xref: /freebsd/sys/kern/kern_proc.c (revision 206b73d0)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ddb.h"
38 #include "opt_ktrace.h"
39 #include "opt_kstack_pages.h"
40 #include "opt_stack.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bitstring.h>
45 #include <sys/elf.h>
46 #include <sys/eventhandler.h>
47 #include <sys/exec.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/limits.h>
51 #include <sys/lock.h>
52 #include <sys/loginclass.h>
53 #include <sys/malloc.h>
54 #include <sys/mman.h>
55 #include <sys/mount.h>
56 #include <sys/mutex.h>
57 #include <sys/proc.h>
58 #include <sys/ptrace.h>
59 #include <sys/refcount.h>
60 #include <sys/resourcevar.h>
61 #include <sys/rwlock.h>
62 #include <sys/sbuf.h>
63 #include <sys/sysent.h>
64 #include <sys/sched.h>
65 #include <sys/smp.h>
66 #include <sys/stack.h>
67 #include <sys/stat.h>
68 #include <sys/sysctl.h>
69 #include <sys/filedesc.h>
70 #include <sys/tty.h>
71 #include <sys/signalvar.h>
72 #include <sys/sdt.h>
73 #include <sys/sx.h>
74 #include <sys/user.h>
75 #include <sys/vnode.h>
76 #include <sys/wait.h>
77 
78 #ifdef DDB
79 #include <ddb/ddb.h>
80 #endif
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/vm_extern.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/uma.h>
90 
91 #ifdef COMPAT_FREEBSD32
92 #include <compat/freebsd32/freebsd32.h>
93 #include <compat/freebsd32/freebsd32_util.h>
94 #endif
95 
96 SDT_PROVIDER_DEFINE(proc);
97 
98 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
99 MALLOC_DEFINE(M_SESSION, "session", "session header");
100 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
101 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
102 
103 static void doenterpgrp(struct proc *, struct pgrp *);
104 static void orphanpg(struct pgrp *pg);
105 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
106 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
107 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
108     int preferthread);
109 static void pgadjustjobc(struct pgrp *pgrp, int entering);
110 static void pgdelete(struct pgrp *);
111 static int proc_ctor(void *mem, int size, void *arg, int flags);
112 static void proc_dtor(void *mem, int size, void *arg);
113 static int proc_init(void *mem, int size, int flags);
114 static void proc_fini(void *mem, int size);
115 static void pargs_free(struct pargs *pa);
116 
117 /*
118  * Other process lists
119  */
120 struct pidhashhead *pidhashtbl;
121 struct sx *pidhashtbl_lock;
122 u_long pidhash;
123 u_long pidhashlock;
124 struct pgrphashhead *pgrphashtbl;
125 u_long pgrphash;
126 struct proclist allproc;
127 struct proclist zombproc;
128 struct sx __exclusive_cache_line allproc_lock;
129 struct sx __exclusive_cache_line zombproc_lock;
130 struct sx __exclusive_cache_line proctree_lock;
131 struct mtx __exclusive_cache_line ppeers_lock;
132 struct mtx __exclusive_cache_line procid_lock;
133 uma_zone_t proc_zone;
134 
135 /*
136  * The offset of various fields in struct proc and struct thread.
137  * These are used by kernel debuggers to enumerate kernel threads and
138  * processes.
139  */
140 const int proc_off_p_pid = offsetof(struct proc, p_pid);
141 const int proc_off_p_comm = offsetof(struct proc, p_comm);
142 const int proc_off_p_list = offsetof(struct proc, p_list);
143 const int proc_off_p_threads = offsetof(struct proc, p_threads);
144 const int thread_off_td_tid = offsetof(struct thread, td_tid);
145 const int thread_off_td_name = offsetof(struct thread, td_name);
146 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
147 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
148 const int thread_off_td_plist = offsetof(struct thread, td_plist);
149 
150 EVENTHANDLER_LIST_DEFINE(process_ctor);
151 EVENTHANDLER_LIST_DEFINE(process_dtor);
152 EVENTHANDLER_LIST_DEFINE(process_init);
153 EVENTHANDLER_LIST_DEFINE(process_fini);
154 EVENTHANDLER_LIST_DEFINE(process_exit);
155 EVENTHANDLER_LIST_DEFINE(process_fork);
156 EVENTHANDLER_LIST_DEFINE(process_exec);
157 
158 int kstack_pages = KSTACK_PAGES;
159 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
160     "Kernel stack size in pages");
161 static int vmmap_skip_res_cnt = 0;
162 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
163     &vmmap_skip_res_cnt, 0,
164     "Skip calculation of the pages resident count in kern.proc.vmmap");
165 
166 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
167 #ifdef COMPAT_FREEBSD32
168 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
169 #endif
170 
171 /*
172  * Initialize global process hashing structures.
173  */
174 void
175 procinit(void)
176 {
177 	u_long i;
178 
179 	sx_init(&allproc_lock, "allproc");
180 	sx_init(&zombproc_lock, "zombproc");
181 	sx_init(&proctree_lock, "proctree");
182 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
183 	mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
184 	LIST_INIT(&allproc);
185 	LIST_INIT(&zombproc);
186 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
187 	pidhashlock = (pidhash + 1) / 64;
188 	if (pidhashlock > 0)
189 		pidhashlock--;
190 	pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
191 	    M_PROC, M_WAITOK | M_ZERO);
192 	for (i = 0; i < pidhashlock + 1; i++)
193 		sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
194 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
195 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
196 	    proc_ctor, proc_dtor, proc_init, proc_fini,
197 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
198 	uihashinit();
199 }
200 
201 /*
202  * Prepare a proc for use.
203  */
204 static int
205 proc_ctor(void *mem, int size, void *arg, int flags)
206 {
207 	struct proc *p;
208 	struct thread *td;
209 
210 	p = (struct proc *)mem;
211 	EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
212 	td = FIRST_THREAD_IN_PROC(p);
213 	if (td != NULL) {
214 		/* Make sure all thread constructors are executed */
215 		EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
216 	}
217 	return (0);
218 }
219 
220 /*
221  * Reclaim a proc after use.
222  */
223 static void
224 proc_dtor(void *mem, int size, void *arg)
225 {
226 	struct proc *p;
227 	struct thread *td;
228 
229 	/* INVARIANTS checks go here */
230 	p = (struct proc *)mem;
231 	td = FIRST_THREAD_IN_PROC(p);
232 	if (td != NULL) {
233 #ifdef INVARIANTS
234 		KASSERT((p->p_numthreads == 1),
235 		    ("bad number of threads in exiting process"));
236 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
237 #endif
238 		/* Free all OSD associated to this thread. */
239 		osd_thread_exit(td);
240 		td_softdep_cleanup(td);
241 		MPASS(td->td_su == NULL);
242 
243 		/* Make sure all thread destructors are executed */
244 		EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
245 	}
246 	EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
247 	if (p->p_ksi != NULL)
248 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
249 }
250 
251 /*
252  * Initialize type-stable parts of a proc (when newly created).
253  */
254 static int
255 proc_init(void *mem, int size, int flags)
256 {
257 	struct proc *p;
258 
259 	p = (struct proc *)mem;
260 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
261 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
262 	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
263 	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
264 	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
265 	cv_init(&p->p_pwait, "ppwait");
266 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
267 	EVENTHANDLER_DIRECT_INVOKE(process_init, p);
268 	p->p_stats = pstats_alloc();
269 	p->p_pgrp = NULL;
270 	return (0);
271 }
272 
273 /*
274  * UMA should ensure that this function is never called.
275  * Freeing a proc structure would violate type stability.
276  */
277 static void
278 proc_fini(void *mem, int size)
279 {
280 #ifdef notnow
281 	struct proc *p;
282 
283 	p = (struct proc *)mem;
284 	EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
285 	pstats_free(p->p_stats);
286 	thread_free(FIRST_THREAD_IN_PROC(p));
287 	mtx_destroy(&p->p_mtx);
288 	if (p->p_ksi != NULL)
289 		ksiginfo_free(p->p_ksi);
290 #else
291 	panic("proc reclaimed");
292 #endif
293 }
294 
295 /*
296  * PID space management.
297  *
298  * These bitmaps are used by fork_findpid.
299  */
300 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
301 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
302 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
303 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
304 
305 static bitstr_t *proc_id_array[] = {
306 	proc_id_pidmap,
307 	proc_id_grpidmap,
308 	proc_id_sessidmap,
309 	proc_id_reapmap,
310 };
311 
312 void
313 proc_id_set(int type, pid_t id)
314 {
315 
316 	KASSERT(type >= 0 && type < nitems(proc_id_array),
317 	    ("invalid type %d\n", type));
318 	mtx_lock(&procid_lock);
319 	KASSERT(bit_test(proc_id_array[type], id) == 0,
320 	    ("bit %d already set in %d\n", id, type));
321 	bit_set(proc_id_array[type], id);
322 	mtx_unlock(&procid_lock);
323 }
324 
325 void
326 proc_id_set_cond(int type, pid_t id)
327 {
328 
329 	KASSERT(type >= 0 && type < nitems(proc_id_array),
330 	    ("invalid type %d\n", type));
331 	if (bit_test(proc_id_array[type], id))
332 		return;
333 	mtx_lock(&procid_lock);
334 	bit_set(proc_id_array[type], id);
335 	mtx_unlock(&procid_lock);
336 }
337 
338 void
339 proc_id_clear(int type, pid_t id)
340 {
341 
342 	KASSERT(type >= 0 && type < nitems(proc_id_array),
343 	    ("invalid type %d\n", type));
344 	mtx_lock(&procid_lock);
345 	KASSERT(bit_test(proc_id_array[type], id) != 0,
346 	    ("bit %d not set in %d\n", id, type));
347 	bit_clear(proc_id_array[type], id);
348 	mtx_unlock(&procid_lock);
349 }
350 
351 /*
352  * Is p an inferior of the current process?
353  */
354 int
355 inferior(struct proc *p)
356 {
357 
358 	sx_assert(&proctree_lock, SX_LOCKED);
359 	PROC_LOCK_ASSERT(p, MA_OWNED);
360 	for (; p != curproc; p = proc_realparent(p)) {
361 		if (p->p_pid == 0)
362 			return (0);
363 	}
364 	return (1);
365 }
366 
367 /*
368  * Shared lock all the pid hash lists.
369  */
370 void
371 pidhash_slockall(void)
372 {
373 	u_long i;
374 
375 	for (i = 0; i < pidhashlock + 1; i++)
376 		sx_slock(&pidhashtbl_lock[i]);
377 }
378 
379 /*
380  * Shared unlock all the pid hash lists.
381  */
382 void
383 pidhash_sunlockall(void)
384 {
385 	u_long i;
386 
387 	for (i = 0; i < pidhashlock + 1; i++)
388 		sx_sunlock(&pidhashtbl_lock[i]);
389 }
390 
391 /*
392  * Similar to pfind_any(), this function finds zombies.
393  */
394 struct proc *
395 pfind_any_locked(pid_t pid)
396 {
397 	struct proc *p;
398 
399 	sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
400 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
401 		if (p->p_pid == pid) {
402 			PROC_LOCK(p);
403 			if (p->p_state == PRS_NEW) {
404 				PROC_UNLOCK(p);
405 				p = NULL;
406 			}
407 			break;
408 		}
409 	}
410 	return (p);
411 }
412 
413 /*
414  * Locate a process by number.
415  *
416  * By not returning processes in the PRS_NEW state, we allow callers to avoid
417  * testing for that condition to avoid dereferencing p_ucred, et al.
418  */
419 static __always_inline struct proc *
420 _pfind(pid_t pid, bool zombie)
421 {
422 	struct proc *p;
423 
424 	p = curproc;
425 	if (p->p_pid == pid) {
426 		PROC_LOCK(p);
427 		return (p);
428 	}
429 	sx_slock(PIDHASHLOCK(pid));
430 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
431 		if (p->p_pid == pid) {
432 			PROC_LOCK(p);
433 			if (p->p_state == PRS_NEW ||
434 			    (!zombie && p->p_state == PRS_ZOMBIE)) {
435 				PROC_UNLOCK(p);
436 				p = NULL;
437 			}
438 			break;
439 		}
440 	}
441 	sx_sunlock(PIDHASHLOCK(pid));
442 	return (p);
443 }
444 
445 struct proc *
446 pfind(pid_t pid)
447 {
448 
449 	return (_pfind(pid, false));
450 }
451 
452 /*
453  * Same as pfind but allow zombies.
