
105 
106 /*
107  * Centrally define some common malloc types.
108  */
109 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
110 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
111 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
112 
113 static struct malloc_type *kmemstatistics;
114 static int kmemcount;
115 
116 #define KMEM_ZSHIFT	4
117 #define KMEM_ZBASE	16
118 #define KMEM_ZMASK	(KMEM_ZBASE - 1)
119 
120 #define KMEM_ZMAX	65536
121 #define KMEM_ZSIZE	(KMEM_ZMAX >> KMEM_ZSHIFT)
122 static uint8_t kmemsize[KMEM_ZSIZE + 1];
123 
124 #ifndef MALLOC_DEBUG_MAXZONES
125 #define	MALLOC_DEBUG_MAXZONES	1
126 #endif
127 static int numzones = MALLOC_DEBUG_MAXZONES;
128 
129 /*
130  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
131  * of various sizes.
132  *
133  * XXX: The comment here used to read "These won't be powers of two for
134  * long."  It's possible that a significant amount of wasted memory could be
135  * recovered by tuning the sizes of these buckets.
136  */
137 struct {
138 	int kz_size;
139 	char *kz_name;
140 	uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
141 } kmemzones[] = {
142 	{16, "16", },
143 	{32, "32", },
144 	{64, "64", },
145 	{128, "128", },
146 	{256, "256", },
147 	{512, "512", },
148 	{1024, "1024", },
149 	{2048, "2048", },
150 	{4096, "4096", },
151 	{8192, "8192", },
152 	{16384, "16384", },
153 	{32768, "32768", },
154 	{65536, "65536", },
155 	{0, NULL},
156 };
157 
158 /*
159  * Zone to allocate malloc type descriptions from.  For ABI reasons, memory
160  * types are described by a data structure passed by the declaring code, but
161  * the malloc(9) implementation has its own data structure describing the
162  * type and statistics.  This permits the malloc(9)-internal data structures
163  * to be modified without breaking binary-compiled kernel modules that
164  * declare malloc types.
165  */
166 static uma_zone_t mt_zone;
167 
168 u_long vm_kmem_size;
169 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
170     "Size of kernel memory");
171 
172 static u_long kmem_zmax = KMEM_ZMAX;
173 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
174     "Maximum allocation size that malloc(9) would use UMA as backend");
175 
176 static u_long vm_kmem_size_min;
177 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
178     "Minimum size of kernel memory");
179 
180 static u_long vm_kmem_size_max;
181 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
182     "Maximum size of kernel memory");
183 
184 static u_int vm_kmem_size_scale;
185 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
186     "Scale factor for kernel memory size");
187 
188 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
189 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
190     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
191     sysctl_kmem_map_size, "LU", "Current kmem allocation size");
192 
193 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
194 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
195     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
196     sysctl_kmem_map_free, "LU", "Free space in kmem");
197 
198 /*
199  * The malloc_mtx protects the kmemstatistics linked list.
200  */
201 struct mtx malloc_mtx;
202 
203 #ifdef MALLOC_PROFILE
204 uint64_t krequests[KMEM_ZSIZE + 1];
205 
206 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
207 #endif
208 
209 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
210 
211 /*
212  * time_uptime of the last malloc(9) failure (induced or real).
213  */
214 static time_t t_malloc_fail;
215 
216 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
217 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
218     "Kernel malloc debugging options");
219 #endif
220 
221 /*
222  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
223  * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
224  */
225 #ifdef MALLOC_MAKE_FAILURES
226 static int malloc_failure_rate;
227 static int malloc_nowait_count;
228 static int malloc_failure_count;
229 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
230     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
231 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
232     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
233 #endif
234 
235 static int
236 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
237 {
238 	u_long size;
239 
240 	size = vmem_size(kmem_arena, VMEM_ALLOC);
241 	return (sysctl_handle_long(oidp, &size, 0, req));
242 }
243 
244 static int
245 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
246 {
247 	u_long size;
248 
249 	size = vmem_size(kmem_arena, VMEM_FREE);
250 	return (sysctl_handle_long(oidp, &size, 0, req));
251 }
252 
253 /*
254  * malloc(9) uma zone separation -- sub-page buffer overruns in one
255  * malloc type will affect only a subset of other malloc types.
