xref: /freebsd/sys/kern/kern_mutex.c (revision 8a0a413e)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Machine independent bits of mutex implementation.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_adaptive_mutexes.h"
40 #include "opt_ddb.h"
41 #include "opt_hwpmc_hooks.h"
42 #include "opt_sched.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bus.h>
47 #include <sys/conf.h>
48 #include <sys/kdb.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/resourcevar.h>
56 #include <sys/sched.h>
57 #include <sys/sbuf.h>
58 #include <sys/smp.h>
59 #include <sys/sysctl.h>
60 #include <sys/turnstile.h>
61 #include <sys/vmmeter.h>
62 #include <sys/lock_profile.h>
63 
64 #include <machine/atomic.h>
65 #include <machine/bus.h>
66 #include <machine/cpu.h>
67 
68 #include <ddb/ddb.h>
69 
70 #include <fs/devfs/devfs_int.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_extern.h>
74 
75 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
76 #define	ADAPTIVE_MUTEXES
77 #endif
78 
79 #ifdef HWPMC_HOOKS
80 #include <sys/pmckern.h>
81 PMC_SOFT_DEFINE( , , lock, failed);
82 #endif
83 
84 /*
85  * Return the mutex address when the lock cookie address is provided.
86  * This functionality assumes that struct mtx* have a member named mtx_lock.
87  */
88 #define	mtxlock2mtx(c)	(__containerof(c, struct mtx, mtx_lock))
89 
90 /*
91  * Internal utility macros.
92  */
93 #define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
94 
95 #define	mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
96 
97 static void	assert_mtx(const struct lock_object *lock, int what);
98 #ifdef DDB
99 static void	db_show_mtx(const struct lock_object *lock);
100 #endif
101 static void	lock_mtx(struct lock_object *lock, uintptr_t how);
102 static void	lock_spin(struct lock_object *lock, uintptr_t how);
103 #ifdef KDTRACE_HOOKS
104 static int	owner_mtx(const struct lock_object *lock,
105 		    struct thread **owner);
106 #endif
107 static uintptr_t unlock_mtx(struct lock_object *lock);
108 static uintptr_t unlock_spin(struct lock_object *lock);
109 
110 /*
111  * Lock classes for sleep and spin mutexes.
112  */
113 struct lock_class lock_class_mtx_sleep = {
114 	.lc_name = "sleep mutex",
115 	.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
116 	.lc_assert = assert_mtx,
117 #ifdef DDB
118 	.lc_ddb_show = db_show_mtx,
119 #endif
120 	.lc_lock = lock_mtx,
121 	.lc_unlock = unlock_mtx,
122 #ifdef KDTRACE_HOOKS
123 	.lc_owner = owner_mtx,
124 #endif
125 };
126 struct lock_class lock_class_mtx_spin = {
127 	.lc_name = "spin mutex",
128 	.lc_flags = LC_SPINLOCK | LC_RECURSABLE,
129 	.lc_assert = assert_mtx,
130 #ifdef DDB
131 	.lc_ddb_show = db_show_mtx,
132 #endif
133 	.lc_lock = lock_spin,
134 	.lc_unlock = unlock_spin,
135 #ifdef KDTRACE_HOOKS
136 	.lc_owner = owner_mtx,
137 #endif
138 };
139 
140 #ifdef ADAPTIVE_MUTEXES
141 static SYSCTL_NODE(_debug, OID_AUTO, mtx, CTLFLAG_RD, NULL, "mtx debugging");
142 
143 static struct lock_delay_config __read_frequently mtx_delay;
144 
145 SYSCTL_INT(_debug_mtx, OID_AUTO, delay_base, CTLFLAG_RW, &mtx_delay.base,
146     0, "");
147 SYSCTL_INT(_debug_mtx, OID_AUTO, delay_max, CTLFLAG_RW, &mtx_delay.max,
148     0, "");
149 
150 LOCK_DELAY_SYSINIT_DEFAULT(mtx_delay);
151 #endif
152 
153 static SYSCTL_NODE(_debug, OID_AUTO, mtx_spin, CTLFLAG_RD, NULL,
154     "mtx spin debugging");
155 
156 static struct lock_delay_config __read_frequently mtx_spin_delay;
157 
158 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_base, CTLFLAG_RW,
159     &mtx_spin_delay.base, 0, "");
160 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_max, CTLFLAG_RW,
161     &mtx_spin_delay.max, 0, "");
162 
163 LOCK_DELAY_SYSINIT_DEFAULT(mtx_spin_delay);
164 
165 /*
166  * System-wide mutexes
167  */
168 struct mtx blocked_lock;
169 struct mtx __exclusive_cache_line Giant;
170 
171 void
172 assert_mtx(const struct lock_object *lock, int what)
173 {
174 
175 	mtx_assert((const struct mtx *)lock, what);
176 }
177 
178 void
179 lock_mtx(struct lock_object *lock, uintptr_t how)
180 {
181 
182 	mtx_lock((struct mtx *)lock);
183 }
184 
185 void
186 lock_spin(struct lock_object *lock, uintptr_t how)
187 {
188 
189 	panic("spin locks can only use msleep_spin");
190 }
191 
192 uintptr_t
193 unlock_mtx(struct lock_object *lock)
194 {
195 	struct mtx *m;
196 
197 	m = (struct mtx *)lock;
198 	mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
199 	mtx_unlock(m);
200 	return (0);
201 }
202 
203 uintptr_t
204 unlock_spin(struct lock_object *lock)
205 {
206 
207 	panic("spin locks can only use msleep_spin");
208 }
209 
210 #ifdef KDTRACE_HOOKS
211 int
212 owner_mtx(const struct lock_object *lock, struct thread **owner)
213 {
214 	const struct mtx *m;
215 	uintptr_t x;
216 
217 	m = (const struct mtx *)lock;
218 	x = m->mtx_lock;
219 	*owner = (struct thread *)(x & ~MTX_FLAGMASK);
220 	return (*owner != NULL);
221 }
222 #endif
223 
224 /*
225  * Function versions of the inlined __mtx_* macros.  These are used by
226  * modules and can also be called from assembly language if needed.
