xref: /freebsd/sys/kern/kern_mtxpool.c (revision aa0a1e58)
1 /*-
2  * Copyright (c) 2001 Matthew Dillon.  All Rights Reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 /* Mutex pool routines.  These routines are designed to be used as short
27  * term leaf mutexes (e.g. the last mutex you might acquire other then
28  * calling msleep()).  They operate using a shared pool.  A mutex is chosen
29  * from the pool based on the supplied pointer (which may or may not be
30  * valid).
31  *
32  * Advantages:
33  *	- no structural overhead.  Mutexes can be associated with structures
34  *	  without adding bloat to the structures.
35  *	- mutexes can be obtained for invalid pointers, useful when uses
36  *	  mutexes to interlock destructor ops.
37  *	- no initialization/destructor overhead.
38  *	- can be used with msleep.
39  *
40  * Disadvantages:
41  *	- should generally only be used as leaf mutexes.
42  *	- pool/pool dependancy ordering cannot be depended on.
43  *	- possible L1 cache mastersip contention between cpus.
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include <sys/param.h>
50 #include <sys/proc.h>
51 #include <sys/kernel.h>
52 #include <sys/ktr.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mutex.h>
56 #include <sys/systm.h>
57 
58 
59 static MALLOC_DEFINE(M_MTXPOOL, "mtx_pool", "mutex pool");
60 
61 /* Pool sizes must be a power of two */
62 #ifndef MTX_POOL_LOCKBUILDER_SIZE
63 #define MTX_POOL_LOCKBUILDER_SIZE	128
64 #endif
65 #ifndef MTX_POOL_SLEEP_SIZE
66 #define MTX_POOL_SLEEP_SIZE		128
67 #endif
68 
69 struct mtxpool_header {
70 	int		mtxpool_size;
71 	int		mtxpool_mask;
72 	int		mtxpool_shift;
73 	int		mtxpool_next;
74 };
75 
76 struct mtx_pool {
77 	struct mtxpool_header mtx_pool_header;
78 	struct mtx	mtx_pool_ary[1];
79 };
80 
81 static struct mtx_pool_lockbuilder {
82 	struct mtxpool_header mtx_pool_header;
83 	struct mtx	mtx_pool_ary[MTX_POOL_LOCKBUILDER_SIZE];
84 } lockbuilder_pool;
85 
86 #define mtx_pool_size	mtx_pool_header.mtxpool_size
87 #define mtx_pool_mask	mtx_pool_header.mtxpool_mask
88 #define mtx_pool_shift	mtx_pool_header.mtxpool_shift
89 #define mtx_pool_next	mtx_pool_header.mtxpool_next
90 
91 struct mtx_pool *mtxpool_sleep;
92 struct mtx_pool *mtxpool_lockbuilder;
93 
94 #if UINTPTR_MAX == UINT64_MAX	/* 64 bits */
95 # define POINTER_BITS		64
96 # define HASH_MULTIPLIER	11400714819323198485u /* (2^64)*(sqrt(5)-1)/2 */
97 #else				/* assume 32 bits */
98 # define POINTER_BITS		32
99 # define HASH_MULTIPLIER	2654435769u	      /* (2^32)*(sqrt(5)-1)/2 */
100 #endif
101 
102 /*
103  * Return the (shared) pool mutex associated with the specified address.
104  * The returned mutex is a leaf level mutex, meaning that if you obtain it
105  * you cannot obtain any other mutexes until you release it.  You can
106  * legally msleep() on the mutex.