256  */
257 #if MALLOC_DEBUG_MAXZONES > 1
258 static void
259 tunable_set_numzones(void)
260 {
261 
262 	TUNABLE_INT_FETCH("debug.malloc.numzones",
263 	    &numzones);
264 
265 	/* Sanity check the number of malloc uma zones. */
266 	if (numzones <= 0)
267 		numzones = 1;
268 	if (numzones > MALLOC_DEBUG_MAXZONES)
269 		numzones = MALLOC_DEBUG_MAXZONES;
270 }
271 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
272 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
273     &numzones, 0, "Number of malloc uma subzones");
274 
275 /*
276  * Any number that changes regularly is an okay choice for the
277  * offset.  Build numbers are pretty good of you have them.
278  */
279 static u_int zone_offset = __FreeBSD_version;
280 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
281 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
282     &zone_offset, 0, "Separate malloc types by examining the "
283     "Nth character in the malloc type short description.");
284 
285 static u_int
286 mtp_get_subzone(const char *desc)
287 {
288 	size_t len;
289 	u_int val;
290 
291 	if (desc == NULL || (len = strlen(desc)) == 0)
292 		return (0);
293 	val = desc[zone_offset % len];
294 	return (val % numzones);
295 }
296 #elif MALLOC_DEBUG_MAXZONES == 0
297 #error "MALLOC_DEBUG_MAXZONES must be positive."
298 #else
299 static inline u_int
300 mtp_get_subzone(const char *desc)
301 {
302 
303 	return (0);
304 }
305 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
306 
307 int
308 malloc_last_fail(void)
309 {
310 
311 	return (time_uptime - t_malloc_fail);
312 }
313 
314 /*
315  * An allocation has succeeded -- update malloc type statistics for the
316  * amount of bucket size.  Occurs within a critical section so that the
317  * thread isn't preempted and doesn't migrate while updating per-PCU
318  * statistics.
319  */
320 static void
321 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
322     int zindx)
323 {
324 	struct malloc_type_internal *mtip;
325 	struct malloc_type_stats *mtsp;
326 
327 	critical_enter();
328 	mtip = mtp->ks_handle;
329 	mtsp = &mtip->mti_stats[curcpu];
330 	if (size > 0) {
331 		mtsp->mts_memalloced += size;
332 		mtsp->mts_numallocs++;
333 	}
334 	if (zindx != -1)
335 		mtsp->mts_size |= 1 << zindx;
336 
337 #ifdef KDTRACE_HOOKS
338 	if (dtrace_malloc_probe != NULL) {
339 		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
340 		if (probe_id != 0)
341 			(dtrace_malloc_probe)(probe_id,
342 			    (uintptr_t) mtp, (uintptr_t) mtip,
343 			    (uintptr_t) mtsp, size, zindx);
344 	}
345 #endif
346 
347 	critical_exit();
348 }
349 
350 void
351 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
352 {
353 
354 	if (size > 0)
355 		malloc_type_zone_allocated(mtp, size, -1);
356 }
357 
358 /*
359  * A free operation has occurred -- update malloc type statistics for the
360  * amount of the bucket size.  Occurs within a critical section so that the
361  * thread isn't preempted and doesn't migrate while updating per-CPU
362  * statistics.
363  */
364 void
365 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
366 {
367 	struct malloc_type_internal *mtip;
368 	struct malloc_type_stats *mtsp;
369 
370 	critical_enter();
371 	mtip = mtp->ks_handle;
372 	mtsp = &mtip->mti_stats[curcpu];
373 	mtsp->mts_memfreed += size;
374 	mtsp->mts_numfrees++;
375 
376 #ifdef KDTRACE_HOOKS
377 	if (dtrace_malloc_probe != NULL) {
378 		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
379 		if (probe_id != 0)
380 			(dtrace_malloc_probe)(probe_id,
381 			    (uintptr_t) mtp, (uintptr_t) mtip,
382 			    (uintptr_t) mtsp, size, 0);
383 	}
384 #endif
385 
386 	critical_exit();
387 }
388 
389 /*
390  *	contigmalloc:
391  *
392  *	Allocate a block of physically contiguous memory.