227  */
228 void
229 __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
230 {
231 	struct mtx *m;
232 	uintptr_t tid, v;
233 
234 	m = mtxlock2mtx(c);
235 
236 	KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() ||
237 	    !TD_IS_IDLETHREAD(curthread),
238 	    ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d",
239 	    curthread, m->lock_object.lo_name, file, line));
240 	KASSERT(m->mtx_lock != MTX_DESTROYED,
241 	    ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
242 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
243 	    ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
244 	    file, line));
245 	WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) |
246 	    LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
247 
248 	tid = (uintptr_t)curthread;
249 	v = MTX_UNOWNED;
250 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
251 		_mtx_lock_sleep(m, v, opts, file, line);
252 	else
253 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
254 		    m, 0, 0, file, line);
255 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
256 	    line);
257 	WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE,
258 	    file, line);
259 	TD_LOCKS_INC(curthread);
260 }
261 
262 void
263 __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
264 {
265 	struct mtx *m;
266 
267 	m = mtxlock2mtx(c);
268 
269 	KASSERT(m->mtx_lock != MTX_DESTROYED,
270 	    ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
271 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
272 	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
273 	    file, line));
274 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
275 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
276 	    line);
277 	mtx_assert(m, MA_OWNED);
278 
279 #ifdef LOCK_PROFILING
280 	__mtx_unlock_sleep(c, opts, file, line);
281 #else
282 	__mtx_unlock(m, curthread, opts, file, line);
283 #endif
284 	TD_LOCKS_DEC(curthread);
285 }
286 
287 void
288 __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
289     int line)
290 {
291 	struct mtx *m;
292 #ifdef SMP
293 	uintptr_t tid, v;
294 #endif
295 
296 	m = mtxlock2mtx(c);
297 
298 	KASSERT(m->mtx_lock != MTX_DESTROYED,
299 	    ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
300 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
301 	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
302 	    m->lock_object.lo_name, file, line));
303 	if (mtx_owned(m))
304 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
305 		    (opts & MTX_RECURSE) != 0,
306 	    ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
307 		    m->lock_object.lo_name, file, line));
308 	opts &= ~MTX_RECURSE;
309 	WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
310 	    file, line, NULL);
311 #ifdef SMP
312 	spinlock_enter();
313 	tid = (uintptr_t)curthread;
314 	v = MTX_UNOWNED;
315 	if (!_mtx_obtain_lock_fetch(m, &v, tid))
316 		_mtx_lock_spin(m, v, opts, file, line);
317 	else
318 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire,
319 		    m, 0, 0, file, line);
320 #else
321 	__mtx_lock_spin(m, curthread, opts, file, line);
322 #endif
323 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
324 	    line);
325 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
326 }
327 
328 int
329 __mtx_trylock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
330     int line)
331 {
332 	struct mtx *m;
333 
334 	if (SCHEDULER_STOPPED())
335 		return (1);
336 
337 	m = mtxlock2mtx(c);
338 
339 	KASSERT(m->mtx_lock != MTX_DESTROYED,
340 	    ("mtx_trylock_spin() of destroyed mutex @ %s:%d", file, line));
341 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
342 	    ("mtx_trylock_spin() of sleep mutex %s @ %s:%d",
343 	    m->lock_object.lo_name, file, line));
344 	KASSERT((opts & MTX_RECURSE) == 0,
345 	    ("mtx_trylock_spin: unsupp. opt MTX_RECURSE on mutex %s @ %s:%d\n",
346 	    m->lock_object.lo_name, file, line));
347 	if (__mtx_trylock_spin(m, curthread, opts, file, line)) {
348 		LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 1, file, line);
349 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
350 		return (1);
351 	}
352 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 0, file, line);
353 	return (0);
354 }
355 
356 void
357 __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
358     int line)
359 {
360 	struct mtx *m;
361 
362 	m = mtxlock2mtx(c);
363 
364 	KASSERT(m->mtx_lock != MTX_DESTROYED,
365 	    ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
366 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
367 	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
368 	    m->lock_object.lo_name, file, line));
369 	WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
370 	LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
371 	    line);
372 	mtx_assert(m, MA_OWNED);
373 
374 	__mtx_unlock_spin(m);
375 }
376 
377 /*
378  * The important part of mtx_trylock{,_flags}()
379  * Tries to acquire lock `m.'  If this function is called on a mutex that
380  * is already owned, it will recursively acquire the lock.