107  */
108 struct mtx *
109 mtx_pool_find(struct mtx_pool *pool, void *ptr)
110 {
111 	int p;
112 
113 	KASSERT(pool != NULL, ("_mtx_pool_find(): null pool"));
114 	/*
115 	 * Fibonacci hash, see Knuth's
116 	 * _Art of Computer Programming, Volume 3 / Sorting and Searching_
117 	 */
118 	p = ((HASH_MULTIPLIER * (uintptr_t)ptr) >> pool->mtx_pool_shift) &
119 	    pool->mtx_pool_mask;
120 	return (&pool->mtx_pool_ary[p]);
121 }
122 
123 static void
124 mtx_pool_initialize(struct mtx_pool *pool, const char *mtx_name, int pool_size,
125     int opts)
126 {
127 	int i, maskbits;
128 
129 	pool->mtx_pool_size = pool_size;
130 	pool->mtx_pool_mask = pool_size - 1;
131 	for (i = 1, maskbits = 0; (i & pool_size) == 0; i = i << 1)
132 		maskbits++;
133 	pool->mtx_pool_shift = POINTER_BITS - maskbits;
134 	pool->mtx_pool_next = 0;
135 	for (i = 0; i < pool_size; ++i)
136 		mtx_init(&pool->mtx_pool_ary[i], mtx_name, NULL, opts);
137 }
138 
139 struct mtx_pool *
140 mtx_pool_create(const char *mtx_name, int pool_size, int opts)
141 {
142 	struct mtx_pool *pool;
143 
144 	if (pool_size <= 0 || !powerof2(pool_size)) {
145 		printf("WARNING: %s pool size is not a power of 2.\n",
146 		    mtx_name);
147 		pool_size = 128;
148 	}
149 	pool = malloc(sizeof (struct mtx_pool) +
150 	    ((pool_size - 1) * sizeof (struct mtx)),
151 	    M_MTXPOOL, M_WAITOK | M_ZERO);
152 	mtx_pool_initialize(pool, mtx_name, pool_size, opts);
153 	return pool;
154 }
155 
156 void
157 mtx_pool_destroy(struct mtx_pool **poolp)
158 {
159 	int i;
160 	struct mtx_pool *pool = *poolp;
161 
162 	for (i = pool->mtx_pool_size - 1; i >= 0; --i)
163 		mtx_destroy(&pool->mtx_pool_ary[i]);
164 	free(pool, M_MTXPOOL);
165 	*poolp = NULL;
166 }
167 
168 static void
169 mtx_pool_setup_static(void *dummy __unused)
170 {
171 	mtx_pool_initialize((struct mtx_pool *)&lockbuilder_pool,
172 	    "lockbuilder mtxpool", MTX_POOL_LOCKBUILDER_SIZE,
173 	    MTX_DEF | MTX_NOWITNESS | MTX_QUIET);
174 	mtxpool_lockbuilder = (struct mtx_pool *)&lockbuilder_pool;
175 }
176 
177 static void
178 mtx_pool_setup_dynamic(void *dummy __unused)
179 {
180 	mtxpool_sleep = mtx_pool_create("sleep mtxpool",
181 	    MTX_POOL_SLEEP_SIZE, MTX_DEF);
182 }
183 
184 /*
185  * Obtain a (shared) mutex from the pool.  The returned mutex is a leaf
186  * level mutex, meaning that if you obtain it you cannot obtain any other
187  * mutexes until you release it.  You can legally msleep() on the mutex.
188  */
189 struct mtx *
190 mtx_pool_alloc(struct mtx_pool *pool)
191 {
192 	int i;
193 
194 	KASSERT(pool != NULL, ("mtx_pool_alloc(): null pool"));
195 	/*
196 	 * mtx_pool_next is unprotected against multiple accesses,
197 	 * but simultaneous access by two CPUs should not be very
198 	 * harmful.
199 	 */
200 	i = pool->mtx_pool_next;
201 	pool->mtx_pool_next = (i + 1) & pool->mtx_pool_mask;
202 	return (&pool->mtx_pool_ary[i]);
203 }
204 
205 /*
206  * The lockbuilder pool must be initialized early because the lockmgr
207  * and sx locks depend on it.  The sx locks are used in the kernel
208  * memory allocator.  The lockmgr subsystem is initialized by
209  * SYSINIT(..., SI_SUB_LOCKMGR, ...).
210  *
211  * We can't call malloc() to dynamically allocate the sleep pool
212  * until after kmeminit() has been called, which is done by
213  * SYSINIT(..., SI_SUB_KMEM, ...).
214  */
215 SYSINIT(mtxpooli1, SI_SUB_MTX_POOL_STATIC, SI_ORDER_FIRST,
216     mtx_pool_setup_static, NULL);
217 SYSINIT(mtxpooli2, SI_SUB_MTX_POOL_DYNAMIC, SI_ORDER_FIRST,
218     mtx_pool_setup_dynamic, NULL);
219