xref: /freebsd/sys/kern/kern_ntptime.c (revision e28a4053)
1 /*-
2  ***********************************************************************
3  *								       *
4  * Copyright (c) David L. Mills 1993-2001			       *
5  *								       *
6  * Permission to use, copy, modify, and distribute this software and   *
7  * its documentation for any purpose and without fee is hereby	       *
8  * granted, provided that the above copyright notice appears in all    *
9  * copies and that both the copyright notice and this permission       *
10  * notice appear in supporting documentation, and that the name	       *
11  * University of Delaware not be used in advertising or publicity      *
12  * pertaining to distribution of the software without specific,	       *
13  * written prior permission. The University of Delaware makes no       *
14  * representations about the suitability this software for any	       *
15  * purpose. It is provided "as is" without express or implied	       *
16  * warranty.							       *
17  *								       *
18  **********************************************************************/
19 
20 /*
21  * Adapted from the original sources for FreeBSD and timecounters by:
22  * Poul-Henning Kamp <phk@FreeBSD.org>.
23  *
24  * The 32bit version of the "LP" macros seems a bit past its "sell by"
25  * date so I have retained only the 64bit version and included it directly
26  * in this file.
27  *
28  * Only minor changes done to interface with the timecounters over in
29  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30  * confusing and/or plain wrong in that context.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_ntp.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/sysproto.h>
41 #include <sys/eventhandler.h>
42 #include <sys/kernel.h>
43 #include <sys/priv.h>
44 #include <sys/proc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/time.h>
48 #include <sys/timex.h>
49 #include <sys/timetc.h>
50 #include <sys/timepps.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysctl.h>
53 
54 /*
55  * Single-precision macros for 64-bit machines
56  */
57 typedef int64_t l_fp;
58 #define L_ADD(v, u)	((v) += (u))
59 #define L_SUB(v, u)	((v) -= (u))
60 #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
61 #define L_NEG(v)	((v) = -(v))
62 #define L_RSHIFT(v, n) \
63 	do { \
64 		if ((v) < 0) \
65 			(v) = -(-(v) >> (n)); \
66 		else \
67 			(v) = (v) >> (n); \
68 	} while (0)
69 #define L_MPY(v, a)	((v) *= (a))
70 #define L_CLR(v)	((v) = 0)
71 #define L_ISNEG(v)	((v) < 0)
72 #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
73 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
74 
75 /*
76  * Generic NTP kernel interface
77  *
78  * These routines constitute the Network Time Protocol (NTP) interfaces
79  * for user and daemon application programs. The ntp_gettime() routine
80  * provides the time, maximum error (synch distance) and estimated error
81  * (dispersion) to client user application programs. The ntp_adjtime()
82  * routine is used by the NTP daemon to adjust the system clock to an
83  * externally derived time. The time offset and related variables set by
84  * this routine are used by other routines in this module to adjust the
85  * phase and frequency of the clock discipline loop which controls the
86  * system clock.
87  *
88  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
89  * defined), the time at each tick interrupt is derived directly from
90  * the kernel time variable. When the kernel time is reckoned in
91  * microseconds, (NTP_NANO undefined), the time is derived from the
92  * kernel time variable together with a variable representing the
93  * leftover nanoseconds at the last tick interrupt. In either case, the
94  * current nanosecond time is reckoned from these values plus an
95  * interpolated value derived by the clock routines in another
96  * architecture-specific module. The interpolation can use either a
97  * dedicated counter or a processor cycle counter (PCC) implemented in
98  * some architectures.
99  *
100  * Note that all routines must run at priority splclock or higher.
101  */
102 /*
103  * Phase/frequency-lock loop (PLL/FLL) definitions
104  *
105  * The nanosecond clock discipline uses two variable types, time
106  * variables and frequency variables. Both types are represented as 64-
107  * bit fixed-point quantities with the decimal point between two 32-bit
108  * halves. On a 32-bit machine, each half is represented as a single
109  * word and mathematical operations are done using multiple-precision
110  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
111  * used.
112  *
113  * A time variable is a signed 64-bit fixed-point number in ns and
114  * fraction. It represents the remaining time offset to be amortized
115  * over succeeding tick interrupts. The maximum time offset is about
116  * 0.5 s and the resolution is about 2.3e-10 ns.