393  *
394  *	If M_NOWAIT is set, this routine will not block and return NULL if
395  *	the allocation fails.
396  */
397 void *
398 contigmalloc(unsigned long size, struct malloc_type *type, int flags,
399     vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
400     vm_paddr_t boundary)
401 {
402 	void *ret;
403 
404 	ret = (void *)kmem_alloc_contig(kernel_arena, size, flags, low, high,
405 	    alignment, boundary, VM_MEMATTR_DEFAULT);
406 	if (ret != NULL)
407 		malloc_type_allocated(type, round_page(size));
408 	return (ret);
409 }
410 
411 /*
412  *	contigfree:
413  *
414  *	Free a block of memory allocated by contigmalloc.
415  *
416  *	This routine may not block.
417  */
418 void
419 contigfree(void *addr, unsigned long size, struct malloc_type *type)
420 {
421 
422 	kmem_free(kernel_arena, (vm_offset_t)addr, size);
423 	malloc_type_freed(type, round_page(size));
424 }
425 
426 /*
427  *	malloc:
428  *
429  *	Allocate a block of memory.
430  *
431  *	If M_NOWAIT is set, this routine will not block and return NULL if
432  *	the allocation fails.
433  */
434 void *
435 malloc(unsigned long size, struct malloc_type *mtp, int flags)
436 {
437 	int indx;
438 	struct malloc_type_internal *mtip;
439 	caddr_t va;
440 	uma_zone_t zone;
441 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
442 	unsigned long osize = size;
443 #endif
444 
445 #ifdef INVARIANTS
446 	KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
447 	/*
448 	 * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
449 	 */
450 	indx = flags & (M_WAITOK | M_NOWAIT);
451 	if (indx != M_NOWAIT && indx != M_WAITOK) {
452 		static	struct timeval lasterr;
453 		static	int curerr, once;
454 		if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
455 			printf("Bad malloc flags: %x\n", indx);
456 			kdb_backtrace();
457 			flags |= M_WAITOK;
458 			once++;
459 		}
460 	}
461 #endif
462 #ifdef MALLOC_MAKE_FAILURES
463 	if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
464 		atomic_add_int(&malloc_nowait_count, 1);
465 		if ((malloc_nowait_count % malloc_failure_rate) == 0) {
466 			atomic_add_int(&malloc_failure_count, 1);
467 			t_malloc_fail = time_uptime;
468 			return (NULL);
469 		}
470 	}
471 #endif
472 	if (flags & M_WAITOK)
473 		KASSERT(curthread->td_intr_nesting_level == 0,
474 		   ("malloc(M_WAITOK) in interrupt context"));
475 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
476 	    ("malloc: called with spinlock or critical section held"));
477 
478 #ifdef DEBUG_MEMGUARD
479 	if (memguard_cmp_mtp(mtp, size)) {
480 		va = memguard_alloc(size, flags);
481 		if (va != NULL)
482 			return (va);
483 		/* This is unfortunate but should not be fatal. */
484 	}
485 #endif
486 
487 #ifdef DEBUG_REDZONE
488 	size = redzone_size_ntor(size);
489 #endif
490 
491 	if (size <= kmem_zmax) {
492 		mtip = mtp->ks_handle;
493 		if (size & KMEM_ZMASK)
494 			size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
495 		indx = kmemsize[size >> KMEM_ZSHIFT];
496 		KASSERT(mtip->mti_zone < numzones,
497 		    ("mti_zone %u out of range %d",
498 		    mtip->mti_zone, numzones));
499 		zone = kmemzones[indx].kz_zone[mtip->mti_zone];
500 #ifdef MALLOC_PROFILE
501 		krequests[size >> KMEM_ZSHIFT]++;
502 #endif
503 		va = uma_zalloc(zone, flags);
504 		if (va != NULL)
505 			size = zone->uz_size;
506 		malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
507 	} else {
508 		size = roundup(size, PAGE_SIZE);
509 		zone = NULL;
510 		va = uma_large_malloc(size, flags);
511 		malloc_type_allocated(mtp, va == NULL ? 0 : size);
512 	}
513 	if (flags & M_WAITOK)
514 		KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
515 	else if (va == NULL)
516 		t_malloc_fail = time_uptime;
517 #ifdef DIAGNOSTIC
518 	if (va != NULL && !(flags & M_ZERO)) {
519 		memset(va, 0x70, osize);
520 	}
521 #endif
522 #ifdef DEBUG_REDZONE
523 	if (va != NULL)
524 		va = redzone_setup(va, osize);
525 #endif
526 	return ((void *) va);
527 }
528 
529 /*
530  *	free:
531  *
532  *	Free a block of memory allocated by malloc.