454  */
455 struct proc *
456 pfind_any(pid_t pid)
457 {
458 
459 	return (_pfind(pid, true));
460 }
461 
462 static struct proc *
463 pfind_tid(pid_t tid)
464 {
465 	struct proc *p;
466 	struct thread *td;
467 
468 	sx_slock(&allproc_lock);
469 	FOREACH_PROC_IN_SYSTEM(p) {
470 		PROC_LOCK(p);
471 		if (p->p_state == PRS_NEW) {
472 			PROC_UNLOCK(p);
473 			continue;
474 		}
475 		FOREACH_THREAD_IN_PROC(p, td) {
476 			if (td->td_tid == tid)
477 				goto found;
478 		}
479 		PROC_UNLOCK(p);
480 	}
481 found:
482 	sx_sunlock(&allproc_lock);
483 	return (p);
484 }
485 
486 /*
487  * Locate a process group by number.
488  * The caller must hold proctree_lock.
489  */
490 struct pgrp *
491 pgfind(pid_t pgid)
492 {
493 	struct pgrp *pgrp;
494 
495 	sx_assert(&proctree_lock, SX_LOCKED);
496 
497 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
498 		if (pgrp->pg_id == pgid) {
499 			PGRP_LOCK(pgrp);
500 			return (pgrp);
501 		}
502 	}
503 	return (NULL);
504 }
505 
506 /*
507  * Locate process and do additional manipulations, depending on flags.
508  */
509 int
510 pget(pid_t pid, int flags, struct proc **pp)
511 {
512 	struct proc *p;
513 	int error;
514 
515 	p = curproc;
516 	if (p->p_pid == pid) {
517 		PROC_LOCK(p);
518 	} else {
519 		p = NULL;
520 		if (pid <= PID_MAX) {
521 			if ((flags & PGET_NOTWEXIT) == 0)
522 				p = pfind_any(pid);
523 			else
524 				p = pfind(pid);
525 		} else if ((flags & PGET_NOTID) == 0) {
526 			p = pfind_tid(pid);
527 		}
528 		if (p == NULL)
529 			return (ESRCH);
530 		if ((flags & PGET_CANSEE) != 0) {
531 			error = p_cansee(curthread, p);
532 			if (error != 0)
533 				goto errout;
534 		}
535 	}
536 	if ((flags & PGET_CANDEBUG) != 0) {
537 		error = p_candebug(curthread, p);
538 		if (error != 0)
539 			goto errout;
540 	}
541 	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
542 		error = EPERM;
543 		goto errout;
544 	}
545 	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
546 		error = ESRCH;
547 		goto errout;
548 	}
549 	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
550 		/*
551 		 * XXXRW: Not clear ESRCH is the right error during proc
552 		 * execve().
553 		 */
554 		error = ESRCH;
555 		goto errout;
556 	}
557 	if ((flags & PGET_HOLD) != 0) {
558 		_PHOLD(p);
559 		PROC_UNLOCK(p);
560 	}
561 	*pp = p;
562 	return (0);
563 errout:
564 	PROC_UNLOCK(p);
565 	return (error);
566 }
567 
568 /*
569  * Create a new process group.
570  * pgid must be equal to the pid of p.
571  * Begin a new session if required.
572  */
573 int
574 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
575 {
576 
577 	sx_assert(&proctree_lock, SX_XLOCKED);
578 
579 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
580 	KASSERT(p->p_pid == pgid,
581 	    ("enterpgrp: new pgrp and pid != pgid"));
582 	KASSERT(pgfind(pgid) == NULL,
583 	    ("enterpgrp: pgrp with pgid exists"));
584 	KASSERT(!SESS_LEADER(p),
585 	    ("enterpgrp: session leader attempted setpgrp"));
586 
587 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
588 
589 	if (sess != NULL) {
590 		/*
591 		 * new session
592 		 */
593 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
594 		PROC_LOCK(p);
595 		p->p_flag &= ~P_CONTROLT;
596 		PROC_UNLOCK(p);
597 		PGRP_LOCK(pgrp);
598 		sess->s_leader = p;
599 		sess->s_sid = p->p_pid;
600 		proc_id_set(PROC_ID_SESSION, p->p_pid);
601 		refcount_init(&sess->s_count, 1);
602 		sess->s_ttyvp = NULL;
603 		sess->s_ttydp = NULL;
604 		sess->s_ttyp = NULL;
605 		bcopy(p->p_session->s_login, sess->s_login,
606 			    sizeof(sess->s_login));
607 		pgrp->pg_session = sess;
608 		KASSERT(p == curproc,
609 		    ("enterpgrp: mksession and p != curproc"));
610 	} else {
611 		pgrp->pg_session = p->p_session;
612 		sess_hold(pgrp->pg_session);
613 		PGRP_LOCK(pgrp);
614 	}
615 	pgrp->pg_id = pgid;
616 	proc_id_set(PROC_ID_GROUP, p->p_pid);
617 	LIST_INIT(&pgrp->pg_members);
618 
619 	/*
620 	 * As we have an exclusive lock of proctree_lock,
621 	 * this should not deadlock.
622 	 */
623 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
624 	pgrp->pg_jobc = 0;
625 	SLIST_INIT(&pgrp->pg_sigiolst);
626 	PGRP_UNLOCK(pgrp);
627 
628 	doenterpgrp(p, pgrp);
629 
630 	return (0);
631 }
632 
633 /*
634  * Move p to an existing process group
635  */
636 int
637 enterthispgrp(struct proc *p, struct pgrp *pgrp)
638 {
639 
640 	sx_assert(&proctree_lock, SX_XLOCKED);
641 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
642 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
643 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
644 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
645 	KASSERT(pgrp->pg_session == p->p_session,
646 		("%s: pgrp's session %p, p->p_session %p.\n",
647 		__func__,
648 		pgrp->pg_session,
649 		p->p_session));
650 	KASSERT(pgrp != p->p_pgrp,
651 		("%s: p belongs to pgrp.", __func__));
652 
653 	doenterpgrp(p, pgrp);
654 
655 	return (0);
656 }
657 
658 /*
659  * Move p to a process group
660  */
661 static void
662 doenterpgrp(struct proc *p, struct pgrp *pgrp)
663 {
664 	struct pgrp *savepgrp;
665 
666 	sx_assert(&proctree_lock, SX_XLOCKED);
667 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
668 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
669 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
670 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
671 
672 	savepgrp = p->p_pgrp;
673 
674 	/*
675 	 * Adjust eligibility of affected pgrps to participate in job control.
676 	 * Increment eligibility counts before decrementing, otherwise we
677 	 * could reach 0 spuriously during the first call.
678 	 */
679 	fixjobc(p, pgrp, 1);
680 	fixjobc(p, p->p_pgrp, 0);
681 
682 	PGRP_LOCK(pgrp);
683 	PGRP_LOCK(savepgrp);
684 	PROC_LOCK(p);
685 	LIST_REMOVE(p, p_pglist);
686 	p->p_pgrp = pgrp;
687 	PROC_UNLOCK(p);
688 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
689 	PGRP_UNLOCK(savepgrp);
690 	PGRP_UNLOCK(pgrp);
691 	if (LIST_EMPTY(&savepgrp->pg_members))
692 		pgdelete(savepgrp);
693 }
694 
695 /*
696  * remove process from process group
697  */
698 int
699 leavepgrp(struct proc *p)
700 {
701 	struct pgrp *savepgrp;
702 
703 	sx_assert(&proctree_lock, SX_XLOCKED);
704 	savepgrp = p->p_pgrp;
705 	PGRP_LOCK(savepgrp);
706 	PROC_LOCK(p);
707 	LIST_REMOVE(p, p_pglist);
708 	p->p_pgrp = NULL;
709 	PROC_UNLOCK(p);
710 	PGRP_UNLOCK(savepgrp);
711 	if (LIST_EMPTY(&savepgrp->pg_members))
712 		pgdelete(savepgrp);
713 	return (0);
714 }
715 
716 /*
717  * delete a process group
718  */
719 static void
720 pgdelete(struct pgrp *pgrp)
721 {
722 	struct session *savesess;
723 	struct tty *tp;
724 
725 	sx_assert(&proctree_lock, SX_XLOCKED);
726 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
727 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
728 
729 	/*
730 	 * Reset any sigio structures pointing to us as a result of
731 	 * F_SETOWN with our pgid.
732 	 */
733 	funsetownlst(&pgrp->pg_sigiolst);
734 
735 	PGRP_LOCK(pgrp);
736 	tp = pgrp->pg_session->s_ttyp;
737 	LIST_REMOVE(pgrp, pg_hash);
738 	savesess = pgrp->pg_session;
739 	PGRP_UNLOCK(pgrp);
740 
741 	/* Remove the reference to the pgrp before deallocating it. */
742 	if (tp != NULL) {
743 		tty_lock(tp);
744 		tty_rel_pgrp(tp, pgrp);
745 	}
746 
747 	proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
748 	mtx_destroy(&pgrp->pg_mtx);
749 	free(pgrp, M_PGRP);
750 	sess_release(savesess);
751 }
752 
753 static void
754 pgadjustjobc(struct pgrp *pgrp, int entering)
755 {
756 
757 	PGRP_LOCK(pgrp);
758 	if (entering)
759 		pgrp->pg_jobc++;
760 	else {
761 		--pgrp->pg_jobc;
762 		if (pgrp->pg_jobc == 0)
763 			orphanpg(pgrp);
764 	}
765 	PGRP_UNLOCK(pgrp);
766 }
767 
768 /*
769  * Adjust pgrp jobc counters when specified process changes process group.
770  * We count the number of processes in each process group that "qualify"
771  * the group for terminal job control (those with a parent in a different
772  * process group of the same session).  If that count reaches zero, the
773  * process group becomes orphaned.  Check both the specified process'
774  * process group and that of its children.
775  * entering == 0 => p is leaving specified group.
776  * entering == 1 => p is entering specified group.
777  */
778 void
779 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
780 {
781 	struct pgrp *hispgrp;
782 	struct session *mysession;
783 	struct proc *q;
784 
785 	sx_assert(&proctree_lock, SX_LOCKED);
786 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
787 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
788 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
789 
790 	/*
791 	 * Check p's parent to see whether p qualifies its own process
792 	 * group; if so, adjust count for p's process group.
793 	 */
794 	mysession = pgrp->pg_session;
795 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
796 	    hispgrp->pg_session == mysession)
797 		pgadjustjobc(pgrp, entering);
798 
799 	/*
800 	 * Check this process' children to see whether they qualify
801 	 * their process groups; if so, adjust counts for children's
802 	 * process groups.
803 	 */
804 	LIST_FOREACH(q, &p->p_children, p_sibling) {
805 		hispgrp = q->p_pgrp;
806 		if (hispgrp == pgrp ||
807 		    hispgrp->pg_session != mysession)
808 			continue;
809 		if (q->p_state == PRS_ZOMBIE)
810 			continue;
811 		pgadjustjobc(hispgrp, entering);
812 	}
813 }
814 
815 void
816 killjobc(void)
817 {
818 	struct session *sp;
819 	struct tty *tp;
820 	struct proc *p;
821 	struct vnode *ttyvp;
822 
823 	p = curproc;
824 	MPASS(p->p_flag & P_WEXIT);
825 	/*
826 	 * Do a quick check to see if there is anything to do with the
827 	 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc().
828 	 */
829 	PROC_LOCK(p);
830 	if (!SESS_LEADER(p) &&
831 	    (p->p_pgrp == p->p_pptr->p_pgrp) &&
832 	    LIST_EMPTY(&p->p_children)) {
833 		PROC_UNLOCK(p);
834 		return;
835 	}
836 	PROC_UNLOCK(p);
837 
838 	sx_xlock(&proctree_lock);
839 	if (SESS_LEADER(p)) {
840 		sp = p->p_session;
841 
842 		/*
843 		 * s_ttyp is not zero'd; we use this to indicate that
844 		 * the session once had a controlling terminal. (for
845 		 * logging and informational purposes)
846 		 */
847 		SESS_LOCK(sp);
848 		ttyvp = sp->s_ttyvp;
849 		tp = sp->s_ttyp;
850 		sp->s_ttyvp = NULL;
851 		sp->s_ttydp = NULL;
852 		sp->s_leader = NULL;
853 		SESS_UNLOCK(sp);
854 
855 		/*
856 		 * Signal foreground pgrp and revoke access to
857 		 * controlling terminal if it has not been revoked
858 		 * already.
859 		 *
860 		 * Because the TTY may have been revoked in the mean
861 		 * time and could already have a new session associated
862 		 * with it, make sure we don't send a SIGHUP to a
863 		 * foreground process group that does not belong to this
864 		 * session.
