xref: /freebsd/sys/kern/kern_ntptime.c (revision 7bd6fde3)
1 /*-
2  ***********************************************************************
3  *								       *
4  * Copyright (c) David L. Mills 1993-2001			       *
5  *								       *
6  * Permission to use, copy, modify, and distribute this software and   *
7  * its documentation for any purpose and without fee is hereby	       *
8  * granted, provided that the above copyright notice appears in all    *
9  * copies and that both the copyright notice and this permission       *
10  * notice appear in supporting documentation, and that the name	       *
11  * University of Delaware not be used in advertising or publicity      *
12  * pertaining to distribution of the software without specific,	       *
13  * written prior permission. The University of Delaware makes no       *
14  * representations about the suitability this software for any	       *
15  * purpose. It is provided "as is" without express or implied	       *
16  * warranty.							       *
17  *								       *
18  **********************************************************************/
19 
20 /*
21  * Adapted from the original sources for FreeBSD and timecounters by:
22  * Poul-Henning Kamp <phk@FreeBSD.org>.
23  *
24  * The 32bit version of the "LP" macros seems a bit past its "sell by"
25  * date so I have retained only the 64bit version and included it directly
26  * in this file.
27  *
28  * Only minor changes done to interface with the timecounters over in
29  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30  * confusing and/or plain wrong in that context.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_ntp.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/sysproto.h>
41 #include <sys/kernel.h>
42 #include <sys/priv.h>
43 #include <sys/proc.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/time.h>
47 #include <sys/timex.h>
48 #include <sys/timetc.h>
49 #include <sys/timepps.h>
50 #include <sys/syscallsubr.h>
51 #include <sys/sysctl.h>
52 
53 /*
54  * Single-precision macros for 64-bit machines
55  */
56 typedef int64_t l_fp;
57 #define L_ADD(v, u)	((v) += (u))
58 #define L_SUB(v, u)	((v) -= (u))
59 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
60 #define L_NEG(v)	((v) = -(v))
61 #define L_RSHIFT(v, n) \
62 	do { \
63 		if ((v) < 0) \
64 			(v) = -(-(v) >> (n)); \
65 		else \
66 			(v) = (v) >> (n); \
67 	} while (0)
68 #define L_MPY(v, a)	((v) *= (a))
69 #define L_CLR(v)	((v) = 0)
70 #define L_ISNEG(v)	((v) < 0)
71 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
72 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
73 
74 /*
75  * Generic NTP kernel interface
76  *
77  * These routines constitute the Network Time Protocol (NTP) interfaces
78  * for user and daemon application programs. The ntp_gettime() routine
79  * provides the time, maximum error (synch distance) and estimated error
80  * (dispersion) to client user application programs. The ntp_adjtime()
81  * routine is used by the NTP daemon to adjust the system clock to an
82  * externally derived time. The time offset and related variables set by
83  * this routine are used by other routines in this module to adjust the
84  * phase and frequency of the clock discipline loop which controls the
85  * system clock.
86  *
87  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
88  * defined), the time at each tick interrupt is derived directly from
89  * the kernel time variable. When the kernel time is reckoned in
90  * microseconds, (NTP_NANO undefined), the time is derived from the
91  * kernel time variable together with a variable representing the
92  * leftover nanoseconds at the last tick interrupt. In either case, the
93  * current nanosecond time is reckoned from these values plus an
94  * interpolated value derived by the clock routines in another
95  * architecture-specific module. The interpolation can use either a
96  * dedicated counter or a processor cycle counter (PCC) implemented in
97  * some architectures.
98  *
99  * Note that all routines must run at priority splclock or higher.
100  */
101 /*
102  * Phase/frequency-lock loop (PLL/FLL) definitions
103  *
104  * The nanosecond clock discipline uses two variable types, time
105  * variables and frequency variables. Both types are represented as 64-
106  * bit fixed-point quantities with the decimal point between two 32-bit
107  * halves. On a 32-bit machine, each half is represented as a single
108  * word and mathematical operations are done using multiple-precision
109  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
110  * used.
111  *
112  * A time variable is a signed 64-bit fixed-point number in ns and
113  * fraction. It represents the remaining time offset to be amortized
114  * over succeeding tick interrupts. The maximum time offset is about
115  * 0.5 s and the resolution is about 2.3e-10 ns.