117  *
118  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
119  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
120  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
121  * |s s s|			 ns				   |
122  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
123  * |			    fraction				   |
124  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
125  *
126  * A frequency variable is a signed 64-bit fixed-point number in ns/s
127  * and fraction. It represents the ns and fraction to be added to the
128  * kernel time variable at each second. The maximum frequency offset is
129  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
130  *
131  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
132  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
133  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
134  * |s s s s s s s s s s s s s|	          ns/s			   |
135  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
136  * |			    fraction				   |
137  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
138  */
139 /*
140  * The following variables establish the state of the PLL/FLL and the
141  * residual time and frequency offset of the local clock.
142  */
143 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
144 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
145 
146 static int time_state = TIME_OK;	/* clock state */
147 static int time_status = STA_UNSYNC;	/* clock status bits */
148 static long time_tai;			/* TAI offset (s) */
149 static long time_monitor;		/* last time offset scaled (ns) */
150 static long time_constant;		/* poll interval (shift) (s) */
151 static long time_precision = 1;		/* clock precision (ns) */
152 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
153 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
154 static long time_reftime;		/* time at last adjustment (s) */
155 static l_fp time_offset;		/* time offset (ns) */
156 static l_fp time_freq;			/* frequency offset (ns/s) */
157 static l_fp time_adj;			/* tick adjust (ns/s) */
158 
159 static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
160 
161 #ifdef PPS_SYNC
162 /*
163  * The following variables are used when a pulse-per-second (PPS) signal
164  * is available and connected via a modem control lead. They establish
165  * the engineering parameters of the clock discipline loop when
166  * controlled by the PPS signal.
167  */
168 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
169 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
170 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
171 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
172 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
173 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
174 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
175 
176 static struct timespec pps_tf[3];	/* phase median filter */
177 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
178 static long pps_fcount;			/* frequency accumulator */
179 static long pps_jitter;			/* nominal jitter (ns) */
180 static long pps_stabil;			/* nominal stability (scaled ns/s) */
181 static long pps_lastsec;		/* time at last calibration (s) */
182 static int pps_valid;			/* signal watchdog counter */
183 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
184 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
185 static int pps_intcnt;			/* wander counter */
186 
187 /*
188  * PPS signal quality monitors
189  */
190 static long pps_calcnt;			/* calibration intervals */
191 static long pps_jitcnt;			/* jitter limit exceeded */
192 static long pps_stbcnt;			/* stability limit exceeded */
193 static long pps_errcnt;			/* calibration errors */
194 #endif /* PPS_SYNC */
195 /*
196  * End of phase/frequency-lock loop (PLL/FLL) definitions
197  */
198 
199 static void ntp_init(void);
200 static void hardupdate(long offset);
201 static void ntp_gettime1(struct ntptimeval *ntvp);
202 static int ntp_is_time_error(void);
203 
204 static int
205 ntp_is_time_error(void)
206 {
207 	/*
208 	 * Status word error decode. If any of these conditions occur,
209 	 * an error is returned, instead of the status word. Most
210 	 * applications will care only about the fact the system clock
211 	 * may not be trusted, not about the details.
212 	 *
213 	 * Hardware or software error
214 	 */
215 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
216 
217 	/*
218 	 * PPS signal lost when either time or frequency synchronization
219 	 * requested
220 	 */
221 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
222 	    !(time_status & STA_PPSSIGNAL)) ||
223 
224 	/*
225 	 * PPS jitter exceeded when time synchronization requested
226 	 */
227 	    (time_status & STA_PPSTIME &&
228 	    time_status & STA_PPSJITTER) ||
229 
230 	/*
231 	 * PPS wander exceeded or calibration error when frequency
232 	 * synchronization requested
233 	 */
234 	    (time_status & STA_PPSFREQ &&
235 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
236 		return (1);
237 
238 	return (0);
239 }
240 
241 static void
242 ntp_gettime1(struct ntptimeval *ntvp)
243 {
244 	struct timespec atv;	/* nanosecond time */
245 
246 	GIANT_REQUIRED;
247 
248 	nanotime(&atv);
249 	ntvp->time.tv_sec = atv.tv_sec;
250 	ntvp->time.tv_nsec = atv.tv_nsec;
251 	ntvp->maxerror = time_maxerror;
252 	ntvp->esterror = time_esterror;
253 	ntvp->tai = time_tai;
254 	ntvp->time_state = time_state;
255 
256 	if (ntp_is_time_error())
257 		ntvp->time_state = TIME_ERROR;
258 }
259 
260 /*
261  * ntp_gettime() - NTP user application interface
262  *
263  * See the timex.h header file for synopsis and API description.  Note that
264  * the TAI offset is returned in the ntvtimeval.tai structure member.