865 		 */
866 
867 		if (tp != NULL) {
868 			tty_lock(tp);
869 			if (tp->t_session == sp)
870 				tty_signal_pgrp(tp, SIGHUP);
871 			tty_unlock(tp);
872 		}
873 
874 		if (ttyvp != NULL) {
875 			sx_xunlock(&proctree_lock);
876 			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
877 				VOP_REVOKE(ttyvp, REVOKEALL);
878 				VOP_UNLOCK(ttyvp, 0);
879 			}
880 			vrele(ttyvp);
881 			sx_xlock(&proctree_lock);
882 		}
883 	}
884 	fixjobc(p, p->p_pgrp, 0);
885 	sx_xunlock(&proctree_lock);
886 }
887 
888 /*
889  * A process group has become orphaned;
890  * if there are any stopped processes in the group,
891  * hang-up all process in that group.
892  */
893 static void
894 orphanpg(struct pgrp *pg)
895 {
896 	struct proc *p;
897 
898 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
899 
900 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
901 		PROC_LOCK(p);
902 		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
903 			PROC_UNLOCK(p);
904 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
905 				PROC_LOCK(p);
906 				kern_psignal(p, SIGHUP);
907 				kern_psignal(p, SIGCONT);
908 				PROC_UNLOCK(p);
909 			}
910 			return;
911 		}
912 		PROC_UNLOCK(p);
913 	}
914 }
915 
916 void
917 sess_hold(struct session *s)
918 {
919 
920 	refcount_acquire(&s->s_count);
921 }
922 
923 void
924 sess_release(struct session *s)
925 {
926 
927 	if (refcount_release(&s->s_count)) {
928 		if (s->s_ttyp != NULL) {
929 			tty_lock(s->s_ttyp);
930 			tty_rel_sess(s->s_ttyp, s);
931 		}
932 		proc_id_clear(PROC_ID_SESSION, s->s_sid);
933 		mtx_destroy(&s->s_mtx);
934 		free(s, M_SESSION);
935 	}
936 }
937 
938 #ifdef DDB
939 
940 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
941 {
942 	struct pgrp *pgrp;
943 	struct proc *p;
944 	int i;
945 
946 	for (i = 0; i <= pgrphash; i++) {
947 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
948 			printf("\tindx %d\n", i);
949 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
950 				printf(
951 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
952 				    (void *)pgrp, (long)pgrp->pg_id,
953 				    (void *)pgrp->pg_session,
954 				    pgrp->pg_session->s_count,
955 				    (void *)LIST_FIRST(&pgrp->pg_members));
956 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
957 					printf("\t\tpid %ld addr %p pgrp %p\n",
958 					    (long)p->p_pid, (void *)p,
959 					    (void *)p->p_pgrp);
960 				}
961 			}
962 		}
963 	}
964 }
965 #endif /* DDB */
966 
967 /*
968  * Calculate the kinfo_proc members which contain process-wide
969  * informations.
970  * Must be called with the target process locked.
971  */
972 static void
973 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
974 {
975 	struct thread *td;
976 
977 	PROC_LOCK_ASSERT(p, MA_OWNED);
978 
979 	kp->ki_estcpu = 0;
980 	kp->ki_pctcpu = 0;
981 	FOREACH_THREAD_IN_PROC(p, td) {
982 		thread_lock(td);
983 		kp->ki_pctcpu += sched_pctcpu(td);
984 		kp->ki_estcpu += sched_estcpu(td);
985 		thread_unlock(td);
986 	}
987 }
988 
989 /*
990  * Clear kinfo_proc and fill in any information that is common
991  * to all threads in the process.
992  * Must be called with the target process locked.
993  */
994 static void
995 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
996 {
997 	struct thread *td0;
998 	struct tty *tp;
999 	struct session *sp;
1000 	struct ucred *cred;
1001 	struct sigacts *ps;
1002 	struct timeval boottime;
1003 
1004 	PROC_LOCK_ASSERT(p, MA_OWNED);
1005 	bzero(kp, sizeof(*kp));
1006 
1007 	kp->ki_structsize = sizeof(*kp);
1008 	kp->ki_paddr = p;
1009 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
1010 	kp->ki_args = p->p_args;
1011 	kp->ki_textvp = p->p_textvp;
1012 #ifdef KTRACE
1013 	kp->ki_tracep = p->p_tracevp;
1014 	kp->ki_traceflag = p->p_traceflag;
1015 #endif
1016 	kp->ki_fd = p->p_fd;
1017 	kp->ki_vmspace = p->p_vmspace;
1018 	kp->ki_flag = p->p_flag;
1019 	kp->ki_flag2 = p->p_flag2;
1020 	cred = p->p_ucred;
1021 	if (cred) {
1022 		kp->ki_uid = cred->cr_uid;
1023 		kp->ki_ruid = cred->cr_ruid;
1024 		kp->ki_svuid = cred->cr_svuid;
1025 		kp->ki_cr_flags = 0;
1026 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
1027 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
1028 		/* XXX bde doesn't like KI_NGROUPS */
1029 		if (cred->cr_ngroups > KI_NGROUPS) {
1030 			kp->ki_ngroups = KI_NGROUPS;
1031 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
1032 		} else
1033 			kp->ki_ngroups = cred->cr_ngroups;
1034 		bcopy(cred->cr_groups, kp->ki_groups,
1035 		    kp->ki_ngroups * sizeof(gid_t));
1036 		kp->ki_rgid = cred->cr_rgid;
1037 		kp->ki_svgid = cred->cr_svgid;
1038 		/* If jailed(cred), emulate the old P_JAILED flag. */
1039 		if (jailed(cred)) {
1040 			kp->ki_flag |= P_JAILED;
1041 			/* If inside the jail, use 0 as a jail ID. */
1042 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
1043 				kp->ki_jid = cred->cr_prison->pr_id;
1044 		}
1045 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
1046 		    sizeof(kp->ki_loginclass));
1047 	}
1048 	ps = p->p_sigacts;
1049 	if (ps) {
1050 		mtx_lock(&ps->ps_mtx);
1051 		kp->ki_sigignore = ps->ps_sigignore;
1052 		kp->ki_sigcatch = ps->ps_sigcatch;
1053 		mtx_unlock(&ps->ps_mtx);
1054 	}
1055 	if (p->p_state != PRS_NEW &&
1056 	    p->p_state != PRS_ZOMBIE &&
1057 	    p->p_vmspace != NULL) {
1058 		struct vmspace *vm = p->p_vmspace;
1059 
1060 		kp->ki_size = vm->vm_map.size;
1061 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
1062 		FOREACH_THREAD_IN_PROC(p, td0) {
1063 			if (!TD_IS_SWAPPED(td0))
1064 				kp->ki_rssize += td0->td_kstack_pages;
1065 		}
1066 		kp->ki_swrss = vm->vm_swrss;
1067 		kp->ki_tsize = vm->vm_tsize;
1068 		kp->ki_dsize = vm->vm_dsize;
1069 		kp->ki_ssize = vm->vm_ssize;
1070 	} else if (p->p_state == PRS_ZOMBIE)
1071 		kp->ki_stat = SZOMB;
1072 	if (kp->ki_flag & P_INMEM)
1073 		kp->ki_sflag = PS_INMEM;
1074 	else
1075 		kp->ki_sflag = 0;
1076 	/* Calculate legacy swtime as seconds since 'swtick'. */
1077 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
1078 	kp->ki_pid = p->p_pid;
1079 	kp->ki_nice = p->p_nice;
1080 	kp->ki_fibnum = p->p_fibnum;
1081 	kp->ki_start = p->p_stats->p_start;
1082 	getboottime(&boottime);
1083 	timevaladd(&kp->ki_start, &boottime);
1084 	PROC_STATLOCK(p);
1085 	rufetch(p, &kp->ki_rusage);
1086 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
1087 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
1088 	PROC_STATUNLOCK(p);
1089 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
1090 	/* Some callers want child times in a single value. */
1091 	kp->ki_childtime = kp->ki_childstime;
1092 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
1093 
1094 	FOREACH_THREAD_IN_PROC(p, td0)
1095 		kp->ki_cow += td0->td_cow;
1096 
1097 	tp = NULL;
1098 	if (p->p_pgrp) {
1099 		kp->ki_pgid = p->p_pgrp->pg_id;
1100 		kp->ki_jobc = p->p_pgrp->pg_jobc;
1101 		sp = p->p_pgrp->pg_session;
1102 
1103 		if (sp != NULL) {
1104 			kp->ki_sid = sp->s_sid;
1105 			SESS_LOCK(sp);
1106 			strlcpy(kp->ki_login, sp->s_login,
1107 			    sizeof(kp->ki_login));
1108 			if (sp->s_ttyvp)
1109 				kp->ki_kiflag |= KI_CTTY;
1110 			if (SESS_LEADER(p))
1111 				kp->ki_kiflag |= KI_SLEADER;
1112 			/* XXX proctree_lock */
1113 			tp = sp->s_ttyp;
1114 			SESS_UNLOCK(sp);
1115 		}
1116 	}
1117 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
1118 		kp->ki_tdev = tty_udev(tp);
1119 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1120 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1121 		if (tp->t_session)
1122 			kp->ki_tsid = tp->t_session->s_sid;
1123 	} else {
1124 		kp->ki_tdev = NODEV;
1125 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1126 	}
1127 	if (p->p_comm[0] != '\0')
1128 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1129 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1130 	    p->p_sysent->sv_name[0] != '\0')
1131 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1132 	kp->ki_siglist = p->p_siglist;
1133 	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1134 	kp->ki_acflag = p->p_acflag;
1135 	kp->ki_lock = p->p_lock;
1136 	if (p->p_pptr) {
1137 		kp->ki_ppid = p->p_oppid;
1138 		if (p->p_flag & P_TRACED)
1139 			kp->ki_tracer = p->p_pptr->p_pid;
1140 	}
1141 }
1142 
1143 /*
1144  * Fill in information that is thread specific.  Must be called with
1145  * target process locked.  If 'preferthread' is set, overwrite certain
1146  * process-related fields that are maintained for both threads and
1147  * processes.
1148  */
1149 static void
1150 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1151 {
1152 	struct proc *p;
1153 
1154 	p = td->td_proc;
1155 	kp->ki_tdaddr = td;
1156 	PROC_LOCK_ASSERT(p, MA_OWNED);
1157 
1158 	if (preferthread)
1159 		PROC_STATLOCK(p);
1160 	thread_lock(td);
1161 	if (td->td_wmesg != NULL)
1162 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1163 	else
1164 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1165 	if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1166 	    sizeof(kp->ki_tdname)) {
1167 		strlcpy(kp->ki_moretdname,
1168 		    td->td_name + sizeof(kp->ki_tdname) - 1,
1169 		    sizeof(kp->ki_moretdname));
1170 	} else {
1171 		bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1172 	}
1173 	if (TD_ON_LOCK(td)) {
1174 		kp->ki_kiflag |= KI_LOCKBLOCK;
1175 		strlcpy(kp->ki_lockname, td->td_lockname,
1176 		    sizeof(kp->ki_lockname));
1177 	} else {
1178 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
1179 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1180 	}
1181 
1182 	if (p->p_state == PRS_NORMAL) { /* approximate. */
1183 		if (TD_ON_RUNQ(td) ||
1184 		    TD_CAN_RUN(td) ||
1185 		    TD_IS_RUNNING(td)) {
1186 			kp->ki_stat = SRUN;
1187 		} else if (P_SHOULDSTOP(p)) {
1188 			kp->ki_stat = SSTOP;
1189 		} else if (TD_IS_SLEEPING(td)) {
1190 			kp->ki_stat = SSLEEP;
1191 		} else if (TD_ON_LOCK(td)) {
1192 			kp->ki_stat = SLOCK;
1193 		} else {
1194 			kp->ki_stat = SWAIT;
1195 		}
1196 	} else if (p->p_state == PRS_ZOMBIE) {
1197 		kp->ki_stat = SZOMB;
1198 	} else {
1199 		kp->ki_stat = SIDL;
1200 	}
1201 
1202 	/* Things in the thread */
1203 	kp->ki_wchan = td->td_wchan;
1204 	kp->ki_pri.pri_level = td->td_priority;
1205 	kp->ki_pri.pri_native = td->td_base_pri;
1206 
1207 	/*
1208 	 * Note: legacy fields; clamp at the old NOCPU value and/or
1209 	 * the maximum u_char CPU value.