116  *
117  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
118  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
119  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
120  * |s s s|			 ns				   |
121  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
122  * |			    fraction				   |
123  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
124  *
125  * A frequency variable is a signed 64-bit fixed-point number in ns/s
126  * and fraction. It represents the ns and fraction to be added to the
127  * kernel time variable at each second. The maximum frequency offset is
128  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
129  *
130  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
131  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
132  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
133  * |s s s s s s s s s s s s s|	          ns/s			   |
134  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
135  * |			    fraction				   |
136  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
137  */
138 /*
139  * The following variables establish the state of the PLL/FLL and the
140  * residual time and frequency offset of the local clock.
141  */
142 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
143 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
144 
145 static int time_state = TIME_OK;	/* clock state */
146 static int time_status = STA_UNSYNC;	/* clock status bits */
147 static long time_tai;			/* TAI offset (s) */
148 static long time_monitor;		/* last time offset scaled (ns) */
149 static long time_constant;		/* poll interval (shift) (s) */
150 static long time_precision = 1;		/* clock precision (ns) */
151 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
152 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
153 static long time_reftime;		/* time at last adjustment (s) */
154 static l_fp time_offset;		/* time offset (ns) */
155 static l_fp time_freq;			/* frequency offset (ns/s) */
156 static l_fp time_adj;			/* tick adjust (ns/s) */
157 
158 static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
159 
160 #ifdef PPS_SYNC
161 /*
162  * The following variables are used when a pulse-per-second (PPS) signal
163  * is available and connected via a modem control lead. They establish
164  * the engineering parameters of the clock discipline loop when
165  * controlled by the PPS signal.
166  */
167 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
168 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
169 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
170 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
171 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
172 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
173 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
174 
175 static struct timespec pps_tf[3];	/* phase median filter */
176 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
177 static long pps_fcount;			/* frequency accumulator */
178 static long pps_jitter;			/* nominal jitter (ns) */
179 static long pps_stabil;			/* nominal stability (scaled ns/s) */
180 static long pps_lastsec;		/* time at last calibration (s) */
181 static int pps_valid;			/* signal watchdog counter */
182 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
183 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
184 static int pps_intcnt;			/* wander counter */
185 
186 /*
187  * PPS signal quality monitors
188  */
189 static long pps_calcnt;			/* calibration intervals */
190 static long pps_jitcnt;			/* jitter limit exceeded */
191 static long pps_stbcnt;			/* stability limit exceeded */
192 static long pps_errcnt;			/* calibration errors */
193 #endif /* PPS_SYNC */
194 /*
195  * End of phase/frequency-lock loop (PLL/FLL) definitions
196  */
197 
198 static void ntp_init(void);
199 static void hardupdate(long offset);
200 static void ntp_gettime1(struct ntptimeval *ntvp);
201 
202 static void
203 ntp_gettime1(struct ntptimeval *ntvp)
204 {
205 	struct timespec atv;	/* nanosecond time */
206 
207 	GIANT_REQUIRED;
208 
209 	nanotime(&atv);
210 	ntvp->time.tv_sec = atv.tv_sec;
211 	ntvp->time.tv_nsec = atv.tv_nsec;
212 	ntvp->maxerror = time_maxerror;
213 	ntvp->esterror = time_esterror;
214 	ntvp->tai = time_tai;
215 	ntvp->time_state = time_state;
216 
217 	/*
218 	 * Status word error decode. If any of these conditions occur,
219 	 * an error is returned, instead of the status word. Most
220 	 * applications will care only about the fact the system clock
221 	 * may not be trusted, not about the details.
222 	 *
223 	 * Hardware or software error
224 	 */
225 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
226 
227 	/*
228 	 * PPS signal lost when either time or frequency synchronization
229 	 * requested
230 	 */
231 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
232 	    !(time_status & STA_PPSSIGNAL)) ||
233 
234 	/*
235 	 * PPS jitter exceeded when time synchronization requested
236 	 */
237 	    (time_status & STA_PPSTIME &&
238 	    time_status & STA_PPSJITTER) ||
239 
240 	/*
241 	 * PPS wander exceeded or calibration error when frequency
242 	 * synchronization requested
243 	 */
244 	    (time_status & STA_PPSFREQ &&
245 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
246 		ntvp->time_state = TIME_ERROR;
247 }
248 
249 /*
250  * ntp_gettime() - NTP user application interface
251  *
252  * See the timex.h header file for synopsis and API description. Note
253  * that the TAI offset is returned in the ntvtimeval.tai structure
254  * member.