533  *
534  *	This routine may not block.
535  */
536 void
537 free(void *addr, struct malloc_type *mtp)
538 {
539 	uma_slab_t slab;
540 	u_long size;
541 
542 	KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
543 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
544 	    ("free: called with spinlock or critical section held"));
545 
546 	/* free(NULL, ...) does nothing */
547 	if (addr == NULL)
548 		return;
549 
550 #ifdef DEBUG_MEMGUARD
551 	if (is_memguard_addr(addr)) {
552 		memguard_free(addr);
553 		return;
554 	}
555 #endif
556 
557 #ifdef DEBUG_REDZONE
558 	redzone_check(addr);
559 	addr = redzone_addr_ntor(addr);
560 #endif
561 
562 	slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
563 
564 	if (slab == NULL)
565 		panic("free: address %p(%p) has not been allocated.\n",
566 		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
567 
568 	if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
569 #ifdef INVARIANTS
570 		struct malloc_type **mtpp = addr;
571 #endif
572 		size = slab->us_keg->uk_size;
573 #ifdef INVARIANTS
574 		/*
575 		 * Cache a pointer to the malloc_type that most recently freed
576 		 * this memory here.  This way we know who is most likely to
577 		 * have stepped on it later.
578 		 *
579 		 * This code assumes that size is a multiple of 8 bytes for
580 		 * 64 bit machines
581 		 */
582 		mtpp = (struct malloc_type **)
583 		    ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
584 		mtpp += (size - sizeof(struct malloc_type *)) /
585 		    sizeof(struct malloc_type *);
586 		*mtpp = mtp;
587 #endif
588 		uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
589 	} else {
590 		size = slab->us_size;
591 		uma_large_free(slab);
592 	}
593 	malloc_type_freed(mtp, size);
594 }
595 
596 /*
597  *	realloc: change the size of a memory block
598  */
599 void *
600 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
601 {
602 	uma_slab_t slab;
603 	unsigned long alloc;
604 	void *newaddr;
605 
606 	KASSERT(mtp->ks_magic == M_MAGIC,
607 	    ("realloc: bad malloc type magic"));
608 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
609 	    ("realloc: called with spinlock or critical section held"));
610 
611 	/* realloc(NULL, ...) is equivalent to malloc(...) */
612 	if (addr == NULL)
613 		return (malloc(size, mtp, flags));
614 
615 	/*
616 	 * XXX: Should report free of old memory and alloc of new memory to
617 	 * per-CPU stats.