265  */
266 #ifndef _SYS_SYSPROTO_H_
267 struct ntp_gettime_args {
268 	struct ntptimeval *ntvp;
269 };
270 #endif
271 /* ARGSUSED */
272 int
273 ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
274 {
275 	struct ntptimeval ntv;
276 
277 	mtx_lock(&Giant);
278 	ntp_gettime1(&ntv);
279 	mtx_unlock(&Giant);
280 
281 	td->td_retval[0] = ntv.time_state;
282 	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
283 }
284 
285 static int
286 ntp_sysctl(SYSCTL_HANDLER_ARGS)
287 {
288 	struct ntptimeval ntv;	/* temporary structure */
289 
290 	ntp_gettime1(&ntv);
291 
292 	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
293 }
294 
295 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
296 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
297 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
298 
299 #ifdef PPS_SYNC
300 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
301 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
302 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
303 
304 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
305 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
306 #endif
307 
308 /*
309  * ntp_adjtime() - NTP daemon application interface
310  *
311  * See the timex.h header file for synopsis and API description.  Note that
312  * the timex.constant structure member has a dual purpose to set the time
313  * constant and to set the TAI offset.
314  */
315 #ifndef _SYS_SYSPROTO_H_
316 struct ntp_adjtime_args {
317 	struct timex *tp;
318 };
319 #endif
320 
321 int
322 ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
323 {
324 	struct timex ntv;	/* temporary structure */
325 	long freq;		/* frequency ns/s) */
326 	int modes;		/* mode bits from structure */
327 	int s;			/* caller priority */
328 	int error;
329 
330 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
331 	if (error)
332 		return(error);
333 
334 	/*
335 	 * Update selected clock variables - only the superuser can
336 	 * change anything. Note that there is no error checking here on
337 	 * the assumption the superuser should know what it is doing.
338 	 * Note that either the time constant or TAI offset are loaded
339 	 * from the ntv.constant member, depending on the mode bits. If
340 	 * the STA_PLL bit in the status word is cleared, the state and
341 	 * status words are reset to the initial values at boot.
342 	 */
343 	mtx_lock(&Giant);
344 	modes = ntv.modes;
345 	if (modes)
346 		error = priv_check(td, PRIV_NTP_ADJTIME);
347 	if (error)
348 		goto done2;
349 	s = splclock();
350 	if (modes & MOD_MAXERROR)
351 		time_maxerror = ntv.maxerror;
352 	if (modes & MOD_ESTERROR)
353 		time_esterror = ntv.esterror;
354 	if (modes & MOD_STATUS) {
355 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
356 			time_state = TIME_OK;
357 			time_status = STA_UNSYNC;
358 #ifdef PPS_SYNC
359 			pps_shift = PPS_FAVG;
360 #endif /* PPS_SYNC */
361 		}
362 		time_status &= STA_RONLY;
363 		time_status |= ntv.status & ~STA_RONLY;
364 	}
365 	if (modes & MOD_TIMECONST) {
366 		if (ntv.constant < 0)
367 			time_constant = 0;
368 		else if (ntv.constant > MAXTC)
369 			time_constant = MAXTC;
370 		else
371 			time_constant = ntv.constant;
372 	}
373 	if (modes & MOD_TAI) {
374 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
375 			time_tai = ntv.constant;
376 	}
377 #ifdef PPS_SYNC
378 	if (modes & MOD_PPSMAX) {
379 		if (ntv.shift < PPS_FAVG)
380 			pps_shiftmax = PPS_FAVG;
381 		else if (ntv.shift > PPS_FAVGMAX)
382 			pps_shiftmax = PPS_FAVGMAX;
383 		else
384 			pps_shiftmax = ntv.shift;
385 	}
386 #endif /* PPS_SYNC */
387 	if (modes & MOD_NANO)
388 		time_status |= STA_NANO;
389 	if (modes & MOD_MICRO)
390 		time_status &= ~STA_NANO;
391 	if (modes & MOD_CLKB)
392 		time_status |= STA_CLK;
393 	if (modes & MOD_CLKA)
394 		time_status &= ~STA_CLK;
395 	if (modes & MOD_FREQUENCY) {
396 		freq = (ntv.freq * 1000LL) >> 16;