1210 	 */
1211 	if (td->td_lastcpu == NOCPU)
1212 		kp->ki_lastcpu_old = NOCPU_OLD;
1213 	else if (td->td_lastcpu > MAXCPU_OLD)
1214 		kp->ki_lastcpu_old = MAXCPU_OLD;
1215 	else
1216 		kp->ki_lastcpu_old = td->td_lastcpu;
1217 
1218 	if (td->td_oncpu == NOCPU)
1219 		kp->ki_oncpu_old = NOCPU_OLD;
1220 	else if (td->td_oncpu > MAXCPU_OLD)
1221 		kp->ki_oncpu_old = MAXCPU_OLD;
1222 	else
1223 		kp->ki_oncpu_old = td->td_oncpu;
1224 
1225 	kp->ki_lastcpu = td->td_lastcpu;
1226 	kp->ki_oncpu = td->td_oncpu;
1227 	kp->ki_tdflags = td->td_flags;
1228 	kp->ki_tid = td->td_tid;
1229 	kp->ki_numthreads = p->p_numthreads;
1230 	kp->ki_pcb = td->td_pcb;
1231 	kp->ki_kstack = (void *)td->td_kstack;
1232 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1233 	kp->ki_pri.pri_class = td->td_pri_class;
1234 	kp->ki_pri.pri_user = td->td_user_pri;
1235 
1236 	if (preferthread) {
1237 		rufetchtd(td, &kp->ki_rusage);
1238 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1239 		kp->ki_pctcpu = sched_pctcpu(td);
1240 		kp->ki_estcpu = sched_estcpu(td);
1241 		kp->ki_cow = td->td_cow;
1242 	}
1243 
1244 	/* We can't get this anymore but ps etc never used it anyway. */
1245 	kp->ki_rqindex = 0;
1246 
1247 	if (preferthread)
1248 		kp->ki_siglist = td->td_siglist;
1249 	kp->ki_sigmask = td->td_sigmask;
1250 	thread_unlock(td);
1251 	if (preferthread)
1252 		PROC_STATUNLOCK(p);
1253 }
1254 
1255 /*
1256  * Fill in a kinfo_proc structure for the specified process.
1257  * Must be called with the target process locked.
1258  */
1259 void
1260 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1261 {
1262 
1263 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1264 
1265 	fill_kinfo_proc_only(p, kp);
1266 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1267 	fill_kinfo_aggregate(p, kp);
1268 }
1269 
1270 struct pstats *
1271 pstats_alloc(void)
1272 {
1273 
1274 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1275 }
1276 
1277 /*
1278  * Copy parts of p_stats; zero the rest of p_stats (statistics).
1279  */
1280 void
1281 pstats_fork(struct pstats *src, struct pstats *dst)
1282 {
1283 
1284 	bzero(&dst->pstat_startzero,
1285 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1286 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1287 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1288 }
1289 
1290 void
1291 pstats_free(struct pstats *ps)
1292 {
1293 
1294 	free(ps, M_SUBPROC);
1295 }
1296 
1297 /*
1298  * Locate a zombie process by number
1299  */
1300 struct proc *
1301 zpfind(pid_t pid)
1302 {
1303 	struct proc *p;
1304 
1305 	sx_slock(&zombproc_lock);
1306 	LIST_FOREACH(p, &zombproc, p_list) {
1307 		if (p->p_pid == pid) {
1308 			PROC_LOCK(p);
1309 			break;
1310 		}
1311 	}
1312 	sx_sunlock(&zombproc_lock);
1313 	return (p);
1314 }
1315 
1316 #ifdef COMPAT_FREEBSD32
1317 
1318 /*
1319  * This function is typically used to copy out the kernel address, so
1320  * it can be replaced by assignment of zero.
1321  */
1322 static inline uint32_t
1323 ptr32_trim(void *ptr)
1324 {
1325 	uintptr_t uptr;
1326 
1327 	uptr = (uintptr_t)ptr;
1328 	return ((uptr > UINT_MAX) ? 0 : uptr);
1329 }
1330 
1331 #define PTRTRIM_CP(src,dst,fld) \
1332 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1333 
1334 static void
1335 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1336 {
1337 	int i;
1338 
1339 	bzero(ki32, sizeof(struct kinfo_proc32));
1340 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1341 	CP(*ki, *ki32, ki_layout);
1342 	PTRTRIM_CP(*ki, *ki32, ki_args);
1343 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1344 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1345 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1346 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1347 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1348 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1349 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1350 	CP(*ki, *ki32, ki_pid);
1351 	CP(*ki, *ki32, ki_ppid);
1352 	CP(*ki, *ki32, ki_pgid);
1353 	CP(*ki, *ki32, ki_tpgid);
1354 	CP(*ki, *ki32, ki_sid);
1355 	CP(*ki, *ki32, ki_tsid);
1356 	CP(*ki, *ki32, ki_jobc);
1357 	CP(*ki, *ki32, ki_tdev);
1358 	CP(*ki, *ki32, ki_tdev_freebsd11);
1359 	CP(*ki, *ki32, ki_siglist);
1360 	CP(*ki, *ki32, ki_sigmask);
1361 	CP(*ki, *ki32, ki_sigignore);
1362 	CP(*ki, *ki32, ki_sigcatch);
1363 	CP(*ki, *ki32, ki_uid);
1364 	CP(*ki, *ki32, ki_ruid);
1365 	CP(*ki, *ki32, ki_svuid);
1366 	CP(*ki, *ki32, ki_rgid);
1367 	CP(*ki, *ki32, ki_svgid);
1368 	CP(*ki, *ki32, ki_ngroups);
1369 	for (i = 0; i < KI_NGROUPS; i++)
1370 		CP(*ki, *ki32, ki_groups[i]);
1371 	CP(*ki, *ki32, ki_size);
1372 	CP(*ki, *ki32, ki_rssize);
1373 	CP(*ki, *ki32, ki_swrss);
1374 	CP(*ki, *ki32, ki_tsize);
1375 	CP(*ki, *ki32, ki_dsize);
1376 	CP(*ki, *ki32, ki_ssize);
1377 	CP(*ki, *ki32, ki_xstat);
1378 	CP(*ki, *ki32, ki_acflag);
1379 	CP(*ki, *ki32, ki_pctcpu);
1380 	CP(*ki, *ki32, ki_estcpu);
1381 	CP(*ki, *ki32, ki_slptime);
1382 	CP(*ki, *ki32, ki_swtime);
1383 	CP(*ki, *ki32, ki_cow);
1384 	CP(*ki, *ki32, ki_runtime);
1385 	TV_CP(*ki, *ki32, ki_start);
1386 	TV_CP(*ki, *ki32, ki_childtime);
1387 	CP(*ki, *ki32, ki_flag);
1388 	CP(*ki, *ki32, ki_kiflag);
1389 	CP(*ki, *ki32, ki_traceflag);
1390 	CP(*ki, *ki32, ki_stat);
1391 	CP(*ki, *ki32, ki_nice);
1392 	CP(*ki, *ki32, ki_lock);
1393 	CP(*ki, *ki32, ki_rqindex);
1394 	CP(*ki, *ki32, ki_oncpu);
1395 	CP(*ki, *ki32, ki_lastcpu);
1396 
1397 	/* XXX TODO: wrap cpu value as appropriate */
1398 	CP(*ki, *ki32, ki_oncpu_old);
1399 	CP(*ki, *ki32, ki_lastcpu_old);
1400 
1401 	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1402 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1403 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1404 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1405 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1406 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1407 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1408 	bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1409 	CP(*ki, *ki32, ki_tracer);
1410 	CP(*ki, *ki32, ki_flag2);
1411 	CP(*ki, *ki32, ki_fibnum);
1412 	CP(*ki, *ki32, ki_cr_flags);
1413 	CP(*ki, *ki32, ki_jid);
1414 	CP(*ki, *ki32, ki_numthreads);
1415 	CP(*ki, *ki32, ki_tid);
1416 	CP(*ki, *ki32, ki_pri);
1417 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1418 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1419 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1420 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1421 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1422 	PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1423 	CP(*ki, *ki32, ki_sflag);
1424 	CP(*ki, *ki32, ki_tdflags);
1425 }
1426 #endif
1427 
1428 static ssize_t
1429 kern_proc_out_size(struct proc *p, int flags)
1430 {
1431 	ssize_t size = 0;
1432 
1433 	PROC_LOCK_ASSERT(p, MA_OWNED);
1434 
1435 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1436 #ifdef COMPAT_FREEBSD32
1437 		if ((flags & KERN_PROC_MASK32) != 0) {
1438 			size += sizeof(struct kinfo_proc32);
1439 		} else
1440 #endif
1441 			size += sizeof(struct kinfo_proc);
1442 	} else {
1443 #ifdef COMPAT_FREEBSD32
1444 		if ((flags & KERN_PROC_MASK32) != 0)
1445 			size += sizeof(struct kinfo_proc32) * p->p_numthreads;
1446 		else
1447 #endif
1448 			size += sizeof(struct kinfo_proc) * p->p_numthreads;
1449 	}
1450 	PROC_UNLOCK(p);
1451 	return (size);
1452 }
1453 
1454 int
1455 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1456 {
1457 	struct thread *td;
1458 	struct kinfo_proc ki;
1459 #ifdef COMPAT_FREEBSD32
1460 	struct kinfo_proc32 ki32;
1461 #endif
1462 	int error;
1463 
1464 	PROC_LOCK_ASSERT(p, MA_OWNED);
1465 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1466 
1467 	error = 0;
1468 	fill_kinfo_proc(p, &ki);
1469 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1470 #ifdef COMPAT_FREEBSD32
1471 		if ((flags & KERN_PROC_MASK32) != 0) {
1472 			freebsd32_kinfo_proc_out(&ki, &ki32);
1473 			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1474 				error = ENOMEM;
1475 		} else
1476 #endif
1477 			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1478 				error = ENOMEM;
1479 	} else {
1480 		FOREACH_THREAD_IN_PROC(p, td) {
1481 			fill_kinfo_thread(td, &ki, 1);
1482 #ifdef COMPAT_FREEBSD32
1483 			if ((flags & KERN_PROC_MASK32) != 0) {
1484 				freebsd32_kinfo_proc_out(&ki, &ki32);
1485 				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1486 					error = ENOMEM;
1487 			} else
1488 #endif
1489 				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1490 					error = ENOMEM;
1491 			if (error != 0)
1492 				break;
1493 		}
1494 	}
1495 	PROC_UNLOCK(p);
1496 	return (error);
1497 }
1498 
1499 static int
1500 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1501 {
1502 	struct sbuf sb;
1503 	struct kinfo_proc ki;
1504 	int error, error2;
1505 
1506 	if (req->oldptr == NULL)
1507 		return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
1508 
1509 	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1510 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1511 	error = kern_proc_out(p, &sb, flags);
1512 	error2 = sbuf_finish(&sb);
1513 	sbuf_delete(&sb);
1514 	if (error != 0)
1515 		return (error);
1516 	else if (error2 != 0)
1517 		return (error2);
1518 	return (0);
1519 }
1520 
1521 int
1522 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
1523 {
1524 	struct proc *p;
1525 	int error, i, j;
1526 
1527 	for (i = 0; i < pidhashlock + 1; i++) {
1528 		sx_slock(&pidhashtbl_lock[i]);
1529 		for (j = i; j <= pidhash; j += pidhashlock + 1) {
1530 			LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
1531 				if (p->p_state == PRS_NEW)
1532 					continue;
1533 				error = cb(p, cbarg);
1534 				PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1535 				if (error != 0) {
1536 					sx_sunlock(&pidhashtbl_lock[i]);
1537 					return (error);
1538 				}
1539 			}
1540 		}
1541 		sx_sunlock(&pidhashtbl_lock[i]);
1542 	}
1543 	return (0);
1544 }
1545 
1546 struct kern_proc_out_args {
1547 	struct sysctl_req *req;
1548 	int flags;
1549 	int oid_number;
1550 	int *name;
1551 };
1552 
1553 static int
1554 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
1555 {
1556 	struct kern_proc_out_args *arg = origarg;
1557 	int *name = arg->name;
1558 	int oid_number = arg->oid_number;
1559 	int flags = arg->flags;
1560 	struct sysctl_req *req = arg->req;
1561 	int error = 0;
1562 
1563 	PROC_LOCK(p);
1564 
1565 	KASSERT(p->p_ucred != NULL,
1566 	    ("process credential is NULL for non-NEW proc"));
1567 	/*
1568 	 * Show a user only appropriate processes.
1569 	 */
1570 	if (p_cansee(curthread, p))
1571 		goto skip;
1572 	/*
1573 	 * TODO - make more efficient (see notes below).
1574 	 * do by session.