618 	 */
619 
620 #ifdef DEBUG_MEMGUARD
621 	if (is_memguard_addr(addr))
622 		return (memguard_realloc(addr, size, mtp, flags));
623 #endif
624 
625 #ifdef DEBUG_REDZONE
626 	slab = NULL;
627 	alloc = redzone_get_size(addr);
628 #else
629 	slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
630 
631 	/* Sanity check */
632 	KASSERT(slab != NULL,
633 	    ("realloc: address %p out of range", (void *)addr));
634 
635 	/* Get the size of the original block */
636 	if (!(slab->us_flags & UMA_SLAB_MALLOC))
637 		alloc = slab->us_keg->uk_size;
638 	else
639 		alloc = slab->us_size;
640 
641 	/* Reuse the original block if appropriate */
642 	if (size <= alloc
643 	    && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
644 		return (addr);
645 #endif /* !DEBUG_REDZONE */
646 
647 	/* Allocate a new, bigger (or smaller) block */
648 	if ((newaddr = malloc(size, mtp, flags)) == NULL)
649 		return (NULL);
650 
651 	/* Copy over original contents */
652 	bcopy(addr, newaddr, min(size, alloc));
653 	free(addr, mtp);
654 	return (newaddr);
655 }
656 
657 /*
658  *	reallocf: same as realloc() but free memory on failure.
659  */
660 void *
661 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
662 {
663 	void *mem;
664 
665 	if ((mem = realloc(addr, size, mtp, flags)) == NULL)
666 		free(addr, mtp);
667 	return (mem);
668 }
669 
670 /*
671  * Wake the uma reclamation pagedaemon thread when we exhaust KVA.  It
672  * will call the lowmem handler and uma_reclaim() callbacks in a
673  * context that is safe.
674  */
675 static void
676 kmem_reclaim(vmem_t *vm, int flags)
677 {
678 
679 	uma_reclaim_wakeup();
680 	pagedaemon_wakeup();
681 }
682 
683 #ifndef __sparc64__
684 CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
685 #endif
686 
687 /*
688  * Initialize the kernel memory (kmem) arena.
689  */
690 void
691 kmeminit(void)
692 {
693 	u_long mem_size;
694 	u_long tmp;
695 
696 #ifdef VM_KMEM_SIZE
697 	if (vm_kmem_size == 0)
698 		vm_kmem_size = VM_KMEM_SIZE;
699 #endif
700 #ifdef VM_KMEM_SIZE_MIN
701 	if (vm_kmem_size_min == 0)
702 		vm_kmem_size_min = VM_KMEM_SIZE_MIN;
703 #endif
704 #ifdef VM_KMEM_SIZE_MAX
705 	if (vm_kmem_size_max == 0)
706 		vm_kmem_size_max = VM_KMEM_SIZE_MAX;
707 #endif
708 	/*
709 	 * Calculate the amount of kernel virtual address (KVA) space that is
710 	 * preallocated to the kmem arena.  In order to support a wide range
711 	 * of machines, it is a function of the physical memory size,
712 	 * specifically,
713 	 *
714 	 *	min(max(physical memory size / VM_KMEM_SIZE_SCALE,
715 	 *	    VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
716 	 *
717 	 * Every architecture must define an integral value for
718 	 * VM_KMEM_SIZE_SCALE.  However, the definitions of VM_KMEM_SIZE_MIN
719 	 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
720 	 * ceiling on this preallocation, are optional.  Typically,
721 	 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
722 	 * a given architecture.
723 	 */
724 	mem_size = vm_cnt.v_page_count;
725 	if (mem_size <= 32768) /* delphij XXX 128MB */
726 		kmem_zmax = PAGE_SIZE;
727 
728 	if (vm_kmem_size_scale < 1)
729 		vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
730 
731 	/*
732 	 * Check if we should use defaults for the "vm_kmem_size"
733 	 * variable:
734 	 */
735 	if (vm_kmem_size == 0) {
736 		vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
737 
738 		if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
739 			vm_kmem_size = vm_kmem_size_min;
740 		if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
741 			vm_kmem_size = vm_kmem_size_max;
742 	}
743 
744 	/*
745 	 * The amount of KVA space that is preallocated to the
746 	 * kmem arena can be set statically at compile-time or manually
747 	 * through the kernel environment.  However, it is still limited to
748 	 * twice the physical memory size, which has been sufficient to handle
749 	 * the most severe cases of external fragmentation in the kmem arena.