397 		if (freq > MAXFREQ)
398 			L_LINT(time_freq, MAXFREQ);
399 		else if (freq < -MAXFREQ)
400 			L_LINT(time_freq, -MAXFREQ);
401 		else {
402 			/*
403 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
404 			 * time_freq is [ns/s * 2^32]
405 			 */
406 			time_freq = ntv.freq * 1000LL * 65536LL;
407 		}
408 #ifdef PPS_SYNC
409 		pps_freq = time_freq;
410 #endif /* PPS_SYNC */
411 	}
412 	if (modes & MOD_OFFSET) {
413 		if (time_status & STA_NANO)
414 			hardupdate(ntv.offset);
415 		else
416 			hardupdate(ntv.offset * 1000);
417 	}
418 
419 	/*
420 	 * Retrieve all clock variables. Note that the TAI offset is
421 	 * returned only by ntp_gettime();
422 	 */
423 	if (time_status & STA_NANO)
424 		ntv.offset = L_GINT(time_offset);
425 	else
426 		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
427 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
428 	ntv.maxerror = time_maxerror;
429 	ntv.esterror = time_esterror;
430 	ntv.status = time_status;
431 	ntv.constant = time_constant;
432 	if (time_status & STA_NANO)
433 		ntv.precision = time_precision;
434 	else
435 		ntv.precision = time_precision / 1000;
436 	ntv.tolerance = MAXFREQ * SCALE_PPM;
437 #ifdef PPS_SYNC
438 	ntv.shift = pps_shift;
439 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
440 	if (time_status & STA_NANO)
441 		ntv.jitter = pps_jitter;
442 	else
443 		ntv.jitter = pps_jitter / 1000;
444 	ntv.stabil = pps_stabil;
445 	ntv.calcnt = pps_calcnt;
446 	ntv.errcnt = pps_errcnt;
447 	ntv.jitcnt = pps_jitcnt;
448 	ntv.stbcnt = pps_stbcnt;
449 #endif /* PPS_SYNC */
450 	splx(s);
451 
452 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
453 	if (error)
454 		goto done2;
455 
456 	if (ntp_is_time_error())
457 		td->td_retval[0] = TIME_ERROR;
458 	else
459 		td->td_retval[0] = time_state;
460 
461 done2:
462 	mtx_unlock(&Giant);
463 	return (error);
464 }
465 
466 /*
467  * second_overflow() - called after ntp_tick_adjust()
468  *
469  * This routine is ordinarily called immediately following the above
470  * routine ntp_tick_adjust(). While these two routines are normally
471  * combined, they are separated here only for the purposes of
472  * simulation.
473  */
474 void
475 ntp_update_second(int64_t *adjustment, time_t *newsec)
476 {
477 	int tickrate;
478 	l_fp ftemp;		/* 32/64-bit temporary */
479 
480 	/*
481 	 * On rollover of the second both the nanosecond and microsecond
482 	 * clocks are updated and the state machine cranked as
483 	 * necessary. The phase adjustment to be used for the next
484 	 * second is calculated and the maximum error is increased by
485 	 * the tolerance.
486 	 */
487 	time_maxerror += MAXFREQ / 1000;
488 
489 	/*
490 	 * Leap second processing. If in leap-insert state at
491 	 * the end of the day, the system clock is set back one
492 	 * second; if in leap-delete state, the system clock is
493 	 * set ahead one second. The nano_time() routine or
494 	 * external clock driver will insure that reported time
495 	 * is always monotonic.
496 	 */
497 	switch (time_state) {
498 
499 		/*
500 		 * No warning.
501 		 */
502 		case TIME_OK:
503 		if (time_status & STA_INS)
504 			time_state = TIME_INS;
505 		else if (time_status & STA_DEL)
506 			time_state = TIME_DEL;
507 		break;
508 
509 		/*
510 		 * Insert second 23:59:60 following second
511 		 * 23:59:59.
512 		 */
513 		case TIME_INS:
514 		if (!(time_status & STA_INS))
515 			time_state = TIME_OK;
516 		else if ((*newsec) % 86400 == 0) {
517 			(*newsec)--;
518 			time_state = TIME_OOP;
519 			time_tai++;
520 		}
521 		break;
522 
523 		/*
524 		 * Delete second 23:59:59.
525 		 */
526 		case TIME_DEL:
527 		if (!(time_status & STA_DEL))
528 			time_state = TIME_OK;
529 		else if (((*newsec) + 1) % 86400 == 0) {
530 			(*newsec)++;
531 			time_tai--;
532 			time_state = TIME_WAIT;
533 		}
534 		break;
535 
536 		/*
537 		 * Insert second in progress.