1575 	 */
1576 	switch (oid_number) {
1577 
1578 	case KERN_PROC_GID:
1579 		if (p->p_ucred->cr_gid != (gid_t)name[0])
1580 			goto skip;
1581 		break;
1582 
1583 	case KERN_PROC_PGRP:
1584 		/* could do this by traversing pgrp */
1585 		if (p->p_pgrp == NULL ||
1586 		    p->p_pgrp->pg_id != (pid_t)name[0])
1587 			goto skip;
1588 		break;
1589 
1590 	case KERN_PROC_RGID:
1591 		if (p->p_ucred->cr_rgid != (gid_t)name[0])
1592 			goto skip;
1593 		break;
1594 
1595 	case KERN_PROC_SESSION:
1596 		if (p->p_session == NULL ||
1597 		    p->p_session->s_sid != (pid_t)name[0])
1598 			goto skip;
1599 		break;
1600 
1601 	case KERN_PROC_TTY:
1602 		if ((p->p_flag & P_CONTROLT) == 0 ||
1603 		    p->p_session == NULL)
1604 			goto skip;
1605 		/* XXX proctree_lock */
1606 		SESS_LOCK(p->p_session);
1607 		if (p->p_session->s_ttyp == NULL ||
1608 		    tty_udev(p->p_session->s_ttyp) !=
1609 		    (dev_t)name[0]) {
1610 			SESS_UNLOCK(p->p_session);
1611 			goto skip;
1612 		}
1613 		SESS_UNLOCK(p->p_session);
1614 		break;
1615 
1616 	case KERN_PROC_UID:
1617 		if (p->p_ucred->cr_uid != (uid_t)name[0])
1618 			goto skip;
1619 		break;
1620 
1621 	case KERN_PROC_RUID:
1622 		if (p->p_ucred->cr_ruid != (uid_t)name[0])
1623 			goto skip;
1624 		break;
1625 
1626 	case KERN_PROC_PROC:
1627 		break;
1628 
1629 	default:
1630 		break;
1631 
1632 	}
1633 	error = sysctl_out_proc(p, req, flags);
1634 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1635 	return (error);
1636 skip:
1637 	PROC_UNLOCK(p);
1638 	return (0);
1639 }
1640 
1641 static int
1642 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1643 {
1644 	struct kern_proc_out_args iterarg;
1645 	int *name = (int *)arg1;
1646 	u_int namelen = arg2;
1647 	struct proc *p;
1648 	int flags, oid_number;
1649 	int error = 0;
1650 
1651 	oid_number = oidp->oid_number;
1652 	if (oid_number != KERN_PROC_ALL &&
1653 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1654 		flags = KERN_PROC_NOTHREADS;
1655 	else {
1656 		flags = 0;
1657 		oid_number &= ~KERN_PROC_INC_THREAD;
1658 	}
1659 #ifdef COMPAT_FREEBSD32
1660 	if (req->flags & SCTL_MASK32)
1661 		flags |= KERN_PROC_MASK32;
1662 #endif
1663 	if (oid_number == KERN_PROC_PID) {
1664 		if (namelen != 1)
1665 			return (EINVAL);
1666 		error = sysctl_wire_old_buffer(req, 0);
1667 		if (error)
1668 			return (error);
1669 		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1670 		if (error == 0)
1671 			error = sysctl_out_proc(p, req, flags);
1672 		return (error);
1673 	}
1674 
1675 	switch (oid_number) {
1676 	case KERN_PROC_ALL:
1677 		if (namelen != 0)
1678 			return (EINVAL);
1679 		break;
1680 	case KERN_PROC_PROC:
1681 		if (namelen != 0 && namelen != 1)
1682 			return (EINVAL);
1683 		break;
1684 	default:
1685 		if (namelen != 1)
1686 			return (EINVAL);
1687 		break;
1688 	}
1689 
1690 	if (req->oldptr == NULL) {
1691 		/* overestimate by 5 procs */
1692 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1693 		if (error)
1694 			return (error);
1695 	} else {
1696 		error = sysctl_wire_old_buffer(req, 0);
1697 		if (error != 0)
1698 			return (error);
1699 	}
1700 	iterarg.flags = flags;
1701 	iterarg.oid_number = oid_number;
1702 	iterarg.req = req;
1703 	iterarg.name = name;
1704 	error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
1705 	return (error);
1706 }
1707 
1708 struct pargs *
1709 pargs_alloc(int len)
1710 {
1711 	struct pargs *pa;
1712 
1713 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1714 		M_WAITOK);
1715 	refcount_init(&pa->ar_ref, 1);
1716 	pa->ar_length = len;
1717 	return (pa);
1718 }
1719 
1720 static void
1721 pargs_free(struct pargs *pa)
1722 {
1723 
1724 	free(pa, M_PARGS);
1725 }
1726 
1727 void
1728 pargs_hold(struct pargs *pa)
1729 {
1730 
1731 	if (pa == NULL)
1732 		return;
1733 	refcount_acquire(&pa->ar_ref);
1734 }
1735 
1736 void
1737 pargs_drop(struct pargs *pa)
1738 {
1739 
1740 	if (pa == NULL)
1741 		return;
1742 	if (refcount_release(&pa->ar_ref))
1743 		pargs_free(pa);
1744 }
1745 
1746 static int
1747 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1748     size_t len)
1749 {
1750 	ssize_t n;
1751 
1752 	/*
1753 	 * This may return a short read if the string is shorter than the chunk
1754 	 * and is aligned at the end of the page, and the following page is not
1755 	 * mapped.
1756 	 */
1757 	n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1758 	if (n <= 0)
1759 		return (ENOMEM);
1760 	return (0);
1761 }
1762 
1763 #define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1764 
1765 enum proc_vector_type {
1766 	PROC_ARG,
1767 	PROC_ENV,
1768 	PROC_AUX,
1769 };
1770 
1771 #ifdef COMPAT_FREEBSD32
1772 static int
1773 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1774     size_t *vsizep, enum proc_vector_type type)
1775 {
1776 	struct freebsd32_ps_strings pss;
1777 	Elf32_Auxinfo aux;
1778 	vm_offset_t vptr, ptr;
1779 	uint32_t *proc_vector32;
1780 	char **proc_vector;
1781 	size_t vsize, size;
1782 	int i, error;
1783 
1784 	error = 0;
1785 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1786 	    sizeof(pss)) != sizeof(pss))
1787 		return (ENOMEM);
1788 	switch (type) {
1789 	case PROC_ARG:
1790 		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1791 		vsize = pss.ps_nargvstr;
1792 		if (vsize > ARG_MAX)
1793 			return (ENOEXEC);
1794 		size = vsize * sizeof(int32_t);
1795 		break;
1796 	case PROC_ENV:
1797 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1798 		vsize = pss.ps_nenvstr;
1799 		if (vsize > ARG_MAX)
1800 			return (ENOEXEC);
1801 		size = vsize * sizeof(int32_t);
1802 		break;
1803 	case PROC_AUX:
1804 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1805 		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1806 		if (vptr % 4 != 0)
1807 			return (ENOEXEC);
1808 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1809 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1810 			    sizeof(aux))
1811 				return (ENOMEM);
1812 			if (aux.a_type == AT_NULL)
1813 				break;
1814 			ptr += sizeof(aux);
1815 		}
1816 		if (aux.a_type != AT_NULL)
1817 			return (ENOEXEC);
1818 		vsize = i + 1;
1819 		size = vsize * sizeof(aux);
1820 		break;
1821 	default:
1822 		KASSERT(0, ("Wrong proc vector type: %d", type));
1823 		return (EINVAL);
1824 	}
1825 	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1826 	if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1827 		error = ENOMEM;
1828 		goto done;
1829 	}
1830 	if (type == PROC_AUX) {
1831 		*proc_vectorp = (char **)proc_vector32;
1832 		*vsizep = vsize;
1833 		return (0);
1834 	}
1835 	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1836 	for (i = 0; i < (int)vsize; i++)
1837 		proc_vector[i] = PTRIN(proc_vector32[i]);
1838 	*proc_vectorp = proc_vector;
1839 	*vsizep = vsize;
1840 done:
1841 	free(proc_vector32, M_TEMP);
1842 	return (error);
1843 }
1844 #endif
1845 
1846 static int
1847 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1848     size_t *vsizep, enum proc_vector_type type)
1849 {
1850 	struct ps_strings pss;
1851 	Elf_Auxinfo aux;
1852 	vm_offset_t vptr, ptr;
1853 	char **proc_vector;
1854 	size_t vsize, size;
1855 	int i;
1856 
1857 #ifdef COMPAT_FREEBSD32
1858 	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1859 		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1860 #endif
1861 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1862 	    sizeof(pss)) != sizeof(pss))
1863 		return (ENOMEM);
1864 	switch (type) {
1865 	case PROC_ARG:
1866 		vptr = (vm_offset_t)pss.ps_argvstr;
1867 		vsize = pss.ps_nargvstr;
1868 		if (vsize > ARG_MAX)
1869 			return (ENOEXEC);
1870 		size = vsize * sizeof(char *);
1871 		break;
1872 	case PROC_ENV:
1873 		vptr = (vm_offset_t)pss.ps_envstr;
1874 		vsize = pss.ps_nenvstr;
1875 		if (vsize > ARG_MAX)
1876 			return (ENOEXEC);
1877 		size = vsize * sizeof(char *);
1878 		break;
1879 	case PROC_AUX:
1880 		/*
1881 		 * The aux array is just above env array on the stack. Check
1882 		 * that the address is naturally aligned.
1883 		 */
1884 		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1885 		    * sizeof(char *);
1886 #if __ELF_WORD_SIZE == 64
1887 		if (vptr % sizeof(uint64_t) != 0)
1888 #else
1889 		if (vptr % sizeof(uint32_t) != 0)
1890 #endif
1891 			return (ENOEXEC);
1892 		/*
1893 		 * We count the array size reading the aux vectors from the
1894 		 * stack until AT_NULL vector is returned.  So (to keep the code
1895 		 * simple) we read the process stack twice: the first time here
1896 		 * to find the size and the second time when copying the vectors
1897 		 * to the allocated proc_vector.
1898 		 */
1899 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1900 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1901 			    sizeof(aux))
1902 				return (ENOMEM);
1903 			if (aux.a_type == AT_NULL)
1904 				break;
1905 			ptr += sizeof(aux);
1906 		}
1907 		/*
1908 		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1909 		 * not reached AT_NULL, it is most likely we are reading wrong
1910 		 * data: either the process doesn't have auxv array or data has
1911 		 * been modified. Return the error in this case.
1912 		 */
1913 		if (aux.a_type != AT_NULL)
1914 			return (ENOEXEC);
1915 		vsize = i + 1;
1916 		size = vsize * sizeof(aux);
1917 		break;
1918 	default:
1919 		KASSERT(0, ("Wrong proc vector type: %d", type));
1920 		return (EINVAL); /* In case we are built without INVARIANTS. */
1921 	}
1922 	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1923 	if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
1924 		free(proc_vector, M_TEMP);
1925 		return (ENOMEM);
1926 	}
1927 	*proc_vectorp = proc_vector;
1928 	*vsizep = vsize;
1929 
1930 	return (0);
1931 }
1932 
1933 #define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1934 
1935 static int
1936 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1937     enum proc_vector_type type)
1938 {
1939 	size_t done, len, nchr, vsize;
1940 	int error, i;
1941 	char **proc_vector, *sptr;
1942 	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1943 
1944 	PROC_ASSERT_HELD(p);
1945 
1946 	/*
1947 	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1948 	 */
1949 	nchr = 2 * (PATH_MAX + ARG_MAX);
1950 
1951 	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1952 	if (error != 0)
1953 		return (error);
1954 	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1955 		/*
1956 		 * The program may have scribbled into its argv array, e.g. to
1957 		 * remove some arguments.  If that has happened, break out
1958 		 * before trying to read from NULL.
1959 		 */
1960 		if (proc_vector[i] == NULL)
1961 			break;
1962 		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1963 			error = proc_read_string(td, p, sptr, pss_string,
1964 			    sizeof(pss_string));
1965 			if (error != 0)
1966 				goto done;
1967 			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1968 			if (done + len >= nchr)
1969 				len = nchr - done - 1;
1970 			sbuf_bcat(sb, pss_string, len);
1971 			if (len != GET_PS_STRINGS_CHUNK_SZ)
1972 				break;
1973 			done += GET_PS_STRINGS_CHUNK_SZ;
1974 		}
1975 		sbuf_bcat(sb, "", 1);
1976 		done += len + 1;
1977 	}
1978 done:
1979 	free(proc_vector, M_TEMP);
1980 	return (error);
1981 }
1982 
1983 int
1984 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1985 {
1986 
1987 	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1988 }
1989 
1990 int
1991 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1992 {
1993 
1994 	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1995 }
1996 
1997 int
1998 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1999 {
2000 	size_t vsize, size;
2001 	char **auxv;
2002 	int error;
2003 
2004 	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
2005 	if (error == 0) {
2006 #ifdef COMPAT_FREEBSD32
2007 		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
2008 			size = vsize * sizeof(Elf32_Auxinfo);
2009 		else
2010 #endif
2011 			size = vsize * sizeof(Elf_Auxinfo);
2012 		if (sbuf_bcat(sb, auxv, size) != 0)
2013 			error = ENOMEM;
2014 		free(auxv, M_TEMP);
2015 	}
2016 	return (error);
2017 }
2018 
2019 /*
2020  * This sysctl allows a process to retrieve the argument list or process
2021  * title for another process without groping around in the address space
2022  * of the other process.  It also allow a process to set its own "process
2023  * title to a string of its own choice.