381  */
382 int
383 _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
384 {
385 	struct mtx *m;
386 	struct thread *td;
387 	uintptr_t tid, v;
388 #ifdef LOCK_PROFILING
389 	uint64_t waittime = 0;
390 	int contested = 0;
391 #endif
392 	int rval;
393 	bool recursed;
394 
395 	td = curthread;
396 	tid = (uintptr_t)td;
397 	if (SCHEDULER_STOPPED_TD(td))
398 		return (1);
399 
400 	m = mtxlock2mtx(c);
401 
402 	KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td),
403 	    ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d",
404 	    curthread, m->lock_object.lo_name, file, line));
405 	KASSERT(m->mtx_lock != MTX_DESTROYED,
406 	    ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
407 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
408 	    ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
409 	    file, line));
410 
411 	rval = 1;
412 	recursed = false;
413 	v = MTX_UNOWNED;
414 	for (;;) {
415 		if (_mtx_obtain_lock_fetch(m, &v, tid))
416 			break;
417 		if (v == MTX_UNOWNED)
418 			continue;
419 		if (v == tid &&
420 		    ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
421 		    (opts & MTX_RECURSE) != 0)) {
422 			m->mtx_recurse++;
423 			atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
424 			recursed = true;
425 			break;
426 		}
427 		rval = 0;
428 		break;
429 	}
430 
431 	opts &= ~MTX_RECURSE;
432 
433 	LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
434 	if (rval) {
435 		WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
436 		    file, line);
437 		TD_LOCKS_INC(curthread);
438 		if (!recursed)
439 			LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
440 			    m, contested, waittime, file, line);
441 	}
442 
443 	return (rval);
444 }
445 
446 /*
447  * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
448  *
449  * We call this if the lock is either contested (i.e. we need to go to
450  * sleep waiting for it), or if we need to recurse on it.
451  */
452 #if LOCK_DEBUG > 0
453 void
454 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v, int opts, const char *file,
455     int line)
456 #else
457 void
458 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v)
459 #endif
460 {
461 	struct thread *td;
462 	struct mtx *m;
463 	struct turnstile *ts;
464 	uintptr_t tid;
465 	struct thread *owner;
466 #ifdef KTR
467 	int cont_logged = 0;
468 #endif
469 #ifdef LOCK_PROFILING
470 	int contested = 0;
471 	uint64_t waittime = 0;
472 #endif
473 #if defined(ADAPTIVE_MUTEXES) || defined(KDTRACE_HOOKS)
474 	struct lock_delay_arg lda;
475 #endif
476 #ifdef KDTRACE_HOOKS
477 	u_int sleep_cnt = 0;
478 	int64_t sleep_time = 0;
479 	int64_t all_time = 0;
480 #endif
481 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
482 	int doing_lockprof;
483 #endif
484 	td = curthread;
485 	tid = (uintptr_t)td;
486 	if (SCHEDULER_STOPPED_TD(td))
487 		return;
488 
489 #if defined(ADAPTIVE_MUTEXES)
490 	lock_delay_arg_init(&lda, &mtx_delay);
491 #elif defined(KDTRACE_HOOKS)
492 	lock_delay_arg_init(&lda, NULL);
493 #endif
494 	m = mtxlock2mtx(c);
495 	if (__predict_false(v == MTX_UNOWNED))
496 		v = MTX_READ_VALUE(m);
497 
498 	if (__predict_false(lv_mtx_owner(v) == td)) {
499 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
500 		    (opts & MTX_RECURSE) != 0,
501 	    ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
502 		    m->lock_object.lo_name, file, line));
503 #if LOCK_DEBUG > 0
504 		opts &= ~MTX_RECURSE;
505 #endif
506 		m->mtx_recurse++;
507 		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
508 		if (LOCK_LOG_TEST(&m->lock_object, opts))
509 			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
510 		return;
511 	}
512 #if LOCK_DEBUG > 0
513 	opts &= ~MTX_RECURSE;
514 #endif
515 
516 #ifdef HWPMC_HOOKS
517 	PMC_SOFT_CALL( , , lock, failed);
518 #endif
519 	lock_profile_obtain_lock_failed(&m->lock_object,
520 		    &contested, &waittime);
521 	if (LOCK_LOG_TEST(&m->lock_object, opts))
522 		CTR4(KTR_LOCK,
523 		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
524 		    m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
525 #ifdef LOCK_PROFILING
526 	doing_lockprof = 1;
527 #elif defined(KDTRACE_HOOKS)
528 	doing_lockprof = lockstat_enabled;
529 	if (__predict_false(doing_lockprof))
530 		all_time -= lockstat_nsecs(&m->lock_object);
531 #endif
532 
533 	for (;;) {
534 		if (v == MTX_UNOWNED) {
535 			if (_mtx_obtain_lock_fetch(m, &v, tid))
536 				break;
537 			continue;
538 		}
539 #ifdef KDTRACE_HOOKS
540 		lda.spin_cnt++;
541 #endif
542 #ifdef ADAPTIVE_MUTEXES
543 		/*
544 		 * If the owner is running on another CPU, spin until the
545 		 * owner stops running or the state of the lock changes.