538 		 */
539 		case TIME_OOP:
540 			time_state = TIME_WAIT;
541 		break;
542 
543 		/*
544 		 * Wait for status bits to clear.
545 		 */
546 		case TIME_WAIT:
547 		if (!(time_status & (STA_INS | STA_DEL)))
548 			time_state = TIME_OK;
549 	}
550 
551 	/*
552 	 * Compute the total time adjustment for the next second
553 	 * in ns. The offset is reduced by a factor depending on
554 	 * whether the PPS signal is operating. Note that the
555 	 * value is in effect scaled by the clock frequency,
556 	 * since the adjustment is added at each tick interrupt.
557 	 */
558 	ftemp = time_offset;
559 #ifdef PPS_SYNC
560 	/* XXX even if PPS signal dies we should finish adjustment ? */
561 	if (time_status & STA_PPSTIME && time_status &
562 	    STA_PPSSIGNAL)
563 		L_RSHIFT(ftemp, pps_shift);
564 	else
565 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
566 #else
567 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
568 #endif /* PPS_SYNC */
569 	time_adj = ftemp;
570 	L_SUB(time_offset, ftemp);
571 	L_ADD(time_adj, time_freq);
572 
573 	/*
574 	 * Apply any correction from adjtime(2).  If more than one second
575 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
576 	 * until the last second is slewed the final < 500 usecs.
577 	 */
578 	if (time_adjtime != 0) {
579 		if (time_adjtime > 1000000)
580 			tickrate = 5000;
581 		else if (time_adjtime < -1000000)
582 			tickrate = -5000;
583 		else if (time_adjtime > 500)
584 			tickrate = 500;
585 		else if (time_adjtime < -500)
586 			tickrate = -500;
587 		else
588 			tickrate = time_adjtime;
589 		time_adjtime -= tickrate;
590 		L_LINT(ftemp, tickrate * 1000);
591 		L_ADD(time_adj, ftemp);
592 	}
593 	*adjustment = time_adj;
594 
595 #ifdef PPS_SYNC
596 	if (pps_valid > 0)
597 		pps_valid--;
598 	else
599 		time_status &= ~STA_PPSSIGNAL;
600 #endif /* PPS_SYNC */
601 }
602 
603 /*
604  * ntp_init() - initialize variables and structures
605  *
606  * This routine must be called after the kernel variables hz and tick
607  * are set or changed and before the next tick interrupt. In this
608  * particular implementation, these values are assumed set elsewhere in
609  * the kernel. The design allows the clock frequency and tick interval
610  * to be changed while the system is running. So, this routine should
611  * probably be integrated with the code that does that.
612  */
613 static void
614 ntp_init()
615 {
616 
617 	/*
618 	 * The following variables are initialized only at startup. Only
619 	 * those structures not cleared by the compiler need to be
620 	 * initialized, and these only in the simulator. In the actual
621 	 * kernel, any nonzero values here will quickly evaporate.
622 	 */
623 	L_CLR(time_offset);
624 	L_CLR(time_freq);
625 #ifdef PPS_SYNC
626 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
627 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
628 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
629 	pps_fcount = 0;
630 	L_CLR(pps_freq);
631 #endif /* PPS_SYNC */
632 }
633 
634 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
635 
636 /*
637  * hardupdate() - local clock update
638  *
639  * This routine is called by ntp_adjtime() to update the local clock
640  * phase and frequency. The implementation is of an adaptive-parameter,
641  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
642  * time and frequency offset estimates for each call. If the kernel PPS
643  * discipline code is configured (PPS_SYNC), the PPS signal itself
644  * determines the new time offset, instead of the calling argument.
645  * Presumably, calls to ntp_adjtime() occur only when the caller
646  * believes the local clock is valid within some bound (+-128 ms with
647  * NTP). If the caller's time is far different than the PPS time, an
648  * argument will ensue, and it's not clear who will lose.
649  *
650  * For uncompensated quartz crystal oscillators and nominal update
651  * intervals less than 256 s, operation should be in phase-lock mode,
652  * where the loop is disciplined to phase. For update intervals greater
653  * than 1024 s, operation should be in frequency-lock mode, where the
654  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
655  * is selected by the STA_MODE status bit.
656  */
657 static void
658 hardupdate(offset)
659 	long offset;		/* clock offset (ns) */
660 {
661 	long mtemp;
662 	l_fp ftemp;
663 
664 	/*
665 	 * Select how the phase is to be controlled and from which
666 	 * source. If the PPS signal is present and enabled to
667 	 * discipline the time, the PPS offset is used; otherwise, the
668 	 * argument offset is used.