2024  */
2025 static int
2026 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
2027 {
2028 	int *name = (int *)arg1;
2029 	u_int namelen = arg2;
2030 	struct pargs *newpa, *pa;
2031 	struct proc *p;
2032 	struct sbuf sb;
2033 	int flags, error = 0, error2;
2034 	pid_t pid;
2035 
2036 	if (namelen != 1)
2037 		return (EINVAL);
2038 
2039 	pid = (pid_t)name[0];
2040 	/*
2041 	 * If the query is for this process and it is single-threaded, there
2042 	 * is nobody to modify pargs, thus we can just read.
2043 	 */
2044 	p = curproc;
2045 	if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
2046 	    (pa = p->p_args) != NULL)
2047 		return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
2048 
2049 	flags = PGET_CANSEE;
2050 	if (req->newptr != NULL)
2051 		flags |= PGET_ISCURRENT;
2052 	error = pget(pid, flags, &p);
2053 	if (error)
2054 		return (error);
2055 
2056 	pa = p->p_args;
2057 	if (pa != NULL) {
2058 		pargs_hold(pa);
2059 		PROC_UNLOCK(p);
2060 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
2061 		pargs_drop(pa);
2062 	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
2063 		_PHOLD(p);
2064 		PROC_UNLOCK(p);
2065 		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2066 		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2067 		error = proc_getargv(curthread, p, &sb);
2068 		error2 = sbuf_finish(&sb);
2069 		PRELE(p);
2070 		sbuf_delete(&sb);
2071 		if (error == 0 && error2 != 0)
2072 			error = error2;
2073 	} else {
2074 		PROC_UNLOCK(p);
2075 	}
2076 	if (error != 0 || req->newptr == NULL)
2077 		return (error);
2078 
2079 	if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
2080 		return (ENOMEM);
2081 
2082 	if (req->newlen == 0) {
2083 		/*
2084 		 * Clear the argument pointer, so that we'll fetch arguments
2085 		 * with proc_getargv() until further notice.
2086 		 */
2087 		newpa = NULL;
2088 	} else {
2089 		newpa = pargs_alloc(req->newlen);
2090 		error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
2091 		if (error != 0) {
2092 			pargs_free(newpa);
2093 			return (error);
2094 		}
2095 	}
2096 	PROC_LOCK(p);
2097 	pa = p->p_args;
2098 	p->p_args = newpa;
2099 	PROC_UNLOCK(p);
2100 	pargs_drop(pa);
2101 	return (0);
2102 }
2103 
2104 /*
2105  * This sysctl allows a process to retrieve environment of another process.
2106  */
2107 static int
2108 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
2109 {
2110 	int *name = (int *)arg1;
2111 	u_int namelen = arg2;
2112 	struct proc *p;
2113 	struct sbuf sb;
2114 	int error, error2;
2115 
2116 	if (namelen != 1)
2117 		return (EINVAL);
2118 
2119 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2120 	if (error != 0)
2121 		return (error);
2122 	if ((p->p_flag & P_SYSTEM) != 0) {
2123 		PRELE(p);
2124 		return (0);
2125 	}
2126 
2127 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2128 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2129 	error = proc_getenvv(curthread, p, &sb);
2130 	error2 = sbuf_finish(&sb);
2131 	PRELE(p);
2132 	sbuf_delete(&sb);
2133 	return (error != 0 ? error : error2);
2134 }
2135 
2136 /*
2137  * This sysctl allows a process to retrieve ELF auxiliary vector of
2138  * another process.
2139  */
2140 static int
2141 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
2142 {
2143 	int *name = (int *)arg1;
2144 	u_int namelen = arg2;
2145 	struct proc *p;
2146 	struct sbuf sb;
2147 	int error, error2;
2148 
2149 	if (namelen != 1)
2150 		return (EINVAL);
2151 
2152 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2153 	if (error != 0)
2154 		return (error);
2155 	if ((p->p_flag & P_SYSTEM) != 0) {
2156 		PRELE(p);
2157 		return (0);
2158 	}
2159 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2160 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2161 	error = proc_getauxv(curthread, p, &sb);
2162 	error2 = sbuf_finish(&sb);
2163 	PRELE(p);
2164 	sbuf_delete(&sb);
2165 	return (error != 0 ? error : error2);
2166 }
2167 
2168 /*
2169  * This sysctl allows a process to retrieve the path of the executable for
2170  * itself or another process.
2171  */
2172 static int
2173 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2174 {
2175 	pid_t *pidp = (pid_t *)arg1;
2176 	unsigned int arglen = arg2;
2177 	struct proc *p;
2178 	struct vnode *vp;
2179 	char *retbuf, *freebuf;
2180 	int error;
2181 
2182 	if (arglen != 1)
2183 		return (EINVAL);
2184 	if (*pidp == -1) {	/* -1 means this process */
2185 		p = req->td->td_proc;
2186 	} else {
2187 		error = pget(*pidp, PGET_CANSEE, &p);
2188 		if (error != 0)
2189 			return (error);
2190 	}
2191 
2192 	vp = p->p_textvp;
2193 	if (vp == NULL) {
2194 		if (*pidp != -1)
2195 			PROC_UNLOCK(p);
2196 		return (0);
2197 	}
2198 	vref(vp);
2199 	if (*pidp != -1)
2200 		PROC_UNLOCK(p);
2201 	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
2202 	vrele(vp);
2203 	if (error)
2204 		return (error);
2205 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2206 	free(freebuf, M_TEMP);
2207 	return (error);
2208 }
2209 
2210 static int
2211 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2212 {
2213 	struct proc *p;
2214 	char *sv_name;
2215 	int *name;
2216 	int namelen;
2217 	int error;
2218 
2219 	namelen = arg2;
2220 	if (namelen != 1)
2221 		return (EINVAL);
2222 
2223 	name = (int *)arg1;
2224 	error = pget((pid_t)name[0], PGET_CANSEE, &p);
2225 	if (error != 0)
2226 		return (error);
2227 	sv_name = p->p_sysent->sv_name;
2228 	PROC_UNLOCK(p);
2229 	return (sysctl_handle_string(oidp, sv_name, 0, req));
2230 }
2231 
2232 #ifdef KINFO_OVMENTRY_SIZE
2233 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2234 #endif
2235 
2236 #ifdef COMPAT_FREEBSD7
2237 static int
2238 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2239 {
2240 	vm_map_entry_t entry, tmp_entry;
2241 	unsigned int last_timestamp;
2242 	char *fullpath, *freepath;
2243 	struct kinfo_ovmentry *kve;
2244 	struct vattr va;
2245 	struct ucred *cred;
2246 	int error, *name;
2247 	struct vnode *vp;
2248 	struct proc *p;
2249 	vm_map_t map;
2250 	struct vmspace *vm;
2251 
2252 	name = (int *)arg1;
2253 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2254 	if (error != 0)
2255 		return (error);
2256 	vm = vmspace_acquire_ref(p);
2257 	if (vm == NULL) {
2258 		PRELE(p);
2259 		return (ESRCH);
2260 	}
2261 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2262 
2263 	map = &vm->vm_map;
2264 	vm_map_lock_read(map);
2265 	for (entry = map->header.next; entry != &map->header;
2266 	    entry = entry->next) {
2267 		vm_object_t obj, tobj, lobj;
2268 		vm_offset_t addr;
2269 
2270 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2271 			continue;
2272 
2273 		bzero(kve, sizeof(*kve));
2274 		kve->kve_structsize = sizeof(*kve);
2275 
2276 		kve->kve_private_resident = 0;
2277 		obj = entry->object.vm_object;
2278 		if (obj != NULL) {
2279 			VM_OBJECT_RLOCK(obj);
2280 			if (obj->shadow_count == 1)
2281 				kve->kve_private_resident =
2282 				    obj->resident_page_count;
2283 		}
2284 		kve->kve_resident = 0;
2285 		addr = entry->start;
2286 		while (addr < entry->end) {
2287 			if (pmap_extract(map->pmap, addr))
2288 				kve->kve_resident++;
2289 			addr += PAGE_SIZE;
2290 		}
2291 
2292 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2293 			if (tobj != obj) {
2294 				VM_OBJECT_RLOCK(tobj);
2295 				kve->kve_offset += tobj->backing_object_offset;
2296 			}
2297 			if (lobj != obj)
2298 				VM_OBJECT_RUNLOCK(lobj);
2299 			lobj = tobj;
2300 		}
2301 
2302 		kve->kve_start = (void*)entry->start;
2303 		kve->kve_end = (void*)entry->end;
2304 		kve->kve_offset += (off_t)entry->offset;
2305 
2306 		if (entry->protection & VM_PROT_READ)
2307 			kve->kve_protection |= KVME_PROT_READ;
2308 		if (entry->protection & VM_PROT_WRITE)
2309 			kve->kve_protection |= KVME_PROT_WRITE;
2310 		if (entry->protection & VM_PROT_EXECUTE)
2311 			kve->kve_protection |= KVME_PROT_EXEC;
2312 
2313 		if (entry->eflags & MAP_ENTRY_COW)
2314 			kve->kve_flags |= KVME_FLAG_COW;
2315 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2316 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2317 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2318 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2319 
2320 		last_timestamp = map->timestamp;
2321 		vm_map_unlock_read(map);
2322 
2323 		kve->kve_fileid = 0;
2324 		kve->kve_fsid = 0;
2325 		freepath = NULL;
2326 		fullpath = "";
2327 		if (lobj) {
2328 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
2329 			if (kve->kve_type == KVME_TYPE_MGTDEVICE)
2330 				kve->kve_type = KVME_TYPE_UNKNOWN;
2331 			if (vp != NULL)
2332 				vref(vp);
2333 			if (lobj != obj)
2334 				VM_OBJECT_RUNLOCK(lobj);
2335 
2336 			kve->kve_ref_count = obj->ref_count;
2337 			kve->kve_shadow_count = obj->shadow_count;
2338 			VM_OBJECT_RUNLOCK(obj);
2339 			if (vp != NULL) {
2340 				vn_fullpath(curthread, vp, &fullpath,
2341 				    &freepath);
2342 				cred = curthread->td_ucred;
2343 				vn_lock(vp, LK_SHARED | LK_RETRY);
2344 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2345 					kve->kve_fileid = va.va_fileid;
2346 					/* truncate */
2347 					kve->kve_fsid = va.va_fsid;
2348 				}
2349 				vput(vp);
2350 			}
2351 		} else {
2352 			kve->kve_type = KVME_TYPE_NONE;
2353 			kve->kve_ref_count = 0;
2354 			kve->kve_shadow_count = 0;
2355 		}
2356 
2357 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2358 		if (freepath != NULL)
2359 			free(freepath, M_TEMP);
2360 
2361 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2362 		vm_map_lock_read(map);
2363 		if (error)
2364 			break;
2365 		if (last_timestamp != map->timestamp) {
2366 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2367 			entry = tmp_entry;
2368 		}
2369 	}
2370 	vm_map_unlock_read(map);
2371 	vmspace_free(vm);
2372 	PRELE(p);
2373 	free(kve, M_TEMP);
2374 	return (error);
2375 }
2376 #endif	/* COMPAT_FREEBSD7 */
2377 
2378 #ifdef KINFO_VMENTRY_SIZE
2379 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2380 #endif
2381 
2382 void
2383 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2384     int *resident_count, bool *super)
2385 {
2386 	vm_object_t obj, tobj;
2387 	vm_page_t m, m_adv;
2388 	vm_offset_t addr;
2389 	vm_paddr_t locked_pa;
2390 	vm_pindex_t pi, pi_adv, pindex;
2391 
2392 	*super = false;
2393 	*resident_count = 0;
2394 	if (vmmap_skip_res_cnt)
2395 		return;
2396 
2397 	locked_pa = 0;
2398 	obj = entry->object.vm_object;
2399 	addr = entry->start;
2400 	m_adv = NULL;
2401 	pi = OFF_TO_IDX(entry->offset);
2402 	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2403 		if (m_adv != NULL) {
2404 			m = m_adv;
2405 		} else {
2406 			pi_adv = atop(entry->end - addr);
2407 			pindex = pi;
2408 			for (tobj = obj;; tobj = tobj->backing_object) {
2409 				m = vm_page_find_least(tobj, pindex);
2410 				if (m != NULL) {
2411 					if (m->pindex == pindex)
2412 						break;
2413 					if (pi_adv > m->pindex - pindex) {
2414 						pi_adv = m->pindex - pindex;
2415 						m_adv = m;
2416 					}
2417 				}
2418 				if (tobj->backing_object == NULL)
2419 					goto next;
2420 				pindex += OFF_TO_IDX(tobj->
2421 				    backing_object_offset);
2422 			}
2423 		}
2424 		m_adv = NULL;
2425 		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2426 		    (addr & (pagesizes[1] - 1)) == 0 &&
2427 		    (pmap_mincore(map->pmap, addr, &locked_pa) &
2428 		    MINCORE_SUPER) != 0) {
2429 			*super = true;
2430 			pi_adv = atop(pagesizes[1]);
2431 		} else {
2432 			/*
2433 			 * We do not test the found page on validity.