546 		 */
547 		owner = lv_mtx_owner(v);
548 		if (TD_IS_RUNNING(owner)) {
549 			if (LOCK_LOG_TEST(&m->lock_object, 0))
550 				CTR3(KTR_LOCK,
551 				    "%s: spinning on %p held by %p",
552 				    __func__, m, owner);
553 			KTR_STATE1(KTR_SCHED, "thread",
554 			    sched_tdname((struct thread *)tid),
555 			    "spinning", "lockname:\"%s\"",
556 			    m->lock_object.lo_name);
557 			do {
558 				lock_delay(&lda);
559 				v = MTX_READ_VALUE(m);
560 				owner = lv_mtx_owner(v);
561 			} while (v != MTX_UNOWNED && TD_IS_RUNNING(owner));
562 			KTR_STATE0(KTR_SCHED, "thread",
563 			    sched_tdname((struct thread *)tid),
564 			    "running");
565 			continue;
566 		}
567 #endif
568 
569 		ts = turnstile_trywait(&m->lock_object);
570 		v = MTX_READ_VALUE(m);
571 
572 		/*
573 		 * Check if the lock has been released while spinning for
574 		 * the turnstile chain lock.
575 		 */
576 		if (v == MTX_UNOWNED) {
577 			turnstile_cancel(ts);
578 			continue;
579 		}
580 
581 #ifdef ADAPTIVE_MUTEXES
582 		/*
583 		 * The current lock owner might have started executing
584 		 * on another CPU (or the lock could have changed
585 		 * owners) while we were waiting on the turnstile
586 		 * chain lock.  If so, drop the turnstile lock and try
587 		 * again.
588 		 */
589 		owner = lv_mtx_owner(v);
590 		if (TD_IS_RUNNING(owner)) {
591 			turnstile_cancel(ts);
592 			continue;
593 		}
594 #endif
595 
596 		/*
597 		 * If the mutex isn't already contested and a failure occurs
598 		 * setting the contested bit, the mutex was either released
599 		 * or the state of the MTX_RECURSED bit changed.
600 		 */
601 		if ((v & MTX_CONTESTED) == 0 &&
602 		    !atomic_cmpset_ptr(&m->mtx_lock, v, v | MTX_CONTESTED)) {
603 			turnstile_cancel(ts);
604 			v = MTX_READ_VALUE(m);
605 			continue;
606 		}
607 
608 		/*
609 		 * We definitely must sleep for this lock.
610 		 */
611 		mtx_assert(m, MA_NOTOWNED);
612 
613 #ifdef KTR
614 		if (!cont_logged) {
615 			CTR6(KTR_CONTENTION,
616 			    "contention: %p at %s:%d wants %s, taken by %s:%d",
617 			    (void *)tid, file, line, m->lock_object.lo_name,
618 			    WITNESS_FILE(&m->lock_object),
619 			    WITNESS_LINE(&m->lock_object));
620 			cont_logged = 1;
621 		}
622 #endif
623 
624 		/*
625 		 * Block on the turnstile.
626 		 */
627 #ifdef KDTRACE_HOOKS
628 		sleep_time -= lockstat_nsecs(&m->lock_object);
629 #endif
630 #ifndef ADAPTIVE_MUTEXES
631 		owner = mtx_owner(m);
632 #endif
633 		MPASS(owner == mtx_owner(m));
634 		turnstile_wait(ts, owner, TS_EXCLUSIVE_QUEUE);
635 #ifdef KDTRACE_HOOKS
636 		sleep_time += lockstat_nsecs(&m->lock_object);
637 		sleep_cnt++;
638 #endif
639 		v = MTX_READ_VALUE(m);
640 	}
641 #ifdef KTR
642 	if (cont_logged) {
643 		CTR4(KTR_CONTENTION,
644 		    "contention end: %s acquired by %p at %s:%d",
645 		    m->lock_object.lo_name, (void *)tid, file, line);
646 	}
647 #endif
648 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
649 	if (__predict_true(!doing_lockprof))
650 		return;
651 #endif
652 #ifdef KDTRACE_HOOKS
653 	all_time += lockstat_nsecs(&m->lock_object);
654 #endif
655 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested,
656 	    waittime, file, line);
657 #ifdef KDTRACE_HOOKS
658 	if (sleep_time)
659 		LOCKSTAT_RECORD1(adaptive__block, m, sleep_time);
660 
661 	/*
662 	 * Only record the loops spinning and not sleeping.