669 	 */
670 	if (!(time_status & STA_PLL))
671 		return;
672 	if (!(time_status & STA_PPSTIME && time_status &
673 	    STA_PPSSIGNAL)) {
674 		if (offset > MAXPHASE)
675 			time_monitor = MAXPHASE;
676 		else if (offset < -MAXPHASE)
677 			time_monitor = -MAXPHASE;
678 		else
679 			time_monitor = offset;
680 		L_LINT(time_offset, time_monitor);
681 	}
682 
683 	/*
684 	 * Select how the frequency is to be controlled and in which
685 	 * mode (PLL or FLL). If the PPS signal is present and enabled
686 	 * to discipline the frequency, the PPS frequency is used;
687 	 * otherwise, the argument offset is used to compute it.
688 	 */
689 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
690 		time_reftime = time_second;
691 		return;
692 	}
693 	if (time_status & STA_FREQHOLD || time_reftime == 0)
694 		time_reftime = time_second;
695 	mtemp = time_second - time_reftime;
696 	L_LINT(ftemp, time_monitor);
697 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
698 	L_MPY(ftemp, mtemp);
699 	L_ADD(time_freq, ftemp);
700 	time_status &= ~STA_MODE;
701 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
702 	    MAXSEC)) {
703 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
704 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
705 		L_ADD(time_freq, ftemp);
706 		time_status |= STA_MODE;
707 	}
708 	time_reftime = time_second;
709 	if (L_GINT(time_freq) > MAXFREQ)
710 		L_LINT(time_freq, MAXFREQ);
711 	else if (L_GINT(time_freq) < -MAXFREQ)
712 		L_LINT(time_freq, -MAXFREQ);
713 }
714 
715 #ifdef PPS_SYNC
716 /*
717  * hardpps() - discipline CPU clock oscillator to external PPS signal
718  *
719  * This routine is called at each PPS interrupt in order to discipline
720  * the CPU clock oscillator to the PPS signal. There are two independent
721  * first-order feedback loops, one for the phase, the other for the
722  * frequency. The phase loop measures and grooms the PPS phase offset
723  * and leaves it in a handy spot for the seconds overflow routine. The
724  * frequency loop averages successive PPS phase differences and
725  * calculates the PPS frequency offset, which is also processed by the
726  * seconds overflow routine. The code requires the caller to capture the
727  * time and architecture-dependent hardware counter values in
728  * nanoseconds at the on-time PPS signal transition.
729  *
730  * Note that, on some Unix systems this routine runs at an interrupt
731  * priority level higher than the timer interrupt routine hardclock().
732  * Therefore, the variables used are distinct from the hardclock()
733  * variables, except for the actual time and frequency variables, which
734  * are determined by this routine and updated atomically.
735  */
736 void
737 hardpps(tsp, nsec)
738 	struct timespec *tsp;	/* time at PPS */
739 	long nsec;		/* hardware counter at PPS */
740 {
741 	long u_sec, u_nsec, v_nsec; /* temps */
742 	l_fp ftemp;
743 
744 	/*
745 	 * The signal is first processed by a range gate and frequency
746 	 * discriminator. The range gate rejects noise spikes outside
747 	 * the range +-500 us. The frequency discriminator rejects input
748 	 * signals with apparent frequency outside the range 1 +-500
749 	 * PPM. If two hits occur in the same second, we ignore the
750 	 * later hit; if not and a hit occurs outside the range gate,
751 	 * keep the later hit for later comparison, but do not process
752 	 * it.
753 	 */
754 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
755 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
756 	pps_valid = PPS_VALID;
757 	u_sec = tsp->tv_sec;
758 	u_nsec = tsp->tv_nsec;
759 	if (u_nsec >= (NANOSECOND >> 1)) {
760 		u_nsec -= NANOSECOND;
761 		u_sec++;
762 	}
763 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
764 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
765 	    MAXFREQ)
766 		return;
767 	pps_tf[2] = pps_tf[1];
768 	pps_tf[1] = pps_tf[0];
769 	pps_tf[0].tv_sec = u_sec;
770 	pps_tf[0].tv_nsec = u_nsec;
771 
772 	/*
773 	 * Compute the difference between the current and previous
774 	 * counter values. If the difference exceeds 0.5 s, assume it
775 	 * has wrapped around, so correct 1.0 s. If the result exceeds
776 	 * the tick interval, the sample point has crossed a tick
777 	 * boundary during the last second, so correct the tick. Very
778 	 * intricate.