2434 			 * Either the page is busy and being paged in,
2435 			 * or it was invalidated.  The first case
2436 			 * should be counted as resident, the second
2437 			 * is not so clear; we do account both.
2438 			 */
2439 			pi_adv = 1;
2440 		}
2441 		*resident_count += pi_adv;
2442 next:;
2443 	}
2444 	PA_UNLOCK_COND(locked_pa);
2445 }
2446 
2447 /*
2448  * Must be called with the process locked and will return unlocked.
2449  */
2450 int
2451 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2452 {
2453 	vm_map_entry_t entry, tmp_entry;
2454 	struct vattr va;
2455 	vm_map_t map;
2456 	vm_object_t obj, tobj, lobj;
2457 	char *fullpath, *freepath;
2458 	struct kinfo_vmentry *kve;
2459 	struct ucred *cred;
2460 	struct vnode *vp;
2461 	struct vmspace *vm;
2462 	vm_offset_t addr;
2463 	unsigned int last_timestamp;
2464 	int error;
2465 	bool super;
2466 
2467 	PROC_LOCK_ASSERT(p, MA_OWNED);
2468 
2469 	_PHOLD(p);
2470 	PROC_UNLOCK(p);
2471 	vm = vmspace_acquire_ref(p);
2472 	if (vm == NULL) {
2473 		PRELE(p);
2474 		return (ESRCH);
2475 	}
2476 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2477 
2478 	error = 0;
2479 	map = &vm->vm_map;
2480 	vm_map_lock_read(map);
2481 	for (entry = map->header.next; entry != &map->header;
2482 	    entry = entry->next) {
2483 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2484 			continue;
2485 
2486 		addr = entry->end;
2487 		bzero(kve, sizeof(*kve));
2488 		obj = entry->object.vm_object;
2489 		if (obj != NULL) {
2490 			for (tobj = obj; tobj != NULL;
2491 			    tobj = tobj->backing_object) {
2492 				VM_OBJECT_RLOCK(tobj);
2493 				kve->kve_offset += tobj->backing_object_offset;
2494 				lobj = tobj;
2495 			}
2496 			if (obj->backing_object == NULL)
2497 				kve->kve_private_resident =
2498 				    obj->resident_page_count;
2499 			kern_proc_vmmap_resident(map, entry,
2500 			    &kve->kve_resident, &super);
2501 			if (super)
2502 				kve->kve_flags |= KVME_FLAG_SUPER;
2503 			for (tobj = obj; tobj != NULL;
2504 			    tobj = tobj->backing_object) {
2505 				if (tobj != obj && tobj != lobj)
2506 					VM_OBJECT_RUNLOCK(tobj);
2507 			}
2508 		} else {
2509 			lobj = NULL;
2510 		}
2511 
2512 		kve->kve_start = entry->start;
2513 		kve->kve_end = entry->end;
2514 		kve->kve_offset += entry->offset;
2515 
2516 		if (entry->protection & VM_PROT_READ)
2517 			kve->kve_protection |= KVME_PROT_READ;
2518 		if (entry->protection & VM_PROT_WRITE)
2519 			kve->kve_protection |= KVME_PROT_WRITE;
2520 		if (entry->protection & VM_PROT_EXECUTE)
2521 			kve->kve_protection |= KVME_PROT_EXEC;
2522 
2523 		if (entry->eflags & MAP_ENTRY_COW)
2524 			kve->kve_flags |= KVME_FLAG_COW;
2525 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2526 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2527 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2528 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2529 		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2530 			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2531 		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2532 			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2533 		if (entry->eflags & MAP_ENTRY_USER_WIRED)
2534 			kve->kve_flags |= KVME_FLAG_USER_WIRED;
2535 
2536 		last_timestamp = map->timestamp;
2537 		vm_map_unlock_read(map);
2538 
2539 		freepath = NULL;
2540 		fullpath = "";
2541 		if (lobj != NULL) {
2542 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
2543 			if (vp != NULL)
2544 				vref(vp);
2545 			if (lobj != obj)
2546 				VM_OBJECT_RUNLOCK(lobj);
2547 
2548 			kve->kve_ref_count = obj->ref_count;
2549 			kve->kve_shadow_count = obj->shadow_count;
2550 			VM_OBJECT_RUNLOCK(obj);
2551 			if (vp != NULL) {
2552 				vn_fullpath(curthread, vp, &fullpath,
2553 				    &freepath);
2554 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2555 				cred = curthread->td_ucred;
2556 				vn_lock(vp, LK_SHARED | LK_RETRY);
2557 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2558 					kve->kve_vn_fileid = va.va_fileid;
2559 					kve->kve_vn_fsid = va.va_fsid;
2560 					kve->kve_vn_fsid_freebsd11 =
2561 					    kve->kve_vn_fsid; /* truncate */
2562 					kve->kve_vn_mode =
2563 					    MAKEIMODE(va.va_type, va.va_mode);
2564 					kve->kve_vn_size = va.va_size;
2565 					kve->kve_vn_rdev = va.va_rdev;
2566 					kve->kve_vn_rdev_freebsd11 =
2567 					    kve->kve_vn_rdev; /* truncate */
2568 					kve->kve_status = KF_ATTR_VALID;
2569 				}
2570 				vput(vp);
2571 			}
2572 		} else {
2573 			kve->kve_type = KVME_TYPE_NONE;
2574 			kve->kve_ref_count = 0;
2575 			kve->kve_shadow_count = 0;
2576 		}
2577 
2578 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2579 		if (freepath != NULL)
2580 			free(freepath, M_TEMP);
2581 
2582 		/* Pack record size down */
2583 		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2584 			kve->kve_structsize =
2585 			    offsetof(struct kinfo_vmentry, kve_path) +
2586 			    strlen(kve->kve_path) + 1;
2587 		else
2588 			kve->kve_structsize = sizeof(*kve);
2589 		kve->kve_structsize = roundup(kve->kve_structsize,
2590 		    sizeof(uint64_t));
2591 
2592 		/* Halt filling and truncate rather than exceeding maxlen */
2593 		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2594 			error = 0;
2595 			vm_map_lock_read(map);
2596 			break;
2597 		} else if (maxlen != -1)
2598 			maxlen -= kve->kve_structsize;
2599 
2600 		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2601 			error = ENOMEM;
2602 		vm_map_lock_read(map);
2603 		if (error != 0)
2604 			break;
2605 		if (last_timestamp != map->timestamp) {
2606 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2607 			entry = tmp_entry;
2608 		}
2609 	}
2610 	vm_map_unlock_read(map);
2611 	vmspace_free(vm);
2612 	PRELE(p);
2613 	free(kve, M_TEMP);
2614 	return (error);
2615 }
2616 
2617 static int
2618 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2619 {
2620 	struct proc *p;
2621 	struct sbuf sb;
2622 	int error, error2, *name;
2623 
2624 	name = (int *)arg1;
2625 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2626 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2627 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2628 	if (error != 0) {
2629 		sbuf_delete(&sb);
2630 		return (error);
2631 	}
2632 	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2633 	error2 = sbuf_finish(&sb);
2634 	sbuf_delete(&sb);
2635 	return (error != 0 ? error : error2);
2636 }
2637 
2638 #if defined(STACK) || defined(DDB)
2639 static int
2640 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2641 {
2642 	struct kinfo_kstack *kkstp;
2643 	int error, i, *name, numthreads;
2644 	lwpid_t *lwpidarray;
2645 	struct thread *td;
2646 	struct stack *st;
2647 	struct sbuf sb;
2648 	struct proc *p;
2649 
2650 	name = (int *)arg1;
2651 	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2652 	if (error != 0)
2653 		return (error);
2654 
2655 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2656 	st = stack_create(M_WAITOK);
2657 
2658 	lwpidarray = NULL;
2659 	PROC_LOCK(p);
2660 	do {
2661 		if (lwpidarray != NULL) {
2662 			free(lwpidarray, M_TEMP);
2663 			lwpidarray = NULL;
2664 		}
2665 		numthreads = p->p_numthreads;
2666 		PROC_UNLOCK(p);
2667 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2668 		    M_WAITOK | M_ZERO);
2669 		PROC_LOCK(p);
2670 	} while (numthreads < p->p_numthreads);
2671 
2672 	/*
2673 	 * XXXRW: During the below loop, execve(2) and countless other sorts
2674 	 * of changes could have taken place.  Should we check to see if the
2675 	 * vmspace has been replaced, or the like, in order to prevent
2676 	 * giving a snapshot that spans, say, execve(2), with some threads
2677 	 * before and some after?  Among other things, the credentials could
2678 	 * have changed, in which case the right to extract debug info might
2679 	 * no longer be assured.
2680 	 */
2681 	i = 0;
2682 	FOREACH_THREAD_IN_PROC(p, td) {
2683 		KASSERT(i < numthreads,
2684 		    ("sysctl_kern_proc_kstack: numthreads"));
2685 		lwpidarray[i] = td->td_tid;
2686 		i++;
2687 	}
2688 	numthreads = i;
2689 	for (i = 0; i < numthreads; i++) {
2690 		td = thread_find(p, lwpidarray[i]);
2691 		if (td == NULL) {
2692 			continue;
2693 		}
2694 		bzero(kkstp, sizeof(*kkstp));
2695 		(void)sbuf_new(&sb, kkstp->kkst_trace,
2696 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2697 		thread_lock(td);
2698 		kkstp->kkst_tid = td->td_tid;
2699 		if (TD_IS_SWAPPED(td)) {
2700 			kkstp->kkst_state = KKST_STATE_SWAPPED;
2701 		} else if (TD_IS_RUNNING(td)) {
2702 			if (stack_save_td_running(st, td) == 0)
2703 				kkstp->kkst_state = KKST_STATE_STACKOK;
2704 			else
2705 				kkstp->kkst_state = KKST_STATE_RUNNING;
2706 		} else {
2707 			kkstp->kkst_state = KKST_STATE_STACKOK;
2708 			stack_save_td(st, td);
2709 		}
2710 		thread_unlock(td);
2711 		PROC_UNLOCK(p);
2712 		stack_sbuf_print(&sb, st);
2713 		sbuf_finish(&sb);
2714 		sbuf_delete(&sb);
2715 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2716 		PROC_LOCK(p);
2717 		if (error)
2718 			break;
2719 	}
2720 	_PRELE(p);
2721 	PROC_UNLOCK(p);
2722 	if (lwpidarray != NULL)
2723 		free(lwpidarray, M_TEMP);
2724 	stack_destroy(st);
2725 	free(kkstp, M_TEMP);
2726 	return (error);
2727 }
2728 #endif
2729 
2730 /*
2731  * This sysctl allows a process to retrieve the full list of groups from
2732  * itself or another process.
2733  */
2734 static int
2735 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2736 {
2737 	pid_t *pidp = (pid_t *)arg1;
2738 	unsigned int arglen = arg2;
2739 	struct proc *p;
2740 	struct ucred *cred;
2741 	int error;
2742 
2743 	if (arglen != 1)
2744 		return (EINVAL);
2745 	if (*pidp == -1) {	/* -1 means this process */
2746 		p = req->td->td_proc;
2747 		PROC_LOCK(p);
2748 	} else {
2749 		error = pget(*pidp, PGET_CANSEE, &p);
2750 		if (error != 0)
2751 			return (error);
2752 	}
2753 
2754 	cred = crhold(p->p_ucred);
2755 	PROC_UNLOCK(p);
2756 
2757 	error = SYSCTL_OUT(req, cred->cr_groups,
2758 	    cred->cr_ngroups * sizeof(gid_t));
2759 	crfree(cred);
2760 	return (error);
2761 }
2762 
2763 /*
2764  * This sysctl allows a process to retrieve or/and set the resource limit for
2765  * another process.
2766  */
2767 static int
2768 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2769 {
2770 	int *name = (int *)arg1;
2771 	u_int namelen = arg2;
2772 	struct rlimit rlim;
2773 	struct proc *p;
2774 	u_int which;
2775 	int flags, error;
2776 
2777 	if (namelen != 2)
2778 		return (EINVAL);
2779 
2780 	which = (u_int)name[1];
2781 	if (which >= RLIM_NLIMITS)
2782 		return (EINVAL);
2783 
2784 	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2785 		return (EINVAL);
2786 
2787 	flags = PGET_HOLD | PGET_NOTWEXIT;
2788 	if (req->newptr != NULL)
2789 		flags |= PGET_CANDEBUG;
2790 	else
2791 		flags |= PGET_CANSEE;
2792 	error = pget((pid_t)name[0], flags, &p);
2793 	if (error != 0)
2794 		return (error);
2795 
2796 	/*
2797 	 * Retrieve limit.