255  */
256 #ifndef _SYS_SYSPROTO_H_
257 struct ntp_gettime_args {
258 	struct ntptimeval *ntvp;
259 };
260 #endif
261 /* ARGSUSED */
262 int
263 ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
264 {
265 	struct ntptimeval ntv;
266 
267 	mtx_lock(&Giant);
268 	ntp_gettime1(&ntv);
269 	mtx_unlock(&Giant);
270 
271 	td->td_retval[0] = ntv.time_state;
272 	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
273 }
274 
275 static int
276 ntp_sysctl(SYSCTL_HANDLER_ARGS)
277 {
278 	struct ntptimeval ntv;	/* temporary structure */
279 
280 	ntp_gettime1(&ntv);
281 
282 	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
283 }
284 
285 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
286 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
287 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
288 
289 #ifdef PPS_SYNC
290 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
291 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
292 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
293 
294 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
295 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
296 #endif
297 /*
298  * ntp_adjtime() - NTP daemon application interface
299  *
300  * See the timex.h header file for synopsis and API description. Note
301  * that the timex.constant structure member has a dual purpose to set
302  * the time constant and to set the TAI offset.
303  */
304 #ifndef _SYS_SYSPROTO_H_
305 struct ntp_adjtime_args {
306 	struct timex *tp;
307 };
308 #endif
309 
310 /*
311  * MPSAFE
312  */
313 int
314 ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
315 {
316 	struct timex ntv;	/* temporary structure */
317 	long freq;		/* frequency ns/s) */
318 	int modes;		/* mode bits from structure */
319 	int s;			/* caller priority */
320 	int error;
321 
322 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
323 	if (error)
324 		return(error);
325 
326 	/*
327 	 * Update selected clock variables - only the superuser can
328 	 * change anything. Note that there is no error checking here on
329 	 * the assumption the superuser should know what it is doing.
330 	 * Note that either the time constant or TAI offset are loaded
331 	 * from the ntv.constant member, depending on the mode bits. If
332 	 * the STA_PLL bit in the status word is cleared, the state and
333 	 * status words are reset to the initial values at boot.
334 	 */
335 	mtx_lock(&Giant);
336 	modes = ntv.modes;
337 	if (modes)
338 		error = priv_check(td, PRIV_NTP_ADJTIME);
339 	if (error)
340 		goto done2;
341 	s = splclock();
342 	if (modes & MOD_MAXERROR)
343 		time_maxerror = ntv.maxerror;
344 	if (modes & MOD_ESTERROR)
345 		time_esterror = ntv.esterror;
346 	if (modes & MOD_STATUS) {
347 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
348 			time_state = TIME_OK;
349 			time_status = STA_UNSYNC;
350 #ifdef PPS_SYNC
351 			pps_shift = PPS_FAVG;
352 #endif /* PPS_SYNC */
353 		}
354 		time_status &= STA_RONLY;
355 		time_status |= ntv.status & ~STA_RONLY;
356 	}
357 	if (modes & MOD_TIMECONST) {
358 		if (ntv.constant < 0)
359 			time_constant = 0;
360 		else if (ntv.constant > MAXTC)
361 			time_constant = MAXTC;
362 		else
363 			time_constant = ntv.constant;
364 	}
365 	if (modes & MOD_TAI) {
366 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
367 			time_tai = ntv.constant;
368 	}
369 #ifdef PPS_SYNC
370 	if (modes & MOD_PPSMAX) {
371 		if (ntv.shift < PPS_FAVG)
372 			pps_shiftmax = PPS_FAVG;
373 		else if (ntv.shift > PPS_FAVGMAX)
374 			pps_shiftmax = PPS_FAVGMAX;
375 		else
376 			pps_shiftmax = ntv.shift;
377 	}
378 #endif /* PPS_SYNC */
379 	if (modes & MOD_NANO)
380 		time_status |= STA_NANO;