779 	 */
780 	u_nsec = nsec;
781 	if (u_nsec > (NANOSECOND >> 1))
782 		u_nsec -= NANOSECOND;
783 	else if (u_nsec < -(NANOSECOND >> 1))
784 		u_nsec += NANOSECOND;
785 	pps_fcount += u_nsec;
786 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
787 		return;
788 	time_status &= ~STA_PPSJITTER;
789 
790 	/*
791 	 * A three-stage median filter is used to help denoise the PPS
792 	 * time. The median sample becomes the time offset estimate; the
793 	 * difference between the other two samples becomes the time
794 	 * dispersion (jitter) estimate.
795 	 */
796 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
797 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
798 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
799 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
800 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
801 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
802 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
803 		} else {
804 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
805 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
806 		}
807 	} else {
808 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
809 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
810 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
811 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
812 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
813 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
814 		} else {
815 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
816 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
817 		}
818 	}
819 
820 	/*
821 	 * Nominal jitter is due to PPS signal noise and interrupt
822 	 * latency. If it exceeds the popcorn threshold, the sample is
823 	 * discarded. otherwise, if so enabled, the time offset is
824 	 * updated. We can tolerate a modest loss of data here without
825 	 * much degrading time accuracy.
826 	 */
827 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
828 		time_status |= STA_PPSJITTER;
829 		pps_jitcnt++;
830 	} else if (time_status & STA_PPSTIME) {
831 		time_monitor = -v_nsec;
832 		L_LINT(time_offset, time_monitor);
833 	}
834 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
835 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
836 	if (u_sec < (1 << pps_shift))
837 		return;
838 
839 	/*
840 	 * At the end of the calibration interval the difference between
841 	 * the first and last counter values becomes the scaled
842 	 * frequency. It will later be divided by the length of the
843 	 * interval to determine the frequency update. If the frequency
844 	 * exceeds a sanity threshold, or if the actual calibration
845 	 * interval is not equal to the expected length, the data are
846 	 * discarded. We can tolerate a modest loss of data here without
847 	 * much degrading frequency accuracy.
848 	 */
849 	pps_calcnt++;
850 	v_nsec = -pps_fcount;
851 	pps_lastsec = pps_tf[0].tv_sec;
852 	pps_fcount = 0;
853 	u_nsec = MAXFREQ << pps_shift;
854 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
855 	    pps_shift)) {
856 		time_status |= STA_PPSERROR;
857 		pps_errcnt++;
858 		return;
859 	}
860 
861 	/*
862 	 * Here the raw frequency offset and wander (stability) is
863 	 * calculated. If the wander is less than the wander threshold
864 	 * for four consecutive averaging intervals, the interval is
865 	 * doubled; if it is greater than the threshold for four
866 	 * consecutive intervals, the interval is halved. The scaled
867 	 * frequency offset is converted to frequency offset. The
868 	 * stability metric is calculated as the average of recent
869 	 * frequency changes, but is used only for performance
870 	 * monitoring.
871 	 */
872 	L_LINT(ftemp, v_nsec);
873 	L_RSHIFT(ftemp, pps_shift);
874 	L_SUB(ftemp, pps_freq);
875 	u_nsec = L_GINT(ftemp);
876 	if (u_nsec > PPS_MAXWANDER) {
877 		L_LINT(ftemp, PPS_MAXWANDER);
878 		pps_intcnt--;
879 		time_status |= STA_PPSWANDER;
880 		pps_stbcnt++;
881 	} else if (u_nsec < -PPS_MAXWANDER) {
882 		L_LINT(ftemp, -PPS_MAXWANDER);
883 		pps_intcnt--;
884 		time_status |= STA_PPSWANDER;
885 		pps_stbcnt++;
886 	} else {
887 		pps_intcnt++;
888 	}
889 	if (pps_intcnt >= 4) {
890 		pps_intcnt = 4;
891 		if (pps_shift < pps_shiftmax) {
892 			pps_shift++;
893 			pps_intcnt = 0;
894 		}
895 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
896 		pps_intcnt = -4;
897 		if (pps_shift > PPS_FAVG) {
898 			pps_shift--;
899 			pps_intcnt = 0;
900 		}
901 	}
902 	if (u_nsec < 0)
903 		u_nsec = -u_nsec;
904 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
905 
906 	/*
907 	 * The PPS frequency is recalculated and clamped to the maximum
908 	 * MAXFREQ. If enabled, the system clock frequency is updated as
909 	 * well.