663 	 */
664 	if (lda.spin_cnt > sleep_cnt)
665 		LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time);
666 #endif
667 }
668 
669 static void
670 _mtx_lock_spin_failed(struct mtx *m)
671 {
672 	struct thread *td;
673 
674 	td = mtx_owner(m);
675 
676 	/* If the mutex is unlocked, try again. */
677 	if (td == NULL)
678 		return;
679 
680 	printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
681 	    m, m->lock_object.lo_name, td, td->td_tid);
682 #ifdef WITNESS
683 	witness_display_spinlock(&m->lock_object, td, printf);
684 #endif
685 	panic("spin lock held too long");
686 }
687 
688 #ifdef SMP
689 /*
690  * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock.
691  *
692  * This is only called if we need to actually spin for the lock. Recursion
693  * is handled inline.
694  */
695 #if LOCK_DEBUG > 0
696 void
697 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v, int opts,
698     const char *file, int line)
699 #else
700 void
701 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v)
702 #endif
703 {
704 	struct mtx *m;
705 	struct lock_delay_arg lda;
706 	uintptr_t tid;
707 #ifdef LOCK_PROFILING
708 	int contested = 0;
709 	uint64_t waittime = 0;
710 #endif
711 #ifdef KDTRACE_HOOKS
712 	int64_t spin_time = 0;
713 #endif
714 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
715 	int doing_lockprof;
716 #endif
717 
718 	tid = (uintptr_t)curthread;
719 	m = mtxlock2mtx(c);
720 
721 	if (__predict_false(v == MTX_UNOWNED))
722 		v = MTX_READ_VALUE(m);
723 
724 	if (__predict_false(v == tid)) {
725 		m->mtx_recurse++;
726 		return;
727 	}
728 
729 	if (SCHEDULER_STOPPED())
730 		return;
731 
732 	lock_delay_arg_init(&lda, &mtx_spin_delay);
733 
734 	if (LOCK_LOG_TEST(&m->lock_object, opts))
735 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
736 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
737 	    "spinning", "lockname:\"%s\"", m->lock_object.lo_name);
738 
739 #ifdef HWPMC_HOOKS
740 	PMC_SOFT_CALL( , , lock, failed);
741 #endif
742 	lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime);
743 #ifdef LOCK_PROFILING
744 	doing_lockprof = 1;
745 #elif defined(KDTRACE_HOOKS)
746 	doing_lockprof = lockstat_enabled;
747 	if (__predict_false(doing_lockprof))
748 		spin_time -= lockstat_nsecs(&m->lock_object);
749 #endif
750 	for (;;) {
751 		if (v == MTX_UNOWNED) {
752 			if (_mtx_obtain_lock_fetch(m, &v, tid))
753 				break;
754 			continue;
755 		}
756 		/* Give interrupts a chance while we spin. */
757 		spinlock_exit();
758 		do {
759 			if (lda.spin_cnt < 10000000) {
760 				lock_delay(&lda);
761 			} else {
762 				lda.spin_cnt++;
763 				if (lda.spin_cnt < 60000000 || kdb_active ||
764 				    panicstr != NULL)
765 					DELAY(1);
766 				else
767 					_mtx_lock_spin_failed(m);
768 				cpu_spinwait();
769 			}
770 			v = MTX_READ_VALUE(m);
771 		} while (v != MTX_UNOWNED);
772 		spinlock_enter();
773 	}
774 
775 	if (LOCK_LOG_TEST(&m->lock_object, opts))
776 		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
777 	KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
778 	    "running");
779 
780 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
781 	if (__predict_true(!doing_lockprof))
782 		return;
783 #endif
784 #ifdef KDTRACE_HOOKS
785 	spin_time += lockstat_nsecs(&m->lock_object);
786 #endif
787 	LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
788 	    contested, waittime, file, line);
789 #ifdef KDTRACE_HOOKS
790 	if (lda.spin_cnt != 0)
791 		LOCKSTAT_RECORD1(spin__spin, m, spin_time);
792 #endif
793 }
794 #endif /* SMP */
795 
796 #ifdef INVARIANTS
797 static void
798 thread_lock_validate(struct mtx *m, int opts, const char *file, int line)
799 {
800 
801 	KASSERT(m->mtx_lock != MTX_DESTROYED,
802 	    ("thread_lock() of destroyed mutex @ %s:%d", file, line));
803 	KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
804 	    ("thread_lock() of sleep mutex %s @ %s:%d",
805 	    m->lock_object.lo_name, file, line));
806 	if (mtx_owned(m))
807 		KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0,
808 		    ("thread_lock: recursed on non-recursive mutex %s @ %s:%d\n",
809 		    m->lock_object.lo_name, file, line));
810 	WITNESS_CHECKORDER(&m->lock_object,
811 	    opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
812 }
813 #else
814 #define thread_lock_validate(m, opts, file, line) do { } while (0)
815 #endif
816 
817 #ifndef LOCK_PROFILING
818 #if LOCK_DEBUG > 0
819 void
820 _thread_lock(struct thread *td, int opts, const char *file, int line)
821 #else
822 void