750 	 */
751 	if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
752 		vm_kmem_size = 2 * mem_size * PAGE_SIZE;
753 
754 	vm_kmem_size = round_page(vm_kmem_size);
755 #ifdef DEBUG_MEMGUARD
756 	tmp = memguard_fudge(vm_kmem_size, kernel_map);
757 #else
758 	tmp = vm_kmem_size;
759 #endif
760 	vmem_init(kmem_arena, "kmem arena", kva_alloc(tmp), tmp, PAGE_SIZE,
761 	    0, 0);
762 	vmem_set_reclaim(kmem_arena, kmem_reclaim);
763 
764 #ifdef DEBUG_MEMGUARD
765 	/*
766 	 * Initialize MemGuard if support compiled in.  MemGuard is a
767 	 * replacement allocator used for detecting tamper-after-free
768 	 * scenarios as they occur.  It is only used for debugging.
769 	 */
770 	memguard_init(kmem_arena);
771 #endif
772 }
773 
774 /*
775  * Initialize the kernel memory allocator
776  */
777 /* ARGSUSED*/
778 static void
779 mallocinit(void *dummy)
780 {
781 	int i;
782 	uint8_t indx;
783 
784 	mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
785 
786 	kmeminit();
787 
788 	uma_startup2();
789 
790 	if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
791 		kmem_zmax = KMEM_ZMAX;
792 
793 	mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
794 #ifdef INVARIANTS
795 	    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
796 #else
797 	    NULL, NULL, NULL, NULL,
798 #endif
799 	    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
800 	for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
801 		int size = kmemzones[indx].kz_size;
802 		char *name = kmemzones[indx].kz_name;
803 		int subzone;
804 
805 		for (subzone = 0; subzone < numzones; subzone++) {
806 			kmemzones[indx].kz_zone[subzone] =
807 			    uma_zcreate(name, size,
808 #ifdef INVARIANTS
809 			    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
810 #else
811 			    NULL, NULL, NULL, NULL,
812 #endif
813 			    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
814 		}
815 		for (;i <= size; i+= KMEM_ZBASE)
816 			kmemsize[i >> KMEM_ZSHIFT] = indx;
817 
818 	}
819 }
820 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
821 
822 void
823 malloc_init(void *data)
824 {
825 	struct malloc_type_internal *mtip;
826 	struct malloc_type *mtp;
827 
828 	KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init"));
829 
830 	mtp = data;
831 	if (mtp->ks_magic != M_MAGIC)
832 		panic("malloc_init: bad malloc type magic");
833 
834 	mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
835 	mtp->ks_handle = mtip;
836 	mtip->mti_zone = mtp_get_subzone(mtp->ks_shortdesc);
837 
838 	mtx_lock(&malloc_mtx);
839 	mtp->ks_next = kmemstatistics;
840 	kmemstatistics = mtp;
841 	kmemcount++;
842 	mtx_unlock(&malloc_mtx);
843 }
844 
845 void
846 malloc_uninit(void *data)
847 {
848 	struct malloc_type_internal *mtip;
849 	struct malloc_type_stats *mtsp;
850 	struct malloc_type *mtp, *temp;
851 	uma_slab_t slab;
852 	long temp_allocs, temp_bytes;
853 	int i;
854 
855 	mtp = data;
856 	KASSERT(mtp->ks_magic == M_MAGIC,
857 	    ("malloc_uninit: bad malloc type magic"));
858 	KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
859 
860 	mtx_lock(&malloc_mtx);
861 	mtip = mtp->ks_handle;
862 	mtp->ks_handle = NULL;
863 	if (mtp != kmemstatistics) {
864 		for (temp = kmemstatistics; temp != NULL;
865 		    temp = temp->ks_next) {
866 			if (temp->ks_next == mtp) {
867 				temp->ks_next = mtp->ks_next;
868 				break;
869 			}
870 		}
871 		KASSERT(temp,
872 		    ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
873 	} else
874 		kmemstatistics = mtp->ks_next;
875 	kmemcount--;
876 	mtx_unlock(&malloc_mtx);
877 
878 	/*
879 	 * Look for memory leaks.