381 	if (modes & MOD_MICRO)
382 		time_status &= ~STA_NANO;
383 	if (modes & MOD_CLKB)
384 		time_status |= STA_CLK;
385 	if (modes & MOD_CLKA)
386 		time_status &= ~STA_CLK;
387 	if (modes & MOD_FREQUENCY) {
388 		freq = (ntv.freq * 1000LL) >> 16;
389 		if (freq > MAXFREQ)
390 			L_LINT(time_freq, MAXFREQ);
391 		else if (freq < -MAXFREQ)
392 			L_LINT(time_freq, -MAXFREQ);
393 		else {
394 			/*
395 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
396 			 * time_freq is [ns/s * 2^32]
397 			 */
398 			time_freq = ntv.freq * 1000LL * 65536LL;
399 		}
400 #ifdef PPS_SYNC
401 		pps_freq = time_freq;
402 #endif /* PPS_SYNC */
403 	}
404 	if (modes & MOD_OFFSET) {
405 		if (time_status & STA_NANO)
406 			hardupdate(ntv.offset);
407 		else
408 			hardupdate(ntv.offset * 1000);
409 	}
410 
411 	/*
412 	 * Retrieve all clock variables. Note that the TAI offset is
413 	 * returned only by ntp_gettime();
414 	 */
415 	if (time_status & STA_NANO)
416 		ntv.offset = L_GINT(time_offset);
417 	else
418 		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
419 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
420 	ntv.maxerror = time_maxerror;
421 	ntv.esterror = time_esterror;
422 	ntv.status = time_status;
423 	ntv.constant = time_constant;
424 	if (time_status & STA_NANO)
425 		ntv.precision = time_precision;
426 	else
427 		ntv.precision = time_precision / 1000;
428 	ntv.tolerance = MAXFREQ * SCALE_PPM;
429 #ifdef PPS_SYNC
430 	ntv.shift = pps_shift;
431 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
432 	if (time_status & STA_NANO)
433 		ntv.jitter = pps_jitter;
434 	else
435 		ntv.jitter = pps_jitter / 1000;
436 	ntv.stabil = pps_stabil;
437 	ntv.calcnt = pps_calcnt;
438 	ntv.errcnt = pps_errcnt;
439 	ntv.jitcnt = pps_jitcnt;
440 	ntv.stbcnt = pps_stbcnt;
441 #endif /* PPS_SYNC */
442 	splx(s);
443 
444 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
445 	if (error)
446 		goto done2;
447 
448 	/*
449 	 * Status word error decode. See comments in
450 	 * ntp_gettime() routine.
451 	 */
452 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
453 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
454 	    !(time_status & STA_PPSSIGNAL)) ||
455 	    (time_status & STA_PPSTIME &&
456 	    time_status & STA_PPSJITTER) ||
457 	    (time_status & STA_PPSFREQ &&
458 	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
459 		td->td_retval[0] = TIME_ERROR;
460 	} else {
461 		td->td_retval[0] = time_state;
462 	}
463 done2:
464 	mtx_unlock(&Giant);
465 	return (error);
466 }
467 
468 /*
469  * second_overflow() - called after ntp_tick_adjust()
470  *
471  * This routine is ordinarily called immediately following the above
472  * routine ntp_tick_adjust(). While these two routines are normally
473  * combined, they are separated here only for the purposes of
474  * simulation.
475  */
476 void
477 ntp_update_second(int64_t *adjustment, time_t *newsec)
478 {
479 	int tickrate;
480 	l_fp ftemp;		/* 32/64-bit temporary */
481 
482 	/*
483 	 * On rollover of the second both the nanosecond and microsecond
484 	 * clocks are updated and the state machine cranked as
485 	 * necessary. The phase adjustment to be used for the next
486 	 * second is calculated and the maximum error is increased by
487 	 * the tolerance.
488 	 */
489 	time_maxerror += MAXFREQ / 1000;
490 
491 	/*
492 	 * Leap second processing. If in leap-insert state at
493 	 * the end of the day, the system clock is set back one
494 	 * second; if in leap-delete state, the system clock is
495 	 * set ahead one second. The nano_time() routine or
496 	 * external clock driver will insure that reported time
497 	 * is always monotonic.