823 _thread_lock(struct thread *td)
824 #endif
825 {
826 	struct mtx *m;
827 	uintptr_t tid, v;
828 
829 	tid = (uintptr_t)curthread;
830 
831 	spinlock_enter();
832 	m = td->td_lock;
833 	thread_lock_validate(m, 0, file, line);
834 	v = MTX_READ_VALUE(m);
835 	if (__predict_true(v == MTX_UNOWNED)) {
836 		if (__predict_false(!_mtx_obtain_lock(m, tid)))
837 			goto slowpath_unlocked;
838 	} else if (v == tid) {
839 		m->mtx_recurse++;
840 	} else
841 		goto slowpath_unlocked;
842 	if (__predict_true(m == td->td_lock)) {
843 		WITNESS_LOCK(&m->lock_object, LOP_EXCLUSIVE, file, line);
844 		return;
845 	}
846 	if (m->mtx_recurse != 0)
847 		m->mtx_recurse--;
848 	else
849 		_mtx_release_lock_quick(m);
850 slowpath_unlocked:
851 	spinlock_exit();
852 	thread_lock_flags_(td, 0, 0, 0);
853 }
854 #endif
855 
856 void
857 thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
858 {
859 	struct mtx *m;
860 	uintptr_t tid, v;
861 	struct lock_delay_arg lda;
862 #ifdef LOCK_PROFILING
863 	int contested = 0;
864 	uint64_t waittime = 0;
865 #endif
866 #ifdef KDTRACE_HOOKS
867 	int64_t spin_time = 0;
868 #endif
869 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
870 	int doing_lockprof = 1;
871 #endif
872 
873 	tid = (uintptr_t)curthread;
874 
875 	if (SCHEDULER_STOPPED()) {
876 		/*
877 		 * Ensure that spinlock sections are balanced even when the
878 		 * scheduler is stopped, since we may otherwise inadvertently
879 		 * re-enable interrupts while dumping core.
880 		 */
881 		spinlock_enter();
882 		return;
883 	}
884 
885 	lock_delay_arg_init(&lda, &mtx_spin_delay);
886 
887 #ifdef LOCK_PROFILING
888 	doing_lockprof = 1;
889 #elif defined(KDTRACE_HOOKS)
890 	doing_lockprof = lockstat_enabled;
891 	if (__predict_false(doing_lockprof))
892 		spin_time -= lockstat_nsecs(&td->td_lock->lock_object);
893 #endif
894 	for (;;) {
895 retry:
896 		v = MTX_UNOWNED;
897 		spinlock_enter();
898 		m = td->td_lock;
899 		thread_lock_validate(m, opts, file, line);
900 		for (;;) {
901 			if (_mtx_obtain_lock_fetch(m, &v, tid))
902 				break;
903 			if (v == MTX_UNOWNED)
904 				continue;
905 			if (v == tid) {
906 				m->mtx_recurse++;
907 				break;
908 			}
909 #ifdef HWPMC_HOOKS
910 			PMC_SOFT_CALL( , , lock, failed);
911 #endif
912 			lock_profile_obtain_lock_failed(&m->lock_object,
913 			    &contested, &waittime);
914 			/* Give interrupts a chance while we spin. */
915 			spinlock_exit();
916 			do {
917 				if (lda.spin_cnt < 10000000) {
918 					lock_delay(&lda);
919 				} else {
920 					lda.spin_cnt++;
921 					if (lda.spin_cnt < 60000000 ||
922 					    kdb_active || panicstr != NULL)
923 						DELAY(1);
924 					else
925 						_mtx_lock_spin_failed(m);
926 					cpu_spinwait();
927 				}
928 				if (m != td->td_lock)
929 					goto retry;
930 				v = MTX_READ_VALUE(m);
931 			} while (v != MTX_UNOWNED);
932 			spinlock_enter();
933 		}
934 		if (m == td->td_lock)
935 			break;
936 		__mtx_unlock_spin(m);	/* does spinlock_exit() */
937 	}
938 	LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
939 	    line);
940 	WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
941 
942 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
943 	if (__predict_true(!doing_lockprof))
944 		return;
945 #endif
946 #ifdef KDTRACE_HOOKS
947 	spin_time += lockstat_nsecs(&m->lock_object);
948 #endif
949 	if (m->mtx_recurse == 0)
950 		LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
951 		    contested, waittime, file, line);
952 #ifdef KDTRACE_HOOKS
953 	if (lda.spin_cnt != 0)
954 		LOCKSTAT_RECORD1(thread__spin, m, spin_time);
955 #endif
956 }
957 
958 struct mtx *
959 thread_lock_block(struct thread *td)
960 {
961 	struct mtx *lock;
962 
963 	THREAD_LOCK_ASSERT(td, MA_OWNED);
964 	lock = td->td_lock;
965 	td->td_lock = &blocked_lock;
966 	mtx_unlock_spin(lock);
967 
968 	return (lock);
969 }
970 
971 void
972 thread_lock_unblock(struct thread *td, struct mtx *new)
973 {
974 	mtx_assert(new, MA_OWNED);
975 	MPASS(td->td_lock == &blocked_lock);
976 	atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
977 }
978 
979 void
980 thread_lock_set(struct thread *td, struct mtx *new)
981 {
982 	struct mtx *lock;
983 
984 	mtx_assert(new, MA_OWNED);
985 	THREAD_LOCK_ASSERT(td, MA_OWNED);
986 	lock = td->td_lock;
987 	td->td_lock = new;
988 	mtx_unlock_spin(lock);
989 }
990 
991 /*
992  * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
993  *
994  * We are only called here if the lock is recursed, contested (i.e. we
995  * need to wake up a blocked thread) or lockstat probe is active.