880 	 */
881 	temp_allocs = temp_bytes = 0;
882 	for (i = 0; i < MAXCPU; i++) {
883 		mtsp = &mtip->mti_stats[i];
884 		temp_allocs += mtsp->mts_numallocs;
885 		temp_allocs -= mtsp->mts_numfrees;
886 		temp_bytes += mtsp->mts_memalloced;
887 		temp_bytes -= mtsp->mts_memfreed;
888 	}
889 	if (temp_allocs > 0 || temp_bytes > 0) {
890 		printf("Warning: memory type %s leaked memory on destroy "
891 		    "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
892 		    temp_allocs, temp_bytes);
893 	}
894 
895 	slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
896 	uma_zfree_arg(mt_zone, mtip, slab);
897 }
898 
899 struct malloc_type *
900 malloc_desc2type(const char *desc)
901 {
902 	struct malloc_type *mtp;
903 
904 	mtx_assert(&malloc_mtx, MA_OWNED);
905 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
906 		if (strcmp(mtp->ks_shortdesc, desc) == 0)
907 			return (mtp);
908 	}
909 	return (NULL);
910 }
911 
912 static int
913 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
914 {
915 	struct malloc_type_stream_header mtsh;
916 	struct malloc_type_internal *mtip;
917 	struct malloc_type_header mth;
918 	struct malloc_type *mtp;
919 	int error, i;
920 	struct sbuf sbuf;
921 
922 	error = sysctl_wire_old_buffer(req, 0);
923 	if (error != 0)
924 		return (error);
925 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
926 	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
927 	mtx_lock(&malloc_mtx);
928 
929 	/*
930 	 * Insert stream header.
931 	 */
932 	bzero(&mtsh, sizeof(mtsh));
933 	mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
934 	mtsh.mtsh_maxcpus = MAXCPU;
935 	mtsh.mtsh_count = kmemcount;
936 	(void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
937 
938 	/*
939 	 * Insert alternating sequence of type headers and type statistics.
940 	 */
941 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
942 		mtip = (struct malloc_type_internal *)mtp->ks_handle;
943 
944 		/*
945 		 * Insert type header.
946 		 */
947 		bzero(&mth, sizeof(mth));
948 		strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
949 		(void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
950 
951 		/*
952 		 * Insert type statistics for each CPU.
953 		 */
954 		for (i = 0; i < MAXCPU; i++) {
955 			(void)sbuf_bcat(&sbuf, &mtip->mti_stats[i],
956 			    sizeof(mtip->mti_stats[i]));
957 		}
958 	}
959 	mtx_unlock(&malloc_mtx);
960 	error = sbuf_finish(&sbuf);
961 	sbuf_delete(&sbuf);
962 	return (error);
963 }
964 
965 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
966     0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
967     "Return malloc types");
968 
969 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
970     "Count of kernel malloc types");
971 
972 void
973 malloc_type_list(malloc_type_list_func_t *func, void *arg)
974 {
975 	struct malloc_type *mtp, **bufmtp;
976 	int count, i;
977 	size_t buflen;
978 
979 	mtx_lock(&malloc_mtx);
980 restart:
981 	mtx_assert(&malloc_mtx, MA_OWNED);
982 	count = kmemcount;
983 	mtx_unlock(&malloc_mtx);
984 
985 	buflen = sizeof(struct malloc_type *) * count;
986 	bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
987 
988 	mtx_lock(&malloc_mtx);
989 
990 	if (count < kmemcount) {
991 		free(bufmtp, M_TEMP);
992 		goto restart;
993 	}
994 
995 	for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
996 		bufmtp[i] = mtp;
997 