910 	 */
911 	L_ADD(pps_freq, ftemp);
912 	u_nsec = L_GINT(pps_freq);
913 	if (u_nsec > MAXFREQ)
914 		L_LINT(pps_freq, MAXFREQ);
915 	else if (u_nsec < -MAXFREQ)
916 		L_LINT(pps_freq, -MAXFREQ);
917 	if (time_status & STA_PPSFREQ)
918 		time_freq = pps_freq;
919 }
920 #endif /* PPS_SYNC */
921 
922 #ifndef _SYS_SYSPROTO_H_
923 struct adjtime_args {
924 	struct timeval *delta;
925 	struct timeval *olddelta;
926 };
927 #endif
928 /* ARGSUSED */
929 int
930 adjtime(struct thread *td, struct adjtime_args *uap)
931 {
932 	struct timeval delta, olddelta, *deltap;
933 	int error;
934 
935 	if (uap->delta) {
936 		error = copyin(uap->delta, &delta, sizeof(delta));
937 		if (error)
938 			return (error);
939 		deltap = &delta;
940 	} else
941 		deltap = NULL;
942 	error = kern_adjtime(td, deltap, &olddelta);
943 	if (uap->olddelta && error == 0)
944 		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
945 	return (error);
946 }
947 
948 int
949 kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
950 {
951 	struct timeval atv;
952 	int error;
953 
954 	mtx_lock(&Giant);
955 	if (olddelta) {
956 		atv.tv_sec = time_adjtime / 1000000;
957 		atv.tv_usec = time_adjtime % 1000000;
958 		if (atv.tv_usec < 0) {
959 			atv.tv_usec += 1000000;
960 			atv.tv_sec--;
961 		}
962 		*olddelta = atv;
963 	}
964 	if (delta) {
965 		if ((error = priv_check(td, PRIV_ADJTIME))) {
966 			mtx_unlock(&Giant);
967 			return (error);
968 		}
969 		time_adjtime = (int64_t)delta->tv_sec * 1000000 +
970 		    delta->tv_usec;
971 	}
972 	mtx_unlock(&Giant);
973 	return (0);
974 }
975 
976 static struct callout resettodr_callout;
977 static int resettodr_period = 1800;
978 
979 static void
980 periodic_resettodr(void *arg __unused)
981 {
982 
983 	if (!ntp_is_time_error()) {
984 		mtx_lock(&Giant);
985 		resettodr();
986 		mtx_unlock(&Giant);
987 	}
988 	if (resettodr_period > 0)
989 		callout_schedule(&resettodr_callout, resettodr_period * hz);
990 }
991 
992 static void
993 shutdown_resettodr(void *arg __unused, int howto __unused)
994 {
995 
996 	callout_drain(&resettodr_callout);
997 	if (resettodr_period > 0 && !ntp_is_time_error()) {
998 		mtx_lock(&Giant);
999 		resettodr();
1000 		mtx_unlock(&Giant);
1001 	}
1002 }
1003 
1004 static int
1005 sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
1006 {
1007 	int error;
1008 
1009 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
1010 	if (error || !req->newptr)
1011 		return (error);
1012 	if (resettodr_period == 0)
1013 		callout_stop(&resettodr_callout);
1014 	else
1015 		callout_reset(&resettodr_callout, resettodr_period * hz,
1016 		    periodic_resettodr, NULL);
1017 	return (0);
1018 }
1019 
1020 SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT|CTLFLAG_RW,
1021 	&resettodr_period, 1800, sysctl_resettodr_period, "I",
1022 	"Save system time to RTC with this period (in seconds)");
1023 TUNABLE_INT("machdep.rtc_save_period", &resettodr_period);
1024 
1025 static void
1026 start_periodic_resettodr(void *arg __unused)
1027 {
1028 
1029 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
1030 	    SHUTDOWN_PRI_FIRST);
1031 	callout_init(&resettodr_callout, 1);
1032 	if (resettodr_period == 0)
1033 		return;
1034 	callout_reset(&resettodr_callout, resettodr_period * hz,
1035 	    periodic_resettodr, NULL);
1036 }
1037 
1038 SYSINIT(periodic_resettodr, SI_SUB_RUN_SCHEDULER, SI_ORDER_MIDDLE,
1039 	start_periodic_resettodr, NULL);
1040