996  */
997 #if LOCK_DEBUG > 0
998 void
999 __mtx_unlock_sleep(volatile uintptr_t *c, int opts, const char *file, int line)
1000 #else
1001 void
1002 __mtx_unlock_sleep(volatile uintptr_t *c)
1003 #endif
1004 {
1005 	struct mtx *m;
1006 	struct turnstile *ts;
1007 	uintptr_t tid, v;
1008 
1009 	if (SCHEDULER_STOPPED())
1010 		return;
1011 
1012 	tid = (uintptr_t)curthread;
1013 	m = mtxlock2mtx(c);
1014 	v = MTX_READ_VALUE(m);
1015 
1016 	if (v & MTX_RECURSED) {
1017 		if (--(m->mtx_recurse) == 0)
1018 			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
1019 		if (LOCK_LOG_TEST(&m->lock_object, opts))
1020 			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
1021 		return;
1022 	}
1023 
1024 	LOCKSTAT_PROFILE_RELEASE_LOCK(adaptive__release, m);
1025 	if (v == tid && _mtx_release_lock(m, tid))
1026 		return;
1027 
1028 	/*
1029 	 * We have to lock the chain before the turnstile so this turnstile
1030 	 * can be removed from the hash list if it is empty.
1031 	 */
1032 	turnstile_chain_lock(&m->lock_object);
1033 	_mtx_release_lock_quick(m);
1034 	ts = turnstile_lookup(&m->lock_object);
1035 	MPASS(ts != NULL);
1036 	if (LOCK_LOG_TEST(&m->lock_object, opts))
1037 		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
1038 	turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
1039 
1040 	/*
1041 	 * This turnstile is now no longer associated with the mutex.  We can
1042 	 * unlock the chain lock so a new turnstile may take it's place.
1043 	 */
1044 	turnstile_unpend(ts, TS_EXCLUSIVE_LOCK);
1045 	turnstile_chain_unlock(&m->lock_object);
1046 }
1047 
1048 /*
1049  * All the unlocking of MTX_SPIN locks is done inline.
1050  * See the __mtx_unlock_spin() macro for the details.
1051  */
1052 
1053 /*
1054  * The backing function for the INVARIANTS-enabled mtx_assert()
1055  */
1056 #ifdef INVARIANT_SUPPORT
1057 void
1058 __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line)
1059 {
1060 	const struct mtx *m;
1061 
1062 	if (panicstr != NULL || dumping || SCHEDULER_STOPPED())
1063 		return;
1064 
1065 	m = mtxlock2mtx(c);
1066 
1067 	switch (what) {
1068 	case MA_OWNED:
1069 	case MA_OWNED | MA_RECURSED:
1070 	case MA_OWNED | MA_NOTRECURSED:
1071 		if (!mtx_owned(m))
1072 			panic("mutex %s not owned at %s:%d",
1073 			    m->lock_object.lo_name, file, line);
1074 		if (mtx_recursed(m)) {
1075 			if ((what & MA_NOTRECURSED) != 0)
1076 				panic("mutex %s recursed at %s:%d",
1077 				    m->lock_object.lo_name, file, line);
1078 		} else if ((what & MA_RECURSED) != 0) {
1079 			panic("mutex %s unrecursed at %s:%d",
1080 			    m->lock_object.lo_name, file, line);
1081 		}
1082 		break;
1083 	case MA_NOTOWNED:
1084 		if (mtx_owned(m))
1085 			panic("mutex %s owned at %s:%d",
1086 			    m->lock_object.lo_name, file, line);
1087 		break;
1088 	default:
1089 		panic("unknown mtx_assert at %s:%d", file, line);
1090 	}
1091 }
1092 #endif
1093 
1094 /*
1095  * General init routine used by the MTX_SYSINIT() macro.
1096  */
1097 void
1098 mtx_sysinit(void *arg)
1099 {
1100 	struct mtx_args *margs = arg;
1101 
1102 	mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL,
1103 	    margs->ma_opts);
1104 }
1105 
1106 /*
1107  * Mutex initialization routine; initialize lock `m' of type contained in
1108  * `opts' with options contained in `opts' and name `name.'  The optional
1109  * lock type `type' is used as a general lock category name for use with
1110  * witness.