998 	mtx_unlock(&malloc_mtx);
999 
1000 	for (i = 0; i < count; i++)
1001 		(func)(bufmtp[i], arg);
1002 
1003 	free(bufmtp, M_TEMP);
1004 }
1005 
1006 #ifdef DDB
1007 DB_SHOW_COMMAND(malloc, db_show_malloc)
1008 {
1009 	struct malloc_type_internal *mtip;
1010 	struct malloc_type *mtp;
1011 	uint64_t allocs, frees;
1012 	uint64_t alloced, freed;
1013 	int i;
1014 
1015 	db_printf("%18s %12s  %12s %12s\n", "Type", "InUse", "MemUse",
1016 	    "Requests");
1017 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1018 		mtip = (struct malloc_type_internal *)mtp->ks_handle;
1019 		allocs = 0;
1020 		frees = 0;
1021 		alloced = 0;
1022 		freed = 0;
1023 		for (i = 0; i < MAXCPU; i++) {
1024 			allocs += mtip->mti_stats[i].mts_numallocs;
1025 			frees += mtip->mti_stats[i].mts_numfrees;
1026 			alloced += mtip->mti_stats[i].mts_memalloced;
1027 			freed += mtip->mti_stats[i].mts_memfreed;
1028 		}
1029 		db_printf("%18s %12ju %12juK %12ju\n",
1030 		    mtp->ks_shortdesc, allocs - frees,
1031 		    (alloced - freed + 1023) / 1024, allocs);
1032 		if (db_pager_quit)
1033 			break;
1034 	}
1035 }
1036 
1037 #if MALLOC_DEBUG_MAXZONES > 1
1038 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
1039 {
1040 	struct malloc_type_internal *mtip;
1041 	struct malloc_type *mtp;
1042 	u_int subzone;
1043 
1044 	if (!have_addr) {
1045 		db_printf("Usage: show multizone_matches <malloc type/addr>\n");
1046 		return;
1047 	}
1048 	mtp = (void *)addr;
1049 	if (mtp->ks_magic != M_MAGIC) {
1050 		db_printf("Magic %lx does not match expected %x\n",
1051 		    mtp->ks_magic, M_MAGIC);
1052 		return;
1053 	}
1054 
1055 	mtip = mtp->ks_handle;
1056 	subzone = mtip->mti_zone;
1057 
1058 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1059 		mtip = mtp->ks_handle;
1060 		if (mtip->mti_zone != subzone)
1061 			continue;
1062 		db_printf("%s\n", mtp->ks_shortdesc);
1063 		if (db_pager_quit)
1064 			break;
1065 	}
1066 }
1067 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
1068 #endif /* DDB */
1069 
1070 #ifdef MALLOC_PROFILE
1071 
1072 static int
1073 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
1074 {
1075 	struct sbuf sbuf;
1076 	uint64_t count;
1077 	uint64_t waste;
1078 	uint64_t mem;
1079 	int error;
1080 	int rsize;
1081 	int size;
1082 	int i;
1083 
1084 	waste = 0;
1085 	mem = 0;
1086 
1087 	error = sysctl_wire_old_buffer(req, 0);
1088 	if (error != 0)
1089 		return (error);
1090 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1091 	sbuf_printf(&sbuf,
1092 	    "\n  Size                    Requests  Real Size\n");
1093 	for (i = 0; i < KMEM_ZSIZE; i++) {
1094 		size = i << KMEM_ZSHIFT;
1095 		rsize = kmemzones[kmemsize[i]].kz_size;
1096 		count = (long long unsigned)krequests[i];
1097 
1098 		sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
1099 		    (unsigned long long)count, rsize);
1100 
1101 		if ((rsize * count) > (size * count))
1102 			waste += (rsize * count) - (size * count);
1103 		mem += (rsize * count);
1104 	}
1105 	sbuf_printf(&sbuf,
1106 	    "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
1107 	    (unsigned long long)mem, (unsigned long long)waste);
1108 	error = sbuf_finish(&sbuf);
1109 	sbuf_delete(&sbuf);
1110 	return (error);
1111 }
1112 
1113 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
1114     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
1115 #endif /* MALLOC_PROFILE */
1116