498 	 */
499 	switch (time_state) {
500 
501 		/*
502 		 * No warning.
503 		 */
504 		case TIME_OK:
505 		if (time_status & STA_INS)
506 			time_state = TIME_INS;
507 		else if (time_status & STA_DEL)
508 			time_state = TIME_DEL;
509 		break;
510 
511 		/*
512 		 * Insert second 23:59:60 following second
513 		 * 23:59:59.
514 		 */
515 		case TIME_INS:
516 		if (!(time_status & STA_INS))
517 			time_state = TIME_OK;
518 		else if ((*newsec) % 86400 == 0) {
519 			(*newsec)--;
520 			time_state = TIME_OOP;
521 			time_tai++;
522 		}
523 		break;
524 
525 		/*
526 		 * Delete second 23:59:59.
527 		 */
528 		case TIME_DEL:
529 		if (!(time_status & STA_DEL))
530 			time_state = TIME_OK;
531 		else if (((*newsec) + 1) % 86400 == 0) {
532 			(*newsec)++;
533 			time_tai--;
534 			time_state = TIME_WAIT;
535 		}
536 		break;
537 
538 		/*
539 		 * Insert second in progress.
540 		 */
541 		case TIME_OOP:
542 			time_state = TIME_WAIT;
543 		break;
544 
545 		/*
546 		 * Wait for status bits to clear.
547 		 */
548 		case TIME_WAIT:
549 		if (!(time_status & (STA_INS | STA_DEL)))
550 			time_state = TIME_OK;
551 	}
552 
553 	/*
554 	 * Compute the total time adjustment for the next second
555 	 * in ns. The offset is reduced by a factor depending on
556 	 * whether the PPS signal is operating. Note that the
557 	 * value is in effect scaled by the clock frequency,
558 	 * since the adjustment is added at each tick interrupt.
559 	 */
560 	ftemp = time_offset;
561 #ifdef PPS_SYNC
562 	/* XXX even if PPS signal dies we should finish adjustment ? */
563 	if (time_status & STA_PPSTIME && time_status &
564 	    STA_PPSSIGNAL)
565 		L_RSHIFT(ftemp, pps_shift);
566 	else
567 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
568 #else
569 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
570 #endif /* PPS_SYNC */
571 	time_adj = ftemp;
572 	L_SUB(time_offset, ftemp);
573 	L_ADD(time_adj, time_freq);
574 
575 	/*
576 	 * Apply any correction from adjtime(2).  If more than one second
577 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
578 	 * until the last second is slewed the final < 500 usecs.
579 	 */
580 	if (time_adjtime != 0) {
581 		if (time_adjtime > 1000000)
582 			tickrate = 5000;
583 		else if (time_adjtime < -1000000)
584 			tickrate = -5000;
585 		else if (time_adjtime > 500)
586 			tickrate = 500;
587 		else if (time_adjtime < -500)
588 			tickrate = -500;
589 		else
590 			tickrate = time_adjtime;
591 		time_adjtime -= tickrate;
592 		L_LINT(ftemp, tickrate * 1000);
593 		L_ADD(time_adj, ftemp);
594 	}
595 	*adjustment = time_adj;
596 
597 #ifdef PPS_SYNC
598 	if (pps_valid > 0)
599 		pps_valid--;
600 	else
601 		time_status &= ~STA_PPSSIGNAL;
602 #endif /* PPS_SYNC */
603 }
604 
605 /*
606  * ntp_init() - initialize variables and structures
607  *
608  * This routine must be called after the kernel variables hz and tick
609  * are set or changed and before the next tick interrupt. In this
610  * particular implementation, these values are assumed set elsewhere in
611  * the kernel. The design allows the clock frequency and tick interval
612  * to be changed while the system is running. So, this routine should
613  * probably be integrated with the code that does that.
614  */
615 static void
616 ntp_init()
617 {
618 
619 	/*
620 	 * The following variables are initialized only at startup. Only
621 	 * those structures not cleared by the compiler need to be
622 	 * initialized, and these only in the simulator. In the actual
623 	 * kernel, any nonzero values here will quickly evaporate.