1111  */
1112 void
1113 _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
1114 {
1115 	struct mtx *m;
1116 	struct lock_class *class;
1117 	int flags;
1118 
1119 	m = mtxlock2mtx(c);
1120 
1121 	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
1122 	    MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE | MTX_NEW)) == 0);
1123 	ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
1124 	    ("%s: mtx_lock not aligned for %s: %p", __func__, name,
1125 	    &m->mtx_lock));
1126 
1127 	/* Determine lock class and lock flags. */
1128 	if (opts & MTX_SPIN)
1129 		class = &lock_class_mtx_spin;
1130 	else
1131 		class = &lock_class_mtx_sleep;
1132 	flags = 0;
1133 	if (opts & MTX_QUIET)
1134 		flags |= LO_QUIET;
1135 	if (opts & MTX_RECURSE)
1136 		flags |= LO_RECURSABLE;
1137 	if ((opts & MTX_NOWITNESS) == 0)
1138 		flags |= LO_WITNESS;
1139 	if (opts & MTX_DUPOK)
1140 		flags |= LO_DUPOK;
1141 	if (opts & MTX_NOPROFILE)
1142 		flags |= LO_NOPROFILE;
1143 	if (opts & MTX_NEW)
1144 		flags |= LO_NEW;
1145 
1146 	/* Initialize mutex. */
1147 	lock_init(&m->lock_object, class, name, type, flags);
1148 
1149 	m->mtx_lock = MTX_UNOWNED;
1150 	m->mtx_recurse = 0;
1151 }
1152 
1153 /*
1154  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
1155  * passed in as a flag here because if the corresponding mtx_init() was
1156  * called with MTX_QUIET set, then it will already be set in the mutex's
1157  * flags.
1158  */
1159 void
1160 _mtx_destroy(volatile uintptr_t *c)
1161 {
1162 	struct mtx *m;
1163 
1164 	m = mtxlock2mtx(c);
1165 
1166 	if (!mtx_owned(m))
1167 		MPASS(mtx_unowned(m));
1168 	else {
1169 		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
1170 
1171 		/* Perform the non-mtx related part of mtx_unlock_spin(). */
1172 		if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin)
1173 			spinlock_exit();
1174 		else
1175 			TD_LOCKS_DEC(curthread);
1176 
1177 		lock_profile_release_lock(&m->lock_object);
1178 		/* Tell witness this isn't locked to make it happy. */
1179 		WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
1180 		    __LINE__);
1181 	}
1182 
1183 	m->mtx_lock = MTX_DESTROYED;
1184 	lock_destroy(&m->lock_object);
1185 }
1186 
1187 /*
1188  * Intialize the mutex code and system mutexes.  This is called from the MD
1189  * startup code prior to mi_startup().  The per-CPU data space needs to be
1190  * setup before this is called.
1191  */
1192 void
1193 mutex_init(void)
1194 {
1195 
1196 	/* Setup turnstiles so that sleep mutexes work. */
1197 	init_turnstiles();
1198 
1199 	/*
1200 	 * Initialize mutexes.
1201 	 */
1202 	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
1203 	mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
1204 	blocked_lock.mtx_lock = 0xdeadc0de;	/* Always blocked. */
1205 	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
1206 	mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN);
1207 	mtx_init(&proc0.p_statmtx, "pstatl", NULL, MTX_SPIN);
1208 	mtx_init(&proc0.p_itimmtx, "pitiml", NULL, MTX_SPIN);
1209 	mtx_init(&proc0.p_profmtx, "pprofl", NULL, MTX_SPIN);
1210 	mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
1211 	mtx_lock(&Giant);
1212 }
1213 
1214 #ifdef DDB
1215 void
1216 db_show_mtx(const struct lock_object *lock)
1217 {
1218 	struct thread *td;
1219 	const struct mtx *m;
1220 
1221 	m = (const struct mtx *)lock;
1222 
1223 	db_printf(" flags: {");
1224 	if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
1225 		db_printf("SPIN");
1226 	else
1227 		db_printf("DEF");
1228 	if (m->lock_object.lo_flags & LO_RECURSABLE)
1229 		db_printf(", RECURSE");
1230 	if (m->lock_object.lo_flags & LO_DUPOK)
1231 		db_printf(", DUPOK");
1232 	db_printf("}\n");
1233 	db_printf(" state: {");
1234 	if (mtx_unowned(m))
1235 		db_printf("UNOWNED");
1236 	else if (mtx_destroyed(m))
1237 		db_printf("DESTROYED");
1238 	else {
1239 		db_printf("OWNED");
1240 		if (m->mtx_lock & MTX_CONTESTED)
1241 			db_printf(", CONTESTED");
1242 		if (m->mtx_lock & MTX_RECURSED)
1243 			db_printf(", RECURSED");
1244 	}
1245 	db_printf("}\n");
1246 	if (!mtx_unowned(m) && !mtx_destroyed(m)) {
1247 		td = mtx_owner(m);
1248 		db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
1249 		    td->td_tid, td->td_proc->p_pid, td->td_name);
1250 		if (mtx_recursed(m))
1251 			db_printf(" recursed: %d\n", m->mtx_recurse);
1252 	}
1253 }
1254 #endif
1255