2798 	 */
2799 	if (req->oldptr != NULL) {
2800 		PROC_LOCK(p);
2801 		lim_rlimit_proc(p, which, &rlim);
2802 		PROC_UNLOCK(p);
2803 	}
2804 	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2805 	if (error != 0)
2806 		goto errout;
2807 
2808 	/*
2809 	 * Set limit.
2810 	 */
2811 	if (req->newptr != NULL) {
2812 		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2813 		if (error == 0)
2814 			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2815 	}
2816 
2817 errout:
2818 	PRELE(p);
2819 	return (error);
2820 }
2821 
2822 /*
2823  * This sysctl allows a process to retrieve ps_strings structure location of
2824  * another process.
2825  */
2826 static int
2827 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2828 {
2829 	int *name = (int *)arg1;
2830 	u_int namelen = arg2;
2831 	struct proc *p;
2832 	vm_offset_t ps_strings;
2833 	int error;
2834 #ifdef COMPAT_FREEBSD32
2835 	uint32_t ps_strings32;
2836 #endif
2837 
2838 	if (namelen != 1)
2839 		return (EINVAL);
2840 
2841 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2842 	if (error != 0)
2843 		return (error);
2844 #ifdef COMPAT_FREEBSD32
2845 	if ((req->flags & SCTL_MASK32) != 0) {
2846 		/*
2847 		 * We return 0 if the 32 bit emulation request is for a 64 bit
2848 		 * process.
2849 		 */
2850 		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2851 		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2852 		PROC_UNLOCK(p);
2853 		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2854 		return (error);
2855 	}
2856 #endif
2857 	ps_strings = p->p_sysent->sv_psstrings;
2858 	PROC_UNLOCK(p);
2859 	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2860 	return (error);
2861 }
2862 
2863 /*
2864  * This sysctl allows a process to retrieve umask of another process.
2865  */
2866 static int
2867 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2868 {
2869 	int *name = (int *)arg1;
2870 	u_int namelen = arg2;
2871 	struct proc *p;
2872 	int error;
2873 	u_short fd_cmask;
2874 	pid_t pid;
2875 
2876 	if (namelen != 1)
2877 		return (EINVAL);
2878 
2879 	pid = (pid_t)name[0];
2880 	p = curproc;
2881 	if (pid == p->p_pid || pid == 0) {
2882 		fd_cmask = p->p_fd->fd_cmask;
2883 		goto out;
2884 	}
2885 
2886 	error = pget(pid, PGET_WANTREAD, &p);
2887 	if (error != 0)
2888 		return (error);
2889 
2890 	fd_cmask = p->p_fd->fd_cmask;
2891 	PRELE(p);
2892 out:
2893 	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2894 	return (error);
2895 }
2896 
2897 /*
2898  * This sysctl allows a process to set and retrieve binary osreldate of
2899  * another process.
2900  */
2901 static int
2902 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2903 {
2904 	int *name = (int *)arg1;
2905 	u_int namelen = arg2;
2906 	struct proc *p;
2907 	int flags, error, osrel;
2908 
2909 	if (namelen != 1)
2910 		return (EINVAL);
2911 
2912 	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2913 		return (EINVAL);
2914 
2915 	flags = PGET_HOLD | PGET_NOTWEXIT;
2916 	if (req->newptr != NULL)
2917 		flags |= PGET_CANDEBUG;
2918 	else
2919 		flags |= PGET_CANSEE;
2920 	error = pget((pid_t)name[0], flags, &p);
2921 	if (error != 0)
2922 		return (error);
2923 
2924 	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2925 	if (error != 0)
2926 		goto errout;
2927 
2928 	if (req->newptr != NULL) {
2929 		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2930 		if (error != 0)
2931 			goto errout;
2932 		if (osrel < 0) {
2933 			error = EINVAL;
2934 			goto errout;
2935 		}
2936 		p->p_osrel = osrel;
2937 	}
2938 errout:
2939 	PRELE(p);
2940 	return (error);
2941 }
2942 
2943 static int
2944 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2945 {
2946 	int *name = (int *)arg1;
2947 	u_int namelen = arg2;
2948 	struct proc *p;
2949 	struct kinfo_sigtramp kst;
2950 	const struct sysentvec *sv;
2951 	int error;
2952 #ifdef COMPAT_FREEBSD32
2953 	struct kinfo_sigtramp32 kst32;
2954 #endif
2955 
2956 	if (namelen != 1)
2957 		return (EINVAL);
2958 
2959 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2960 	if (error != 0)
2961 		return (error);
2962 	sv = p->p_sysent;
2963 #ifdef COMPAT_FREEBSD32
2964 	if ((req->flags & SCTL_MASK32) != 0) {
2965 		bzero(&kst32, sizeof(kst32));
2966 		if (SV_PROC_FLAG(p, SV_ILP32)) {
2967 			if (sv->sv_sigcode_base != 0) {
2968 				kst32.ksigtramp_start = sv->sv_sigcode_base;
2969 				kst32.ksigtramp_end = sv->sv_sigcode_base +
2970 				    *sv->sv_szsigcode;
2971 			} else {
2972 				kst32.ksigtramp_start = sv->sv_psstrings -
2973 				    *sv->sv_szsigcode;
2974 				kst32.ksigtramp_end = sv->sv_psstrings;
2975 			}
2976 		}
2977 		PROC_UNLOCK(p);
2978 		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2979 		return (error);
2980 	}
2981 #endif
2982 	bzero(&kst, sizeof(kst));
2983 	if (sv->sv_sigcode_base != 0) {
2984 		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2985 		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2986 		    *sv->sv_szsigcode;
2987 	} else {
2988 		kst.ksigtramp_start = (char *)sv->sv_psstrings -
2989 		    *sv->sv_szsigcode;
2990 		kst.ksigtramp_end = (char *)sv->sv_psstrings;
2991 	}
2992 	PROC_UNLOCK(p);
2993 	error = SYSCTL_OUT(req, &kst, sizeof(kst));
2994 	return (error);
2995 }
2996 
2997 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2998 
2999 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
3000 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
3001 	"Return entire process table");
3002 
3003 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3004 	sysctl_kern_proc, "Process table");
3005 
3006 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
3007 	sysctl_kern_proc, "Process table");
3008 
3009 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3010 	sysctl_kern_proc, "Process table");
3011 
3012 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
3013 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3014 
3015 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
3016 	sysctl_kern_proc, "Process table");
3017 
3018 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3019 	sysctl_kern_proc, "Process table");
3020 
3021 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3022 	sysctl_kern_proc, "Process table");
3023 
3024 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3025 	sysctl_kern_proc, "Process table");
3026 
3027 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
3028 	sysctl_kern_proc, "Return process table, no threads");
3029 
3030 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
3031 	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
3032 	sysctl_kern_proc_args, "Process argument list");
3033 
3034 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
3035 	sysctl_kern_proc_env, "Process environment");
3036 
3037 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
3038 	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
3039 
3040 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
3041 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
3042 
3043 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
3044 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
3045 	"Process syscall vector name (ABI type)");
3046 
3047 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
3048 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3049 
3050 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
3051 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3052 
3053 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
3054 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3055 
3056 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
3057 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3058 
3059 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
3060 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3061 
3062 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
3063 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3064 
3065 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
3066 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3067 
3068 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
3069 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3070 
3071 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
3072 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
3073 	"Return process table, no threads");
3074 
3075 #ifdef COMPAT_FREEBSD7
3076 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
3077 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
3078 #endif
3079 
3080 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
3081 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
3082 
3083 #if defined(STACK) || defined(DDB)
3084 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
3085 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
3086 #endif
3087 
3088 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
3089 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
3090 
3091 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
3092 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
3093 	"Process resource limits");
3094 
3095 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
3096 	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
3097 	"Process ps_strings location");
3098 
3099 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
3100 	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
3101 
3102 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
3103 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
3104 	"Process binary osreldate");
3105 
3106 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
3107 	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
3108 	"Process signal trampoline location");
3109 
3110 int allproc_gen;
3111 
3112 /*
3113  * stop_all_proc() purpose is to stop all process which have usermode,
3114  * except current process for obvious reasons.  This makes it somewhat
3115  * unreliable when invoked from multithreaded process.  The service
3116  * must not be user-callable anyway.
3117  */
3118 void
3119 stop_all_proc(void)
3120 {
3121 	struct proc *cp, *p;
3122 	int r, gen;
3123 	bool restart, seen_stopped, seen_exiting, stopped_some;
3124 
3125 	cp = curproc;
3126 allproc_loop:
3127 	sx_xlock(&allproc_lock);
3128 	gen = allproc_gen;
3129 	seen_exiting = seen_stopped = stopped_some = restart = false;
3130 	LIST_REMOVE(cp, p_list);
3131 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3132 	for (;;) {
3133 		p = LIST_NEXT(cp, p_list);
3134 		if (p == NULL)
3135 			break;
3136 		LIST_REMOVE(cp, p_list);
3137 		LIST_INSERT_AFTER(p, cp, p_list);
3138 		PROC_LOCK(p);
3139 		if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
3140 			PROC_UNLOCK(p);
3141 			continue;
3142 		}
3143 		if ((p->p_flag & P_WEXIT) != 0) {
3144 			seen_exiting = true;
3145 			PROC_UNLOCK(p);
3146 			continue;
3147 		}
3148 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3149 			/*
3150 			 * Stopped processes are tolerated when there
3151 			 * are no other processes which might continue
3152 			 * them.  P_STOPPED_SINGLE but not
3153 			 * P_TOTAL_STOP process still has at least one
3154 			 * thread running.
3155 			 */
3156 			seen_stopped = true;
3157 			PROC_UNLOCK(p);
3158 			continue;
3159 		}
3160 		sx_xunlock(&allproc_lock);
3161 		_PHOLD(p);
3162 		r = thread_single(p, SINGLE_ALLPROC);
3163 		if (r != 0)
3164 			restart = true;
3165 		else
3166 			stopped_some = true;
3167 		_PRELE(p);
3168 		PROC_UNLOCK(p);
3169 		sx_xlock(&allproc_lock);
3170 	}
3171 	/* Catch forked children we did not see in iteration. */
3172 	if (gen != allproc_gen)
3173 		restart = true;
3174 	sx_xunlock(&allproc_lock);
3175 	if (restart || stopped_some || seen_exiting || seen_stopped) {
3176 		kern_yield(PRI_USER);
3177 		goto allproc_loop;
3178 	}
3179 }
3180 
3181 void
3182 resume_all_proc(void)
3183 {
3184 	struct proc *cp, *p;
3185 
3186 	cp = curproc;
3187 	sx_xlock(&allproc_lock);
3188 again:
3189 	LIST_REMOVE(cp, p_list);
3190 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3191 	for (;;) {
3192 		p = LIST_NEXT(cp, p_list);
3193 		if (p == NULL)
3194 			break;
3195 		LIST_REMOVE(cp, p_list);
3196 		LIST_INSERT_AFTER(p, cp, p_list);
3197 		PROC_LOCK(p);
3198 		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3199 			sx_xunlock(&allproc_lock);
3200 			_PHOLD(p);
3201 			thread_single_end(p, SINGLE_ALLPROC);
3202 			_PRELE(p);
3203 			PROC_UNLOCK(p);
3204 			sx_xlock(&allproc_lock);
3205 		} else {
3206 			PROC_UNLOCK(p);
3207 		}
3208 	}
3209 	/*  Did the loop above missed any stopped process ? */
3210 	FOREACH_PROC_IN_SYSTEM(p) {
3211 		/* No need for proc lock. */
3212 		if ((p->p_flag & P_TOTAL_STOP) != 0)
3213 			goto again;
3214 	}
3215 	sx_xunlock(&allproc_lock);
3216 }
3217 
3218 /* #define	TOTAL_STOP_DEBUG	1 */
3219 #ifdef TOTAL_STOP_DEBUG
3220 volatile static int ap_resume;
3221 #include <sys/mount.h>
3222 
3223 static int
3224 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3225 {
3226 	int error, val;
3227 
3228 	val = 0;
3229 	ap_resume = 0;
3230 	error = sysctl_handle_int(oidp, &val, 0, req);
3231 	if (error != 0 || req->newptr == NULL)
3232 		return (error);
3233 	if (val != 0) {
3234 		stop_all_proc();
3235 		syncer_suspend();
3236 		while (ap_resume == 0)
3237 			;
3238 		syncer_resume();
3239 		resume_all_proc();
3240 	}
3241 	return (0);
3242 }
3243 
3244 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3245     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3246     sysctl_debug_stop_all_proc, "I",
3247     "");
3248 #endif
3249