624 	 */
625 	L_CLR(time_offset);
626 	L_CLR(time_freq);
627 #ifdef PPS_SYNC
628 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
629 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
630 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
631 	pps_fcount = 0;
632 	L_CLR(pps_freq);
633 #endif /* PPS_SYNC */
634 }
635 
636 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
637 
638 /*
639  * hardupdate() - local clock update
640  *
641  * This routine is called by ntp_adjtime() to update the local clock
642  * phase and frequency. The implementation is of an adaptive-parameter,
643  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
644  * time and frequency offset estimates for each call. If the kernel PPS
645  * discipline code is configured (PPS_SYNC), the PPS signal itself
646  * determines the new time offset, instead of the calling argument.
647  * Presumably, calls to ntp_adjtime() occur only when the caller
648  * believes the local clock is valid within some bound (+-128 ms with
649  * NTP). If the caller's time is far different than the PPS time, an
650  * argument will ensue, and it's not clear who will lose.
651  *
652  * For uncompensated quartz crystal oscillators and nominal update
653  * intervals less than 256 s, operation should be in phase-lock mode,
654  * where the loop is disciplined to phase. For update intervals greater
655  * than 1024 s, operation should be in frequency-lock mode, where the
656  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
657  * is selected by the STA_MODE status bit.
658  */
659 static void
660 hardupdate(offset)
661 	long offset;		/* clock offset (ns) */
662 {
663 	long mtemp;
664 	l_fp ftemp;
665 
666 	/*
667 	 * Select how the phase is to be controlled and from which
668 	 * source. If the PPS signal is present and enabled to
669 	 * discipline the time, the PPS offset is used; otherwise, the
670 	 * argument offset is used.
671 	 */
672 	if (!(time_status & STA_PLL))
673 		return;
674 	if (!(time_status & STA_PPSTIME && time_status &
675 	    STA_PPSSIGNAL)) {
676 		if (offset > MAXPHASE)
677 			time_monitor = MAXPHASE;
678 		else if (offset < -MAXPHASE)
679 			time_monitor = -MAXPHASE;
680 		else
681 			time_monitor = offset;
682 		L_LINT(time_offset, time_monitor);
683 	}
684 
685 	/*
686 	 * Select how the frequency is to be controlled and in which
687 	 * mode (PLL or FLL). If the PPS signal is present and enabled
688 	 * to discipline the frequency, the PPS frequency is used;
689 	 * otherwise, the argument offset is used to compute it.
690 	 */
691 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
692 		time_reftime = time_second;
693 		return;
694 	}
695 	if (time_status & STA_FREQHOLD || time_reftime == 0)
696 		time_reftime = time_second;
697 	mtemp = time_second - time_reftime;
698 	L_LINT(ftemp, time_monitor);
699 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
700 	L_MPY(ftemp, mtemp);
701 	L_ADD(time_freq, ftemp);
702 	time_status &= ~STA_MODE;
703 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
704 	    MAXSEC)) {
705 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
706 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
707 		L_ADD(time_freq, ftemp);
708 		time_status |= STA_MODE;
709 	}
710 	time_reftime = time_second;
711 	if (L_GINT(time_freq) > MAXFREQ)
712 		L_LINT(time_freq, MAXFREQ);
713 	else if (L_GINT(time_freq) < -MAXFREQ)
714 		L_LINT(time_freq, -MAXFREQ);
715 }
716 
717 #ifdef PPS_SYNC
718 /*
719  * hardpps() - discipline CPU clock oscillator to external PPS signal
720  *
721  * This routine is called at each PPS interrupt in order to discipline
722  * the CPU clock oscillator to the PPS signal. There are two independent
723  * first-order feedback loops, one for the phase, the other for the
724  * frequency. The phase loop measures and grooms the PPS phase offset
725  * and leaves it in a handy spot for the seconds overflow routine. The
726  * frequency loop averages successive PPS phase differences and
727  * calculates the PPS frequency offset, which is also processed by the
728  * seconds overflow routine. The code requires the caller to capture the
729  * time and architecture-dependent hardware counter values in
730  * nanoseconds at the on-time PPS signal transition.
731  *
732  * Note that, on some Unix systems this routine runs at an interrupt
733  * priority level higher than the timer interrupt routine hardclock().
734  * Therefore, the variables used are distinct from the hardclock()
735  * variables, except for the actual time and frequency variables, which
736  * are determined by this routine and updated atomically.
737  */
738 void
739 hardpps(tsp, nsec)
740 	struct timespec *tsp;	/* time at PPS */
741 	long nsec;		/* hardware counter at PPS */
742 {
743 	long u_sec, u_nsec, v_nsec; /* temps */
744 	l_fp ftemp;
745 
746 	/*
747 	 * The signal is first processed by a range gate and frequency
748 	 * discriminator. The range gate rejects noise spikes outside
749 	 * the range +-500 us. The frequency discriminator rejects input
750 	 * signals with apparent frequency outside the range 1 +-500
751 	 * PPM. If two hits occur in the same second, we ignore the
752 	 * later hit; if not and a hit occurs outside the range gate,
753 	 * keep the later hit for later comparison, but do not process
754 	 * it.
755 	 */
756 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
757 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
758 	pps_valid = PPS_VALID;
759 	u_sec = tsp->tv_sec;
760 	u_nsec = tsp->tv_nsec;
761 	if (u_nsec >= (NANOSECOND >> 1)) {
762 		u_nsec -= NANOSECOND;
763 		u_sec++;
764 	}
765 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
766 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
767 	    MAXFREQ)
768 		return;
769 	pps_tf[2] = pps_tf[1];
770 	pps_tf[1] = pps_tf[0];
771 	pps_tf[0].tv_sec = u_sec;
772 	pps_tf[0].tv_nsec = u_nsec;
773 
774 	/*
775 	 * Compute the difference between the current and previous
776 	 * counter values. If the difference exceeds 0.5 s, assume it
777 	 * has wrapped around, so correct 1.0 s. If the result exceeds
778 	 * the tick interval, the sample point has crossed a tick
779 	 * boundary during the last second, so correct the tick. Very
780 	 * intricate.
781 	 */
782 	u_nsec = nsec;
783 	if (u_nsec > (NANOSECOND >> 1))
784 		u_nsec -= NANOSECOND;
785 	else if (u_nsec < -(NANOSECOND >> 1))
786 		u_nsec += NANOSECOND;
787 	pps_fcount += u_nsec;
788 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
789 		return;
790 	time_status &= ~STA_PPSJITTER;
791 
792 	/*
793 	 * A three-stage median filter is used to help denoise the PPS
794 	 * time. The median sample becomes the time offset estimate; the
795 	 * difference between the other two samples becomes the time
796 	 * dispersion (jitter) estimate.
797 	 */
798 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
799 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
800 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
801 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
802 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
803 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
804 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
805 		} else {
806 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
807 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
808 		}
809 	} else {
810 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
811 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
812 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
813 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
814 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
815 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
816 		} else {
817 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
818 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
819 		}
820 	}
821 
822 	/*
823 	 * Nominal jitter is due to PPS signal noise and interrupt
824 	 * latency. If it exceeds the popcorn threshold, the sample is
825 	 * discarded. otherwise, if so enabled, the time offset is
826 	 * updated. We can tolerate a modest loss of data here without
827 	 * much degrading time accuracy.
828 	 */
829 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
830 		time_status |= STA_PPSJITTER;
831 		pps_jitcnt++;
832 	} else if (time_status & STA_PPSTIME) {
833 		time_monitor = -v_nsec;
834 		L_LINT(time_offset, time_monitor);
835 	}
836 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
837 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
838 	if (u_sec < (1 << pps_shift))
839 		return;
840 
841 	/*
842 	 * At the end of the calibration interval the difference between
843 	 * the first and last counter values becomes the scaled
844 	 * frequency. It will later be divided by the length of the
845 	 * interval to determine the frequency update. If the frequency
846 	 * exceeds a sanity threshold, or if the actual calibration
847 	 * interval is not equal to the expected length, the data are
848 	 * discarded. We can tolerate a modest loss of data here without
849 	 * much degrading frequency accuracy.
850 	 */
851 	pps_calcnt++;
852 	v_nsec = -pps_fcount;
853 	pps_lastsec = pps_tf[0].tv_sec;
854 	pps_fcount = 0;
855 	u_nsec = MAXFREQ << pps_shift;
856 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
857 	    pps_shift)) {
858 		time_status |= STA_PPSERROR;
859 		pps_errcnt++;
860 		return;
861 	}
862 
863 	/*
864 	 * Here the raw frequency offset and wander (stability) is
865 	 * calculated. If the wander is less than the wander threshold
866 	 * for four consecutive averaging intervals, the interval is
867 	 * doubled; if it is greater than the threshold for four
868 	 * consecutive intervals, the interval is halved. The scaled
869 	 * frequency offset is converted to frequency offset. The
870 	 * stability metric is calculated as the average of recent
871 	 * frequency changes, but is used only for performance
872 	 * monitoring.
873 	 */
874 	L_LINT(ftemp, v_nsec);
875 	L_RSHIFT(ftemp, pps_shift);
876 	L_SUB(ftemp, pps_freq);
877 	u_nsec = L_GINT(ftemp);
878 	if (u_nsec > PPS_MAXWANDER) {
879 		L_LINT(ftemp, PPS_MAXWANDER);
880 		pps_intcnt--;
881 		time_status |= STA_PPSWANDER;
882 		pps_stbcnt++;
883 	} else if (u_nsec < -PPS_MAXWANDER) {
884 		L_LINT(ftemp, -PPS_MAXWANDER);
885 		pps_intcnt--;
886 		time_status |= STA_PPSWANDER;
887 		pps_stbcnt++;
888 	} else {
889 		pps_intcnt++;
890 	}
891 	if (pps_intcnt >= 4) {
892 		pps_intcnt = 4;
893 		if (pps_shift < pps_shiftmax) {
894 			pps_shift++;
895 			pps_intcnt = 0;
896 		}
897 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
898 		pps_intcnt = -4;
899 		if (pps_shift > PPS_FAVG) {
900 			pps_shift--;
901 			pps_intcnt = 0;
902 		}
903 	}
904 	if (u_nsec < 0)
905 		u_nsec = -u_nsec;
906 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
907 
908 	/*
909 	 * The PPS frequency is recalculated and clamped to the maximum
910 	 * MAXFREQ. If enabled, the system clock frequency is updated as
911 	 * well.
912 	 */
913 	L_ADD(pps_freq, ftemp);
914 	u_nsec = L_GINT(pps_freq);
915 	if (u_nsec > MAXFREQ)
916 		L_LINT(pps_freq, MAXFREQ);
917 	else if (u_nsec < -MAXFREQ)
918 		L_LINT(pps_freq, -MAXFREQ);
919 	if (time_status & STA_PPSFREQ)
920 		time_freq = pps_freq;
921 }
922 #endif /* PPS_SYNC */
923 
924 #ifndef _SYS_SYSPROTO_H_
925 struct adjtime_args {
926 	struct timeval *delta;
927 	struct timeval *olddelta;
928 };
929 #endif
930 /*
931  * MPSAFE
932  */
933 /* ARGSUSED */
934 int
935 adjtime(struct thread *td, struct adjtime_args *uap)
936 {
937 	struct timeval delta, olddelta, *deltap;
938 	int error;
939 
940 	if (uap->delta) {
941 		error = copyin(uap->delta, &delta, sizeof(delta));
942 		if (error)
943 			return (error);
944 		deltap = &delta;
945 	} else
946 		deltap = NULL;
947 	error = kern_adjtime(td, deltap, &olddelta);
948 	if (uap->olddelta && error == 0)
949 		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
950 	return (error);
951 }
952 
953 int
954 kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
955 {
956 	struct timeval atv;
957 	int error;
958 
959 	if ((error = priv_check(td, PRIV_ADJTIME)))
960 		return (error);
961 
962 	mtx_lock(&Giant);
963 	if (olddelta) {
964 		atv.tv_sec = time_adjtime / 1000000;
965 		atv.tv_usec = time_adjtime % 1000000;
966 		if (atv.tv_usec < 0) {
967 			atv.tv_usec += 1000000;
968 			atv.tv_sec--;
969 		}
970 		*olddelta = atv;
971 	}
972 	if (delta)
973 		time_adjtime = (int64_t)delta->tv_sec * 1000000 +
974 		    delta->tv_usec;
975 	mtx_unlock(&Giant);
976 	return (error);
977 }
978 
979